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Deep Neural Networks (DNNs) are very popular because of their high performance in various cognitive tasks
in Machine Learning (ML). Recent advancements in DNNs have brought beyond human accuracy in many
tasks, but at the cost of high computational complexity. To enable efficient execution of DNN inference, more
and more research works, therefore, exploit the inherent error resilience of DNNs and employ Approximate
Computing (AC) principles to address the elevated energy demands of DNN accelerators. This article provides
a comprehensive survey and analysis of hardware approximation techniques for DNN accelerators. First,
we analyze the state of the art and by identifying approximation families, we cluster the respective works
with respect to the approximation type. Next, we analyze the complexity of the performed evaluations (with
respect to the dataset and DNN size) to assess the efficiency, the potential, and limitations of approximate
DNN accelerators. Moreover, a broad discussion is provided, regarding error metrics that are more suitable for
designing approximate units for DNN accelerators as well as accuracy recovery approaches that are tailored
to DNN inference. Finally, we present how Approximate Computing for DNN accelerators can go beyond
energy efficiency and address reliability and security issues, as well.
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1 INTRODUCTION
Advancements in Deep Learning (DL) with Deep Neural Networks (DNNs) delivered beyond human
levels of accuracy on many AI tasks [125]. Increasing number of embedded devices rely on DL
and DNNs to deliver sophisticated services such as machine translation [15], object detection [73],
healthcare [9, 77] etc. However, these accuracy improvements came at the cost of a vast increase in
computational demands, leading to the emerge of customized hardware DNN accelerators [58, 125].
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Fig. 1. Number of publications that apply any type of approximation on DNN inference. The past five years
and three major design automation conferences are considered.

It is noteworthy that recent Convolution Neural Networks (CNNs) require tens of billions of
multiply-accumulate (MAC) operations [125]. To satisfy such demands DNN accelerators integrate
thousands of MAC units, e.g., Google TPU [58] comprises 64K MACs, while Samsung’s neural
processing unit (NPU) contains 6K MAC units [91]. This immense number of MAC units combined
with high parallelization results in high energy demands. This problem is intensified, especially
when considering the growth of Edge AI that requires even more complex neural networks (NNs)
to operate on a wide spectrum of energy and resource restricted devices.

Over the past decade, Approximate Computing (AC) [42] established as a new design paradigm
for energy efficient circuits. AC goes beyond typical/emerging design approaches [96] and exploits
the inherent ability of a large number of applications to produce results of acceptable quality, despite
some errors (approximations) in their computations. Leveraging this property, AC approximates the
hardware execution of the error resilient computations in a manner that favours performance and
energy [125]. Driven by the high potential for energy efficiency and exploiting the error tolerance
of NNs [124, 136], research on approximate NN implementations is rapidly growing over the last
years. Fig. 1 is a representative example of this trend. Fig. 1 depicts the number of publications, in
three major design automation conferences, that apply approximations in CNN inference.
Considering the high demand for edge AI [45], the billions of mobile devices running DNN

inference, and the rapid growth of AI chips1, our focus in this survey is to study, analyze, and
elucidate the impact of hardware approximation techniques on the efficiency and accuracy of
DNN inference accelerators. Prior research on DNN accelerators reports that between 30% to 80%
of the system energy is consumed by DRAM [63] with data movement dominating the energy
consumption [130]. Still, the processing units (e.g., MACs) of DNN accelerators feature considerable
power consumption [4, 125] Hence, considering high utilization and continuous operation, high
energy is also consumed by the processing units that could be prohibitive, for example, in battery
power embedded devices [125]. In addition, the very high power consumed by the processing
units in a confined area may lead to unsustainable power densities with far reaching impact on
the temperature, performance, and reliability of DNN accelerators [4]. Although several works
examine approximate memories for DNNs [28, 63, 64, 107] such works are out of the scope of our
survey which focuses on computational approximation. Note nevertheless, that compute-based
(our survey) and memory-based approximations are mainly complementary. Finally, although
approximate computing mainly targets energy efficiency in DNN accelerators (Sections 3-5), several
works apply approximations to tackle reliability and security issues (Section 6).

