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Abstract

With the increasing complexity of today’s spacecrafts, there exists a concern that the

on-board flight computer may be overburdened with various processing tasks. Currently

available processors used by NASA are struggling to meet the requirements of scientific

experiments [1, 2]. A new computational platform will soon be needed to contend with

the increasing demands of future space missions.

Recently developed hybrid field-programmable gate arrays (FPGA) offer the versatility

of running diverse software applications on embedded processors while at the same time

taking advantage of reconfigurable hardware resources, all on the same chip package.

These tightly coupled HW/SW systems consume less power than general-purpose single-

board computers (SBC) and promise breakthrough performance previously impossible

with traditional processors and reconfigurable devices.

This thesis takes an existing floating-point intensive data processing algorithm, used

for on-board spacecraft Fourier transform infrared (FTIR) spectrometry, ports it into the

embedded PowerPC 405 (PPC405) processor, and evaluates system performance after ap-

plying different hardware and software optimizations and architectural configurations of

the hybrid-FPGA. The hardware optimizations include Xilinx’s floating-point unit (FPU)

for efficient single-precision floating-point calculations and a dedicated single-precision

dot-product co-processor assembled from basic floating-point operator cores. The soft-

ware optimizations include utilizing a non-ANSI single-precision math library as well as

IBM’s PowerPC performance libraries recompiled for double-precision arithmetic only.

The outcome of this thesis is a fully functional, optimized FTIR spectrometry algorithm

implemented on a hybrid-FPGA. The computational and power performance of this sys-

tem is evaluated and compared to a general-purpose SBC currently used for spacecraft

data processing. Suggestions for future work, including a dual-processor concept, are

given.
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Chapter 1

Introduction

1.1 Background and Motivation

From the dawn of the Space Age, on-board flight computers have played an ever increas-

ing role in the exploration of the universe. Although constantly improving, the perfor-

mance of computers used for space flight typically falls a decade or more behind that of

modern PCs. This is due to the stringent requirements imposed on space-bound proces-

sors and computer peripherals for tolerating the higher dose of radiation that is present

outside the Earth’s atmosphere. Radiation hardening requires special fabrication and

packaging techniques that adversely affects the performance of these components. Al-

though necessary, such measures can limit the scope of scientific experiments to be

carried out by the spacecraft.

The proposed Mars Scout Mission known as MARVEL1 is a prime example where data

processing demands really push the limits of currently available radiation hardened pro-

cessors. The goal of this mission is to find evidence of active Martian volcanism and life

[3]. Although not funded past the proposal stage, the instruments and scientific experi-

ments from MARVEL are applicable to many similar missions that intend to analyze the

chemical composition of an atmosphere. The primary science instrument on the MARVEL

spacecraft is a solar occultation Fourier Transform Spectrometer (FTS) called MATMOS2

used for very sensitive detection of trace gases such as CH4 and N2O that might be pro-

duced by life or volcanism (see Figure 1.1 on the following page) [2].

The MATMOS instrument will measure the infra-red spectrum of direct sunlight and

produce large volumes of data in two short, 3-minute bursts during its on-orbit observa-

tions of sunrise and sunset (see Figure 1.2 on the next page). The remaining orbit time

of 112 minutes is available for on-board data processing to reduce data volume prior to

down-link. The steps involved in the data processing are computationally intensive and

1Mars Volcanic Emissions and Life (MARVEL)
2Mars Atmospheric Trace Molecule Spectroscopy (MATMOS)
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(a) MARVEL spacecraft (b) MATMOS instrument

Figure 1.1: A conceptual drawing of the MARVEL spacecraft [1] with the MATMOS in-
strument [3] gathering data through the Martian atmosphere as it points towards the
Sun

carry a heavy emphasis on floating-point calculations. Currently, two BAE RAD750 (ra-

diation hardened) processors are required to perform such processing. Although these

processors have flown successfully on numerous NASA missions, they consume signifi-

cant power (20 W in a SBC package), and require extensive interface logic [1, 2].

As missions become more complex with more demanding requirements, the traditional

approach of using radiation hardened SBCs will no longer be the optimal. MATMOS re-

quires two processors, but other missions may require six or eight, all working simul-

taneously, all consuming power and adding to the net weight of the spacecraft. A new,
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Figure 1.2: Solar occultation observations [1, 2]
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more efficient computational platform is urgently needed; one that can execute com-

plex software and at the same time efficiently implement algorithms in hardware like an

application-specific integrated circuit (ASIC). Hybrid-FPGAs fit this description as they

typically have one or more embedded processor cores immersed in a sea of reconfigurable

logic. Although not yet radiation hardened, strong efforts are currently being made to

qualify these devices for space flight [4, 5].

In 2005, NASA Jet Propulsion Laboratory looked into the possibility of using the Xilinx

Virtex-II Pro (V2P) hybrid-FPGA as the computational platform for MATMOS. That study

concluded that the V2P could not keep up with the data processing when performed in

software on the embedded PPC405 processor core. The study further suggested that the

lack of a hardware FPU on the V2P is responsible for its slow processing times as all

floating-point calculations are emulated in the software [2].

In recent years, hybrid-FPGAs have evolved significantly. Currently, the Xilinx Virtex-

4FX (V4FX) hybrid-FPGA is the most advanced of its kind that is available commercially.

The V4FX brings with it new capabilities for custom co-processor integration, including a

soft core single precision FPU with full compiler support. This, along with other improve-

ments, warrants that MATMOS data processing be evaluated again on this new platform

with optimizations not tried in the past.

1.2 Thesis Description

This thesis takes the MATMOS data processing software for FTIR spectrometry and, after

porting it to the PPC405 processor, implements various hardware and software optimiza-

tions that reduce the overall execution time. Although the main focus is on the V4FX

FPGA, the older V2P is also targeted for comparison. The results presented are actual

run times on fully functional hybrid-FPGA systems built with Xilinx’s Embedded Devel-

opment Kit (EDK)3.

The FTIR spectrometry software is written entirely in FORTRAN and is ported to the

PPC405 processor with the help of the FORTRAN-to-C Converter (f2c) and its supporting

libraries [6]. Configuring f2c and its libraries to generate valid PPC405 code requires a

specific set of compilation and linking options which are discussed in this thesis. Once

ported, the FTIR spectrometry software is carefully studied in order to identify areas of

3This thesis developed out of an internship in the summer of 2006 with the Instrument and Science Data
Systems Division at NASA Jet Propulsion Laboratory and continues the work presented in [1].
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improvement. Profiling tools are used to locate bottlenecks and computationally intensive

portions of the algorithm.

Two software optimizations are evaluated as part of this work:

• Use of non-ANSI single-precision math library functions

• Use of IBM Performance Libraries (Perflib)

The techniques above are compatible with both the V2P and the V4FX. The first technique

requires modification of the FTIR spectrometry code to use single-precision math func-

tion calls where acceptable. Single-precision arithmetic is performed much faster than

double-precision thus reducing the overall execution time. Perflib is a set of libraries that

replaces string manipulation functions and standard floating-point emulation with hand-

optimized routines written specifically for the PPC405 processor [7]. Xilinx EDK pro-

vides a version of Perflib compiled for string, single, and double-precision optimization.

This thesis additionally provides a build of Perflib that only optimizes double-precision

floating-point arithmetic and discusses where it is applicable.

Most of the work, however, deals exclusively with the V4FX and is focused on hard-

ware optimizations, their integration with the system, and compatibility with the soft-

ware. Different system architectures, memory configurations, and bus frequencies are

evaluated to find the optimal solution. The new soft-core single-precision Xilinx FPU and

its integration with the auxiliary processor unit (APU) controller is studied extensively.

Additionally, a custom HW accelerator that optimizes single-precision dot-product cal-

culations is presented and implemented alongside the FPU thus demonstrating multiple

co-processors sharing the same physical hardware interface - a capability not previously

tested by Xilinx.

Overall, this thesis achieves a 10x reduction in execution time of the FTIR spectrom-

etry algorithm when compared to a software-only implementation on the V4FX60 FPGA.

Only one of two available PPC405 cores is utilized and with minimal changes to the FTIR

spectrometry software. This is the fastest implementation of the algorithm on an FPGA

platform to date. Although, in its current form, incapable to meet the data processing

requirements for MATMOS, future improvements to the software as a well as a dual-core

design (presented in this thesis) will come very close.
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1.3 Overview

This thesis starts with an overview of Fourier transform infrared spectrometry and its

past implementation on an FPGA, presented in Chapter 2. Chapter 3 introduces the

Virtex-4 FX hybrid-FPGA with a detailed explanation of its main architectural features.

Chapter 4 presents an all-software implementation of the FTIR spectrometry algorithm

on the V4FX60 FPGA and analyzes the initial performance results. Chapters 5 and 6

describe software and hardware optimizations that reduce the execution time of the FTIR

base system, presenting and analyzing performance results along the way. Chapter 7

takes a look at all of the implementations done in this thesis and compares their com-

putational and power performance to that of a general-purpose SBC used for spacecraft

data processing. Finally, Chapter 8 concludes the thesis with a brief overview of the work

accomplished and presents suggestions for future research in this area.
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Chapter 2

Fourier Transform Infrared Spectrom-
etry

This chapter introduces Fourier transform infrared (FTIR) spectrometry as it is applied

to the MATMOS instrument and the MARVEL mission. A description is given of how

the solar occultation data is collected, the steps involved in the data processing after

collection, and the necessary memory requirements. The results of past work done with

the FTIR spectrometry algorithm and the V2P FPGA are also presented.

2.1 Data Collection

The MATMOS instrument measures the 850-4300 cm−1 region of the infra-red spectrum

of sunlight as it shines through the Martian atmosphere. This measurement is done at

a high 0.02 cm−1 spectral resolution necessary to identify certain trace gases. MATMOS

records roughly 26 spectra per occultation, with each containing 172,500 spectral ele-

ments (see Figure 2.1 on the following page). The duration of an occultation is between

78 and 169 seconds, thus requiring that each spectrum be collected in 3.0 to 6.5 seconds

[1].

The spectrum is recorded with a Fourier Transform Spectrometer (FTS), a Michelson

interferometer in which the optical path difference of light rays is continuously varied

with moving mirrors (see Figure 2.2 on the next page). Using photovoltaic detectors, this

modulated light is converted to an electric signal known as an interferogram. To attain

the high 0.02 cm−1 spectral resolution, the FTS needs a maximum optical path difference

(MOPD) of 25 cm. However, for the best quality, velocity of the scanner moving the mirrors

should be constant at the point of zero path difference (ZPD). Thus, for MATMOS, the

optical path is increased to 50 cm and a dual-sided interferogram is recorded, with the

ZPD in the middle of the scan [1].

Given that the shortest spectrum collection time is 3 seconds, and estimating that the
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(a) Low dust conditions

(b) High dust conditions

Figure 2.1: Simulated Mars occultation spectra [2]

Figure 2.2: An ideal Fourier Transform Spectrometer with only the axial rays shown [1]
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scanner turn-around time is 0.5 seconds (to reverse direction), the velocity with which

the mirror must travel the 50 cm distance is 20 cm/s. Given this velocity, v, and an optical

wavenumber, s, the corresponding frequency, f, recorded at the detector is calculated as:

f = s × v (2.1)

With the equation above, the highest detectable wavenumber (4300 cm−1) corresponds

to the frequency of 86 kHz. The frequency of the reference laser (internal to the FTS)

used to measure the path difference is 129 kHz, given that its wavenumber is 6450 cm−1.

Thus, in accordance with the Nyquist Theorem, the minimum sampling frequencies of

Analog-to-Digital Converters (ADC) used to record each interferogram are 172 kHz for

the solar data and 258 kHz for the laser signal. Oversampling factors of 1.1 and 1.5 are

used for the MATMOS FTS in order to improve the quality of the sampled signal. This

sets the sampling frequencies to 192 kHz and 384 kHz, respectively [1].

The MATMOS FTS utilizes three separate detectors in the process of collecting occul-

tation spectra. An HgCdTe detector is used to collect longer wavelengths (12 µm - 5 µm)

and an InSb detector collects shorter wavelengths (5 µm - 2 µm). An Ge detector is used

to collect the reference laser interferogram. The HgCdTe and InSb detectors use 24-bit

ADCs while the Ge detector uses a 16-bit ADC. Data from the 24-bit ADCs is stored in

32-bit format to match common computer architectures [1].

Thus, given that there are two detectors which output 32-bit data at 192 kHz, a detec-

tor that outputs 16-bit data at 384 kHz, a scanner duty cycle of 5/6 (mirror moves for 2.5

out of 3.0 seconds with 0.5 seconds turn-around time), and two 3-minute occultations to

observe, the amount of data collected on every orbit is:

((2×32bit×192000
samples

sec
)+(16bit×384000

samples

sec
))× (5/6)×2× (3min×60

sec

min
) = 5.53Gbit

That is equivalent to 659 Mbytes. This will fit in the MATMOS memory bank which

has the capacity of 2 Gbytes [1].

2.2 Data Processing Steps

The amount of data collected by the MATMOS FTS cannot be transmitted to Earth in its

entirety. The data must first be processed by the on-board instrument computer and
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(a) Frequency modulation can be seen in the time-
domain signal

(b) Re-sampling to the path difference domain re-
moves the frequency modulation

Figure 2.3: The time-domain-sampled interferogram is re-sampled to the path-difference
domain [1]

compressed to a reasonable amount for transmission. The steps involved in this process

are summarized in this section.

The ADCs used to convert solar data from the HgCdTe and InSb detectors cannot be

triggered externally. The conversion process runs continuously and produces a time-

domain data stream with each value corresponding to a point in time. Through re-

sampling, this data stream must be converted to the path-difference domain in order

to remove frequency modulation in the time-domain caused by variations of the mirror

velocity (see Figure 2.3) [1, 8].

Re-sampling reduces the number of points from 192kHz × 2.5sec = 480, 000 for each

solar detector to 218 = 262, 144 points for the HgCdTe detector and 219 = 524, 288 for the

InSb detector. Additionally, laser interferogram data is no longer needed after re-sampling

and can be freed from memory. This data accounts for 1/3 of all raw data, as shown in

the calculation below [1].

16bit × 384000 sample

sec

(2 × 32bit × 192000 samples

sec
) + (16bit × 384000 sample

sec
)

=
1

3

Thus, removing the laser interferogram data reduces data volume by 3/2. From the

initial raw interferogram data, the net reduction due to re-sampling is:

2 × 480000

262144 + 524288
×

3

2
= 1.83

Next, phase correction (using convolution) is performed in order to make the interfero-

gram symmetrical about the ZPD. Being symmetrical, the two halves of the interferogram

9



DATA PROCESSING STEP REDUCTION FACTOR DATA SIZE (MBYTES)

Raw Interferogram - - - 659.18

Interferogram Re-sampling 1.83 360.21

Phase Correction 2.00 180.10

Fast Fourier Transformation 6.10 29.53

Spectra Averaging 2.00 14.76

Lossless Compression 1.80 8.20

NET DATA REDUCTION 80.37 8.20

Table 2.1: Reduction in data volume due to on-board data processing

can be averaged together further reducing the amount of data by a factor of 2. Following

this step, the spectrum is computed with a fast Fourier transform (FFT) which produces

an output with a smaller dynamic range than the interferogram. This resulting data can

be represented with 16 bits instead of the 32 bits originally used for the interferogram (2x

data reduction). Additional data reduction is attained from reducing the spectral range.

The computed spectrum has a range of 5243 cm−1for each solar detector, yet the data

desired is in the 850-4300 cm−1 range and combined into one channel. Altogether, for

the two solar detectors, the FFT reduces data volume by the factor computed below [1].

2 × 2 ×
5243cm−1

(4300cm−1
− 850cm−1)

= 6.1

The final two steps in reducing the data volume are spectra averaging and compres-

sion. Averaging scans taken above the atmosphere reduces data volume by a factor of

2. Lossless compression achieves a 1.8 reduction in the data volume. The combined

reduction in the volume of data to be transmitted to Earth is summarized in Table 2.1[1].

2.3 First Evaluation on FPGAs

In 2005, NASA Jet Propulsion Laboratory evaluated the performance of the FTIR spec-

trometry algorithm on the V2P FPGA and compared it to the radiation hardened BAE

RAD750 SBC. The FPGA hosted a PPC405 CPU implementation of the algorithm with-

out putting any portions in the reconfigurable hardware. Figure 2.4 on the following

page gives a brief overview of the two processing platforms. Table 2.2 on the next page

presents the results from that research task. The results clearly indicate that the V2P

falls far behind the RAD750. Furthermore, not even the RAD750 can process the data

fast enough to meet the time requirement of 112 minutes. Thus, not one but two RAD750

SBCs are required for the MATMOS instrument.
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Figure 2.4: The BAE RAD750 SBC and the Xilinx V2P board [2]

Table 2.2: Results of NASA JPL research task comparing FTIR spectrometry execution
times between the BAE RAD750 SBC and the Xilinx V2P board [2]
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There are a couple of reasons why the V2P takes so much longer to process the data,

namely cache size, instruction issue rate, and hardware floating-point support. The

RAD750 SBC contains a variant of the PowerPC750 (PPC750) processor with 32 Kbytes

data and 32 Kbytes instruction L1 cache [9]. The V2P has a PPC405 processor with 16

Kbytes data and 16 Kbytes instruction L1 cache [10]. In an application such as this, the

tremendous data processing requires frequent accesses to external memory. A larger L1

cache means that more data can fit in this high speed memory resulting in fewer cache

misses and fewer accesses to main memory, which carries with it a high latency [1].

Another reason for the RAD750 performing so much better is the instruction issue rate

of the PPC750 processor. As this processor is a superscalar, multiple instructions can be

fetched, dispatched, and executed in one cycle. In particular, the PPC750 can fetch up

to four instructions, dispatch up to two instructions, and execute up to six instructions

per clock cycle. The PPC405 processor is a scalar processor with a single issue execution

pipeline [11, 12].

The lack of a hardware floating-point unit in the V2P, however, is an even larger per-

formance hit than the size of the cache or the instruction issue rate. The RAD750 has

a hardware floating-point unit which performs all floating-point operations and reports

the results back to the processor. The V2P FPGA does not have a hardware floating-point

unit requiring that all floating-point operations be emulated in the software. Software

emulation is inherently slower than computation done with dedicated hardware. The

steps in the FTIR spectrometry algorithm require significant floating point calculations.

Even with its higher processor frequency (300 MHz vs. 133 MHz) and special optimiza-

tion library (IBM Perflib), the V2P still lags far behind the RAD750. Although its small

size/weight and low power consumption is very favorable for future space flight, in its

basic configuration the V2P does not meet MATMOS’s data processing requirements [1].

The only way a hybrid-FPGA solution could come close to the performance of the

RAD750 is by integrating a dedicated floating-point unit, implementing certain portions

of the algorithm in the FPGA fabric, and optimizing the code to make the best use of the

hardware resources on the FPGA. This, along with the advanced capabilities of the Xilinx

Virtex-4FX FPGA (described in the next chapter), is the motivation for this thesis.
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Chapter 3

Xilinx Virtex-4 FX Hybrid-FPGA

New innovations in the field of reconfigurable computing have recently led to the de-

velopment of FPGAs with multiple embedded processors. Such a computing platform,

known as a hybrid-FPGA, offers the versatility of running diverse software applications

on embedded processors while at the same time taking advantage of tightly coupled re-

configurable hardware resources. This allows for the exploitation of coarse-grain data-

parallelism via the software as well as fine-grain data-parallelism via the reconfigurable

hardware. The recently released Virtex-4 FX (V4FX) FPGA is a true hybrid-FPGA with

up to two embedded PPC405 processors. Additionally, the auxiliary processor unit (APU)

controller inside each PPC405 core can interface to custom hardware co-processors im-

plemented in the FPGA fabric. This efficient, high speed, low latency interface feeds di-

rectly into the processor instruction pipeline, allowing for the extension of the instruction

set architecture with user defined instructions (instruction augmentation). With these

and other features, the Xilinx Virtex-4 FX FPGA delivers breakthrough performance pre-

viously impossible with traditional processors and reconfigurable devices.

This chapter introduces the Virtex-4 FPGA, describes the architecture of the V4FX

hybrid-FPGA, and provides an overview of its main features. In particular, processor

choices, system buses, and the new auxiliary processor unit controller are described in

detail. The chapter concludes with an overview of the target platform for this thesis - the

Xilinx ML410 development board.

3.1 Xilinx Virtex-4 FPGA Overview

Devices in Xilinx’s Virtex family of FPGAs are known as Platform FPGAs because of the

features they deliver for use in system-on-chip (SoC) applications. Built in low power, 90

nm technology, the Virtex-4 comes in three flavors that are tailored to specific applica-

tions.

The three Virtex-4 platforms, in the order of release, are:
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• LX: Logic optimized

• SX: Signal processing optimized

• FX: Full-featured, with embedded processors

The LX platform has the most general purpose logic resources and is targeted at logic-

intensive applications, such as complex interfaces and advanced digital systems. The

SX platform has the largest amount of specialized digital signal processing (DSP) blocks,

making it ideal for signal processing applications such as filter design or digital image

processing. The full-featured FX platform has the highest amount of on-chip memory

resources and comes with up to two embedded processors, making it a true hybrid-

FPGA. This is a great platform for implementing complete embedded systems that require

a robust interface between software and custom hardware [13].

In all three platforms, the Virtex-4 FPGA comes with a rich set of common features,

including:

• 500 MHz system clocking

• 1+ Gbps IOBs (input/output blocks)

• 256 giga multiply-accumulate operations per second (GMACS) DSP circuitry (18x18)

• Block RAM with built-in error checking and correction (ECC)

The features above, and others not listed, make the Virtex-4 a very powerful FPGA plat-

form that is suitable for a wide range of applications. According to Xilinx, this FPGA

consumes much less power than other competing 90 nm FPGAs, making it ideal for low-

power designs [14].

3.2 The Hybrid-FPGA Concept

A hybrid-FPGA is a device that contains one or more processor cores inside a sea of

reconfigurable logic resources. The Virtex-4 FX FPGA is a true hybrid-FPGA as it contains

up to two PowerPC 405 processor cores embedded inside the FPGA fabric.

3.2.1 Motivation

The hybrid-FPGA concept emerged from the trade-off that developers had to make when

selecting a computing platform to meet their processing requirements. The trade-off was
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(a) Spatial computing (b) Temporal computing

Figure 3.1: Spatial vs. temporal computing [15]

between using FPGAs that took advantage of spatial computing and general-purpose pro-

cessors (GPPs) that took advantage of temporal computing (see Figure 3.1). Under spa-

tial computing, the functionality and connectivity of hardware elements is fixed. Under

temporal computing, a processor runs a fixed set of instructions while sharing a func-

tional unit. While spatial computing may offer more efficient implementations of certain

algorithms (due to dedicated hardware), temporal computing is more flexible and can

accommodate complex, irregular tasks [15].

The hybrid-FPGA offers the benefits of both spatial and temporal computing by includ-

ing a processor core among the reconfigurable logic and providing an interface between

the software and hardware domains. This is an ideal platform for high performance com-

puting applications that are characterized by complex software tasks which interface with

algorithms implemented in hardware.

3.2.2 Previous Work

A distant relative of the hybrid-FPGA concept is the RISC4005/R16 FPGA processor im-

plementation by Philip Freidin (Fliptronics) in 1991 [13]. The RISC4005/R16 features a

16 bit RISC processor core implemented on Xilinx’s XC4005 FPGA. The instruction set

architecture (ISA) is similar to AMD 29000 RISC and can be extended. This design, how-

ever, uses 75% of the available resources on the FPGA and leaves little room for other

hardware components [16]. The V2P and the V4FX FPGAs feature embedded processors

that do not take additional logic resources, thus leaving much room for custom hardware
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Figure 3.2: GARP block diagram [17]

designs.

The GARP processor (Berkeley, 1997) is architecturally very similar to the V2P and the

V4FX. GARP contains a MIPS-II-based processor and a reconfigurable array all on one

chip (see Figure 3.2). Both the processor and the reconfigurable array have independent

access to the off-chip memory. GARP’s reconfigurable array consists of blocks similar

to the CLBs of the Xilinx 4000 series. By today’s standards, such reconfigurable logic

is rather simplistic as it does not offer some of the more sophisticated features such as

DSP blocks, dedicated multipliers, and multi-gigabit transceivers (MGTs). Furthermore,

GARP was never actual built and exists only on paper (although the full layout has been

done). However, GARP does offer some features that the V2P and the V4FX do not have,

the most notable being fast, on-the-fly reconfiguration. The main processor in GARP can

issue a command to very quickly reconfigure the hardware. The V2P and the V4FX may

need seconds to do a full reconfiguration [17].

3.3 Virtex-4 FX Hybrid-FPGA

The V4FX FPGA is a relatively new device and is considered a true hybrid-FPGA as it

comes with up to two embedded PowerPC 405 processor cores. In addition to the standard

features on all Virtex-4 FPGAs, the V4FX also includes:

• 450 MHz, 680 DMIPS PowerPC 405 processing

• 622 Mbps - 6.5 Gbps multi-gigabit transceivers (RocketIO MGTs)
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Figure 3.3: PPC405 core inside a V4FX hybrid-FPGA [19]

• Auxiliary processing unit (APU) controller

The following sections will discuss V4FX architecture, including the processing choices

(hard PowerPC 405 or soft MicroBlaze), the system interfaces, and the APU controller. The

APU controller is a key component in the V4FX hybrid-FPGA as it provides an efficient

interface to HW accelerators in the FPGA fabric and supports ISA extension (instruction

augmentation) [18].

3.3.1 PowerPC 405 Embedded Hard Processor

Developed by IBM, up to two PPC405 processors are embedded in the V4FX hybrid-FPGA

as hard IP cores (do not take additional resources). Natively, the PPC405 is a big-endian

processor although it can switch to the little-endian mode. The PPC405 features (as

shown in Figure 3.3) [19]:

• Up to 450 MHz operation

• 32-bit Harvard architecture (RISC, separate data and instruction caches / inter-

faces)
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Figure 3.4: PPC405 pipeline utilization by instruction type [19]

• Five-stage single issue execution pipeline

• 32 general-purpose registers (GPRs)

• 16 KB 2-way set-associative instruction and data caches

• Write-back (default) or write-through policy for data cache

• 64-entry unified HW TLB memory management unit (MMU)

• Variable page sizes (1KB - 16KB)

• Block RAM (BRAM) interface via on-chip memory (OCM) controllers

The PPC405 five-stage pipeline consists of a fetch, decode, execute, write-back, and load

write-back stages (see Figure 3.4). The fetch and decode stages ensure a well fed in-

struction pipeline with up to two instructions in the fetch queue. The single execute

unit contains the GPR register file, the arithmetic logic unit (ALU), and the multiply-

accumulate (MAC) unit, but it does not include a floating-point unit (FPU). The PPC405

can natively handle 32-bit PowerPC integer instructions only. However, the APU con-

troller provides an interface to execute instructions that are not part of the PPC405 ISA

in custom co-processors, which may include a FPU in the FPGA fabric [19].
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FPGA SIZE CLOCK FREQ. DMIPS PERFORMANCE

Virtex-5 1,010 LUTs 210 MHz 240 1.15 DMIPS/MHz
Virtex-4 1,809 LUTs 160 MHz 184 1.15 DMIPS/MHz

Spartan-3 (Performance) 1,843 LUTs 100 MHz 115 1.15 DMIPS/MHz
Spartan-3 (Size) 1,350 LUTs 100 MHz 92 0.92 DMIPS/MHz

Table 3.1: MicroBlaze Performance for Xilinx FPGAs (with multiplier and barrel shifter)
[20]

Figure 3.5: MicroBlaze core block diagram [21]

3.3.2 MicroBlaze Soft Processor

An alternative to the hard PPC405 processor is the soft MicroBlaze core. Soft cores are

implemented from reconfigurable resources and are thus very portable between different

FPGA families. Table 3.1 shows the size and performance of the MicroBlaze processor

on different Xilinx FPGAs. As a reference, the V4FX60 FPGA (targeted in this thesis) has

50,560 LUTs.

Like the PPC405, the MicroBlaze is a 32-bit RISC processor. Except for the amount of

FPGA resources, there is no limit to how many MicroBlaze processors can be instantiated

on a single FPGA. The MicroBlaze is a big-endian processor with the features listed below

[21]. The MicroBlaze core block diagram is shown in Figure 3.5.

• 32-bit Harvard architecture (RISC, separate data and instruction caches / inter-

faces)
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• Three-stage (area optimized) or five-stage (performance optimized) single issue exe-

cution pipeline

• 32 general-purpose registers (GPRs)

• Up to 64 KB 1-way associative instruction and data caches via Xilinx CacheLink

(XCL) interface

• Write-through policy for data cache

• Block RAM (BRAM) interface via local memory bus (LMB) controllers

• Optional features (selectable by user):

– Hardware barrel shifter

– Hardware multiplier

– Hardware divider

– Single-precision FPU

The depth of the pipeline can be configured as either three-stage (area optimized) or five-

stage (performance optimized). The three-stage pipeline has only the fetch, decode, and

execute stages. The five-stage pipeline has the fetch, decode, execute, access memory,

and write-back stages. The optional FPU is a very popular features as it provides seamless

support for single-precision floating-point operations and delivers up to 50 MFLOPs peak

performance. The MicroBlaze processor also support hardware co-processor integration

via the fast simplex link (FSL) interface (also available on PPC405 systems). The FSL

channels provide unidirectional high speed data streams and interface directly into the

processor pipeline. In a PPC405 system, the APU controller with the fabric co-processor

bus (FCB) is a better choice for communicating with hardware co-processors as this inter-

face supports instruction decoding and larger data transfers. The MicroBlaze processor

can host up to eight FSL channels (each with one input and output port) [21].

3.3.3 System Interfaces

This section describes the system interfaces that are typical to a SoC implementation

on a Xilinx V4FX FPGA. Both PPC405 and MicroBlaze interfaces are presented. As both

processors are in Harvard architecture, the interfaces listed below (except DCR, FCB, and

FSL) have an instruction and data side denoted with the letters ’I’ and ’D’, respectively,
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in front of the interface name (for example, IPLB, DPLB, IOPB, DOPB, etc...). Master

and slave interfaces are denoted with the letters ’M’ and ’S’, respectively, in front of the

interface name (for example, MOPB, SOPB, etc...).

PLB (Processor Local Bus - PPC405 only). This bus is for high speed and high perfor-

mance peripherals, such as memory. The processor accesses this bus through the

instruction and data cache controllers. Separate 32-bit address and 64-bit data

buses are provided. The PLB interface can have up to 16 masters and 16 slaves,

with arbitration [19, 22].

OPB (On-chip Peripheral Bus - PPC405 and MicroBlaze). This bus is for less demanding

peripherals that do not need to communicate with the processor very frequently and

do not need high bandwidth (for example, UART controller). Peripherals on the OPB

communicate with the processor either directly (for MicroBlaze) or via a bridge to

the PLB (for PPC405). The OPB can have up to 16 masters and 16 slaves, with

arbitration. This bus supports 32-bit transactions [19, 23].

DCR (Device Control Register - PPC405 only). This 32-bit data, 10-bit address bus is

for accessing on-chip configuration and IP control registers. Through this bus, the

processor can control IP cores directly. Multiple IPs are connected to this bus in a

daisy-chain fashion (up to 16 IPs in a chain) [19, 24].

OCM (On-chip Memory - PPC405 only). This bus is for connecting local on-chip memory

to the processor. Non-cacheable access to this memory usually occurs in a 1:1 or 2:1

time frame ratio compared to access to cached memory through the cache controllers

(depending on processor frequency and amount of memory). This bus supports 32-

bit bi-directional data-side memory transfers and 64-bit uni-directional instruction-

side memory transfers. There is no bus arbitration, so one processor master/slave

pair is allowed. On-chip memory connected through the OCM interface often holds

interrupt routines that require low-latency access or frequently used data arrays

such as filter coefficients in DSP applications. Being non-cacheable, such usage of

on-chip memory reduces cache pollution and thrashing [19, 25].

FCB (Fabric Co-processor Bus - PPC405 only). This 32-bit bus is used for connecting

fabric co-processor modules (FCM) to the auxiliary processor unit (APU) controller.

There is no bus arbitration, so one processor master / multiple slaves are allowed.

Each slave must decode a unique set of instructions presented on the FCB. This
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interface provides a high bandwidth and low latency connection that integrates di-

rectly into the processor pipeline. The FCB is the primary choice for integrating

high performance co-processors to the PowerPC system as it provides a mechanism

for instruction decoding and allows for larger data transfers (quad word load/store)

[26].

FSL (Fast Simplex Link - PPC405 and MicroBlaze). This 32-bit bus provides a uni-

directional point-to-point communication interface (FIFO-based) between any two

elements on the FPGA. The MicroBlaze processor can communicate with up to eight

FSL channels (in each direction). The PPC405 supports up to 32 FSL channels

through the APU controller [27].

LMB (Local Memory Bus - MicroBlaze only). This local 32-bit bus is used to connect

BRAM memory to the MicroBlaze processor. Separate read and write ports are pro-

vided. There is no arbitration, so one processor master and up to 16 slaves are

allowed [28].

XCL (Xilinx Cache Link - MicroBlaze only). This is the MicroBlaze cache interface, pro-

viding a point-to-point link between main memory and cache implemented out of

on-chip memory. Up to two MicroBlaze processors can use the XCL interface as

main memory controllers have only 4 XCL ports (each processor requires one port

for data and one for instruction) [29].

Table 3.2 on the following page provides an overview of the five most common buses in a

Xilinx embedded processor system (PLB, OPB, DCR, OCM, and LMB).

3.3.4 Auxiliary Processor Unit Controller

Arguably the most notable feature of the V4FX is the auxiliary processor unit (APU) con-

troller that tightly couples custom co-processors built in the FPGA fabric to the PPC405

core. It is the APU that sets the V4FX apart from its predecessor, the V2P.

The APU provides accelerated system performance by managing the interface between

a fabric co-processor module (FCM) and the processor core. As seen in Figure 3.6 on

page 24, the APU connects into the PPC405 instruction pipeline and is able to negotiate

the transfer of particular instructions and data to the appropriate FCMs that support

such operations. This high bandwidth and low latency direct interface to HW accelerators

makes it possible to extend the native PowerPC 405 instruction set with certain special

instructions as well as with completely custom, user-defined instructions [30].
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Table 3.2: Most common buses used in Xilinx embedded processor systems [28]
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Figure 3.6: The APU integrates directly into the processor pipeline and decodes soft co-
processor supported instructions [30]

The APU supports three types of instructions:

• APU load/store (direct to hardware, up to 16 bytes, quadword)

• PPC floating-point instructions

• User-defined instructions (UDIs)

To determine whether an instruction is CPU-bound or APU-bound, both the CPU and

the APU simultaneously attempt to decode the instruction. If the instruction is found to

be a CPU-bound instruction, execution continues as normal and the APU does not get

involved further. If the instruction is found to be an APU-bound instruction, the CPU

waits for a response back from the APU, which determines whether this instruction is

a supported (valid) or unsupported (invalid). An exception is generated if the CPU does

not get a response within one cycle. If the APU responds that the instruction is indeed

a valid one, operands are fetched from the CPU to the APU and passed to the hardware

co-processor for execution. The result from the hardware co-processing is delivered back

to the CPU (via the APU) into the write-back stage [30].

Since the CPU typically runs at a higher frequency than the custom FCMs, a synchro-

nization mechanism is necessary to handle the transfer of data between the two units.

The APU manages this synchronization completely independently. The APU knows when
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to read operands from the CPU and when to return with the results. The developer never

needs to get involved in managing the CPU-APU interface, thus streamlining the design

process [30].

The APU supports both autonomous and non-autonomous instructions. Autonomous

instructions do not require the CPU to stall and wait for the result while the instruction

is being executed. Non-autonomous instructions do require the CPU to stall and wait

for the result. These instructions can be further broken down into blocking and non-

blocking instructions. Blocking instructions suppress all asynchronous exceptions and

interrupts which may be generated while the instruction is being executed. Non-blocking

instructions allow for exceptions and interrupt to be serviced, but in effect must flush the

HW co-processor [30].

3.4 ML410 Development Board

The target platform for this thesis is the Xilinx ML410 Development Board which features

the V4FX60 FPGA. This FPGA is in the -11 speed grade thus allowing the dual embedded

PPC405 cores to operate at up to 400 MHz when the APU controller is not in use or up

to 275 MHz when the APU controller is in use (as is the case for much of the work in this

thesis) [31].

This board comes in a standard ATX form factor with 64 Mbytes of component DDR

memory (32-bit) and 256 Mbytes DDR2 DIMM memory (64-bit). The DDR memory is

capable of running at up to 266 MHz, however the available memory controller IP core

operates at 100 MHz, thus delivering PC-1600 performance (1.6 Gbytes/sec). In the

case of DDR2, the controller IP core can integrate with a 266 MHz memory module,

however, the module supplied with the board is capable of running at up to 200 MHz,

thus delivering PC2-3200 performance (3.2 Gbytes/sec) [32].

The board also features a SystemACE compact flash controller, dual Ethernet PHYs,

PCI and PCI express interfaces, VGA interface, USB ports, and much more. The Sys-

temACE controller can be used to access data on a compact flash card (non-volatile stor-

age) and also has the ability to configure the FPGA with hardware bitstreams and software

object codes stored in one of eight configuration locations on the card. A compete listing

of all the features on the ML410 board is presented in Figure 3.7 on the following page.

A block diagram of the interconnection between peripherals is shown in Figure 3.8 on

page 27 [32].
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Figure 3.7: The ML410 development board [32]
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Figure 3.8: ML410 interfaces block diagram [32]
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Chapter 4

FTIR Base System

This chapter presents the hardware generation and software configuration of the FTIR

base system. The starting point for this work is FORTRAN source code and simulated in-

terferograms provided by NASA Jet Propulsion Laboratory as a result of the V2P research

task [2]. The software contains only the three most time consuming data processing steps

in Table 2.2 on page 11 - interferogram re-sampling, phase correction and fast Fourier

transformation. The base system, implemented on the ML410 development board, must

have adequate hardware resources to execute the software, which must first be ported to

the PowerPC processor.

The input data represents simulated time-domain interferograms from the reference

laser (Ge detector) and the InSb detector (see Figure 4.1 on the next page). Note that the

reference laser interferogram is just a sine wave modulated in frequency by the scanner

velocity fluctuations. An HgCdTe interferogram is not included as its processing is very

similar to that of the InSb interferogram. The input data is stored in two columns of

single-precision floating-point numbers in ASCII format and represents the number of

photons striking the detector in the sample time. The first column is the reference laser

interferogram and the second column is the InSb interferogram. The file size is roughly

38 Mbytes.

4.1 Generating a Hardware Platform

The FTIR base system hardware platform is built from scratch using the Xilinx Platform

Studio (XPS) and the Base System Builder (BSB) in the Embedded Development Kit (EDK).

A system diagram, showing the main buses and system components, is presented in

Figure 4.3 on page 31 while a detailed description follows below.

First, it is necessary to select and configure the processor and its system interfaces.

The hard PPC405 processor is selected for FTIR data processing as it delivers much higher

performance than the soft MicroBlaze processor. Next it is configured with the following
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Figure 4.1: Simulated time-domain interferograms used as input data [2]

Figure 4.2: PPC405 base system configuration
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options (see Figure 4.2 on the previous page):

• 100 MHz (max) PLB and OPB bus clock frequency for highest possible transfer rates

on system buses

• 200 MHz processor clock frequency1

• Cache enabled for maximum performance (instruction and data, burst and/or cache-

line)

The FPU is not selected as part of the base system in order to obtain a benchmark without

any hardware co-processors. On-chip memory is also not selected because it is of little

use in the FTIR system as all data and text sections are significantly larger than OCM

capacity (64 Kbytes max for data and 128 Kbytes max for instruction). Furthermore,

OCM may limit system performance as it is harder to meet timing constraints at higher

system frequencies with OCM connected to the processor.

Next, various bused peripherals are selected. An OPB RS232 UARTLITE peripheral

is selected for standard input/output (I/O) functionality over a serial null modem link

to the host PC (and HyperTerminal). The baud rate is set to 115200 for maximum I/O

performance. An OPB SystemACE controller is also included for access to the compact

flash (CF) card. The simulated time-domain interferogram will be stored on the non-

volatile CF card and read into system RAM for processing. This will eliminate the need

to download the input data from the PC directly to the FPGA system RAM every time it

boots. Furthermore, storing the interferogram data on the CF card better resembles the

MATMOS instrument computer which reads in raw interferograms into RAM from the

instrument memory bank. As for memory, the FTIR base system utilizes the PLB DDR2

memory controller which interfaces to the external 256 Mbytes DDR2 DIMM. This is the

largest capacity highest performance volatile memory available on the ML410 develop-

ment board. PLB BRAM memory is not necessary in this or other system builds as it is

too small to hold any critical text or data sections and would only create an extra load on

the PLB if utilized.

One final component that is included in the base system (as well as all other system

builds) is the MGT protector core. This core initializes the MGTs to a known state in a

1Although the PPC405 core on the V4FX60 -11 speed grade FPGA can be clocked at up to 400 MHz, the use
of the APU controller (in later builds) limits this frequency to 275 MHz. A 200 MHz processor clock is selected
as it is an integer multiple of the bus frequency and is easier to work with in terms of the on board digital clock
managers (DCM).
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Figure 4.3: FTIR base system diagram (main components only)

system that does not utilize them for data transfer. This is absolutely necessary due to

an issue with the Virtex-4 FX that may lead to a breakdown of the MGTs if they are left

in an uninitialized state for too long2.

The FTIR base system builds meeting all timing constraints that are automatically

generated based on bus/memory/CPU frequencies. The default synthesis and imple-

mentation options are used. The device utilization, shown in Table 4.1 on the following

page, is rather modest with only 13% of slices occupied.

2For more information on this, please see Xilinx answer record #22471.
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Table 4.1: Device utilization summary for FTIR base system
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4.2 Configuring Software

With the hardware platform ready, the software needs to be prepared for execution on

the embedded PPC405 processor. It must be ported from FORTRAN to C and then cross-

compiled for the PPC405 processor from XPS using the GCC compiler. Prior to porting

the software, it is important to first understand the structure of the FORTRAN source

and its functions.

4.2.1 Software Structure

The diagram in Figure 4.5 on the next page shows the software flow of the FTIR spectrom-

etry algorithm used in this thesis (top level FORTRAN code is shown in Appendix C.4 on

page 103). The program begins by computing a matrix of windowed interpolation opera-

tors as part of the pcoper routine. Then it enters a loop for all scans in one occultation.

The software assumes 52 interferograms per occultation, or 104 interferograms per orbit

(two occultations). However, for testing purposes, only one interferogram (middle one,

#26) is processed with only one iteration in the loop and for only one of two solar detec-

tors.

The processing of the raw interferogram begins with reading the data into system

RAM. On a PC, this data comes from a text file stored on the hard disk. After the data is

read, the t2f routine re-samples the time-domain interferogram to the path-difference do-

main. Then the ipplite routine computes the spectrum (phase correction and fast Fourier

transformation). At the end, the computed spectrum, in full or in part, is dumped to the

screen. This data can be plotted to produce graphs shown in Figure 4.4 on the next page.

The original software was slightly modified in its last step. It no longer prints the

partial spectrum (1000 points from 3/5 of the full spectrum) to the screen as in:

113 c

114 c Display a section of the spectrum

115 c

116 do indexa=(3*specount)/5,((3*specount)/5)+1000

117 c do indexa=1,specount

118 write(*,’(SP1PE16.8E2)’) ryir(indexa,jdet)

119 enddo

Instead, this data was stored to a text file and used as a reference spectrum. The pro-

gram now compares a section of its calculated spectrum to the reference spectrum from

file and prints out the maximum deviation to the screen. This was done in preparation

to porting the software to the FPGA platform and determining whether the FPGA system
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Figure 4.5: Software flow of the FTIR spectrometry algorithm
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produces accurate results. The changes to the code are displayed below.

122 c

123 c Search for max deviation between reference and calculated

124 c

125 maxdev=0.0

126 chkdev=1

127 chkoff=((3*specount)/5)-1

128 do indexa=1,chkcnt

129 curdev=abs(chkspe(indexa)-ryir(chkoff+indexa,jdet))

130 if (curdev.gt.maxdev) then

131 maxdev=curdev

132 chkdev=indexa

133 endif

134 enddo

135 write (*,*)’Maximum deviation of ’,maxdev/chkspe(chkcnt),

136 & ’ at ’,chkdev

One final modification that is necessary prior to porting is the removal of all I/O opera-

tions, except for simple string printing. This was determined through trials of porting the

FORTRAN source to C and compiling it with the GCC compiler supplied in XPS. The GCC

compiler would not successfully compile code that was ported without first removing file

I/O and printing of local variables. The FTIR spectrometry software with the necessary

I/O commented out and ready to be ported to C is shown in Appendix C.5 on page 106.

4.2.2 Porting FORTRAN to C for PPC405 Embedded Processor

The FTIR spectrometry algorithm is written in FORTRAN. In order to execute it on the

PowerPC 405 embedded processor and evaluate performance, the algorithm has to be

converted to C for use with the GCC compiler in XPS. The FORTRAN-to-C Converter (f2c)

from AT&T Bell Laboratories does this conversion automatically. Once converted, the

code is linked with the FORTRAN-to-C Library (libf2c) [6]. For instructions on how to set

up f2c, libf2c, and create a sample EDK project, please refer to Appendix A on page 89.

Once f2c is properly set up, the software can be converted to C with the following

command (main FORTRAN source in matmos-ipp-chk-noio.f ):

f2c -R -Nc40 matmos-ipp-chk-noio.f

The -R option is necessary so that f2c does not promote real (single-precision) functions

and operations to double-precision. Such a promotion would adversely affect the exe-

cution time as double-precision arithmetic takes more CPU cycles than single-precision

arithmetic. The -Nc40 option is necessary in order to allow for more continuation lines

(starting with &) in a given FORTRAN statement than permitted by default. In this case,

f2c is instructed to allow up to 40 continuation lines.

35



4.2.3 Modifying Converted Code

Once converted, the FTIR spectrometry C-source needs to be augmented with proper

initialization code, file I/O functions, and timing routines3. All of the modifications made

to the code are right before as well as inside the MAIN__ function. Compact flash file

I/O function are also added. A snapshot of the modified converted code can be seen in

Appendix C.6 on page 109. A detailed description (referring to the code in Appendix C.6)

follows below.

Initialization

Lines 14-59 contain the necessary #include and #define statements as well as file I/O

function declarations. The timing functions provided by xtime_l.h (line 29) are only de-

fined when profiling is turned off. This is to ensure that calls to timing functions do

not interfere with code profiling which also uses the built in timers4. Cacheable memory

regions are also defined in this code segment. Depending on the hardware build, the

memory map may change. The printfloat function is defined and provides a mechanism

for printing floating-point numbers to the screen. The standard printf function is too

large and does not work well for printing floats on the PPC405 processor. The read_data

and write_data compact flash I/O functions are also declared in this segment of code.

Further modification to the code in the initialization category can be seen on line 371

(defining spechk array to hold partial reference spectrum) and in lines 285-399. In the

latter, the instruction and data caches are initialized and the SystemACE controller is

cleared of any bad bits.

File I/O

Lines 638-717 define two functions that are responsible for reading from and writing to

the CF card - read_data and write_data. Both read and write single-precision floating-

point numbers in ASCII format. Although reading/writing in binary format is much more

efficient, the ASCII format was chosen for easy portability between big-endian (PowerPC)

and little-endian (x86) systems and for ease of plotting. The read_data function expects

the input file (simulated interferogram) to have floating-point numbers in two columns

and of particular width. The data is read one line at a time. The write_data function

writes floating-point data (the spectra) to a file in a single column format with fixed width.

3Modification to the code are blocked off with /**********************************/.
4All calls to timing functions are blocked off with #ifndef PROFILING
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Figure 4.6: The spectrum produced by the FTIR base system on the ML410 board

Timing and Others

Most of the other modifications deal with accessing the PowerPC timer for measuring the

performance of data processing. Prior to calling a function, such as to convert to path

difference domain (line 528), the free-running timer value is recorded and then accessed

again after the function returns. The difference in CPU cycles is converted to an actual

number of seconds (as in line 535).

Other changes include a slight modification of the for loop on line 574 to store 1000

points from the spectrum to a local array prior to comparing them to previously calculated

reference data. Lines 599-609 allow the user to enable dumping calculated spectrum

(in part or in full) to a file on the CF card. This data can later be used to compare

the spectrum produced by the FPGA system to the known good result in Figure 4.4 on

page 34.

4.3 Checking Processing Results

With both the hardware and the software ready for deployment, the ML410 board is

configured for FTIR spectrometry data processing. The hardware bitstream is first down-

loaded from ISE, and then the software executable is downloaded from EDK. Prior to

evaluating the performance of the system (in terms of execution time), it is first necessary

to verify that the calculated spectrum is correct. The software reports that the maximum

deviation in the partial spectrum is a negligible 0.0009795%. Further proof in the ac-

curacy of data processing on the FPGA system can be seen in the plots produced from
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ML410
(XILINX)

V2P (NASA JPL) ML410 (XILINX)

PPC405 FREQ. 200 MHz 300 MHz 200 MHz
INTERFEROGRAMS 1 104 scaled to 104

DETECTORS 1 2 scaled to 2

SOFTWARE

COMPONENT

TIME

(SEC)
TIME

(MIN)
CYCLES

(×1012)
TIME

(MIN)
CYCLES

(×1012)
SPEEDUP

RE-SAMPLING 1197.7938 3404 61.272 4152 49.824 0.82x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 488+272 13.680 407 4.884 1.87x

TOTAL 1315.2901 4164 74.952 4559 54.708 0.91x

EFFICIENCY SCORE5 - 1.00 1.37 -

Table 4.2: Execution times for FTIR base system on ML410 board and comparison to
NASA JPL V2P research

the full and partial spectrum, displayed in Figure 4.6 on the preceding page. These are

indistinguishable from the reference plots in Figure 4.4 on page 34.

4.4 Initial Performance Evaluation

With the accuracy of the results verified, the performance can now be evaluated. The FTIR

base system running on the embedded PPC405 processor in the V4FX60 FPGA reports

the execution times shown in the first column of Table 4.2. These times are presented

next to the results obtained from the NASA JPL V2P research task (middle column) [2].

The V2P research task processed 104 interferograms with two detectors for two complete

occultations. The FTIR base system processes one interferogram for one detector. The last

column in Table 4.2 shows the scaled FTIR base system results for 104 interferograms

and two detectors.

Although the V4FX system did not achieve a lower execution time than the V2P system

(speedup = 0.91x), the overall efficiency5 of the V4FX system is higher. The V4FX took

fewer CPU cycles to do the same amount of work as the V2P system. Comparing CPU

cycles is valid in this case as both the V4FX and the V2P host a PPC405 processor with

the same ISA. Thus the processor performs the same amount of work per cycle regard-

less of its clock rate. The slower clock rate does adversely affect the overall execution

time, as is the case in the re-sampling step of the data processing. However, certain V4

enhancements in the reconfigurable logic (i.e. different slice architecture) are most likely

5The efficiency score is based on a CPU cycle count of 74.952× 10
12. Any cycle count less than this value has

a higher efficiency score.
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Figure 4.7: Profiling results for FTIR base system

responsible for the improved execution time in the compute spectrum step, even at the

slower clock rate.