1Google [58], Samsung [91], Intel [129], IBM [1], Huawei [72], Cerebras [13], Groq [36], Graphcore [35], Arm [7], NVIDIA [86],
etc.
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Table 1. Recent Relevant Surveys

Ref. Year Description/Focus
[56] 2020 Approximate Arithmetic Circuits.

[98] 2018 Approximate Circuits with limited discussion on DNN accel-
erators with emphasis on software DNN approximation.

[125] 2020
Software-based approximation for DNN accelerators.

[14] 2018
[17] 2020 DNN accelerator architectures
[116] 2017

Software and hardware optimization for DNN accelerators
[12],[27] 2020
[32] 2021 Quantization techniques
[71] 2021 Software-based Pruning and Quantization techniques
[99] 2021 NN architectures

The ever-increasing demand for efficient DNN inference as well as the prominent outcomes of AC
applications have attracted significant research interest. As shown in Table 1, several surveys address
similar topics with our work. A survey of approximate arithmetic units (e.g., adders and multipliers)
is presented in [56]. Nevertheless, in [56], only a simple DNN use case example is used as a proof of
concept. On the other hand, [98] presents a comprehensive study of approximate circuits, discussing
also DNN specific approximation techniques. However, in [98], software-based approximation
techniques (such as quantization and pruning) are mainly reviewed, while regarding hardware-
based approximation, only a limited discussion based on approximate multipliers is included.
In [125] and [14] the impact of DNN approximation techniques is reviewed with main focus on
software-based approaches. In [17], a survey of DNN accelerator architectures is provided while [12]
reviews hardware and software optimization methods for DNN accelerators. Similarly to [12], [116]
and [27] present very comprehensive surveys on software optimizations/approximations and
hardware architectures for DNNs. However, hardware DNN approximations are not the target
of [12, 17, 27, 116]. Finally, [32, 71] present a thorough analysis of software based approximation
methods such as quantization and pruning, while [99] provides a comprehensive review of recent
NN architectures. Approximate DNN accelerators are out of the scope of [32, 71, 99] On the other
hand, our work surveys the state of the art of approximate DNN accelerators. Specifically, our work
focuses and provides in-depth discussion of DNN-specific approximate techniques that are implemented
in the hardware level (e.g., logic approximation) and/or modify architecture of the accelerator.

2 BRIEF BACKGROUND ON DEEP NEURAL NETWORKS
Deep neural networks consist of artificial neurons. The computation model of a neuron is illustrated
in Fig. 2 and given by (1). Each neuron performs a weighted sum of all its inputs and then a bias
term is added for a possible offset [12]. The result is passed through the activation function, from
which the output of the neuron is obtained. Neurons are represented as nodes in a graph and are
organized in layers. In DL, a layer is a function that receives inputs from the previous layers and
passes outputs to the next layers [33]. It is usually uniform, and it only comprises one type of
activation function, pooling, convolution etc.

𝑦 𝑗 = Φ(
𝑛−1∑︁
𝑘=0

𝑥𝑘𝑤𝑘 𝑗 + 𝑏), (1)

where 𝑦 𝑗 is the output of the neuron,𝑤𝑘 𝑗 are the neuron’s weights, 𝑛 is the number of weights, 𝑥𝑘
are the neuron’s inputs, 𝑏 is the bias of the neuron, and Φ is the activation function.
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Fig. 2. Schematic of a Neuron

The most popular and widely used neural networks today are: Multi-Layer Perceptrons, Convo-
lutional Neural Networks, Recurrent Neural Networks, and Transformers [58, 125]. Specifically:

(1) Multi-Layer Perceptrons (MLPs): Each node in a layer is composed of a nonlinear function of
a weighted sum of all the previous outputs (fully connected) [116].

(2) Convolutional Neural Networks (CNNs): They are mainly composed of convolutional, pooling,
and fully-connected layers and exploit the concept of shared weights and are designed to
learn spatial hierarchies of features [116].