Even though the V4FX system has a higher efficiency score (and the embedded pro-

cessor will consume less power at 200 MHz), the more important goal is to demonstrate

a reduction in execution time over previous implementations. An excellent tool to identify

where in the software the CPU spends most of its time is the Xilinx profiler in the Software

Development Kit (SDK)6. When software profiling is enabled, a timer is configured on the

PPC405 processor to keep track of the amount of time spent in each function called. This

data is stored in a memory region specified by the user and can later be downloaded to

the host system (i.e. the development PC) for analysis. Profiling was performed on the

FTIR base system with the results presented in Figure 4.7.

The graph in Figure 4.7 lists top ten time consuming functions called in the FTIR

spectrometry algorithm. Not surprising, most functions called take up very minimal CPU

time to execute. However, two functions stand out far above the rest, together taking up

over 45% of the CPU time. These two functions are atan and __ieee754_atan2. From

their names, it is clear that both come from the math library. After a close inspection

6Xilinx SDK can provide very valuable information during profiling, however the software is still buggy and
often does not profile correctly (if at all).
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of the original FTIR C-source (Appendix C.6 on page 109), it was found that all math

library functions were being called with double-precision arguments even though the in-

put interferogram is in single-precision. Double-precision arithmetic is more complex

than single-precision arithmetic and should be avoided when double-precision is not ab-

solutely necessary. For the original FTIR C-source, this was the source of the bottleneck

and the reason why the atan and __ieee754_atan2 functions were taking up so much

CPU time.
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Chapter 5

Software Optimizations

This chapter introduces the software optimizations made to the FTIR spectrometry al-

gorithm. This includes the removal of all double-precision math library calls and the

utilization of the IBM performance libraries. These optimization require minimal changes

to the source and result in over 4.5x speedup compared to the FTIR base system.

5.1 Removing Double-precision Math Library Calls

After analyzing the profiling data in Figure 4.7 on page 39 and the corresponding C-source

in Appendix C.6 on page 109, it was determined that the software unnecessarily utilizes

double-precision math library calls. Thus, after carefully searching through the source

for all call to the math library, the following double-precision functions were changed to

their single-precision (SP) counterparts1:

• double acos( doublereal ) => float acosf( real )

• double cos( doublereal ) => float cosf( real )

1The single-precision math library functions are non-ANSI.

SW OPTIMIZATIONS NONE (BASE SYSTEM) SP MATH FUNCTIONS

PPC405 FREQ. 200 MHz 200 MHz
INTERFEROGRAMS 1 1

DETECTORS 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC) SPEEDUP

RE-SAMPLING 1197.7938 780.9376 1.53x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 109.9881 1.07x

TOTAL 1315.2901 890.9257 1.48x

Table 5.1: Execution times for system with single-precision math functions

41



Figure 5.1: Profiling results after single-precision math functions optimization

• double sin( doublereal ) => float sinf( real )

• double atan2( doublereal, doublereal ) => float atan2f( real, real )

• double sqrt( doublereal ) => float sqrtf( real )

• double atan( doublereal ) => float atanf( real )

The spectrum produced by this system still demonstrates the same maximum deviation

as the FTIR base system - a very small 0.0009795%. Furthermore, a significant speedup

is attained, especially in the re-sampling phase, as presented in Table 5.1 on the previous

page.

The profiling data (Figure 5.1) shows that the two functions previously taking up over

45% of the CPU time, atanf (the SP version of atan) and __ieee754_atan2f (the SP version

of __ieee754_atan2), now only take a little under 33%. New functions have risen to the

top of the profile suggesting that the CPU is now executing a more balanced program.

5.2 Linking IBM PowerPC Performance Libraries

The IBM PowerPC performance libraries (Perflib) is another great optimization that can

easily be incorporated into an existing system [7]. Absolutely no changes to the source
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SW OPTIMIZATIONS NONE (BASE SYSTEM) SP MATH FUNCTIONS

IBM PERFLIB

PPC405 FREQ. 200 MHz 200 MHz
INTERFEROGRAMS 1 1

DETECTORS 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC) SPEEDUP

RE-SAMPLING 1197.7938 244.1836 4.91x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 44.4243 2.64x

TOTAL 1315.2901 288.6079 4.56x

Table 5.2: Execution times for system with SP math functions and Perflib

are required; it is only necessary to link to these libraries for them to take effect. Perflib

works by replacing string and floating-point routines provided by the compiler with more

efficient, hand coded implementations specifically targeting the PPC405 and PPC440 pro-

cessors. Perflib achieves higher performance than standard GCC routines by following

four main optimization rules in the following categories [33]:

• Instruction pairing

• Load/Use dependencies

• Operand dependencies

• Compare and branch

Instruction pairing is a technique where the types of instructions issued consecutively

are mixed. This achieves higher performance only on the PowerPC440 processor because

it can issue two instructions per cycle provided they are of different type (i.e. load and

multiply). Instruction pairing may not be very helpful on the PPC405 processor, but it is

not harmful [33].

Removing load/use dependencies will help reduce execution time on either processor.

A load/use dependency refers to a stall in the pipeline due to the load data not being

available for use yet (it takes time to fetch it from cache/memory). Thus, it is wise to

put an independent instruction (or a few of them) immediately after a data load and

before that data gets used by another instruction. Similarly, an operand dependency

refers to a situation where one instruction updates a register that is used by the following

instruction. The CPU must wait for the data to settle before executing an instruction that
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Figure 5.2: Profiling results for system with SP math functions and Perflib

depends on that data. Both load/use and operand dependencies are more commonly

known as read-after-write (RAW) hazards [33].

The compare and branch category refers to the issue of branch instructions close

to CR-updating instruction (i.e. those modifying the compare register, CR). Branches

and CR-updating instructions should be separated from each other by at least one other

instruction (from a different type). This will prevent stalls as the CPU waits for the CR

bits to settle [33].

In EDK, Perflib has been pre-compiled and can be linked to the software project by

specifying the following option2:

-mppcperflib

This instructs the GCC linker to substitute IBM performance libraries for standard string

and floating-point routines. Perflib significantly reduces the overall execution time, as

shown in Table 5.2 on the previous page. The reported maximum deviation is still

0.0009795%.

2In SDK 9.1i, the -mppcperflib switch does not work. Perflib must be explicitly linked with the -lppcfp and
-lppcstr405 options.
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SYSTEM V4FX (ML410) V2P (XUPV2P)

SW OPTIMIZATIONS SP MATH FUNCTIONS

IBM PERFLIB

SP MATH FUNCTIONS

IBM PERFLIB

PPC405 FREQ. 200 MHz 200 MHz
INTERFEROGRAMS 1 1

DETECTORS 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC)

RE-SAMPLING 244.1836 239.4655

SPECTRUM (PHASE

CORRECTION, FFT)
44.4243 47.2607

TOTAL 288.6079 286.7262

Table 5.3: Comparison of V4FX and V2P results for system with SP math functions and
Perflib

The profile now has an even greater diversity of functions that take up the most CPU

time (see Figure 5.2 on the preceding page). The atanf function now takes up only 2.23%

of CPU time (not shown in graph) while a new function, __mulsf3, takes up the most

CPU time, 9.27%. This function is responsible for floating-point multiplication and is one

replaced by Perflib.

5.3 V2P SW Optimization Results

For comparison purposes only, an FTIR spectrometry system (with the previously de-

scribed SW optimizations) was built on a Digilent XUPV2P board. This board features the

XC2VP30 hybrid-FPGA with dual embedded PPC405 processors, 30,816 logic cells, 2,448

Kbits of BRAM, a SystemACE controller for access to a CF card, and a 128 Mbyte DDR

DIMM3. The hardware design is nearly identical to that of the V4FX FTIR base system,

with the only difference being in memory (DDR instead of DDR2) and IP configurations

(targeted for V2P instead of the V4FX)4. The recorded execution times (see Table 5.3) come

very close to those of the V4FX system, with the V2P system slightly outperforming the

V4FX. However, any gains that the V2P demonstrates here are dwarfed by the perfor-

mance of the V4FX after various hardware optimizations described in the next chapter.

3This V2P board is different from the custom board used at NASA JPL. Furthermore, the implemented FTIR
spectrometry software uses the SP math functions optimization that was not utilized in the NASA JPL research
task. Thus, the execution times on this V2P board will be much different from those obtained in the past.

4The V2P system was implemented with an earlier version of the Xilinx tools - ISE 8.2i.
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Chapter 6

Hardware Optimizations

This chapter describes the various hardware optimizations made to the FTIR spectrom-

etry algorithm. Except in one case (as later described in the FPU section), the software

optimizations are kept intact to achieve top performance. The hardware is first aug-

mented with an FPU co-processor and then with a dot-product co-processor. Later, both

co-processors are simultaneously integrated in the system. At the conclusion of this

chapter, a system with higher CPU / FPU frequencies is presented.

6.1 Xilinx APU Floating-point Unit

The Xilinx APU-FPU is an FCB bound co-processor that extends the native PPC405 ISA to

include support for single-precision floating-point operations. It can achieve a sustained

performance of up to 100 MFLOPS, with only modest resource utilization - about 5% on

the V4FX60 FPGA (see Table 6.1 on the following page) [34].

The FPU consists of an FCB interface component, execution control and decode logic,

a 32-bit register file (containing 32 registers), and the various individual execution units

for floating-point operations (see Figure 6.1 on the next page). As a Xilinx supplied Logi-

CORE, only the top level inputs/outputs of the FPU are visible to the developer for inter-

facing. The user has the option of selecting between the “lite” (no div/sqrt) and the “full”

(with div/sqrt) configurations [34].

The FPU is an FCB peripheral that internally runs at half the bus frequency. For

best performance, the FCB should be clocked at the same frequency as the PPC405

processor. The clock speeds shown in Table 6.1 on the following page are maximum

PPC405 frequencies when the APU controller and FPU are in use. For the V4FX60 FPGA

that is on the ML410 board, the maximum CPU frequency when using the APU controller

is 275 MHz. If the FCB clock is set to this value, the FPU would internally operate at

137.5 MHz. However, a 275 MHz CPU clock is not compatible with a 100 MHz (max)

PLB clock. As described later in the chapter (section 6.4 on page 73), when a 100 MHz
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Table 6.1: Xilinx’s APU floating-point unit v3.0 [34].

Figure 6.1: System diagram of the APU floating-point unit co-processor [34]
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Figure 6.2: FTIR system with FPU co-processor

PLB is in use (for example, for DDR2 memory), the maximum attainable CPU clock rate

that allows for proper APU controller operation is 266.67 MHz.

Inserting the FPU core into an existing PowerPC system is a four step process [34]:

1. Configure the PPC405 processor to enable APU controller operation (set APU control

configuration register to initial value of 0b1)

2. Insert the FCB core and configure it to use processor clock and bus reset

3. Insert the FPU core, select the appropriate configuration (“lite” or “full”) and config-

ure it to use the half-rate clock

4. Connect the FCB to the processor (master) and the FPU (slave)
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The FPU (in “full” configuration) is added to the FTIR base system hardware design follow-

ing the steps outlined above. The CPU clock rate is kept at 200 MHz and the FPU clock

is set to 100 MHz, which feeds off the same digital clock manager as the PLB and OPB.

The diagram in Figure 6.2 on the preceding page represents this new system. The device

utilization (19% of slices occupied) is shown in Table 6.2 on the next page. In order to

meet timing for this build, it was necessary to increase the place-and-route (PAR) effort to

“high” with “normal” extra effort (XE) turned on. The necessity to increase the PAR effort

suggests that in its current configuration and with the selected clock rates, the system

is running close to its timing margin. It may be challenging to meet timing if additional

high-speed peripherals or co-processors are added to the system.

6.1.1 F2C Compatibility

In the original FTIR base system, the f2c library was compiled without FPU support and

thus all floating-point operations were done through the compiler’s emulation routines

(or through Perflib). Now that a hardware single-precision FPU is present, it is desirable

that all single-precision floating-point operations be performed in the hardware. For this

reason, all externally linked libraries must be recompiled with hardware FPU support

turned on. For instructions on how to recompile the f2c library for FPU support, please

see Appendix A on page 89.

6.1.2 Recompiling Perflib for Double-precision Only

As is the case with f2c, Perflib also needs to be recompiled for compatibility with the FPU;

however, the procedure is a bit different. As mentioned previously, Perflib is a collec-

tion of efficient floating-point (SP and DP) and string routines that replace corresponding

functions provided by the compiler. In its given form (as supplied with EDK), Perflib is not

compatible with the FPU because both try to replace single-precision operations normally

provided by the compiler. The way around this is to separate out the double-precision

optimization routines provided by Perflib and rely on the FPU for all single-precision arith-

metic. This provides the best of both worlds - good double-precision performance through

Perflib and excellent single-precision performance though the hardware FPU. String op-

timization is not necessary in the case of the FTIR spectrometry algorithm because most

time is spent on floating-point arithmetic.

Table 6.3 on page 51 lists the optimized floating-point routines provided in the original
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Table 6.2: Device utilization summary for FTIR system with FPU co-processor
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ROUTINE TYPE DESCRIPTION

fadd DP add two DP numbers

fsub DP subtract two DP numbers

fmul DP multiply two DP numbers

fdiv DP divide two DP numbers

fadds SP add two SP numbers

fsubs SP subtract two SP numbers

fmuls SP multiply two SP numbers

fdivs SP divide two SP numbers

dtof conv convert DP to SP

ftod conv convert SP to DP

dtoi conv convert DP to INT

ftoi conv convert SP to INT

fcmpd DP compare two DP numbers

fcmps SP compare two SP numbers

fneg SP/DP negate a SP or DP number

itod conv convert INT to DP

itof conv convert INT to SP

ftoui conv convert SP to unsigned INT

dtoui conv convert DP to unsigned INT

Table 6.3: Optimized floating-point routines provided by Perflib

Perflib package. Through a number of trials, it was determined that only the double-

precision routines from Perflib can exist alongside the hardware FPU. The conversion

routines did not work properly when deployed in a system with the FPU present. Thus,

the original Perflib makefile was modified to only compile the following routines into the

library - fadd, fsub, fmul, fdiv, fcmpd. Complete instructions for recompiling Perflib and

using it in a system with the FPU are in Appendix B on page 92.

SW OPTIMIZATIONS NONE (BASE SYSTEM) SP MATH FUNCTIONS

IBM PERFLIB (DP)

HW OPTIMIZATIONS NONE (BASE SYSTEM) APU-FPU (100 MHz)

PPC405 FREQ. 200 MHz 200 MHz
INTERFEROGRAMS 1 1

DETECTORS 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC) SPEEDUP

RE-SAMPLING 1197.7938 151.1817 7.92x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 14.3672 8.18x

TOTAL 1315.2901 165.5489 7.95x

Table 6.4: Execution times for system with APU-FPU, SP math functions, and DP Perflib

51



Figure 6.3: Profiling results for system with APU-FPU, SP math functions, and DP Perflib

6.1.3 Accuracy and Performance Evaluation

The FTIR system with a hardware FPU, single-precision math functions, and double-

precision Perflib optimization demonstrates a significant speedup over previous imple-

mentations. As seen in Table 6.4 on the previous page, this build achieves an almost

eight-fold reduction in the overall execution time. This comes at no price to the accuracy.

The maximum deviation is still reported as 0.0009795%.

The hardware FPU, single-precision math functions, and double-precision Perflib are

general optimizations that can be applied to almost any type of data processing system

that requires extensive floating-point arithmetic. Once these optimizations are imple-

mented, the next step is to look at more application specific ways to reduce the execution

time. For this matter, the profiling information is extremely important. The profile of the

current build is shown in Figure 6.3. The most time consuming routine here is dotprod_,

accounting for almost 10% of CPU time. This function is part of the re-sampling phase

and is targeted for a hardware implementation, as described in the next section.
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6.2 Dot-product Hardware Co-processor

As seen in the profile data in Figure 6.3 on the previous page, the dotprod function is a

good candidate for evaluating the feasibility of a hardware implementation. The complete

function is included in Appendix C.7 on page 117. The dotprod function computes the

scalar product of interpolation operators and the input function. It is called by finterp,

which is called by t2f as part of the re-sampling phase (refer to Figure 4.5 on page 34).

The computationally intensive portion of the function is pasted below.

1211 for (i__ = 1; i__ <= i__1; ++i__) {

1212 /* Dot product fin(kin+1) with oper(1,j) */

1213 ret_val = ret_val + fin[i__ + kin] * oper[i__ + j * oper_dim1] + fin[*
1214 nop + 1 - i__ + kin] * oper[i__ + jr * oper_dim1];

1215 }

As shown in the code segment above, the format of computing the dot product is as

follows:

retval = retval + fin[a+] × oper[b+] + fin[c−] × oper[d+]

In the notation above, the ’+’ and ’-’ signs inside the brackets indicate the direction

of change (i.e. incrementing or decrementing index). In this case, the dot-product is

calculated from both ends of the operator array simultaneously. Since the largest values

are typically located in the middle of the operator array, a higher degree of precision is

achieved by working with these values in the final steps of the computation. However,

this comes at the price of longer memory latencies as the array access is not consecutive.

One iteration in the loop requires two multiplications, an addition, and an accumu-

lation, all in single-precision floating-point format. The loop has 28 iterations, as set

by a nop/2 (nop is the number of interpolation operator points and is initialized to 56

in this version of the code). A dot-product co-processor could be built from individual

floating-point operators that are available as part of the Xilinx IP collection. However, it

is first necessary to determine whether a hardware implementation of the dot-product

calculation can be more efficient than utilizing the FPU.

6.2.1 Concept

A dot-product co-processor needs to acquire data from memory efficiently, perform the

computation, and deliver the data back to the memory. One way to facilitate such a data

transfer is through a direct memory access (DMA) engine. A DMA engine can be integrated
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to one of the system buses and can transfer data from memory to a co-processor without

the CPU getting directly involved. The CPU just needs to authorize the transfer (from

where and to where), and sometime later it will receive an indication that the transfer is

complete. However, such an approach will not work well in this particular dot-product

implementation because the data comes from non-contiguous memory locations and it

comes in short bursts (28 loop iterations).

A good alternative is to use the APU controller and develop the dot-product co-processor

as a load/store peripheral. APU load/store instructions are one of three types that can

be decoded by an attached FCM, in this case the dot-product co-processor. Furthermore,

APU load/store instructions can transfer up to 16 bytes of data (quadword), which is the

exact amount in one dot-product loop iteration. The CPU is involved in the transfer which

means that any data that is in cache will be fetched from there. On the one hand this

is good because cache access is very fast, however, this does take up CPU time whereas

the DMA engine does not. Nevertheless, an APU load/store co-processor is a practical

solution given the data access pattern. From the point of view of the software, this is the

best solution as only minimal changes to the source are required.

In the best case, a quadword APU load can be issued on every seventh clock cycles

(at FCB clock rate). This is given that instruction decode takes one cycle, the four data

words are transferred immediately after (one per cycle), and the co-processor responds

with a ’done’ signal immediately after the data has been transferred. In the worst case,

the data transfer or co-processor response can take many more cycles, and thus is not

a valid comparison metric [25]. As far as the FPU, a single word load takes at best three

cycles. Two loads can be followed by a fused multiply-add, which has a ten-cycle latency.

Two sets of load-load-multiply/add are needed to account for a single iteration of the

dot-product loop. As demonstrated in Figure 6.4 on the following page, about 20 cycles

are needed to complete one iteration of the loop [34].

Assuming that the clock rate is the same between the FPU and an APU-attached dot-

product co-processor (i.e.the system bus clock, half-rate from the CPU), and the hardware

receiving the load data can keep up with the 7-cycle issue rate, the best case speedup

factor is 20÷7 = 2.86x. If the APU-attached dot-product co-processor is capable of running

at the CPU clock rate, then the best case speedup factor is double, or 5.72x. These

numbers are preliminary but provide a rough estimate of what to expect.
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Figure 6.4: Cycles needed to complete one iteration of dot-product loop

Figure 6.5: FCM load/store unit interface to FCB and dot-product co-processor

6.2.2 Load/Store Unit Design

The load/store unit is the bus front end for the dot-product module. It is responsible

for decoding APU load/store instructions and delivering data to/from the dot-product co-

processor. The load/store unit is a modified version of the design provided in a Xilinx

application note [35]. The modifications include various bug fixes to ensure proper com-

pliance with the FCB interface, input/output to the dot-product co-processor, and control

logic to facilitate the data transfer. The diagram in Figure 6.5 shows the load/store unit

interface to the FCB and the dot-product module.

The load/store unit contains two 4-entry register banks for 32-bit load/store data.

The load register bank is available on the output of the core for direct connection to
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Figure 6.6: FCM load/store unit state machine

custom hardware, in this case the dot-product co-processor. In this implementation,

the first entry in the store register bank is tied to the output of the custom hardware,

with the other three entries inaccessible. The load/store unit expects that a single store

instruction will always follow a certain number of load instructions. In other words, the

load instructions transfer data to the hardware co-processor and the store instruction

reads back the result.

There are four states in the load/store control logic - idle, load, waithw (wait for hw),

and store (see Figure 6.6). On reset, the core starts in the idle state. In that state, every

APU instruction that comes out on the FCB is evaluated to see whether it is a load/store.

Since the APU controller and the FCB only support unique co-processors, there could

only be one unit which decodes load/store instructions. On a valid load instruction, the

unit goes into the load state and stays there until all data has been loaded (4 single-

precision floats, or 16 bytes in this case). On a valid store instruction, the unit goes

into the store state but only if the connect HW co-processor (i.e. the dot-product core)

has finished the computation. If the co-processor is still working on the data set, the

load/store unit goes into the waithw state until the co-processor is done, at which point

the transition to the store state is automatic. The load/store unit stays in the store state

until all data has been transferred to the APU (1 single-precision float, or 4 bytes in this

case). Not shown in the state diagram in Figure 6.6 is the immediate transition to the idle

state from any one of the other three states when the APUFCMFLUSH signal is asserted.

This happens when the APU controller needs to flush the outstanding instruction and
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must reissue it at a later time. The complete Verilog source for the load/store unit is

presented in Appendix C.9 on page 121.

In the software, specific assembly instructions must be used to transfer data to the

load/store unit. For example, the quadword load and single word store instructions are

defined as the following assembly mnemonics [36]:

1 #define lqfcmx(rn, base, adr) __asm__ __volatile__

2 ("lqfcmx " #rn ",%0,%1\n" : : "b" (base), "r" (adr))

3

4 #define stwfcmx(rn, base, adr) __asm__ __volatile__

5 ("stwfcmx " #rn ",%0,%1\n" : : "b" (base), "r" (adr))

In the code segment above, the lqfcmx is the quadword load instruction and stwfcmx

is the single word store instruction. The destination register for a load or source register

for a store is specified in place of rn. The base memory address is specified in place of

base, and the byte offset is specified in place of adr. Thus, to load a quadword from src[4]

to FCM register 0, the following must be written:

lqfcmx(0, src, 16);

For the above to work properly, the src array must be aligned on the 32-byte boundary,

as follows (assuming 8 elements):

real __attribute__ ((aligned (32))) src[8];

The alignment is necessary because the load/store instructions are actually PowerPC

AltiVec vector instructions which require aligned data1. For example, the Xilinx modified

compiler actually interprets the lqfcmx instruction as an lvx (load vector indexed) AltiVec

instruction. The stwfcmx instruction is interpreted as a stvx (store vector indexed) AltiVec

instruction. This is hidden from the developer and is only visible when debugging the

assembly code [37, 38].

6.2.3 Dot-product Core Design

The dot-product core needs to work with four single-precision floating-point numbers at a

time. This is the amount of data that is delivered to the core by the load/store unit every

seven cycles. To calculate the dot-product, the core needs two multipliers in parallel,

followed by an adder and then an accumulator. Floating-point adders and multipliers

1AltiVec instructions require data to be aligned on the 16-byte boundary, however, Xilinx reference designs
place the alignment on the 32-byte boundary.
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(a) Multiply operator, using 4 DSP48 slices (b) Add operator, using logic only

Figure 6.7: Resource usage vs. latency for the multiply and add floating-point operators

are available as individual operators from the Xilinx LogiCORE IP collection. However,

they must be properly configured to meet the frequency and latency requirements of the

dot-product core.

It is desirable that the individual floating-point operators work at 200 MHz and don’t

exceed seven cycle latency. At 200 MHz, the operators will match the frequency of the

processor and the FCB, thus requiring no additional re-synchronization logic. With a

latency of seven cycles or less, the operators will not require any buffers as new data

will come in once every seven cycles from the load/store module. Figure 6.7 shows the

resource trade-offs (look-up tables and flip-flops) for different latencies for the floating-

point multiplier and adder operator. It was determined that the optimal resource trade-

offs for the target frequency are obtained under a 4 DSP48 slice usage for the multiplier

and under a logic only implementation for the adder.
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Figure 6.8: Dot-product core block diagram

For the multipliers, a target latency of six cycles was chosen as it can deliver over

200 MHz performance. This is the optimal configuration as on every seventh cycle new

data will appear on the inputs and thus the multipliers are busy 6 out of 7 cycles. The

adders, however, have a tighter margin. The lowest latency that delivers at least a 200

MHz performance is seven cycles. This isn’t a problem for adding the result of the

multipliers in parallel, however, the accumulator will need to have its output latched so

that the data is immediately available for the start of every seventh cycle, for the purpose

of accumulating. A block diagram for the dot-product core is shown in Figure 6.8 (not

shown are the various handshaking signals). The total latency of the core is 22 cycles,

after which the result is produced every seven cycles.
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Figure 6.9: Dot-product core state machine

There are four states that control the operation of the dot-product core - reset, idle,

count, and output (see Figure 6.9). On reset, the core starts in the reset state, clears

the output register, and automatically transitions to the idle state. In the idle state, the

output valid line is lowered (indicates invalid output), the accumulator latch is asyn-

chronously cleared, and the counter variable is initialized to 0. When ADD0 reports that

its output is valid, the core transitions to the count state and the accumulator latch clear

is de-asserted. In the count state, the counter is incremented every time ADD1 reports

that its output is valid. During this process, the accumulator latch clear is held low to

allow the output data to accumulate. Once the counter reaches the predefined number

of loop iterations (set by a generic to match the half width of the convolution operator -

in this case 28), the core transitions to the output state where the accumulated result is

registered and the output is marked as valid. From the output state, the core automat-

ically transitions back to the idle state. The complete VHDL source for the dot-product

core is presented in Appendix C.10 on page 131.

6.2.4 Behavioral Simulation

Prior to implementation, the dot-product core is first synthesized and simulated to verify

correct logical functionality. The synthesis tools report a maximum clock frequency of 237

MHz, which is well above the minimum desired frequency of 200 MHz. The behavioral
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Figure 6.10: Dot-product core behavioral simulation

simulation, shown in Figure 6.10, covers two sets of computations each with seven loop

iterations. Each computation set has two types of data sequences - sequence A (1.5,

2.5, 3.5, 4.5) and sequence B (5.5, 6.5, 7.5, 8.5). The first computation set simulated

the loading of data in the pattern ABABABA. The dot-product result for this pattern is

376.5, which correctly corresponds to the simulation output of 0h43BC4000. The second

computation set simulated the loading of data in the pattern BABABAB. The dot-product

result for this pattern is 456.5, which correctly corresponds to the simulation output of

0h43E44000. From these two tests, as well as others not described here, the dot-product

core is verified to produce accurate results.

6.2.5 System Deployment

When implementing the dot-product core without first integrating it into the FTIR spec-

trometry FPGA system, it is necessary to set a few timing constraints. In particular, the

clock must be constrained to 200 MHz and the accumulator latch must be constrained

to produce output in less than one clock cycle from the rising edge of the clock. This is

to ensure that the latched data appears on the input of the accumulator just before the

rising edge of the clock starts off the next addition. The constraints file is pasted below.

When deploying in the FPGA system, the clock constraint will automatically be specified,

but the latch constrain must be manually added.
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DOT-PRODUCT CORE SUMMARY

TARGET DEVICE SPEED GRADE SLICES DSP48 BLOCKS MAX FREQ.

V4FX60 -11 1021 8 237 MHz

Table 6.5: Dot-product Core Summary

1 # Set the correct stepping for ML410 V4FX60 FPGA

2 CONFIG STEPPING="SCD1";

3

4 # System level constraints

5 Net CLK TNM_NET = CLK;

6 TIMEGRP "RISING_CLK" = RISING "CLK";

7

8 # Constrain CLK to 200 MHz

9 TIMESPEC TS_CLK = PERIOD CLK 5 ns;

10

11 # Constrain the accumulate latch (one CLK cycle)

12 TIMESPEC TS_ACC_LATCH = FROM "RISING_CLK" TO LATCHES( accumulate<*> ) TS_CLK * 0.99

DATAPATHONLY;

With the timing constraints specified above, the PAR effort must be set to “high” with

extra effort set to “normal” in order to meet timing. The resource utilization for the dot-

product core is shown in Table 6.5.

The dot-product core is added to the FTIR base system initially without the FPU co-

processor. This is done to first validate proper dot-product core functionality in hardware

before putting it on the FCB with another unit (i.e. the FPU). PAR simulations are not done

for the core since integrating it into the actual hardware and running it there takes less

time than building and simulating a complete FCB - load/store - dot-product subsystem.

The system diagram for this build is presented in Figure 6.11 on the following page. The

device utilization is shown in Table 6.6 on page 64.

6.2.6 Software Considerations

The GCC compiler is not well suited to work with custom hardware that integrates with

the processor down at the instruction level. This is quite a nuisance especially when com-

piler optimization is turned on. Such optimizations often cause incorrect rearrangement

of instructions and over-optimization of data accesses. For this matter certain modifica-

tion are required in the software, some of which are very obscure.

One of the very first actions to be taken by the software is the enabling of the APU by

writing to the machine state register (MSR). This is only necessary when the dot-product

core is present without the FPU. When the FPU is present, the MSR is properly set in the

boot sequence.
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Figure 6.11: FTIR system with dot-product co-processor
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Table 6.6: Device utilization summary for FTIR system with dot-product co-processor
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1 /* local includes */

2 #include "xreg405.h" /* for other system #defines (APU controller) */

3

4 /* Define instruction to set MSR */

5 #define mtmsr(v) __asm__ __volatile__ ("mtmsr %0\n" : : "r" (v))

6

7 /* ... somewhere in main ... */

8 /* Initialize APU (not necessary when FPU is present) */

9 mtmsr(XREG_MSR_APU_AVAILABLE);

The dotprod function is completely removed from the main source and placed into a

separate file to be compiled into a static library (see Appendix C.8 on page 119). This is

done to prepare for later system builds which also include the FPU. The dotprod function,

however, must be compiled separately without FPU support.

A few changes are made to the computation structure in the dotprod function. In

the loop that computes the dot-product, all the operands are first collected into an array

in the right order. Then a second loop iterates over the newly built array and calls the

dot-product co-processor. Finally, the result is stored into an externally defined, volatile

variable (dphw_result). This variable needs to be defined volatile since it is modified

outside the scope of the compiler. The relevant code segment from the dotprod function

is pasted below.

94 indexer = 0;

95 for (i__ = 1; i__ <= i__1; ++i__) { /* !!! ASSUMING nop/2 = 28 !!! */

96 src[indexer] = fin[i__ + kin];

97 src[indexer+1] = oper[i__ + j * oper_dim1];

98 src[indexer+2] = fin[*nop + 1 - i__ + kin];

99 src[indexer+3] = oper[i__ + jr * oper_dim1];

100 indexer+=4;

101 }

102 for (i__ = 1; i__ <= i__1; ++i__) {

103 /* Dot product fin(kin+1) with oper(1,j) */

104 lqfcmx(0, src, (i__-1)*16);

105 }

106 /* compile with this to force proper assembly code */

107 /* then remove by hand (in assembly) and rebuild */

108 usleep(1);

109 stwfcmx(0, &dphw_result, 0);

One particular line in the code segment above warrants a detailed explanation. On

line 108, the function usleep is called right before the result is read back from the co-

processor. What the function does is irrelevant (it is a microsecond sleep function), but

its presence is important. When developing the sequence of instructions to access the

dot-product co-processor, it was noticed that data was not being sent to the co-processor
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properly when compiler optimizations were turned on. Compiler optimizations are neces-

sary because without them the performance suffers tremendously. After closely inspect-

ing the generated assembly, it was observed that all stores into the src array were ignored.

That is because the compiler was not aware that data from the src array was being used

by the following load instruction (lqfcmx) as it is an extension to the standard PowerPC

ISA of the PPC405 embedded processor. Therefore, by placing the usleep function call in

the source, the compiler is forced to guarantee the correct state of all data in the dotprod

function before entering usleep. Of course, the usleep function is not really desired in the

dotprod source as it would adversely affect the performance. Thus, the workaround is

to first compile the C-source to assembly with the usleep function present, then remove

the call to usleep in the generated assembly, and finally recompile the assembly into a

static library. Although this is somewhat of a hack, it is the only solution that works

consistently and produces correct results between different system builds, with compiler

optimization turned on and with or without the FPU co-processor present. This procedure

is explained in the header of the dotprod function in Appendix C.8 on page 119.

In the top level source that calls the dotprod function (in finterp function), one subtlety

that must be pointed out is the necessity to refresh the dphw_result variable prior to using

it as an operand. This is demonstrated in the code segment below.

1 /* call dotprod_ function in static library */

2 dotprod_(&fin[1], nin, &oper[oper_offset],nop, nso, &xx);

3 dphw_result; /* necessary to refresh volatile */

4 ret_val += fr * dphw_result;

6.2.7 Accuracy and Performance Evaluation

The FTIR system with the dot-product co-processor builds successfully, meeting all timing

constraints and producing results with a maximum deviation of 0.0009795%. As shown

in Table 6.7 on the following page this system has a lower total execution time than the

SW-only optimized FTIR build (with SP math functions and Perflib). However, the exe-

cution time is higher than on the FTIR system with the FPU co-processor (FPU system

speedup = 7.95x). This is because the FPU optimizes all single-precision floating-point

arithmetic whereas the dot-product co-processor only optimizes the dot-product calcula-

tion. Nevertheless, the core produces accurate results and achieves a good speedup over
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SW OPTIMIZATIONS NONE (BASE SYSTEM) SP MATH FUNCTIONS

IBM PERFLIB

HW OPTIMIZATIONS NONE (BASE SYSTEM) DOT-PROD (200 MHz)

PPC405 FREQ. 200 MHz 200 MHz
INTERFEROGRAMS 1 1

DETECTORS 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC) SPEEDUP

RE-SAMPLING 1197.7938 211.4479 5.66x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 44.4456 2.64x

TOTAL 1315.2901 255.8935 5.14x

Table 6.7: Execution times for system with dot-product co-processor, SP math functions,
and Perflib

the software.2.

6.3 FPU / Dot-product Compatibility and Integration

With the dot-product core functionality verified, the FPU is put back into the system

(see Figure 6.12 on the next page). This configuration, where the FPU is sharing the

FCB with another co-processor, has never been tested by Xilinx. After a very productive

collaboration with the Xilinx FPU designer, various hardware issues were identified and

addressed.

6.3.1 Hardware Issues

There are two issues with the FPU in Xilinx Platform Studio 9.1.02i that prevent it from

working properly with another co-processor on the FCB. The first issue deals with in-

struction decoding. Table 6.8 on page 69 shows the op-codes of various instructions

decoded by the APU controller. Both the FCM load/store instruction and the FPU load-

/store instruction share the same primary op-code 31. The only difference between the

two instructions is in the first bit of the extended op-code. While debugging with the

ChipScope Logic Analyzer core, it was found that the FPU attempted to decode ordinary

FCM load/store instructions. This, of course, caused a conflict on the FCB as the load-

/store core also attempted to decode this instruction. Xilinx quickly fixed this issue and

delivered an updated FPU core that properly ignored FCM load/store instructions3.

2For this particular build, profiling information could not be obtained most likely due to bugs in the SDK
profiler. This is not uncommon as the SDK tools are constantly under development.

3The updated FPU should be available in future releases of XPS.

67



Figure 6.12: FTIR system with dot-product and FPU co-processors

The second issue deals with the FCMAPULOADWAIT signal that is part of the FCB

interface. This signal is used to indicate to the APU controller that the FCM is not yet

ready to receive the next load data. The FPU constantly toggles this line as part of its

internal synchronization logic that lets it operate at half the clock rate of the FCB. When

other cores are present on the FCB, toggling the FCMAPULOADWAIT signal interferes

with their operation since the FCB is basically a wired-or bus. This was the case with the

dot-product co-processor, which would not load data correctly with the FPU toggling the

FCMAPULOADWAIT signal. According to Xilinx, the FPU only needs to use the FCMAPU-

LOADWAIT signal under two conditions:
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Table 6.8: Instruction op-codes decoded by the APU controller [25]

1. The APU controller sends the two halves of a double-precision load transfer back-to-

back, and the FPU can’t keep up.

2. The APU controller flushes an outstanding operation and then immediately provides

load data to the FPU before it has had time to process the flush.

The first scenario does not apply to this design as the FPU only supports single-precision

floating-point operation. The second scenario is, according to Xilinx, “unlikely” although

the probability of it happening depends on the code being executed. Since the FPU im-

plementation is hidden from the developer, the only possible (but not ideal) solution to

this issue is to disconnect the FCMAPULOADWAIT signal from the FPU. Future releases

of Xilinx XPS will most likely fix this issue at its source.

Once the hardware issues described above are addressed, the system builds correctly,

meeting all timing constraints. The device utilization is shown in Table 6.9 on the next

page. This is the maximum utilization of FPGA resources seen in this entire research

project with only 24% of the slices occupied.
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Table 6.9: Device utilization summary for FTIR system with dot-product and FPU co-
processors
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6.3.2 Accuracy and Performance Evaluation

The FTIR system with dot-product and FPU co-processors produces valid results with

the maximum deviation still 0.0009795%. However, the execution time of this system is

nearly the same as that of the FPU-only system (see Table 6.10 on the following page).

This is somewhat surprising as the expected best case speedup of a system with both

the FPU and the dot-product co-processor should have been close to 5.72x for the dot-

product function. Since this function accounts for about 10% of the CPU time, or roughly

16.55 sec (as seen in the profile data in Figure 6.3 on page 52 and the execution times

in Table 6.4 on page 51), the net reduction in time should have been at best 13.66 sec in

the re-sampling phase. However, less than a 2 sec reduction was observed.

One explanation for the lack of significant reduction in the execution time can be

attributed to a higher than expected overhead in getting the data from memory to the

dot-product co-processor. To validate this theory, a number of similar systems were built

and the performance of the dot-product core was compared to the FPU when working

with a smaller data set. The code segment below is an excerpt from the dotprod function.

The fin and oper arrays are each 3,472 elements long, built from sinf and cosf functions,

respectively. The loop iterates 28 times (max_iter = 28), and the whole dotprod function is

called 62 times, covering all values in the fin and oper arrays. These values were chosen

so the performance could also be evaluated when the data is in the on-chip BRAM (64

Kbytes). To optimize performance, Perflib is utilized in all tests. The results of these

tests comparing the dot-product core to software-only implementation and to the FPU

co-processor are shown in Table 6.11 on the next page.

1 j = 0;

2

3 /* align data */

4 for (i = 0; i < max_iter; i++ ) {

5 src[j] = fin[i];

6 src[j+1] = oper[i];

7 src[j+2] = fin[i+max_iter];

8 src[j+3] = oper[i+max_iter];

9 j += 4;

10 }

11

12 /* send to dot-prod core */

13 for (i = 0; i < max_iter; i++ ) {

14 lqfcmx(0, src, i*16);

15 }

16

17 /* compile with this to force proper assembly code */

18 /* then remove by hand (in assembly) and rebuild */

19 usleep(1);

20 stwfcmx(0, &hw_result, 0);
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SW OPTIMIZATIONS NONE

(BASE SYSTEM)
SP MATH FUNCTIONS

IBM PERFLIB

SP MATH FUNCTIONS

IBM PERFLIB

HW OPTIMIZATIONS NONE

(BASE SYSTEM)
APU-FPU (100 MHz)
DOT-PROD (200 MHz)

APU-FPU (100 MHz)

PPC405 FREQ. 200 MHz 200 MHz 200 MHz
INTERFEROGRAMS 1 1 1

DETECTORS 1 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC) SPEEDUP TIME (SEC) SPEEDUP

RE-SAMPLING 1197.7938 149.3297 8.02x 151.1817 7.92x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 14.3675 8.18x 14.3672 8.18x

TOTAL 1315.2901 163.6972 8.03x 165.5489 7.95x

Table 6.10: Execution times for system with dot-product and FPU co-processor, SP math
functions, and DP Perflib

CPU

(MHz)

FPU

(MHz)

DOT-PROD

(MHz)

MEMORY SW-ONLY

(SEC)

FPU

(SEC)

DOT-PROD

(SEC)

SPEEDUP

200 - 200 BRAM 0.006500670 - 0.000320910 20.26x

200 - 200 DDR2 0.002594890 - 0.000423610 6.13x

200 100 200 BRAM - 0.000699365 0.000321390 2.18x

200 100 200 DDR2 - 0.000824490 0.000424330 1.94x

Table 6.11: Dot-product core testing with smaller data set

A few conclusions can be made from the data in Table 6.11. First, it is clearly evident

that working with a smaller, more contiguous data set results in better performance than

working with larger, less organized chunks of data, as seen in the FTIR spectrometry

algorithm. Additionally, both the FPU and the dot-product co-processor achieve better

execution times when the data set is stored entirely in BRAM. The results also indi-

cate that the performance of the dot-product co-processor is not significantly affected

by the addition of the FPU to the FCB; in other words, the two co-processors sharing

the same bus are not slowing each other down. Even though the dot-product core is a

valid co-processor, it only improves system performance under favorable memory access

conditions, which is not the case in the FTIR spectrometry algorithm.

In the execution time profile (see Figure 6.13 on the next page), the dotprod_ function

is shown to consume less CPU time than before. With both the FPU and dot-product

co-processor, the dotprod_ function consumes 2.95% of the CPU time, compared to the

previously observed value of 9.97% (see Figure 6.3 on page 52). However, this does not

mean the function executed faster. In fact, as seen in the results in Table 6.10 the

speedup is negligible. The value for dotprod_ function is lower because the profiler does
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Figure 6.13: Profiling results for system with dot-product and FPU co-processors, SP
math functions, and DP Perflib

not include helper functions that are called within the dotprod_ function (otherwise the

function main would consume 100% of CPU time). These helper functions could include

various low level data copy and manipulation operations. In fact, the profile now shows

new functions that take up significant CPU time that were not visible before (for example,

memcpy). The cumulative contribution of the helper functions to the overall execution

time is the reason why no speedup is seen with the dot-product co-processor, even with

the dotprod_ function itself taking up less CPU time.

6.4 Increased FPU System Frequencies

Short of implementing another hardware co-processor, a further reduction in the overall

execution time can be attained by increasing system frequencies. This is not a trivial task

as at higher clock rates it becomes harder to meet the timing constraints. Furthermore,

care must be taken to maintain proper CPU/bus frequency ratios.
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Figure 6.14: DCM configuration for a 266.67 MHz system

6.4.1 Motivation

When the APU-FPU is part of the system, the CPU can be clocked at up to 275 MHz in the

-11 speed grade V4FX FPGA. The corresponding FPU frequency is thus 137.5 MHz. This

ratio, however, is not a valid one for CPU and PLB clock synchronization. There are two

groups of ratios that are valid for synchronizing between the CPU and the PLB and they

are determined by the CPMC405SYNCBYPASS option in the PPC405 core configuration

(Virtex-4 FX only):

1. CPMC405SYNCBYPASS enabled (default): integer ratios between 1:1 and 1:16 are

possible

2. CPMC405SYNCBYPASS disabled: N/2 and N/3 ratios are possible for any integer N
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By default, the CPMC405SYNCBYPASS option is enabled for backwards compatibility with

the Virtex-II Pro PPC405 processor. Disabling this option allows for fractional ratios pro-

vided that the CPU and PLB clocks are rising-edge aligned and the user is ready to accept

additional latency for the synchronization. With this option disabled, the maximum CPU

frequency under 275 MHz that is synchronized with the maximum PLB clock rate of 100

MHz is 266.67 MHz, achieving a ratio of 8/3. The following sections describe a system

build with such a ratio, allowing the FPU to run at a higher clock frequency of 133.33

MHz. A block diagram showing the cascading DCM configuration used to achieve the

necessary frequencies is shown in Figure 6.14 on the preceding page. The dot-product

core is removed for this build.

6.4.2 Meeting Timing

This particular system build, with higher CPU and bus frequencies, had trouble meeting

timing. The reason for this can be partially contributed to the non-standard choice of

frequencies: 266.67 MHz for the CPU and 133.33 MHz for the FPU. Although the DCMs

can generate these frequencies from the 100 MHz reference clock, the CLKFX output

must be used as it has options for multiplication and division of the delay-locked loop.

This output has a higher jitter characteristic than the others and can thus lead to poor

timing performance.

With the dedicated support of a Xilinx design engineer, and after closely examining the

floorplan of the system not meeting timing, it was found that the FPU was being placed

too far away from the CPU. Since the PAR tools would not place the FPU closer to the

CPU even when running on “high” effort with extra effort “normal,” the only alternative

was to manually constrain the placement of the FPU in the UCF file. This was done by

constraining the two BRAMs used by the FPU core to be located as close as possible to

the CPU. With this fix, the system met all timing constraints. The floorplans before and

after manual constraining are shown in Figure 6.15 on the next page. The addition to the

UCF file is shown below.

1 # Placement for processor and FPU (Ben Jones, Xilinx, Inc.) #

2 INST "*/ppc405_0/ppc405_0/PPC405_ADV_i" LOC = "PPC405_ADV_X0Y1";

3 INST "*/apu_fpu_0/apu_fpu_0/gen_apu_fpu_sp_full.netlist/fpu_rf_twobanks[0].msw_lsw[0].

regmem" LOC = "RAMB16_X2Y25";

4 INST "*/apu_fpu_0/apu_fpu_0/gen_apu_fpu_sp_full.netlist/fpu_rf_twobanks[1].msw_lsw[0].

regmem" LOC = "RAMB16_X2Y26";
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(a) Original placement of FPU (in black) (b) FPU placement after manual constraining (in
black)

(c) Original location of FPU BRAMs (d) Location of FPU BRAMs after manual constrain-
ing

Figure 6.15: FPU core placement before (a,c) and after (b,d) manual constraining

76



SW OPTIMIZATIONS NONE (BASE SYSTEM) SP MATH FUNCTIONS

IBM PERFLIB (DP)

HW OPTIMIZATIONS NONE (BASE SYSTEM) APU-FPU (133.33 MHz)

PPC405 FREQ. 200 MHz 266.67 MHz
INTERFEROGRAMS 1 1

DETECTORS 1 1

SOFTWARE

COMPONENT

TIME (SEC) TIME (SEC) SPEEDUP

RE-SAMPLING 1197.7938 114.2044 10.49x

SPECTRUM (PHASE

CORRECTION, FFT)
117.4963 12.5779 9.34x

TOTAL 1315.2901 126.7823 10.37x

Table 6.12: Execution times for a high-frequency system with APU-FPU, SP math func-
tions, and DP Perflib
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Figure 6.16: The spectrum produced by the high-frequency FTIR system on the ML410
board

6.4.3 Accuracy and Performance Evaluation

The FTIR spectrometry system running on a 266.67 MHz CPU and with a 133.33 MHz

FPU achieves the lowest execution time compared to all the previous system builds. A

speedup of more that 10x is seen compared to the FTIR base system (see Table 6.12).

Since this system build is just a higher frequency version of a previous build, device

utilization, result accuracy, and the profile data remained unchanged. As a verification

of the data processing accuracy, the full and partial spectrum produced by this system

is shown in Figure 6.16. These plots show identical resemblance to the reference plots in

Figure 4.4 on page 34.
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Chapter 7

Result Analysis

This chapter brings together all the results presented throughout chapters 4-6. In par-

ticular, results obtained in this thesis are compared to the data collected from the V2P

research at NASA Jet Propulsion Laboratory [2]. An estimate of the power consumption,

using Xilinx’s XPower tool, is given at the end of this chapter.

7.1 Performance Evaluation

Table 7.1 presents the execution times of all systems built as part of this thesis. Without

a doubt, the two software optimizations (using single-precision math library and Perflib)

and the inclusion of the APU-FPU core together provide impressive speedup across the

board. That is because the aforementioned optimizations affect nearly all portions of the

FTIR software, improving both single-precision (SP math functions and APU-FPU) as well

as double-precision arithmetic (Perflib).

The dot-product co-processor core, however, has almost no effect on the system per-

formance. As described in section 6.3.2 on page 71, this is most likely due to the non-

contiguous pattern of memory access in the dot-product computation of the FTIR spec-

trometry algorithm. As was shown earlier, smaller more uniformly accessed data sets can

achieve nearly 2x speedup over the FPU when using the dot-product co-processor.

CPU

(MHz)

FPU

(MHz)

DOT-PROD

(MHz)

SP MATH PERFLIB RE-SAMPLING

(SEC)

SPECTRUM

(SEC)

TOTAL

(SEC)

SPEEDUP

200 - - n - 1197.7938 117.4963 1315.2901 1.00x

200 - - y - 780.9376 109.9881 890.9257 1.48x

200 - - y standard 244.1836 44.4243 288.6079 4.56x

200 100 - y DP-only 151.1817 14.3672 165.5489 7.95x

200 - 200 y standard 211.4479 44.4456 255.8935 5.14x

200 100 200 y DP-only 149.3297 14.3675 163.6972 8.03x

266 133 - y DP-only 114.2044 12.5779 126.7823 10.37x

Table 7.1: Execution times for all V4FX FTIR system builds
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V2P (NASA JPL) ML410 (XILINX)

PPC405 FREQ. 300 MHz 266.67 MHz
INTERFEROGRAMS 104 scaled to 104

DETECTORS 2 scaled to 2

SW OPTIMIZATIONS IBM PERFLIB

(STANDARD)
SP MATH FUNCTIONS

IBM PERFLIB (DP)

HW OPTIMIZATIONS NONE APU-FPU (133.33 MHz)

SOFTWARE

COMPONENT

TIME

(MIN)
CYCLES

(×1012)
TIME

(MIN)
CYCLES

(×1012)
SPEEDUP

RE-SAMPLING 780 14.040 396 6.336 1.97x

SPECTRUM (PHASE

CORRECTION, FFT)
142+90 4.176 44 0.704 5.27x

TOTAL 1012 18.216 440 7.040 2.30x

EFFICIENCY SCORE 4.11 10.65 -

Table 7.2: Execution times for high-frequency FTIR system on ML410 board and com-
parison to NASA JPL V2P board

The lowest execution time is obtained with a high-frequency system running at 266.67

MHz CPU and 133.33 MHz FPU. This 33.33% increase in CPU and FPU frequencies over

an identical system also increases the speedup by nearly the same amount (from 7.95x

to 10.37x). The memory infrastructure was not modified between builds (100 MHz PLB

DDR2 controller with 200 MHz memory module), thus suggesting that the peak memory

bandwidth has not yet been reached as otherwise the speedup would have been much

less than what was observed.

Comparing the high-frequency FTIR system build on the ML410 development board

to the V2P NASA JPL implementation shows an overall speedup of 2.30x (see Table 7.2).

The results of the high-frequency FTIR build are first scaled to the appropriate number

of interferograms and detectors to match what was used in the NASA JPL V2P research

task. The reported speedup is seen even though the CPU on the ML410 system is clocked

at a lower frequency than on the V2P. This also leads to a higher efficiency score on the

ML410 system (the efficiency score is described in section 4.4 on page 38).