(3) Recurrent Neural Networks (RNNs): Each layer is composed of nonlinear functions of the
weighted sums of the outputs and the previous state. Long Short-Term Memory (LSTM) is
the most common RNN. The weights are reused across time steps. A key feature of LSTMs is
to decide what to forget and what to forward to the next layer [50].

(4) Transformers: They handle sequential input data as RNNs, but they differ since they use a
different mechanism called “self-attention” that weights the significance of each input part
and enables parallel data processing [113].

The goal of our work is to survey the state of the art of hardware approximation techniques
for DNN accelerators, without any constraints on the DNN type. Though, as it will be shown in
Section 5.2, the majority of the examined works mainly use only CNNs in their analysis/evaluation.

2.1 Layers
2.1.1 Fully Connected (FC) Layers. In a fully connected layer, the input and output neurons are
connected to each other by flattening the matrix into a vector. Every output neuron performs a
weighted sum of every input neuron. Typically, as convolution layers, FC layers are followed by a
non-linear activation and/or bias addition. FC layers are usually used as the classifier in the final
stage of a DNN. Contrary to convolutional layers, which are compute intensive, FC layers are
memory intensive due to the many neuron synapses.

2.1.2 Convolutional Layers. This layer carries the main portion of network’s computational load.
It performs a dot product between two matrices, where the one matrix is an input feature map and
the other is a set of weights known as kernel. Fig. 3a illustrates the convolution operation between
an input of size [𝐼𝑥 × 𝐼𝑦 ×𝑀] and 𝑍 filters of size [𝐾𝑥 × 𝐾𝑦 ×𝑀]. The depth of the output (output
feature map) is 𝑍 . Once the output feature map is computed, typically the operation of Pooling is
performed. The size of the kernel depends on the size of the receptive field and consequently of the
weight matrix. The distance between adjacent receptive fields is determined by the stride parameter.
All neurons of a layer share the same weight matrix, trying to detect the same feature in different
locations of the layer. To detect multiple features, a convolutional layer has many channels, i.e.,
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Fig. 3. a) Convolution and b) Max Pooling and Average Pooling examples

many feature maps. Due to their high computational intensity2, convolution layers consist the
main approximation target as Section 3 reveals.

2.1.3 Pooling Layers. Pooling Layers are placed after the convolutional layers. Their primary
use is to reduce the number of activations of a layer and thus reduce the memory demands and
computations needed in the later layers. This layer substantially down-samples outputs by returning
a single value of each group depending on the pooling strategy, e.g., max-/average- pooling (Fig. 3b).
In max-pooling, the maximum value of the nearby neurons is the output, while in average-pooling
the output is their average value. As Fig. 3b shows, the inputs of the next layers are significantly
reduced. The pooling layer type can be exploited to apply customized approximation (see Section 3).

2.1.4 Activation Functions. Activation Functions are non-linear transformations that are applied
after the weighted sum of the inputs of a neuron. The activation function increases the fitting
ability of NNs and helps solving complex problems that cannot solved with linear algebra. The
most commonly used activation function is Rectified Linear Unit (ReLU) which forces negative
values to be zero and keeps positive values unchanged:

𝑦 =

{
0 if 𝑥 < 0
𝑥 otherwise (2)

Some other activation functions are Sigmoid and TanH, which normalize the output in the range
of (0, 1) and (−1, 1) respectively, while Softmax function normalizes numbers in the range of
(0, 1) with the restriction that their sum should definitely be equal to 1. Many works leverage the
activation function to apply optimized approximation (see Section 3). For example, when ReLu is
used, the overall accuracy is mainly defined by the accuracy of the positive values3.