In Table 7.3 on the next page the performance of the high-frequency FTIR system is

compared to the performance of the BAE RAD750 SBC evaluated at NASA JPL. Even

with hardware and software optimizations, the FTIR system on the V4FX hybrid-FPGA

still lags behind a software-only implementation on the RAD750; however, the margin

is a lot smaller than anything seen previously. Overall, the FPGA system processes the

data about 3.5x slower than the RAD750. This is mostly due to the time spent in the

re-sampling phase of the FTIR spectrometry algorithm. The spectrum computation is
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RAD750 (BAE) ML410 (XILINX)

PPC405 FREQ. 133.33 MHz 266.67 MHz
INTERFEROGRAMS 104 scaled to 104

DETECTORS 2 scaled to 2

SW OPTIMIZATIONS NONE SP MATH FUNCTIONS

IBM PERFLIB (DP)

HW OPTIMIZATIONS NATIVE FPU APU-FPU (133.33 MHz)

SOFTWARE

COMPONENT

TIME (MIN) TIME (MIN) SPEEDUP

RE-SAMPLING 69 396 0.17x

SPECTRUM (PHASE

CORRECTION, FFT)
42+15 44 1.30x

TOTAL 126 440 0.29x

Table 7.3: Execution times for high-frequency FTIR system on ML410 board and com-
parison to BAE RAD750 SBC

actually faster on the FPGA than on the RAD750 (1.30x speedup). Additionally, the FPGA

is only utilizing one of its two PPC405 cores. A dual-core implementation (investigate in

Chapter 8 on page 82) will narrow the margin even further.

7.2 Power Estimation

Xilinx ISE software contains a power estimation tool called XPower. This tool, which is

run after PAR, provides a rough estimate of the power consumption of the entire reconfig-

urable device. The data shown in Table 7.4 on the next page was collected with XPower

and is presented next to estimate values for the NASA V2P and BAE RAD750 processing

platforms.

The 200 MHz V4FX60 designs consume about 7.5 W of power, from which a constant

4.859 W is attributed to output power, mostly for DDR21. This value is a very rough

estimate as the type of DDR2 module connected to the board is not taken into consider-

ation. The NASA JPL V2P board consumes 5 W of power, but no data is available on how

much of that is attributed to its DDR memory. Thus, the power consumption value for

the V4FX60 and the V2P can shift in either direction depending on the particular type of

memory used. However, both the V4FX60 and the V2P consume far less power than the

BAE RAD750 (20 W).

1An accurate power consumption figure for the 266 MHz V4FX60 design could not be obtained with XPower,
which reported an enormous value of 15.972 W (clearly wrong). The value listed in the table is an educated guess
based on previous system builds and the current CPU and FPU frequencies. The actual power consumption is
most likely significantly less than this value.
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SYSTEM CPU (MHz) FPU (MHz) DOT-PROD (MHz) POWER (W)

Xilinx ML410 (V4FX60) 200 - - 7.436

Xilinx ML410 (V4FX60) 200 100 - 7.521

Xilinx ML410 (V4FX60) 200 - 200 7.556

Xilinx ML410 (V4FX60) 200 100 200 7.613

Xilinx ML410 (V4FX60) 266 133 - <10

NASA JPL V2P 300 - - 5

BAE RAD750 133 present - 20

Table 7.4: Estimated power consumption of V4FX60, V2P, and BAE RAD750
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Chapter 8

Conclusions and Future Work

This thesis started with an all-FORTRAN implementation of the FTIR spectrometry al-

gorithm, converted it to C code, and developed a number of HW/SW systems on the

V4FX60 hybrid-FPGA. As part of the conversion task, a detailed process was developed

for porting FORTRAN code to C using f2c and targeting the V4FX platform with or with-

out hardware FPU support (see Appendix A on page 89). The execution time of the all

software C implementation of the FTIR spectrometry algorithm was recorded and used

for comparison as a “base case.” Two software-based optimizations were applied that

reduced the execution time by more than 4.5x. These included modifying the code to use

all single-precision math library functions (non-ANSI) when dealing with single-precision

data and utilizing the IBM Performance Libraries (Perflib) to improve the speed of all sin-

gle and double-precision arithmetic. Detailed instructions for isolating double-precision

optimization from Perflib were presented in Appendix B on page 92. A DP-only Perflib was

later used in conjunction with the single-precision APU-FPU to further improve system

performance.

The bulk of this thesis dealt with looking into hardware-based improvements to the

FTIR spectrometry system. These included the Xilinx APU-FPU, and a single-precision

dot-product co-processor. The APU-FPU delivered significant speedup for all single-

precision floating-point operations. Its effectiveness was maximized when the system

frequencies were increased. The dot-product co-processor, although ineffective in the

FTIR spectrometry system due to poor spatial locality of the data, showed nearly a 2x

improvement over the APU-FPU when working with smaller, sequentially accessed data

sets. Furthermore, it was implemented as a load/store-based APU-connected FCM thus

establishing a reference for creating similar APU co-processors. The design of a non-

system-bused CPU-coupled co-processor is frequently overlooked in design guides, yet it

is a very effective way to offload software routines to hardware implementation.

The ML410 development board, on which all of this work was conducted, hosts the
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V4FX60 hybrid-FPGA containing two PPC405 processors. This thesis focused on opti-

mizing the performance of the FTIR spectrometry algorithm on a single PPC405 core,

however, the design can be extended to utilize both available cores. The block diagram in

Figure 8.1 on the following page shows a dual-core design that can be implemented on

the ML410 board. The two PPC405 processors each have dedicated PLB interfaces but

share a common OPB. On the common OPB, the processors need to negotiate access to

the RS232 UART and SystemACE CF controller. This negotiation can be done through

dual-ported shared BRAM, accessible by each processor from their respective PLB. The

ML410 board has two external memory interfaces that are both utilized in this concept.

PPC405 CPU0 uses the DDR2 DIMM (256 Mbytes) while PPC405 CPU1 utilizes the DDR

on-board component memory (64 Mbytes). Each of the processors has some dedicated

on-chip memory connected through the OCM interface. The instruction side OCM is

particularly necessary so each processor can store its own boot code in its own on-chip

memory as booting both processors from external memory may not be possible. Both

processors have their own FPUs connected on dedicated FCB interfaces. The selected

CPU/FPU frequencies for the concept design are 200/100 MHz. The 266/133 MHz ratio

was not chosen as with it there may be difficulties in meeting the timing constraints.

Once the 200/100 MHz CPU/FPU dual-core system works, higher system frequencies

should be investigated. Since the processing of individual interferograms is a completely

independent task, an up to 2x reduction in execution time may be possible with a dual-

core system. However, one bottleneck that may limit the speedup is negotiating access to

the shared CF card controller.

Additional improvement to the overall performance of the FTIR spectrometry system

may be possible by rewriting the software in C. The automatic conversion from FORTRAN

to C using f2c most likely does not produce optimal code, and it is certainly not appealing

to read. Some functions may also need to be rewritten with an optimized pattern of data

access. This can help in cases such as the dot-product co-processor.

Further performance improvement may be achieved by trying a different compiler,

one that is specifically targeted for the embedded PPC405 processor. A V2P performance

study done at the NASA Goddard Space Flight Center concluded that using the WindRiver

Diab DCC 5.2 compiler provides a 38% performance increase over the GNU-GCC 3.4

compiler. The comparison was based on running a Dhrystone benchmark application

on a 400 MHz PPC405 design. The GNU-GCC compiler achieved 458 DMIPS while the

WindRiver Diab DCC achieved 628 DMIPS (as reported by Xilinx) [39].
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Figure 8.1: Dual-core concept targeting ML410 development board
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Implementing additional hardware co-processors may result in the further reduction

of execution time. Using the dot-product design as a reference, the FFT function, for ex-

ample, can be implemented in the hardware. This will help in the spectrum computation

component of the software processing. It may be necessary to re-arrange the data access

pattern for optimal co-processor performance, to avoid the pitfall seen when deploying

the dot-product core.

Finally, no embedded processing system is complete without an OS. Linux is a good

choice and is supported by Xilinx in EDK. It is important to first finalize the hardware

design prior to deploying the OS. Support for the APU may be lacking in Linux and getting

the OS to recognize the hardware FPU may be a project in itself.

For the FTIR spectrometry algorithm, this thesis started the process of moving from

an all software system to a mixed HW/SW implementation on the V4FX60 hybrid-FPGA.

In the best case, a more than 10x speedup was achieved compared to the FTIR base

system. This implementation, although over 2x faster the V2P system at NASA JPL, still

lags behind the current state-of-the-art space processor - the BAE RAD750. However, the

margin between the two was narrowed down significantly and with further research, as

suggested above, will most likely be eliminated altogether.
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Appendix A

Building f2c for EDK

The following is required to use f2c for EDK:

1. A program that converts FORTRAN source into C source:

http://www.netlib.org/f2c/mswin/f2c.exe.gz

2. A library that must be linked with the generated C source:

http://www.netlib.org/f2c/libf2c.zip

To set up f2c, start by launching the EDK shell from:

Start>Programs>Xilinx Platform Studio 9.1i>Accessories>Launch EDK Shell

This shells opens a Cygwin environment with many common Linux commands. Extract

the f2c executable and place it in the Cygwin usr/bin directory (the actual location of this

directory is C:\EDK\cygwin\bin):

$ ls

f2c.exe.gz libf2c.zip

$ gzip -d f2c.exe.gz

$ ls

f2c.exe libf2c.zip

$ cp f2c.exe /usr/bin/f2c.exe

As a quick test to make sure everything is set up correctly, check the version of f2c (it is

now in Xilinx’s path and can be called from any directory in the EDK shell):

$ f2c --version

f2c (Fortran to C Translator) version 20060506.

Next extract the f2c library source:

$ unzip libf2c.zip

$ ls

f2c.exe libf2c libf2c.zip
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In the libf2c directory, edit makefile.u with a common text editor like WordPad. Paste over

the modified makefile provide in Appendix C.1 on page 94. Do not compile yet1.

Start Xilinx Platform Studio and use the base system builder wizard to create a new

PowerPC project for a Virtex-4FX FPGA. Specify a 200 MHz processor clock frequency and

a 100 MHz bus clock frequency. Check the “enable floating point unit (FPU)” checkbox if

a hardware FPU is desired. In the following screens, include a RS232_Uart and a 64 KB

PLB BRAM IF CNTLR. Do not include the memory or peripheral test. Generate the system.

Next create a new software application project and mark it to initialize BRAMs (and do

not initialize BRAMs for the ppc405_0_bootloop). From the libf2c directory add arithchk.c

to the project. Specify the following compile options (notice the linking against the math

library)2:

-mfpu=sp_full -DNO_FPINIT -lm

Build the whole hardware and software systems. Configure HyperTerminal with the

proper baud rate to listen to the board output (the default baud rate is 9600). Down-

load the bitstream to the board and watch for the output. It should be:

#define IEEE_MC68k

#define Arith_Kind_ASL 2

#define Double_Align

The define statements above are produced by the arithchk.c program which runs on the

embedded PowerPC 405 processor in the FPGA. This program determines the specific

arithmetic characteristics that properly represent the embedded processor.

Next copy the ppc405_0\lib directory inside the EDK project directory into the libf2c

directory. The ppc405_0\lib directory includes processor-specific library files that are

necessary for proper compilation of libf2c. These files are different from build to build

depending on the system configuration. It is absolutely crucial that these files come from

a system that matches the floating-point support options specified in the makefile. Now

compile libf2c from the location of its makefile:

$ make -f makefile.u

[... compile messages ...]

1This document assumes the user wants full single precision floating-point support through the APU-FPU.
If divide and square root operations support through the co-processor is not necessary, replace all instances of
-mfpu=sp_full with -mfpu=sp_lite. Note that this requires updating the CFLAGS field in the makefile provided
in Appendix C.1 on page 94. In this case, the divide and square root operations will be done through software
emulation. If floating-point support through APU-FPU is not desired at all (for example, when compiling with
Perflib option -mppcperflib), remove the -mfpu= option altogether.

2The -mfpu=sp_full and -lm options can be omitted as they are inserted automatically by EDK.
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./a.out >arith.h

./a.out: 1: Syntax error: "(" unexpected

make: *** [arith.h] Error 2

On the first compilation, it is expected to receive the error seen above. The first compi-

lation is necessary in order to generate certain header files which will be needed for the

second compilation. Modify the newly generated arith.h file in the libf2c directory. Into

it, paste the define statements produced by the development board in the previous step.

Once again compile libf2c. This time, no errors should be generated.

At this point, f2c is now ready to be used with an EDK project provided that f2c.h

and the compiled libf2c.a are in the project’s include (-I ) and library (-L) search paths,

respectively. To convert FORTRAN source into C source, issue the following command in

the EDK shell:

$ ls

hello.f

$ f2c hello.f

hello.f:

MAIN:

$ ls

hello.c hello.f

The generated C source can now be used in the EDK project. The following compile

flags must be specified to properly link the f2c library, the math library, and utilize the

APU-FPU hardware (if enabled):

-mfpu=sp_full -lf2c -lm
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Appendix B

Recompiling IBM PowerPC Perflib for
Double-precision Optimization Only

To recompile the IBM PowerPC Perflib, first obtain the source1 (ibmeppcperflib-1.1.tar.gz)

from the project homepage:

http://sourceforge.net/projects/ppcperflib/

Next launch the EDK shell from:

Start>Programs>Xilinx Platform Studio 9.1i>Accessories>Launch EDK Shell

This shell opens a Cygwin environment with many common Linux commands. Extract

the downloaded source:

$ ls

ibmeppcperflib-1.1.tar

$ tar -xvf ibmeppcperflib-1.1.tar

$ ls

ibmeppcperflib-1.1.tar perflibs

$ cd perflibs

$ ls

COPYING.LIB Makefile doc fpopt include stropt

Edit Makefile with a common text editor like WordPad. Paste over the modified makefile

provided in Appendix C.2 on page 98. Also edit Makefile in the fpopt directory and paste

over the modified makefile provided in Appendix C.3 on page 100.

Next browse to the ppc405_0\lib directory as described in Appendix A on page 89.

Copy the contents of this directory into the fpopt directory under perflibs. Issue the make

command from the perflibs directory to build Perflib.

Once the compilation is done, the Perflib double-precision only library can by used

with an EDK project provided that lib\libppcfp.a is in the project’s library (-L) search

1This project uses Perflib v1.1.
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path. Link to the Perflib routines by specifying the -lppcfp option2.

2This option may be used together with -mfpu=sp_full and -mfpu=sp_lite options, which are automatically
inserted by EDK if an APU-FPU unit is present.
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Appendix C

Select Code Listings

C.1 Makefile for libf2c1

1 # f2c makefile

2 # FOR USE WITH Xilinx EDK (targeting embedded PowerPC processor)

3 # >> with full APU-FPU support <<

4 #

5 # NOTE: for lite APU-FPU support, change -mfpu=sp_full to -mfpu=sp_lite

6 # in CFLAGS; remove -mfpu= if no APU-FPU support is desired

7 #

8 # Modified by: Dmitriy Bekker

9 # Rochester Institute of Technology

10 # May 2007

11 # =============================================================

12 #

13 # Unix makefile: see README.

14 # For C++, first "make hadd".

15 # If your compiler does not recognize ANSI C, add

16 # -DKR_headers

17 # to the CFLAGS = line below.

18 # On Sun and other BSD systems that do not provide an ANSI sprintf, add

19 # -DUSE_STRLEN

20 # to the CFLAGS = line below.

21 # On Linux systems, add

22 # -DNON_UNIX_STDIO

23 # to the CFLAGS = line below. For libf2c.so under Linux, also add

24 # -fPIC

25 # to the CFLAGS = line below.

26

27 .SUFFIXES: .c .o

28 CC = powerpc-eabi-gcc

29 LD = powerpc-eabi-ld

30 AR = powerpc-eabi-ar

31 RNLIB = powerpc-eabi-ranlib

32 SHELL = /bin/sh

33 CFLAGS = -O3 -DNON_UNIX_STDIO -DNO_TRUNCATE -DNON_POSIX_STDIO -mfpu=sp_full

34 LPATH = -L./lib/

35 # compile, then strip unnecessary symbols

36 .c.o:

37 $(CC) -c -DSkip_f2c_Undefs $(CFLAGS) $(LPATH) $*.c

38 #$(LD) $(LPATH) -r -x -o $*.xxx $*.o

39 #mv $*.xxx $*.o

40

41 ## Under Solaris (and other systems that do not understand ld -x),

42 ## omit -x in the ld line above.

1This is a modified version of the makefile provided in http://www.netlib.org/f2c/libf2c.zip
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43 ## If your system does not have the ld command, comment out

44 ## or remove both the ld and mv lines above.

45

46 MISC = f77vers.o i77vers.o main.o s_rnge.o abort_.o exit_.o getarg_.o iargc_.o\

47 getenv_.o signal_.o s_stop.o s_paus.o system_.o cabs.o\

48 derf_.o derfc_.o erf_.o erfc_.o sig_die.o uninit.o

49 POW = pow_ci.o pow_dd.o pow_di.o pow_hh.o pow_ii.o pow_ri.o pow_zi.o pow_zz.o

50 CX = c_abs.o c_cos.o c_div.o c_exp.o c_log.o c_sin.o c_sqrt.o

51 DCX = z_abs.o z_cos.o z_div.o z_exp.o z_log.o z_sin.o z_sqrt.o

52 REAL = r_abs.o r_acos.o r_asin.o r_atan.o r_atn2.o r_cnjg.o r_cos.o\

53 r_cosh.o r_dim.o r_exp.o r_imag.o r_int.o\

54 r_lg10.o r_log.o r_mod.o r_nint.o r_sign.o\

55 r_sin.o r_sinh.o r_sqrt.o r_tan.o r_tanh.o

56 DBL = d_abs.o d_acos.o d_asin.o d_atan.o d_atn2.o\

57 d_cnjg.o d_cos.o d_cosh.o d_dim.o d_exp.o\

58 d_imag.o d_int.o d_lg10.o d_log.o d_mod.o\

59 d_nint.o d_prod.o d_sign.o d_sin.o d_sinh.o\

60 d_sqrt.o d_tan.o d_tanh.o

61 INT = i_abs.o i_dim.o i_dnnt.o i_indx.o i_len.o i_mod.o i_nint.o i_sign.o\

62 lbitbits.o lbitshft.o

63 HALF = h_abs.o h_dim.o h_dnnt.o h_indx.o h_len.o h_mod.o h_nint.o h_sign.o

64 CMP = l_ge.o l_gt.o l_le.o l_lt.o hl_ge.o hl_gt.o hl_le.o hl_lt.o

65 EFL = ef1asc_.o ef1cmc_.o

66 CHAR = f77_aloc.o s_cat.o s_cmp.o s_copy.o

67 I77 = backspac.o close.o dfe.o dolio.o due.o endfile.o err.o\

68 fmt.o fmtlib.o ftell_.o iio.o ilnw.o inquire.o lread.o lwrite.o\

69 open.o rdfmt.o rewind.o rsfe.o rsli.o rsne.o sfe.o sue.o\

70 typesize.o uio.o util.o wref.o wrtfmt.o wsfe.o wsle.o wsne.o xwsne.o

71 QINT = pow_qq.o qbitbits.o qbitshft.o ftell64_.o

72 TIME = dtime_.o etime_.o

73

74 # If you get an error compiling dtime_.c or etime_.c, try adding

75 # -DUSE_CLOCK to the CFLAGS assignment above; if that does not work,

76 # omit $(TIME) from OFILES = assignment below.

77

78 # To get signed zeros in write statements on IEEE-arithmetic systems,

79 # add -DSIGNED_ZEROS to the CFLAGS assignment below and add signbit.o

80 # to the end of the OFILES = assignment below.

81

82 # For INTEGER*8 support (which requires system-dependent adjustments to

83 # f2c.h), add $(QINT) to the OFILES = assignment below...

84

85 OFILES = $(MISC) $(POW) $(CX) $(DCX) $(REAL) $(DBL) $(INT) \

86 $(HALF) $(CMP) $(EFL) $(CHAR) $(I77) $(TIME)

87

88 all: f2c.h signal1.h sysdep1.h libf2c.a

89

90 libf2c.a: $(OFILES)

91 $(AR) r libf2c.a $?

92 -$(RNLIB) libf2c.a

93

94 ## Shared-library variant: the following rule works on Linux

95 ## systems. Details are system-dependent. Under Linux, -fPIC

96 ## must appear in the CFLAGS assignment when making libf2c.so.

97 ## Under Solaris, use -Kpic in CFLAGS and use "ld -G" instead

98 ## of "cc -shared".

99

100 libf2c.so: $(OFILES)

101 $(CC) -shared -o libf2c.so $(OFILES)

102

103 ### If your system lacks ranlib, you don’t need it; see README.

104

105 f77vers.o: f77vers.c

106 $(CC) -c f77vers.c

95



107

108 i77vers.o: i77vers.c

109 $(CC) -c i77vers.c

110

111 # To get an "f2c.h" for use with "f2c -C++", first "make hadd"

112 hadd: f2c.h0 f2ch.add

113 cat f2c.h0 f2ch.add >f2c.h

114

115 # For use with "f2c" and "f2c -A":

116 f2c.h: f2c.h0

117 cp f2c.h0 f2c.h

118

119 # You may need to adjust signal1.h and sysdep1.h suitably for your system...

120 signal1.h: signal1.h0

121 cp signal1.h0 signal1.h

122

123 sysdep1.h: sysdep1.h0

124 cp sysdep1.h0 sysdep1.h

125

126 # If your system lacks onexit() and you are not using an

127 # ANSI C compiler, then you should uncomment the following

128 # two lines (for compiling main.o):

129 #main.o: main.c

130 # $(CC) -c -DNO_ONEXIT -DSkip_f2c_Undefs main.c

131 # On at least some Sun systems, it is more appropriate to

132 # uncomment the following two lines:

133 #main.o: main.c

134 # $(CC) -c -Donexit=on_exit -DSkip_f2c_Undefs main.c

135

136 install: libf2c.a

137 cp libf2c.a $(LIBDIR)

138 -$(RNLIB) $(LIBDIR)/libf2c.a

139

140 clean:

141 rm -f libf2c.a *.o arith.h signal1.h sysdep1.h

142

143 backspac.o: fio.h

144 close.o: fio.h

145 dfe.o: fio.h

146 dfe.o: fmt.h

147 due.o: fio.h

148 endfile.o: fio.h rawio.h

149 err.o: fio.h rawio.h

150 fmt.o: fio.h

151 fmt.o: fmt.h

152 iio.o: fio.h

153 iio.o: fmt.h

154 ilnw.o: fio.h

155 ilnw.o: lio.h

156 inquire.o: fio.h

157 lread.o: fio.h

158 lread.o: fmt.h

159 lread.o: lio.h

160 lread.o: fp.h

161 lwrite.o: fio.h

162 lwrite.o: fmt.h

163 lwrite.o: lio.h

164 open.o: fio.h rawio.h

165 rdfmt.o: fio.h

166 rdfmt.o: fmt.h

167 rdfmt.o: fp.h

168 rewind.o: fio.h

169 rsfe.o: fio.h

170 rsfe.o: fmt.h
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171 rsli.o: fio.h

172 rsli.o: lio.h

173 rsne.o: fio.h

174 rsne.o: lio.h

175 sfe.o: fio.h

176 signbit.o: arith.h

177 sue.o: fio.h

178 uio.o: fio.h

179 uninit.o: arith.h

180 util.o: fio.h

181 wref.o: fio.h

182 wref.o: fmt.h

183 wref.o: fp.h

184 wrtfmt.o: fio.h

185 wrtfmt.o: fmt.h

186 wsfe.o: fio.h

187 wsfe.o: fmt.h

188 wsle.o: fio.h

189 wsle.o: fmt.h

190 wsle.o: lio.h

191 wsne.o: fio.h

192 wsne.o: lio.h

193 xwsne.o: fio.h

194 xwsne.o: lio.h

195 xwsne.o: fmt.h

196

197 arith.h: arithchk.c

198 $(CC) $(CFLAGS) $(LPATH) -DNO_FPINIT arithchk.c -lm ||\

199 $(CC) -DNO_LONG_LONG $(CFLAGS) $(LPATH) -DNO_FPINIT arithchk.c -lm

200 ./a.out >arith.h

201 rm -f a.out arithchk.o

202

203 check:

204 xsum Notice README abort_.c arithchk.c backspac.c c_abs.c c_cos.c \

205 c_div.c c_exp.c c_log.c c_sin.c c_sqrt.c cabs.c close.c comptry.bat \

206 d_abs.c d_acos.c d_asin.c d_atan.c d_atn2.c d_cnjg.c d_cos.c d_cosh.c \

207 d_dim.c d_exp.c d_imag.c d_int.c d_lg10.c d_log.c d_mod.c \

208 d_nint.c d_prod.c d_sign.c d_sin.c d_sinh.c d_sqrt.c d_tan.c \

209 d_tanh.c derf_.c derfc_.c dfe.c dolio.c dtime_.c due.c ef1asc_.c \

210 ef1cmc_.c endfile.c erf_.c erfc_.c err.c etime_.c exit_.c f2c.h0 \

211 f2ch.add f77_aloc.c f77vers.c fio.h fmt.c fmt.h fmtlib.c \

212 fp.h ftell_.c ftell64_.c \

213 getarg_.c getenv_.c h_abs.c h_dim.c h_dnnt.c h_indx.c h_len.c \

214 h_mod.c h_nint.c h_sign.c hl_ge.c hl_gt.c hl_le.c hl_lt.c \

215 i77vers.c i_abs.c i_dim.c i_dnnt.c i_indx.c i_len.c i_mod.c \

216 i_nint.c i_sign.c iargc_.c iio.c ilnw.c inquire.c l_ge.c l_gt.c \

217 l_le.c l_lt.c lbitbits.c lbitshft.c libf2c.lbc libf2c.sy lio.h \

218 lread.c lwrite.c main.c makefile.sy makefile.u makefile.vc \

219 makefile.wat math.hvc mkfile.plan9 open.c pow_ci.c pow_dd.c \

220 pow_di.c pow_hh.c pow_ii.c pow_qq.c pow_ri.c pow_zi.c pow_zz.c \

221 qbitbits.c qbitshft.c r_abs.c r_acos.c r_asin.c r_atan.c r_atn2.c \

222 r_cnjg.c r_cos.c r_cosh.c r_dim.c r_exp.c r_imag.c r_int.c r_lg10.c \

223 r_log.c r_mod.c r_nint.c r_sign.c r_sin.c r_sinh.c r_sqrt.c \

224 r_tan.c r_tanh.c rawio.h rdfmt.c rewind.c rsfe.c rsli.c rsne.c \

225 s_cat.c s_cmp.c s_copy.c s_paus.c s_rnge.c s_stop.c scomptry.bat sfe.c \

226 sig_die.c signal1.h0 signal_.c signbit.c sue.c sysdep1.h0 system_.c \

227 typesize.c \

228 uio.c uninit.c util.c wref.c wrtfmt.c wsfe.c wsle.c wsne.c xwsne.c \

229 z_abs.c z_cos.c z_div.c z_exp.c z_log.c z_sin.c z_sqrt.c >xsum1.out

230 cmp xsum0.out xsum1.out && mv xsum1.out xsum.out || diff xsum[01].out
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C.2 Makefile (main) for Double-precision Only Perflib

1 # Perflib makefile (main)

2 # FOR USE WITH Xilinx EDK (targeting embedded PowerPC processor)

3 # >> double-precision optimization only <<

4 #

5 # Modified by: Dmitriy Bekker

6 # Rochester Institute of Technology

7 # April 2007

8 # =============================================================

9 #

10 # makefile, pl_common, pl_linux 12/12/03 16:07:34

11 #------------------------------------------------------------------------------

12 #

13 # Copyright (C) 2003 IBM Corporation

14 # All rights reserved.

15 #

16 # Redistribution and use in source and binary forms, with or

17 # without modification, are permitted provided that the following

18 # conditions are met:

19 #

20 # * Redistributions of source code must retain the above

21 # copyright notice, this list of conditions and the following

22 # disclaimer.

23 # * Redistributions in binary form must reproduce the above

24 # copyright notice, this list of conditions and the following

25 # disclaimer in the documentation and/or other materials

26 # provided with the distribution.

27 # * Neither the name of IBM nor the names of its contributors

28 # may be used to endorse or promote products derived from this

29 # software without specific prior written permission.

30 #

31 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

32 # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

33 # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

34 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

35 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

36 # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

37 # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

38 # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

39 # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

40 # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

41 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

42 # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

43 #

44 #------------------------------------------------------------------------------

45 #------------------------------------------------------------------------------

46 # Make FP and string libraries

47 #------------------------------------------------------------------------------

48 PREFIX = powerpc-eabi-

49 MAKE = make

50 FPDIR = ./fpopt

51 LIBDIR = ./lib

52 FPLIBA = libppcfp.a

53 FPLIBSO = libppcfp.so

54

55 libs:

56 cd $(FPDIR);$(MAKE) PREFIX="$(PREFIX)"

57 mkdir -p $(LIBDIR)

58 cp -p $(FPDIR)/$(FPLIBA) $(LIBDIR)

59 cp -p $(FPDIR)/$(FPLIBSO) $(LIBDIR)

60
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61 clean:

62 @cd $(FPDIR);$(MAKE) clean

63 @rm $(LIBDIR)/*
64

65 clobber: clean

66

67 ###
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C.3 Makefile (fpopt) for Double-precision Only Perflib

1 # Perflib makefile (fpopt)

2 # FOR USE WITH Xilinx EDK (targeting embedded PowerPC processor)

3 # >> double-precision optimization only <<

4 #

5 # Modified by: Dmitriy Bekker

6 # Rochester Institute of Technology

7 # April 2007

8 # =============================================================

9 #

10 #------------------------------------------------------------------------------

11 #

12 # Copyright (C) 2003 IBM Corporation

13 # All rights reserved.

14 #

15 # Redistribution and use in source and binary forms, with or

16 # without modification, are permitted provided that the following

17 # conditions are met:

18 #

19 # * Redistributions of source code must retain the above

20 # copyright notice, this list of conditions and the following

21 # disclaimer.

22 # * Redistributions in binary form must reproduce the above

23 # copyright notice, this list of conditions and the following

24 # disclaimer in the documentation and/or other materials

25 # provided with the distribution.

26 # * Neither the name of IBM nor the names of its contributors

27 # may be used to endorse or promote products derived from this

28 # software without specific prior written permission.

29 #

30 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

31 # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

32 # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

33 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

34 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

35 # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

36 # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

37 # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

38 # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

39 # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

40 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

41 # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

42 #

43 #------------------------------------------------------------------------------

44 # Options for GCC compiler

45 #------------------------------------------------------------------------------

46 PREFIX ?=/opt/hardhat/devkit/ppc/405/bin/ppc_405-

47 CC = $(PREFIX)gcc

48 CPP = $(PREFIX)cpp

49 AS = $(PREFIX)as

50 AR = $(PREFIX)ar

51 LINKRW = $(PREFIX)ld -Ttext=$(TEXT_ORG) -Tdata=$(DATA_ORG)

52 LD = $(PREFIX)ld

53 INCLINK =$(PREFIX)ld -r

54 RANLIB = $(PREFIX)ranlib

55

56 ASFLAGS = -g

57 CPPFLAGS = -I../include

58 CFLAGS = -g -msoft-float -static

59

60 # The following may be required with some cross-compilers to resolve startup symbols
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61 # in the test programs.

62 #CFLAGS = -g -msoft-float -static -mads

63

64 # The following sends a link map to standard out

65 #LDFLAGS = -Wl,-M

66

67 # following flag settings are required to make a RiscWatch executable (testfloatr)

68 #ASFLAGS = -gdwarf

69 #CFLAGS = -gdwarf -msoft-float -static

70 #TEXT_ORG= 0x26000

71 #DATA_ORG= 0x36000

72

73 TFLOATG= testfloatg

74 TFLOATO= testfloato

75 TFLOATR= testfloatr

76 TARGET_LIB= libppcfp.a

77 TARGET_SO= libppcfp.so

78 LIBOBJS= ppc_fadd.o ppc_fsub.o ppc_fmul.o ppc_fdiv.o ppc_fcmpd.o

79

80 OBJTF = genfloat.o

81

82 all: $(TARGET_LIB) $(TARGET_SO)

83 testprogs: $(TFLOATG) $(TFLOATO)

84

85 # rule to make optimized floating point library for linking with static executables

86 $(TARGET_LIB): $(LIBOBJS)

87 $(AR) cr $(TARGET_LIB) $(LIBOBJS)

88 $(RANLIB) $(TARGET_LIB)

89

90 # rule to make shared floating point library for linking with dynamic executables

91 $(TARGET_SO): $(LIBOBJS)

92 $(CC) -shared -Wl,-soname,$(TARGET_SO).1 -o $(TARGET_SO).1.0 $(LIBOBJS

)

93 ln -s $(TARGET_SO).1.0 $(TARGET_SO).1

94 ln -s $(TARGET_SO).1 $(TARGET_SO)

95

96 # This executable links with the default GCC floating point operations

97 $(TFLOATG): $(OBJTF) $(MAKEFILE)

98 @echo "Loading $(TFLOATG) ..."

99 $(CC) $(CFLAGS) $(LDFLAGS) $(OBJTF) -o $(TFLOATG)

100 @echo "Done ..."

101

102 # This executable links with the optimized floating point libraries

103 # Note: libppcfp is included a second time in the link options below so that

104 # any references to floating point operations that occur in libc are

105 # resolved in libppcfp, rather than the default libgcc.

106 $(TFLOATO): $(OBJTF) $(MAKEFILE) $(TARGET_LIB)

107 @echo "Loading $(TFLOATO) ..."

108 $(CC) $(CFLAGS) $(LDFLAGS) $(OBJTF) -o $(TFLOATO) \

109 -L. -lppcfp -lc -lppcfp

110 @echo "Done ..."

111

112 # This executable is for standalone testing under RiscWatch

113 # Note: Prior to making this executable, it is necessary to uncomment the

114 # RiscWatch definitions above and re-make the floating point library.

115 $(TFLOATR): $(OBJTF) $(MAKEFILE) $(TARGET_LIB)

116 @echo "Loading $(TFLOATR) ..."

117 $(LINKRW) $(OBJTF) -e main -o $(TFLOATR) \

118 -L. -lppcfp -lc -lppcfp -lgcc

119 @echo "Done ..."

120

121

122 clean:

123 @rm -f *.o

101



124 @rm -f core *.a *.so*
125 @rm -f $(TFLOATG) $(TFLOATO) $(TFLOATR) $(TARGET_LIB)

126

127 clobber: clean

128

129 ###
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C.4 Original Top-level FTIR Spectrometry Source (matmos-

ipp.f 2)

1 program matmos_ipp

2 implicit none

3 c

4 c Data declarations

5 c

6 integer*4

7 & errnum, ! Error code (0=ok, <0=fatal, >0=recoverable)

8 & inpstat, ! Value of IOSTAT from input file read

9 & lun, ! Logical Unit Number for file I/O

10 & mip, ! Maximum number of input points or FFT size

11 & ndet, ! Number of detectors

12 & jdet, ! Loop variable for the current detector

13 & winfun, ! Exponent of the COS windowing function

14 & nop, ! Number of interpolation Operator Points

15 & nso, ! Number of pre-computed Sub-Operators

16 & irun, ! Scan number in the occultation

17 & counter, ! Point count, data destination into buffers

18 & specount, ! Spectrum Point count

19 & izpd, ! Point index (location) of ZPD

20 & nphr, ! Number of points on one side of ZPD used for phase

21 & indexa ! Generic loop index

22 parameter (mip=2**21)

23 parameter (ndet=1)

24 parameter (lun=20)

25 parameter (winfun=8)

26 parameter (nop=56)

27 parameter (nso=8192)

28

29 character

30 & infile*(*) ! Name of program input file

31 parameter (infile=’ascii-tint07000.026’)

32

33 logical*4

34 & filexist ! Keeps track of file existence

35

36 real*4

37 & ylm(mip), ! Input time-domain laser interferogram

38 & yir(mip,ndet), ! Input time-domain IR interferograms

39 & oper(nop*nso), ! Array holding the pre-computed operators

40 & ryir(mip,ndet) ! Path-difference domain IR interferograms

41

42 real*8

43 & dphase(mip) ! Used internally by subroutine ’t2x’

44 c

45 c Initialize variables.

46 c

47 errnum=0

48 inpstat=0

49 c

50 c Pre-compute interpolation operator

51 c

52 write(*,’(a)’)’Pre-computing interpolation operator’

53 call pcoper(1.0,winfun,nop,nso,oper)

54 c

55 c (Future) Loop over the scans that make up one occultation

56 c

2This source was provided by the NASA Jet Propulsion Laboratory
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57 do irun=26,26

58 c

59 c Check that input file exists, if so open it.

60 c

61 inquire(file=infile,exist=filexist,iostat=inpstat)

62 if(inpstat.ne.0) then

63 errnum=-1

64 write(*,’(2a)’)’Error: inquire failed on input file ’,infile

65 elseif(filexist) then

66 open(unit=lun,file=infile,status=’old’,iostat=inpstat)

67 if(inpstat.ne.0) then

68 errnum=-1

69 write(*,’(2a)’)’Error: open failed on input file ’,infile

70 else

71 write(*,’(2a)’)’Reading time-domain interferogram: ’,infile

72 endif

73 else

74 errnum=-1

75 write(*,’(2a)’)’Error: please provide input file ’,infile

76 endif

77 c

78 c Read time-domain interferogram

79 c

80 counter=0

81 do while((inpstat.eq.0).and. ! Not at end-of-file

82 & (errnum.eq.0)) ! And no errors

83 counter=counter+1

84 read(unit=lun,fmt=*,iostat=inpstat)

85 & (ylm(counter),yir(counter,jdet),jdet=1,ndet)

86 if (inpstat.ne.0) then

87 counter=counter-1

88 endif

89 enddo ! while((inpstat.eq.0).and.(errnum.eq.0))

90 c

91 c Close the input file.

92 c

93 close(unit=lun,iostat=inpstat)

94 if(inpstat.ne.0) then

95 errnum=-1

96 write(*,’(2a)’)’Error: close failed on input file ’,infile

97 endif

98 c

99 c Convert from time domain to path difference domain

100 c

101 if(errnum.eq.0) then

102 write(*,’(a)’)’Converting to path-difference domain’

103 call t2f (nop,nso,oper,mip,ndet,ylm,yir,ryir,counter,dphase)

104 endif

105 c

106 c Compute spectrum

107 c

108 if(errnum.eq.0) then

109 write(*,’(a)’)’Computing spectrum’

110 do jdet=1,ndet

111 specount=counter

112 call ipplite(mip,22,0,1,ryir(1,jdet),specount,izpd,nphr)

113 c

114 c Display a section of the spectrum

115 c

116 do indexa=(3*specount)/5,((3*specount)/5)+1000

117 c do indexa=1,specount

118 write(*,’(SP1PE16.8E2)’) ryir(indexa,jdet)

119 enddo

120 enddo
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121 endif

122

123 end do ! irun=26,26

124 stop

125 end

126

127 include ’pcoper.f’

128 include ’t2x.f’

129 include ’ipp-lite.f’

105



C.5 No I/O Top-level FTIR Spectrometry Source (matmos-

ipp-chk-noio.f 3)

1 program matmos_ipp

2 implicit none

3 c

4 c Data declarations

5 c

6 integer*4

7 & errnum, ! Error code (0=ok, <0=fatal, >0=recoverable)

8 ! & inpstat, ! Value of IOSTAT from input file read

9 ! & lun, ! Logical Unit Number for file I/O

10 & mip, ! Maximum number of input points or FFT size

11 & ndet, ! Number of detectors

12 & jdet, ! Loop variable for the current detector

13 & winfun, ! Exponent of the COS windowing function

14 & nop, ! Number of interpolation Operator Points

15 & nso, ! Number of pre-computed Sub-Operators

16 & irun, ! Scan number in the occultation

17 & counter, ! Point count, data destination into buffers

18 & specount, ! Spectrum Point count

19 & izpd, ! Point index (location) of ZPD

20 & nphr, ! Number of points on one side of ZPD used for phase

21 & chkcnt, ! Number of spectral points compared with reference result

22 & chkoff, ! Point offset in spectrum of the reference result

23 & chkdev, ! Index of max deviation between reference and calculated

24 & indexa ! Generic loop index

25 parameter (mip=2**21)

26 parameter (ndet=1)

27 ! parameter (lun=20)

28 parameter (winfun=8)

29 parameter (nop=56)

30 parameter (nso=8192)

31 parameter (chkcnt=1000)

32

33 ! character

34 ! & infile*(*) ! Name of program input file

35 ! parameter (infile=’ascii-tint07000.026’)

36

37 ! logical*4

38 ! & filexist ! Keeps track of file existence

39

40 real*4

41 & ylm(mip), ! Input time-domain laser interferogram

42 & yir(mip,ndet), ! Input time-domain IR interferograms

43 & oper(nop*nso), ! Array holding the pre-computed operators

44 & ryir(mip,ndet),! Path-difference domain IR interferograms

45 & chkspe(chkcnt),! Reference spectrum for comparison with calculated

46 & curdev, ! Current deviation between reference and calculated

47 & maxdev ! Maximum deviation between reference and calculated

48

49 real*8

50 & dphase(mip) ! Used internally by subroutine ’t2x’

51

52 include ’chkspe-data.inc’

53 c

54 c Initialize variables.

55 c

56 errnum=0

3This is a modified version of the source provided by the NASA Jet Propulsion Laboratory
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57 ! inpstat=0

58 c

59 c Pre-compute interpolation operator

60 c

61 write(*,’(a)’)’Pre-computing interpolation operator’

62 call pcoper(1.0,winfun,nop,nso,oper)

63 c

64 c (Future) Loop over the scans that make up one occultation

65 c

66 do irun=26,26

67 c

68 c Check that input file exists, if so open it.

69 c

70 ! inquire(file=infile,exist=filexist,iostat=inpstat)

71 ! if(inpstat.ne.0) then

72 ! errnum=-1

73 ! write(*,’(2a)’)’Error: inquire failed on input file ’,infile

74 ! elseif(filexist) then

75 ! open(unit=lun,file=infile,status=’old’,iostat=inpstat)

76 ! if(inpstat.ne.0) then

77 ! errnum=-1

78 ! write(*,’(2a)’)’Error: open failed on input file ’,infile

79 ! else

80 ! write(*,’(2a)’)’Reading time-domain interferogram: ’,infile

81 ! endif

82 ! else

83 ! errnum=-1

84 ! write(*,’(2a)’)’Error: please provide input file ’,infile

85 ! endif

86 c

87 c Read time-domain interferogram

88 c

89 counter=0

90 ! do while((inpstat.eq.0).and. ! Not at end-of-file

91 ! & (errnum.eq.0)) ! And no errors

92 ! counter=counter+1

93 ! read(unit=lun,fmt=*,iostat=inpstat)

94 ! & (ylm(counter),yir(counter,jdet),jdet=1,ndet)

95 ! if (inpstat.ne.0) then

96 ! counter=counter-1

97 ! endif

98 ! enddo ! while((inpstat.eq.0).and.(errnum.eq.0))

99 c

100 c Close the input file.

101 c

102 ! close(unit=lun,iostat=inpstat)

103 ! if(inpstat.ne.0) then

104 ! errnum=-1

105 ! write(*,’(2a)’)’Error: close failed on input file ’,infile

106 ! endif

107 c

108 c Convert from time domain to path difference domain

109 c

110 if(errnum.eq.0) then

111 write(*,’(a)’)’Converting to path-difference domain’

112 call t2f (nop,nso,oper,mip,ndet,ylm,yir,ryir,counter,dphase)

113 endif

114 c

115 c Compute spectrum

116 c

117 if(errnum.eq.0) then

118 write(*,’(a)’)’Computing spectrum’

119 do jdet=1,ndet

120 specount=counter
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121 call ipplite(mip,22,0,1,ryir(1,jdet),specount,izpd,nphr)

122 c

123 c Search for max deviation between reference and calculated

124 c

125 maxdev=0.0

126 chkdev=1

127 chkoff=((3*specount)/5)-1

128 do indexa=1,chkcnt

129 curdev=abs(chkspe(indexa)-ryir(chkoff+indexa,jdet))

130 if (curdev.gt.maxdev) then

131 maxdev=curdev

132 chkdev=indexa

133 endif

134 enddo

135 ! write (*,*)’Maximum deviation of ’,maxdev/chkspe(chkcnt),

136 ! & ’ at ’,chkdev

137 enddo

138 endif

139

140 end do ! irun=26,26

141 stop

142 end

143

144 include ’pcoper.f’

145 include ’t2x.f’

146 include ’ipp-lite.f’
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C.6 Partial FTIR Spectrometry C-source (xilinx-matmos-

ipp-chk_orig.c4)

1 /* xilinx-matmos-ipp-chk.f -- translated by f2c (version 20060506).

2 You must link the resulting object file with libf2c:

3 on Microsoft Windows system, link with libf2c.lib;

4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm

5 or, if you install libf2c.a in a standard place, with -lf2c -lm

6 -- in that order, at the end of the command line, as in

7 cc *.o -lf2c -lm

8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

9

10 http://www.netlib.org/f2c/libf2c.zip

11 */

12

13 /*****************************************************************************/

14 /* standard includes */

15 #include <stdio.h> /* for standard i/o, xil_printf */

16 #include <stdlib.h> /* common functions, atof */

17 #include <math.h> /* for math functions */

18

19 /* local includes */

20 #include "xparameters.h" /* system specific parameters and addresses */

21 #include "xcache_l.h" /* cacheable memory enable/disable */

22 #include "sysace_stdio.h" /* sysACE i/o */

23 #include "xsysace_l.h" /* sysACE parameters and addresses */

24 #include "qxFpu_utils.h" /* for qxFpu_printFloat */

25 #include "f2c.h" /* for f2c functions */

26

27 /* include timing routines only if profiling is off */

28 #ifndef PROFILING

29 #include "xtime_l.h" /* for timing */

30 #endif

31

32 /* define cacheable memory regions

33 * each bit in the regions variable stands for 128MB of memory:

34 * regions --> cached address range

35 * ------------|--------------------------------------------------

36 * 0x80000000 | [0, 0x7FFFFFF]

37 * 0x00000001 | [0xF8000000, 0xFFFFFFFF]

38 * 0x80000001 | [0, 0x7FFFFFF],[0xF8000000, 0xFFFFFFFF]

39 */

40 #define INSTR_CACHE 0x00000003

41 #define DATA_CACHE 0x00000003

42

43 /* for timing calculations */

44 #define CYCLES_PER_SEC XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ

45

46 /* for sysACE setup */

47 #define SYSACE_BASEADDR XPAR_SYSACE_COMPACTFLASH_BASEADDR

48

49 /* for ASCII read/write functions */

50 #define READLENGTH 29 /* number of characters in a line + 1 terminator */

51 #define FLOATLENGTH 14 /* number of characters for one float, exp, signs */

52 #define WRITELENGTH 18 /* number of characters in a line + 1 terminator */

53

54 /* redefine the qxFpu_printFloat function */

55 #define printfloat(a,b,c) qxFpu_printFloat(a,b,c)

56

4Only the initialization, global variables, MAIN__ and file I/O function are shown
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57 /* ASCII read/write functions */

58 int read_data( char[], real *, real * );

59 int write_data( char[], real *, int );

60 /*****************************************************************************/

61

62 /* Common Block Declarations */

63

64 struct {

65 real pii, p7, p7two, c22, s22, pi2;

66 } con_;

67

68 #define con_1 con_

69

70 struct {

71 real pii, p7, p7two, c22, s22, pi2;

72 } con1_;

73

74 #define con1_1 con1_

75

76 /* Table of constant values */

77

78 static integer c__1 = 1;

79 static real c_b4 = 1.f;

80 static integer c__8 = 8;

81 static integer c__56 = 56;

82 static integer c__8192 = 8192;

83 static integer c_b13 = 2097152;

84 static integer c__22 = 22;

85 static integer c__0 = 0;

86 static integer c__5 = 5;

87 static integer c__3 = 3;

88 static integer c_n1 = -1;

89 static integer c__1024 = 1024;

90 static integer c__15 = 15;

91 static integer c__512 = 512;

92 static integer c__2 = 2;

93 static real c_b71 = .125f;

94 static real c_b96 = 0.f;

95

96 /* Main program */ int MAIN__(void)

97 {

98 /* Initialized data */

99

100 static real chkspe[1000] = { 40913887200.f,40869351400.f,40946221100.f,

101 41011777500.f,40966717400.f,40894693400.f,40911945700.f,

102 4.0980865e10f,40983662600.f,40918589400.f,40896036900.f,

103 4.0952533e10f,40992866300.f,4.0951124e10f,40900083700.f,

104 40928673800.f,40990851100.f,40979410900.f,40907661300.f,

/* MORE DATA POINTS HERE (TOTAL = 1000) */

346 40986394600.f,40983822300.f,40980279300.f,40981770200.f,

347 4.0985858e10f,40985747500.f,4.0981631e10f,40980332500.f,

348 40984035300.f,40986681300.f,40984100900.f,40980774900.f,

349 40982343700.f,40986218500.f,40985968600.f,40982106100.f,

350 40981151700.f };

351

352 /* System generated locals */

353 real r__1;

354
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355 /* Builtin functions */

356 integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

357 /* Subroutine */ int s_stop(char *, ftnlen);

358

359 /* Local variables */

360 static integer specount;

361 extern /* Subroutine */ int t2f_(integer *, integer *, real *, integer *,

362 integer *, real *, real *, real *, integer *, doublereal *);

363 static real ylm[2097152], yir[2097152] /* was [2097152][1] */;

364 static integer jdet;

365 static real oper[458752];

366 static integer izpd, nphr, irun;

367 static real ryir[2097152] /* was [2097152][1] */;

368 static integer chkoff, chkdev;

369 static doublereal dphase[2097152];

370 static integer indexa;

371 static real spechk[1000], maxdev, curdev;

372 extern /* Subroutine */ int pcoper_(real *, integer *, integer *, integer

373 *, real *);

374 static integer errnum;

375 extern /* Subroutine */ int ipplite_(integer *, integer *, integer *,

376 integer *, real *, integer *, integer *, integer *);

377 static integer counter;

378

379 /* Fortran I/O blocks */

380 static cilist io___3 = { 0, 6, 0, "(a)", 0 };

381 static cilist io___7 = { 0, 6, 0, "(a)", 0 };

382 static cilist io___12 = { 0, 6, 0, "(a)", 0 };

383

384 /*****************************************************************************/

385 #ifndef PROFILING

386 XTime timer, last; /* timing variables */

387 #endif

388

389 /* Enable Caches */

390 XCache_EnableICache(INSTR_CACHE);

391 XCache_EnableDCache(DATA_CACHE);

392

393 xil_printf("\n\r*** STARTING MATMOS-IPP ***\n\n\r");

394

395 /* Reset the sysace controller to clean any bad state, leave it in MPU mode */

396 XSysAce_RegWrite16(SYSACE_BASEADDR + XSA_BMR_OFFSET, XSA_BMR_16BIT_MASK);

397 XSysAce_mSetControlReg(SYSACE_BASEADDR, XSA_CR_CFGSEL_MASK |

XSA_CR_FORCECFGMODE_MASK);

398 XSysAce_mSetControlReg(SYSACE_BASEADDR, XSA_CR_CFGSEL_MASK |

XSA_CR_FORCECFGMODE_MASK | XSA_CR_CFGRESET_MASK);

399 XSysAce_mSetControlReg(SYSACE_BASEADDR, XSA_CR_CFGSEL_MASK |

XSA_CR_FORCECFGMODE_MASK);

400 /*****************************************************************************/

401

402 /* Data declarations */

403

404 /* & inpstat, ! Value of IOSTAT from input file read */

405 /* & lun, ! Logical Unit Number for file I/O */

406 /* Error code (0=ok, <0=fatal, >0=recoverable) */

407 /* Maximum number of input points or FFT size */

408 /* Number of detectors */

409 /* Loop variable for the current detector */

410 /* Exponent of the COS windowing function */

411 /* Number of interpolation Operator Points */

412 /* Number of pre-computed Sub-Operators */

413 /* Scan number in the occultation */

414 /* Point count, data destination into buffers */

415 /* Spectrum Point count */

111



416 /* Point index (location) of ZPD */

417 /* Number of points on one side of ZPD used for phase */

418 /* Number of spectral points compared with reference r */

419 /* Point offset in spectrum of the reference result */

420 /* Index of max deviation between reference and calcul */

421 /* Generic loop index */

422 /* parameter (lun=20) */

423 /* character */

424 /* & infile*(*) ! Name of program input file */

425 /* parameter (infile=’ascii-tint07000.026’) */

426 /* logical*4 */

427 /* & filexist ! Keeps track of file existence */

428 /* Input time-domain laser interferogram */

429 /* Input time-domain IR interferograms */

430 /* Array holding the pre-computed operators */

431 /* Path-difference domain IR interferograms */

432 /* Reference spectrum for comparison with calculate */

433 /* Calculated spectrum */

434 /* Current deviation between reference and calculat */

435 /* Maximum deviation between reference and calculat */

436 /* Used internally by subroutine ’t2x’ */

437

438 /* Initialize variables. */

439

440 errnum = 0;

441 /* inpstat=0 */

442

443 /* Pre-compute interpolation operator */

444

445 s_wsfe(&io___3);

446 do_fio(&c__1, "Pre-computing interpolation operator", (ftnlen)36);

447 e_wsfe();

448 pcoper_(&c_b4, &c__8, &c__56, &c__8192, oper);

449

450 /* (Future) Loop over the scans that make up one occultation */

451

452 for (irun = 26; irun <= 26; ++irun) {

453

454 /* Check that input file exists, if so open it. */

455

456 /* inquire(file=infile,exist=filexist,iostat=inpstat) */

457 /* if(inpstat.ne.0) then */

458 /* errnum=-1 */

459 /* write(*,’(2a)’)’Error: inquire failed on input file ’,infile */

460 /* elseif(filexist) then */

461 /* open(unit=lun,file=infile,status=’old’,iostat=inpstat) */

462 /* if(inpstat.ne.0) then */

463 /* errnum=-1 */

464 /* write(*,’(2a)’)’Error: open failed on input file ’,infile */

465 /* else */

466 /* write(*,’(2a)’)’Reading time-domain interferogram: ’,infile */

467 /* endif */

468 /* else */

469 /* errnum=-1 */

470 /* write(*,’(2a)’)’Error: please provide input file ’,infile */

471 /* endif */

472

473 /* Read time-domain interferogram */

474

475 counter = 0;

476 /* do while((inpstat.eq.0).and. ! Not at end-of-file */

477 /* & (errnum.eq.0)) ! And no errors */

478 /* counter=counter+1 */

479 /* read(unit=lun,fmt=*,iostat=inpstat) */
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480 /* & (ylm(counter),yir(counter,jdet),jdet=1,ndet) */

481 /* if (inpstat.ne.0) then */

482 /* counter=counter-1 */

483 /* endif */

484 /* enddo ! while((inpstat.eq.0).and.(errnum.eq.0)) */

485

486 /* Close the input file. */

487

488 /* close(unit=lun,iostat=inpstat) */

489 /* if(inpstat.ne.0) then */

490 /* errnum=-1 */

491 /* write(*,’(2a)’)’Error: close failed on input file ’,infile */

492 /* endif */

493

494 /*****************************************************************************/

495 /* Initialize timer */

496 #ifndef PROFILING

497 XTime_SetTime(0);

498

499 /* Read data from file */

500 XTime_GetTime(&timer);

501 #endif

502

503 counter = read_data( "a:\\data.txt", ylm, yir );

504

505 #ifndef PROFILING

506 XTime_GetTime(&last);

507 #endif

508 xil_printf( "### %d points read: ", counter+1 );

509 #ifndef PROFILING

510 printfloat( ((float)(last-timer)) / CYCLES_PER_SEC, 4, " sec\n\r" );

511 #endif

512 /*****************************************************************************/

513

514

515 /* Convert from time domain to path difference domain */

516

517 if (errnum == 0) {

518 s_wsfe(&io___7);

519 do_fio(&c__1, "Converting to path-difference domain", (ftnlen)36);

520 e_wsfe();

521

522 /*****************************************************************************/

523 #ifndef PROFILING

524 XTime_GetTime(&timer);

525 #endif

526 /*****************************************************************************/

527

528 t2f_(&c__56, &c__8192, oper, &c_b13, &c__1, ylm, yir, ryir, &

529 counter, dphase);

530

531 /*****************************************************************************/

532 #ifndef PROFILING

533 XTime_GetTime(&last);

534 xil_printf( "### TIME: " );

535 printfloat( ((float)(last-timer)) / CYCLES_PER_SEC, 4, " sec\n\r" );

536 #endif

537 /*****************************************************************************/

538

539 }

540

541 /* Compute spectrum */

542

543 if (errnum == 0) {
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544 s_wsfe(&io___12);

545 do_fio(&c__1, "Computing spectrum", (ftnlen)18);

546 e_wsfe();

547 for (jdet = 1; jdet <= 1; ++jdet) {

548 specount = counter;

549

550 /*****************************************************************************/

551 #ifndef PROFILING

552 XTime_GetTime(&timer);

553 #endif

554 /*****************************************************************************/

555

556 ipplite_(&c_b13, &c__22, &c__0, &c__1, &ryir[(jdet << 21) -

557 2097152], &specount, &izpd, &nphr);

558

559 /*****************************************************************************/

560 #ifndef PROFILING

561 XTime_GetTime(&last);

562 xil_printf( "### TIME: " );

563 printfloat( ((float)(last-timer)) / CYCLES_PER_SEC, 4, " sec\n\r" );

564 #endif

565

566 xil_printf( "### COMPUTATION DONE!\n\r" );

567 /*****************************************************************************/

568

569 /* Search for max deviation between reference and calculated */

570

571 maxdev = 0.f;

572 chkdev = 1;

573 chkoff = specount * 3 / 5 - 1;

574 for (indexa = 1; indexa <= 1000; ++indexa) {

575 spechk[indexa - 1] = ryir[chkoff + indexa + (jdet << 21)

576 - 2097153];

577 curdev = (r__1 = chkspe[indexa - 1] - spechk[indexa - 1],

578 abs(r__1));

579 if (curdev > maxdev) {

580 maxdev = curdev;

581 chkdev = indexa;

582 }

583 }

584 /* write (*,*)’Maximum deviation of ’,maxdev/chkspe(chkcnt), */

585 /* & ’ at ’,chkdev */

586

587 /*****************************************************************************/

588 r__1 = maxdev / chkspe[999];

589 xil_printf( "Maximum deviation of " );

590 printfloat( r__1, 9, " " );

591 xil_printf( "at %d\n\r", chkdev );

592 /*****************************************************************************/

593

594 }

595 }

596 }

597

598 /*****************************************************************************/

599 #ifdef SPEDUMP

600 /* Write spectrum to file */

601 #ifndef PROFILING

602 XTime_GetTime(&timer);

603 #endif

604

605 #ifdef DUMPDATA

606 counter = write_data( "a:\\datdump.txt", ryir, counter );

607 #else
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608 counter = write_data( "a:\\spedump.txt", spechk, 999 );

609 #endif

610

611 #ifndef PROFILING

612 XTime_GetTime(&last);

613 #endif

614 xil_printf( "### %d points written: ", counter+1 );

615 #ifndef PROFILING

616 printfloat( ((float)(last-timer)) / CYCLES_PER_SEC, 4, " sec\n\r" );

617 #endif

618 #endif

619

620 #ifndef PROFILING

621 XTime_GetTime(&timer);

622 xil_printf( "\n\r### Total time: " );

623 printfloat( ((float)timer) / CYCLES_PER_SEC, 4, " sec\n\r" );

624 #endif

625

626 /* Disable cache */

627 XCache_DisableDCache();

628 XCache_DisableICache();

629 /*****************************************************************************/

630

631 /* irun=26,26 */

632 s_stop("", (ftnlen)0);

633 return 0;

634 } /* MAIN__ */

635

636

637 /*****************************************************************************/

638 int read_data( char FileName[], real *data1, real *data2 ) {

639

640 SYSACE_FILE *ptest;

641 int count = 0;

642 int total_bytes_read = 0;

643 int numread;

644 char val[READLENGTH];

645 ptest = sysace_fopen(FileName , "r" );

646

647 if(ptest) {

648 xil_printf("Reading file: %s\n\r", FileName);

649

650 /* Read a line of characters */

651 numread = sysace_fread(val, 1, sizeof( char ) * READLENGTH, ptest);

652 total_bytes_read = total_bytes_read + numread;

653 while( numread ) {

654

655 if( (total_bytes_read % 1024) == 0 ) {

656 xil_printf( "%d KB read\r", total_bytes_read/1024 );

657 }

658

659 /* Extract the two floats */

660 data1[count] = atof(val);

661 data2[count] = atof(val+FLOATLENGTH);

662 count++;

663

664 /* Read a line of characters */

665 numread = sysace_fread(val, 1, sizeof( char ) * READLENGTH,

ptest);

666 total_bytes_read = total_bytes_read + numread;

667

668 }

669

670 count--;
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671 sysace_fclose (ptest);

672 }

673 else {

674 xil_printf("Failed to open: %s\n\r", FileName);

675 }

676

677 xil_printf("==> %d bytes read\n\r", total_bytes_read);

678 return count;

679 } /* read_data */

680

681 int write_data( char FileName[], real *data, int N ) {

682

683 SYSACE_FILE *ptest;

684 int count = 0;

685 int total_bytes_write = 0;

686 int numwrite;

687 char val[WRITELENGTH];

688 ptest = sysace_fopen(FileName ,"w" );

689

690 if( ptest ) {

691

692 xil_printf("Writing to file: %s\n\r", FileName);

693

694 while( count <= N ) {

695

696 /* Write a line of characters */

697 sprintf(val, " %+.8E\n", data[count] );

698 numwrite = sysace_fwrite(val, 1, sizeof( char ) * WRITELENGTH,

ptest);

699 total_bytes_write= total_bytes_write + numwrite;

700

701 if( (total_bytes_write % 1024) == 0 ) {

702 xil_printf( "%d KB written\r", total_bytes_write/1024 )

;

703 }

704

705 count++;

706 }

707

708 count--;

709 sysace_fclose(ptest);

710 }

711 else {

712 xil_printf( "Failed to open: %s\n\r", FileName );

713 }

714

715 xil_printf("==> %d bytes written\n\r", total_bytes_write);

716 return count;

717 } /* write_data */
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C.7 The dotprod Function (from xilinx-matmos-ipp-chk_orig.c)

1160 real dotprod_(real *fin, integer *nin, real *oper, integer *nop, integer *nso,

1161 doublereal *xx)

1162 {

1163 /* System generated locals */

1164 integer oper_dim1, oper_offset, i__1;

1165 real ret_val;

1166

1167 /* Local variables */

1168 static integer i__, j, jr, kin;

1169

1170 /* FIN(NIN) R*4 Input function vector */

1171 /* NIN I*4 Number of points in input vector */

1172 /* OPER(NOP,ODEC) R*4 Resampling Operators */

1173 /* NOP I*4 Number of operator points (Length of each sub-operator) */

1174 /* NSO I*4 Number of sub-operators */

1175 /* XX R*8 Value at which to sample FIN */

1176

1177 /* Outputs: */

1178 /* DOTPROD R*4 */

1179

1180 /* Evaluating the scalar product of the appropriate sub-operator */

1181 /* of OPER with the relevant section of FIN. */

1182

1183 /* Note that the full array oper(nso,nop) is rotationally symmetric about the */

1184 /* center such that oper(i,j) = oper(nop+1-i,nso+1-j) */

1185 /* This means that we only have to precompute half the full aray */

1186 /* We could use just the left half (i=1,nop/2) or just the top half (j=1,nso/2) */

1187 /* We choose the former and note that since ir=nop+1-i, and jr=nso+1-j */

1188 /* oper(i,j) = oper(nop+1-i,nso+1-j) = oper(ir,jr) */

1189

1190 /* Parameter adjustments */

1191 --fin;

1192 oper_dim1 = (*nop + 1) / 2;

1193 oper_offset = 1 + oper_dim1;

1194 oper -= oper_offset;

1195

1196 /* Function Body */

1197 kin = (integer) (*xx);

1198 jr = (integer) ((*nso - 1) * (*xx - kin)) + 2;

1199 j = *nso + 1 - jr;

1200 ret_val = 0.f;

1201 /* Old dot product code was very simple */

1202 /* do i=1,nop ! Dot product fin(kin+1) with oper(1,j) */

1203 /* dotprod=dotprod+fin(i+kin)*oper(i,j) */

1204 /* end do */

1205

1206 /* New dot product code. */

1207 /* Starting from the two ends of the operator and works toward the middle. */

1208 /* This should provide higher precision if the largest values reside in */

1209 /* the middle of the operator, which they typically do. */

1210 i__1 = *nop / 2;

1211 for (i__ = 1; i__ <= i__1; ++i__) {

1212 /* Dot product fin(kin+1) with oper(1,j) */

1213 ret_val = ret_val + fin[i__ + kin] * oper[i__ + j * oper_dim1] + fin[*
1214 nop + 1 - i__ + kin] * oper[i__ + jr * oper_dim1];

1215 }

1216 if (*nop % 2 == 1) {

1217 ret_val += fin[i__ + kin] * oper[i__ + j * oper_dim1];

1218 }

1219 /* nop is */
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1220 return ret_val;

1221 } /* dotprod_ */
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C.8 The dotprod Function with HW Support (dotprod.c)

1 /*****************************************************************************
2 * Modified version of dotprod_ function

3 * Compiled separetly into a static library. Compile to assembly first and then

4 * hand tune.

5 *
6 * Modified by Dmitriy Bekker

7 * Rochester Institute of Technology, June 2007

8 *
9 * Compile commands (example, from EDK project dir):

10 * $ powerpc-eabi-gcc -O2 -S -c matmos-ipp-sp-dotprod-perflib_lg/src/dotprod.c \

11 * -I./ppc405_0/include/ -Imatmos-ipp-sp-dotprod-perflib_lg/src/ \

12 * -I./shared_libs/ -L./ppc405_0/lib/ -L./shared_libs/ -Wall

13 *
14 * >> then modify assembly to remove call to sleep

15 *
16 * $ powerpc-eabi-gcc -O2 -c matmos-ipp-sp-dotprod-perflib_lg/src/dotprod.s \

17 * -I./ppc405_0/include/ -Imatmos-ipp-sp-dotprod-perflib_lg/src/ \

18 * -I./shared_libs/ -L./ppc405_0/lib/ -L./shared_libs/ -Wall

19 *
20 * $ powerpc-eabi-ar rcs libdotprod_lg.a dotprod.o

21 *****************************************************************************/

22

23 #include "f2c.h" /* for f2c functions */

24

25 /* define assembly instructions for dot-product hardware */

26 /* alti-vec load/store */

27 #define lqfcmx(rn, base, adr) __asm__ __volatile__(\

28 "lqfcmx " #rn ",%0,%1\n"\

29 : : "b" (base), "r" (adr)\

30 )

31

32 #define stwfcmx(rn, base, adr) __asm__ __volatile__(\

33 "stwfcmx " #rn ",%0,%1\n"\

34 : : "b" (base), "r" (adr)\

35 )

36

37 extern real dphw_result;

38

39 void dotprod_(real *fin, integer *nin, real *oper, integer *nop, integer *nso,

40 doublereal *xx)

41 {

42 /* System generated locals */

43 integer oper_dim1, oper_offset, i__1, indexer;

44

45 /*****************************************************************************/

46 real __attribute__ ((aligned (32))) src[112];

47 /*****************************************************************************/

48

49 /* Local variables */

50 static integer i__, j, jr, kin;

51

52 /* FIN(NIN) R*4 Input function vector */

53 /* NIN I*4 Number of points in input vector */

54 /* OPER(NOP,ODEC) R*4 Resampling Operators */

55 /* NOP I*4 Number of operator points (Length of each sub-operator) */

56 /* NSO I*4 Number of sub-operators */

57 /* XX R*8 Value at which to sample FIN */

58

59 /* Outputs: */

60 /* DOTPROD R*4 (stored to global variable) */
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61

62 /* Evaluating the scalar product of the appropriate sub-operator */

63 /* of OPER with the relevant section of FIN. */

64

65 /* Note that the full array oper(nso,nop) is rotationally symmetric about the */

66 /* center such that oper(i,j) = oper(nop+1-i,nso+1-j) */

67 /* This means that we only have to precompute half the full aray */

68 /* We could use just the left half (i=1,nop/2) or just the top half (j=1,nso/2) */

69 /* We choose the former and note that since ir=nop+1-i, and jr=nso+1-j */

70 /* oper(i,j) = oper(nop+1-i,nso+1-j) = oper(ir,jr) */

71

72 /* Parameter adjustments */

73 --fin;

74 oper_dim1 = (*nop + 1) / 2;

75 oper_offset = 1 + oper_dim1;

76 oper -= oper_offset;

77

78 /* Function Body */

79 kin = (integer) (*xx);

80 jr = (integer) ((*nso - 1) * (*xx - kin)) + 2;

81 j = *nso + 1 - jr;

82 /* Old dot product code was very simple */

83 /* do i=1,nop ! Dot product fin(kin+1) with oper(1,j) */

84 /* dotprod=dotprod+fin(i+kin)*oper(i,j) */

85 /* end do */

86

87 /* New dot product code. */

88 /* Starting from the two ends of the operator and works toward the middle. */

89 /* This should provide higher precision if the largest values reside in */

90 /* the middle of the operator, which they typically do. */

91 i__1 = *nop / 2;

92

93 /*****************************************************************************/

94 indexer = 0;

95 for (i__ = 1; i__ <= i__1; ++i__) { /* !!! ASSUMING nop/2 = 28 !!! */

96 src[indexer] = fin[i__ + kin];

97 src[indexer+1] = oper[i__ + j * oper_dim1];

98 src[indexer+2] = fin[*nop + 1 - i__ + kin];

99 src[indexer+3] = oper[i__ + jr * oper_dim1];

100 indexer+=4;

101 }

102 for (i__ = 1; i__ <= i__1; ++i__) {

103 /* Dot product fin(kin+1) with oper(1,j) */

104 lqfcmx(0, src, (i__-1)*16);

105 }

106 /* compile with this to force proper assembly code */

107 /* then remove by hand (in assembly) and rebuild */

108 usleep(1);

109 stwfcmx(0, &dphw_result, 0);

110 /*****************************************************************************/

111

112 if (*nop % 2 == 1) {

113 dphw_result += fin[i__ + kin] * oper[i__ + j * oper_dim1];

114 }

115 /* nop is */

116 } /* dotprod_ */
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C.9 FCM Load/Store Module (apu_fcm_ldst.v)

1 /******************************************************************************
2 *
3 * File: apu_fcm_ldst.v

4 * Version: 1.03.b

5 * Description: APU connected FCM module to handle execution of FCM load

6 * and store instructions. This module contains two 4-entry

7 * register files for 32-bit load and store data. The 4-entry

8 * load register, along with handshaking signals, is avaible

9 * on the output for direct connection to custom hardware.

10 * The first entry in the 4-entry store register is tied to a

11 * 32-bit input and can be connected to the output of custom

12 * hardware. In this core version, entries 1 to 3 in the

13 * store register can not be modified.

14 * This core expects a single hw unit to be connected to it

15 * and work with the load register data. This core also

16 * expects that a single store instruction will always follow

17 * a certain number of load instructions (and then this cycle

18 * can repeat). The number of load instructions prior to the

19 * store instruction is determined by the custom hw.

20 * This core is a modified version of the core presented in

21 * XAPP717, http://www.xilinx.com/bvdocs/appnotes/xapp717.pdf

22 * with a number of bug fixes to guarantee proper operation

23 * with other hardware co-processors on the FCB.

24 * Original Author: SEG, XAPP717, Xilinx, Inc.

25 * Date: Aug 17, 2004 (ver 1.00.b)

26 * Modified by: Dmitriy Bekker, Rochester Institute of Technology

27 * Date: June 14, 2007 (ver 1.03.a)

28 *
29 * Target: Virtex-4FX

30 * Maximum Freq: 316 MHz (-11 grade, reported by XST)

31 *
32 *****************************************************************************/

33

34 /******************************************************************************
35 *
36 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"

37 * SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR

38 * XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION

39 * AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION

40 * OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS

41 * IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

42 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE

43 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY

44 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE

45 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR

46 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF

47 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

48 * FOR A PARTICULAR PURPOSE.

49 *
50 * (c) Copyright 2005 Xilinx, Inc.

51 * All rights reserved.

52 *
53 *****************************************************************************/

54

55

56 ‘timescale 1 ns / 1 ps

57

58 module apu_fcm_ldst (

59

60 // outputs to APU
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61 FCMAPUINSTRACK,

62 FCMAPURESULT,

63 FCMAPUDONE,

64 FCMAPUSLEEPNOTREADY,

65 FCMAPUDECODEBUSY,

66 FCMAPUDCDGPRWRITE,

67 FCMAPUDCDRAEN,

68 FCMAPUDCDRBEN,

69 FCMAPUDCDPRIVOP,

70 FCMAPUDCDFORCEALIGN,

71 FCMAPUDCDXEROVEN,

72 FCMAPUDCDXERCAEN,

73 FCMAPUDCDCREN,

74 FCMAPUEXECRFIELD,

75 FCMAPUDCDLOAD,

76 FCMAPUDCDSTORE,

77 FCMAPUDCDUPDATE,

78 FCMAPUDCDLDSTBYTE,

79 FCMAPUDCDLDSTHW,

80 FCMAPUDCDLDSTWD,

81 FCMAPUDCDLDSTDW,

82 FCMAPUDCDLDSTQW,

83 FCMAPUDCDTRAPLE,

84 FCMAPUDCDTRAPBE,

85 FCMAPUDCDFORCEBESTEERING,

86 FCMAPUDCDFPUOP,

87 FCMAPUEXEBLOCKINGMCO,

88 FCMAPUEXENONBLOCKINGMCO,

89 FCMAPULOADWAIT,

90 FCMAPURESULTVALID,

91 FCMAPUXEROV,

92 FCMAPUXERCA,

93 FCMAPUCR,

94 FCMAPUEXCEPTION,

95

96 // outputs to custom hardware

97 FCMHWDATA0,

98 FCMHWDATA1,

99 FCMHWDATA2,

100 FCMHWDATA3,

101 FCMHWVALID,

102

103 // inputs from custom hardware

104 HWFCMDATA0,

105 HWFCMVALID,

106

107 // inputs from APU

108 APUFCMINSTRUCTION,

109 APUFCMINSTRVALID,

110 APUFCMRADATA,

111 APUFCMRBDATA,

112 APUFCMOPERANDVALID,

113 APUFCMFLUSH,

114 APUFCMWRITEBACKOK,

115 APUFCMLOADDATA,

116 APUFCMLOADDVALID,

117 APUFCMLOADBYTEEN,

118 APUFCMENDIAN,

119 APUFCMXERCA,

120 APUFCMDECODED,

121 APUFCMDECUDI,

122 APUFCMDECUDIVALID,

123

124 // clock and reset
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125 clock,

126 reset

127

128 );

129

130 // state mnemonics

131 parameter

132 STATE_IDLE = 2’b00, // idle state

133 STATE_LOAD = 2’b01, // valid load instruction detected

134 STATE_STORE = 2’b10, // valid store instruction detected

135 STATE_WAITHW = 2’b11; // wait for hw to finish processing

136

137 // port declarations

138 // outputs to APU

139 output FCMAPUINSTRACK;

140 output [0:31] FCMAPURESULT;

141 output FCMAPUDONE;

142 output FCMAPUSLEEPNOTREADY;

143 output FCMAPUDECODEBUSY;

144 output FCMAPUDCDGPRWRITE;

145 output FCMAPUDCDRAEN;

146 output FCMAPUDCDRBEN;

147 output FCMAPUDCDPRIVOP;

148 output FCMAPUDCDFORCEALIGN;

149 output FCMAPUDCDXEROVEN;

150 output FCMAPUDCDXERCAEN;

151 output FCMAPUDCDCREN;

152 output [0:2] FCMAPUEXECRFIELD;

153 output FCMAPUDCDLOAD;

154 output FCMAPUDCDSTORE;

155 output FCMAPUDCDUPDATE;

156 output FCMAPUDCDLDSTBYTE;

157 output FCMAPUDCDLDSTHW;

158 output FCMAPUDCDLDSTWD;

159 output FCMAPUDCDLDSTDW;

160 output FCMAPUDCDLDSTQW;

161 output FCMAPUDCDTRAPLE;

162 output FCMAPUDCDTRAPBE;

163 output FCMAPUDCDFORCEBESTEERING;

164 output FCMAPUDCDFPUOP;

165 output FCMAPUEXEBLOCKINGMCO;

166 output FCMAPUEXENONBLOCKINGMCO;

167 output FCMAPULOADWAIT;

168 output FCMAPURESULTVALID;

169 output FCMAPUXEROV;

170 output FCMAPUXERCA;

171 output [0:3] FCMAPUCR;

172 output FCMAPUEXCEPTION;

173

174 // outputs to custom hardware

175 output [0:31] FCMHWDATA0;

176 output [0:31] FCMHWDATA1;

177 output [0:31] FCMHWDATA2;

178 output [0:31] FCMHWDATA3;

179 output FCMHWVALID;

180

181 // inputs from custom hardware

182 input [0:31] HWFCMDATA0;

183 input HWFCMVALID;

184

185 // inputs from APU

186 input [0:31] APUFCMINSTRUCTION;

187 input APUFCMINSTRVALID;

188 input [0:31] APUFCMRADATA;
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189 input [0:31] APUFCMRBDATA;

190 input APUFCMOPERANDVALID;

191 input APUFCMFLUSH;

192 input APUFCMWRITEBACKOK;

193 input [0:31] APUFCMLOADDATA;

194 input APUFCMLOADDVALID;

195 input [0:3] APUFCMLOADBYTEEN;

196 input APUFCMENDIAN;

197 input APUFCMXERCA;

198 input APUFCMDECODED;

199 input [0:2] APUFCMDECUDI;

200 input APUFCMDECUDIVALID;

201

202 // clock and reset

203 input clock;

204 input reset;

205

206 // internal signals

207 // PPC instruction-related

208 reg [0:5] reg_RT; // target register of PPC instruction

209 reg [0:5] reg_RA; // base register of PPC instruction

210 reg [0:5] reg_RB; // offset register of PPC instruction

211 wire instrreg_we; // write enable

212 wire data_read; // hw data has been read

213 wire loaddata_inidle; // load data came in idle state

214 reg apufcminstrvalid_reg; // registered version of APUFCMINSTRVALID

215 reg apufcmdecoded_reg; // registered version of APUFCMDECODED

216 reg [0:31] apufcmloaddata_reg; // registered version of APUFCMLOADDATA

217 reg apufcmloaddvalid_reg; // registered version of APUFCMLOADDVALID

218 reg apufcmflush_reg; // registered version of APUFCMFLUSH

219

220 // loads and stores

221 wire store_or_loadn; // 1=store, 0=load

222 reg store_or_loadn_reg; // stores the store_or_loadn signal

223 wire ldst_update; // 1=update RA

224 wire [0:1] ldst_size; // number of words to transfer

225 reg [0:1] ldst_size_reg; // stores number of words to transfer

226 reg [0:1] ldst_size_counter; // counter for number of words

227 wire ldst_size_counter_we; // write enable

228 wire ldst_valid; // 1=valid load/store instruction

229 reg ldst_valid_reg; // registered version of ldst_valid

230

231 // register file for FCM loads

232 reg [0:31] regfile [0:3]; // 32-bit entry register file with 4 regs

233 wire regfile_we; // write enable

234 wire [0:1] regfile_waddr; // write address

235 wire [0:31] regfile_wdata; // write data

236

237 // register file for FCM stores

238 reg [0:31] regfile_store[0:3]; // 32-bit entry register file with 4 regs

239 wire regfile_raddr_we; // write enable

240 reg [0:1] regfile_raddr; // register to store read address

241 wire [0:31] regfile_rdata; // read data

242

243 // state registers

244 reg [0:1] curr_state; // current state

245 reg [0:1] next_state; // next state

246

247 // custom hw interconnect

248 wire [0:31] hwdata0; // data from hw

249 reg hw_datardy; // hw data is ready

250 wire hw_valid; // valid signal from HW to FCM

251

252 /****************************** sequential blocks *************************/
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253 // Delayed (registered) versions of certain signals

254 always @(posedge clock or posedge reset)

255 begin

256 if (reset)

257 begin

258 apufcminstrvalid_reg <= 1’b0;

259 apufcmdecoded_reg <= 1’b0;

260 apufcmloaddvalid_reg <= 1’b0;

261 apufcmflush_reg <= 1’b0;

262 ldst_valid_reg <= 1’b0;

263 end

264 else

265 begin

266 apufcminstrvalid_reg <= APUFCMINSTRVALID;

267 apufcmdecoded_reg <= APUFCMDECODED;

268 apufcmloaddvalid_reg <= APUFCMLOADDVALID;

269 apufcmflush_reg <= APUFCMFLUSH;

270 ldst_valid_reg <= ldst_valid;

271 end

272 end

273

274 // Synchronize load data in register

275 always @(posedge clock or posedge reset)

276 begin

277 if (reset)

278 apufcmloaddata_reg <= 32’b0;

279 else if (~loaddata_inidle)

280 apufcmloaddata_reg <= APUFCMLOADDATA;

281 end

282

283 // PPC instruction-related registers

284 always @(posedge clock or posedge reset)

285 begin

286 if (reset)

287 begin

288 reg_RT <= 5’b0;

289 reg_RA <= 5’b0;

290 reg_RB <= 5’b0;

291 store_or_loadn_reg <= 1’b0;

292 ldst_size_reg <= 2’b0;

293 end

294 else if (instrreg_we) // capture instruction information

295 begin

296 reg_RT <= APUFCMINSTRUCTION[6:10];

297 reg_RA <= APUFCMINSTRUCTION[11:15];

298 reg_RB <= APUFCMINSTRUCTION[16:20];

299 store_or_loadn_reg <= store_or_loadn;

300 ldst_size_reg <= ldst_size;

301 end

302 end

303

304 // read address of register file

305 always @(posedge clock or posedge reset)

306 begin

307 if (reset)

308 regfile_raddr <= 5’h0;

309 else if (instrreg_we)

310 regfile_raddr <= APUFCMINSTRUCTION[6:10];

311 else if (regfile_raddr_we)

312 regfile_raddr <= regfile_raddr + 1;

313 end

314

315 // load / store counter for number of words

316 always @(posedge clock or posedge reset)
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317 begin

318 if (reset)

319 ldst_size_counter <= 2’b0;

320 else if (instrreg_we) // keep counter reset

321 ldst_size_counter <= 2’b0;

322 else if (ldst_size_counter_we) // increment counter

323 ldst_size_counter <= ldst_size_counter + 1;

324 end

325

326 // register file (load)

327 always @(posedge clock or posedge reset)

328 begin

329 if (reset) // set all register values to zero

330 begin

331 regfile[0] <= 32’b0; regfile[1] <= 32’b0;

332 regfile[2] <= 32’b0; regfile[3] <= 32’b0;

333 end // if (reset)

334 else if (regfile_we) // write data to specified register

335 regfile[regfile_waddr] <= regfile_wdata;

336 end

337

338 // register file (store)

339 always @(posedge clock or posedge reset)

340 begin

341 if (reset) // set all register values to zero

342 begin

343 regfile_store[0] <= 32’b0; regfile_store[1] <= 32’b0;

344 regfile_store[2] <= 32’b0; regfile_store[3] <= 32’b0;

345 hw_datardy <= 1’b0;

346 end // if (reset)

347 else if (hw_valid) // load data from hw

348 begin

349 regfile_store[0] <= hwdata0;

350 hw_datardy <= 1’b1;

351 end // else if (hw_valid)

352 else if (data_read) // will be high every time on valid load

353 hw_datardy <= 1’b0; // expects n loads to follow a single store

354 end

355

356 // state machine

357 always @(posedge clock or posedge reset)

358 begin

359 if (reset)

360 curr_state <= STATE_IDLE;

361 else

362 curr_state <= next_state;

363 end

364

365 /**************************** combinational blocks ************************/

366 // decoder

367 decode_ldst decode_ldst_0 (

368 // outputs

369 .update(ldst_update),

370 .size(ldst_size),

371 .store_or_loadn(store_or_loadn),

372 .valid_ldst(ldst_valid),

373 // inputs

374 .APUFCMINSTRUCTION(APUFCMINSTRUCTION) );

375

376 // state machine logic

377 always @(curr_state or store_or_loadn_reg or ldst_size_counter or

378 ldst_size_reg or hw_datardy or ldst_valid_reg or APUFCMFLUSH or

379 apufcmflush_reg or apufcminstrvalid_reg or

380 apufcmloaddvalid_reg or apufcmdecoded_reg)
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381 begin

382 case (curr_state)

383

384 // wait for valid instruction

385 STATE_IDLE:

386 // valid instruction from APU (and not flushed)

387 // check the dalyed version (in order to meet timing)

388 if (apufcminstrvalid_reg & apufcmdecoded_reg & ldst_valid_reg &

389 ~APUFCMFLUSH & ~apufcmflush_reg)

390 if (store_or_loadn_reg) // store instruction

391 if (hw_datardy) // is hw ready?

392 next_state = STATE_STORE;

393 else

394 next_state = STATE_WAITHW;

395 else // load instruction

396 if (apufcmloaddvalid_reg) // load data arrived at the same time

397 if (ldst_size_counter < ldst_size_reg)

398 next_state = STATE_LOAD;

399 else

400 next_state = STATE_IDLE;

401 else

402 next_state = STATE_LOAD;

403 else

404 next_state = STATE_IDLE;

405

406 // seen a valid load instruction, wait for valid data

407 STATE_LOAD:

408 if( APUFCMFLUSH )

409 next_state = STATE_IDLE;

410 else

411 // keep track of how many words to access

412 if (ldst_size_counter < ldst_size_reg)

413 next_state = STATE_LOAD;

414 else

415 if (apufcmloaddvalid_reg)

416 next_state = STATE_IDLE;

417 else

418 next_state = STATE_LOAD;

419

420 // wait for hw to finish

421 STATE_WAITHW:

422 if( APUFCMFLUSH )

423 next_state = STATE_IDLE;

424 else

425 if( hw_datardy)

426 next_state = STATE_STORE;

427 else

428 next_state = STATE_WAITHW;

429

430 // seen a valid store instruction, output data

431 STATE_STORE:

432 // keep track of how many words to access

433 if ( (ldst_size_counter < ldst_size_reg) & ~APUFCMFLUSH )

434 next_state = STATE_STORE;

435 else

436 next_state = STATE_IDLE;

437

438 default:

439 next_state = STATE_IDLE;

440

441 endcase // case(curr_state)

442 end // always @ (APUFCMINSTRUCTION or APUFCMINSTRVALID or ...

443

444 // internal signal assignments
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445 assign instrreg_we = (curr_state == STATE_IDLE);

446

447 // flag when data comes in idle state

448 assign loaddata_inidle = (curr_state == STATE_IDLE) & apufcmloaddvalid_reg

449 & ldst_valid_reg;

450

451 // mark data read only when a new load instruction has been issued

452 // this implies that a store must have completed successfully since

453 // an n number of loads always follow a single store

454 assign data_read = ( apufcminstrvalid_reg & apufcmdecoded_reg &

455 ldst_valid_reg & ~store_or_loadn_reg );

456

457 // data might arrive at the same time as the instruction

458 assign regfile_we = ( ( (curr_state == STATE_LOAD) & apufcmloaddvalid_reg)

459 | loaddata_inidle );

460

461 // reg_RT is the target register value when data comes after the instruction

462 assign regfile_waddr = (reg_RT + ldst_size_counter);

463

464 // write data from memory to register file

465 assign regfile_wdata = apufcmloaddata_reg;

466

467 // address of register file to read data from for a store operation

468 assign regfile_raddr_we = (((curr_state == STATE_LOAD) &

469 apufcmloaddvalid_reg) |

470 (curr_state == STATE_STORE) | loaddata_inidle);

471

472 // data read for a store operation

473 assign regfile_rdata = regfile_store[regfile_raddr];

474

475 // update counter for number of data words transferred

476 assign ldst_size_counter_we =(((curr_state == STATE_LOAD) &

477 apufcmloaddvalid_reg) |

478 (curr_state == STATE_STORE) | loaddata_inidle);

479

480 // hw to fcm valid

481 assign hw_valid = HWFCMVALID;

482

483 // data inputs (from hw)

484 assign hwdata0 = HWFCMDATA0;

485

486 // output assignments

487 // fcm-hw valid when done loading data

488 assign FCMHWVALID = ( ( (curr_state == STATE_LOAD) & apufcmloaddvalid_reg &

489 (ldst_size_counter == ldst_size_reg) ) |

490 ( loaddata_inidle &

491 ( ldst_size_counter == ldst_size_reg ) ) );

492

493 // instruction completed

494 assign FCMAPUDONE = ( ( (curr_state == STATE_LOAD) & apufcmloaddvalid_reg &

495 (ldst_size_counter == ldst_size_reg) ) |

496 ( (curr_state == STATE_STORE) &

497 (ldst_size_counter == ldst_size_reg) ) |

498 ( loaddata_inidle &

499 ( ldst_size_counter == ldst_size_reg ) ) );

500

501 // the result (for stores)

502 assign FCMAPURESULT = (curr_state == STATE_STORE) ? regfile_rdata : 32’b0;

503

504 // valid in the store state

505 assign FCMAPURESULTVALID = (curr_state == STATE_STORE);

506

507 // ask the APU to wait only in one case

508 assign FCMAPULOADWAIT = loaddata_inidle;
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509

510 // don’t allow the CPU to go to sleep while executing an instruction

511 assign FCMAPUSLEEPNOTREADY = ( (apufcminstrvalid_reg & apufcmdecoded_reg &

512 ldst_valid_reg) | (curr_state == STATE_LOAD)

513 | (curr_state == STATE_WAITHW) |

514 (curr_state == STATE_STORE) );

515

516 // data outputs (to hw)

517 assign FCMHWDATA0 = regfile[0];

518 assign FCMHWDATA1 = regfile[1];

519 assign FCMHWDATA2 = regfile[2];

520 assign FCMHWDATA3 = regfile[3];

521

522 // unused output signals

523 assign FCMAPUINSTRACK = 1’b0;

524 assign FCMAPUDECODEBUSY = 1’b0;

525 assign FCMAPUDCDGPRWRITE = 1’b0;

526 assign FCMAPUDCDRAEN = 1’b0;

527 assign FCMAPUDCDRBEN = 1’b0;

528 assign FCMAPUDCDPRIVOP = 1’b0;

529 assign FCMAPUDCDFORCEALIGN = 1’b0;

530 assign FCMAPUDCDXEROVEN = 1’b0;

531 assign FCMAPUDCDXERCAEN = 1’b0;

532 assign FCMAPUDCDCREN = 1’b0;

533 assign FCMAPUEXECRFIELD = 3’b0;

534 assign FCMAPUDCDLOAD = 1’b0;

535 assign FCMAPUDCDSTORE = 1’b0;

536 assign FCMAPUDCDUPDATE = 1’b0;

537 assign FCMAPUDCDLDSTBYTE = 1’b0;

538 assign FCMAPUDCDLDSTHW = 1’b0;

539 assign FCMAPUDCDLDSTWD = 1’b0;

540 assign FCMAPUDCDLDSTDW = 1’b0;

541 assign FCMAPUDCDLDSTQW = 1’b0;

542 assign FCMAPUDCDTRAPLE = 1’b0;

543 assign FCMAPUDCDTRAPBE = 1’b0;

544 assign FCMAPUDCDFORCEBESTEERING = 1’b0;

545 assign FCMAPUDCDFPUOP = 1’b0;

546 assign FCMAPUEXEBLOCKINGMCO = 1’b0;

547 assign FCMAPUEXENONBLOCKINGMCO = 1’b0;

548 assign FCMAPUXEROV = 1’b0;

549 assign FCMAPUXERCA = 1’b0;

550 assign FCMAPUCR = 4’b0;

551 assign FCMAPUEXCEPTION = 1’b0;

552

553 endmodule // apu_fcm_ldst

554

555 // decoder for load/store instructions

556 module decode_ldst (

557 // outputs

558 update,

559 size,

560 store_or_loadn,

561 valid_ldst,

562 // inputs

563 APUFCMINSTRUCTION );

564

565 // output signals

566 output update; // 1=RA is loaded with effective address

567 output [0:1] size; // transaction size

568 reg [0:1] size;

569 output store_or_loadn;// 1=store, 0=load

570 output valid_ldst; // if this instruction is a valid FCM load/store

571

572 // input signals
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573 input [0:31] APUFCMINSTRUCTION;

574

575 assign update = APUFCMINSTRUCTION[21];

576 assign store_or_loadn = APUFCMINSTRUCTION[23];

577 assign valid_ldst = ( (APUFCMINSTRUCTION[0:5] == 6’b011111) &

578 (APUFCMINSTRUCTION[26:31] == 6’b001110) );

579

580 always @(APUFCMINSTRUCTION[22] or APUFCMINSTRUCTION[24:25])

581 begin

582 case({APUFCMINSTRUCTION[22], APUFCMINSTRUCTION[24:25]})

583

584 3’b100: size = 2’b01; // double-word

585 3’b011: size = 2’b11; // quad-word

586 3’b111: size = 2’b11; // quad-word

587 default: size = 2’b0;

588

589 endcase // case({APUFCMINSTRUCTION[22], APUFCMINSTRUCTION[24:25]})

590 end

591

592 endmodule // decode_ldst
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C.10 Dot-product Module (fp_dot_prod.vhd)

1 -------------------------------------------------------------------------------

2 -- --

3 -- Name: fp_dot_prod.vhd --

4 -- Version: 1.00.f --

5 -- Author: Dmitriy Bekker --

6 -- Rochester Institute of Technology --

7 -- Date: May 14, 2007 --

8 -- --

9 -- Target: Virtex-4 --

10 -- Max Freq: 237 MHz (-11 grade, reported by XST) --

11 -- Latency: 22 cycles --

12 -- Max Rate: 4, 32-bit floats once every 7 cycles --

13 -- NOTE: In this version of the core, the accumulator is latched --

14 -- --

15 -- Description: --

16 -- This is a single precision floating-point dot-product core. This core can --

17 -- be integrated with the apu_fcm_ldst core for interfacing with the APU on --

18 -- the Virtex-4FX FPGA. The ’iterations’ generic is used to set the amount --

19 -- of input data to expect. For example, with ’iterations’ = 7, this core --

20 -- calculates the dot-product of 7 sets of 4, 32-bit floats. This core has --

21 -- been tested in actual hardware with ’iterations’ = 7 and clock frequency --

22 -- of 200 MHz. --

23 -------------------------------------------------------------------------------

24

25 -- Use necessary packages

26 library IEEE;

27 use IEEE.STD_LOGIC_1164.ALL;

28

29 entity fp_dot_prod is

30 generic (

31 iterations : natural := 7 );

32 port (

33

34 -- inputs from LD/ST module

35 FCMHWVALID : in std_logic;

36 FCMHWDATA0 : in std_logic_vector(0 to 31);

37 FCMHWDATA1 : in std_logic_vector(0 to 31);

38 FCMHWDATA2 : in std_logic_vector(0 to 31);

39 FCMHWDATA3 : in std_logic_vector(0 to 31);

40

41 -- outputs to LD/ST module

42 HWFCMVALID : out std_logic;

43 HWFCMDATA0 : out std_logic_vector(0 to 31);

44

45 -- clock and reset

46 CLK : in std_logic;

47 RST : in std_logic );

48

49 end fp_dot_prod;

50

51 architecture behavioral of fp_dot_prod is

52

53 -- Coregen single-precision multiplier

54 component fp_mult is

55 port (

56 a : in std_logic_vector(31 downto 0);

57 b : in std_logic_vector(31 downto 0);

58 operation_nd : in std_logic;

59 clk : in std_logic;

60 sclr : in std_logic;
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61 result : out std_logic_vector(31 downto 0);

62 rdy : out std_logic);

63 end component;

64

65 -- Coregen single-precision adder

66 component fp_add is

67 port (

68 a : in std_logic_vector(31 downto 0);

69 b : in std_logic_vector(31 downto 0);

70 operation_nd : in std_logic;

71 clk : in std_logic;

72 sclr : in std_logic;

73 result : out std_logic_vector(31 downto 0);

74 rdy : out std_logic);

75 end component;

76

77 -- input data

78 signal DATA0 : std_logic_vector(31 downto 0);

79 signal DATA1 : std_logic_vector(31 downto 0);

80 signal DATA2 : std_logic_vector(31 downto 0);

81 signal DATA3 : std_logic_vector(31 downto 0);

82 signal data0_reg : std_logic_vector(31 downto 0);

83 signal data1_reg : std_logic_vector(31 downto 0);

84 signal data2_reg : std_logic_vector(31 downto 0);

85 signal data3_reg : std_logic_vector(31 downto 0);

86

87 -- intermediate results

88 signal mult0_result : std_logic_vector(31 downto 0);

89 signal mult1_result : std_logic_vector(31 downto 0);

90 signal add0_result : std_logic_vector(31 downto 0);

91 signal add1_result : std_logic_vector(31 downto 0);

92 signal accumulate : std_logic_vector(31 downto 0);

93

94 -- intermediate control

95 signal mult0_rdy : std_logic;

96 signal mult1_rdy : std_logic;

97 signal add0_rdy : std_logic;

98 signal add1_rdy : std_logic;

99 signal arith_rst : std_logic;

100 signal acc_clr : std_logic;

101

102 -- internal input signals

103 signal FCMHWVALID_i : std_logic;

104 signal fcmhwvalid_reg1 : std_logic;

105 signal fcmhwvalid_reg2 : std_logic;

106

107 -- internal output signals

108 signal HWFCMVALID_i : std_logic;

109 signal HWFCMDATA0_i : std_logic_vector(31 downto 0);

110

111 -- state machine

112 type state_type is ( STATE_RESET, STATE_IDLE, STATE_COUNT, STATE_OUTPUT );

113 signal my_state : state_type;

114

115 begin

116

117 -- first multiplier (parallel)

118 fp_mult_0 : fp_mult

119 port map (

120 a => data0_reg,

121 b => data1_reg,

122 operation_nd => fcmhwvalid_reg2,

123 clk => CLK,

124 sclr => arith_rst,
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125 result => mult0_result,

126 rdy => mult0_rdy );

127

128 -- second multiplier (parallel)

129 fp_mult_1 : fp_mult

130 port map (

131 a => data2_reg,

132 b => data3_reg,

133 operation_nd => fcmhwvalid_reg2,

134 clk => CLK,

135 sclr => arith_rst,

136 result => mult1_result,

137 rdy => mult1_rdy );

138

139 -- first adder (sum of multipliers)

140 fp_add_0 : fp_add

141 port map (

142 a => mult0_result,

143 b => mult1_result,

144 operation_nd => mult0_rdy,

145 clk => CLK,

146 sclr => arith_rst,

147 result => add0_result,

148 rdy => add0_rdy );

149

150 -- second adder (accumulate result)

151 fp_add_1 : fp_add

152 port map (

153 a => add0_result,

154 b => accumulate,

155 operation_nd => add0_rdy,

156 clk => CLK,

157 sclr => arith_rst,

158 result => add1_result,

159 rdy => add1_rdy );

160

161 -- input assignments

162 DATA0 <= FCMHWDATA0;

163 DATA1 <= FCMHWDATA1;

164 DATA2 <= FCMHWDATA2;

165 DATA3 <= FCMHWDATA3;

166 FCMHWVALID_i <= FCMHWVALID;

167

168 -- reset control

169 arith_rst <= RST or HWFCMVALID_i;

170

171 -- output assignments

172 HWFCMVALID <= HWFCMVALID_i;

173 HWFCMDATA0 <= HWFCMDATA0_i;

174

175 -- synchronize the arithmetic

176 control: process( CLK )

177 variable counter : integer range 0 to iterations;

178 begin

179

180 if( rising_edge( CLK ) ) then

181

182 -- synchronous reset

183 if( RST = ’1’ ) then

184 my_state <= STATE_RESET;

185 else

186

187 case my_state is

188
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189 when STATE_RESET =>

190 HWFCMDATA0_i <= (others => ’0’); -- just clear output data, idle

191 my_state <= STATE_IDLE; -- state will take care of rest

192

193 when STATE_IDLE =>

194 HWFCMVALID_i <= ’0’; -- lower the output valid line

195 acc_clr <= ’1’; -- let latch clear accumulator

196 counter := 0; -- reset counter

197 if( add0_rdy = ’1’ ) then -- go to next state when add0

198 my_state <= STATE_COUNT; -- is ready

199 acc_clr <= ’0’; -- release latch from reset

200 end if;

201

202 when STATE_COUNT =>

203 if( add1_rdy = ’1’ ) then -- count ready pulses

204 counter := counter + 1;

205 acc_clr <= ’0’; -- make sure latch is not reset

206 elsif( counter = iterations ) then

207 my_state <= STATE_OUTPUT; -- go to output state when done

208 end if;

209

210 when STATE_OUTPUT =>

211 HWFCMVALID_i <= ’1’; -- mark valid line

212 HWFCMDATA0_i <= add1_result; -- register output data

213 my_state <= STATE_IDLE; -- go back to idle state

214

215 end case;

216

217 end if;

218

219 end if;

220

221 end process control;

222

223 -- latch process for accumulator data

224 latch: process( acc_clr, add1_rdy, add1_result )

225 begin

226 if( acc_clr = ’1’ ) then -- reset accumulator

227 accumulate <= (others => ’0’);

228 elsif( add1_rdy = ’1’ ) then -- latch add1 result

229 accumulate <= add1_result; -- when add1 is ready

230 end if;

231 end process latch;

232

233 -- register input data

234 in_reg: process( CLK )

235 begin

236

237 if( rising_edge( CLK ) ) then

238 fcmhwvalid_reg1 <= FCMHWVALID_i;

239 fcmhwvalid_reg2 <= fcmhwvalid_reg1; -- necessary delay for valid

240

241 -- synchronous reset

242 if( RST = ’1’ ) then

243 fcmhwvalid_reg1 <= ’0’;

244 fcmhwvalid_reg2 <= ’0’;

245 data0_reg <= (others => ’0’);

246 data1_reg <= (others => ’0’);

247 data2_reg <= (others => ’0’);

248 data3_reg <= (others => ’0’);

249

250 -- update data registers

251 elsif( fcmhwvalid_reg1 = ’1’ ) then

252 data0_reg <= DATA0;
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253 data1_reg <= DATA1;

254 data2_reg <= DATA2;

255 data3_reg <= DATA3;

256 end if;

257 end if;

258

259 end process in_reg;

260

261 end behavioral;
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