2.1.5 Normalization Layers. These layers exploit the fact that neural networks have usually a
normal distribution and help keeping input values in the same range. The latter speed up the
training process and use higher learning rates so that layers do not have to adapt to a different
distribution at each training step, making thus learning easier. A widely used normalization method
is Batch Normalization [54], which transforms 𝑥 according to the following expression:

𝑦 (𝑥) = 𝛾 ⊙ 𝑥 − `𝑥
𝜎𝑥

+ 𝛽, (3)

where `𝑥 and 𝜎𝑥 are the mean and standard deviation of the input tensor 𝑥 and 𝛾 , 𝛽 are respectively
the scale and shift parameters. Those are learned with the rest model parameters during training.
2GEMM operations consume more than the 70% of the inference time of modern DNNs [125].
3Without loss of generality accurate sign calculation is assumed.
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2.2 Training & Inference
2.2.1 Training. During training, the network tries to learn the weight values. A labeled dataset
is used for the training process. A variant of stochastic gradient descent algorithm, which is
iterative, is mainly used in training. The main processes of training are the forward and backward
propagation and the weight gradient and update. In the forward pass, the neurons in each layer are
evaluated by traversing all layers in succession from first to last. In backpropagation, the outputs
of the network are compared with the golden outputs and the resulting error is propagated back
through the network layers. The weight update is then performed by accumulating the product
of the forward pass activations and the backpropagation errors corresponding to a given weight.
Training is usually executed on distributed systems with many workers and can become a very
time consuming procedure. For example, Facebook required one hour for the 90 epoch ImageNet
training with ResNet-50 using 32 CPUs and 256 NVIDIA P100 GPUs [34].
A common problem in the training process is overfitting. Overfitting has not yet been proven

mathematically but only experimentally and refers to a network that much trained that it produces
overly complex and unrealistic class boundaries when data meticulously fits into the model and
is memorized. This leads to poor performance when a new input was never seen before. Some
techniques that help to avoid overfitting by making the model simpler are dropout [115], early
stopping [110], weight decay [70] and learning with noise [83]. As discussed in Section 3, the
approximation noise induced by the approximate circuits might help in mitigating overfitting.

The works that we studied in our survey have widely employed approximation-aware (re)training
(details in Section 4.1) as an error compensation mechanism to mitigate the accuracy loss due to the
introduced hardware approximation. However, given the increased time complexity of training (as
mentioned above), retraining can be very time consuming and in the case that approximate hardware
emulation is required, the time required can become unsustainable [81]. Moreover, it is highly
possible that approximation-aware (re)training can be even infeasible, due to proprietary models
and/or datasets [81]. Therefore, alternative methods are also explored such as fine-tuning and other
statistical approaches (details in Section 4.2). Finally, it should be mentioned that quantization-aware
training has gained a lot of popularity since it enables remarkable model compression and very
low-bitwidth integer-only arithmetic inference [21].

2.2.2 Inference. During inference, the already trained NN is used to derive predictions against new
unseen data. Inference involves only the forward pass. Training identifies the model parameters
while inference uses the model to make predictions. In contrast to training procedure, inference
is typically executed on a single device [125] (cloud or even on a mobile/edge/IoT device) where
latency requirements [58] as well as energy constraints can become very tight. Though, the larger
a DNN, the more compute and energy is consumed to run inference, and the higher the latency
will be. Hence, although the trained model could be directly deployed to run inference this is rarely
the case and several optimizations are examined to meet real world requirements. To that end,
hardware approximation techniques, that constitute the focus of our survey, have been widely
studied to enable efficient DNN inference.

2.3 Models and Datasets
Over the decades, significant research effort has been carried out to improve the performance of
DNNs, and particularly CNNs, through novel architectures. Fig. 4 presents some notable CNN
models published over time. CNNs have been applied to vision tasks since 1980s when [68] proposed
a first multilayer CNNnamedConvNet. LeNet (1998) [69], an improved version of ConvNet, achieved
significant milestones in recognition tasks. However, the never ending requirement for higher
accuracy led to many new, deeper, and vastly more complex models.
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Fig. 4. Timeline of notable DNNs

Table 2. Common datasets used in DNN evaluation

Dataset Images Classes Size Input Size Year
MNIST [69] 60K 10 50 MB 28x28 1998
SVHN [85] 600K 10 2.5 GB 32x32 2011
CIFAR [66] 60K 10/100 170 MB 32x32 2009

ImageNet [26] 1.5M 1000 150 GB 256x256 2009

An important aspect in DNNs is the complexity of the task that they have to address. Datasets are
fundamental to test a DNN’s accuracy. Table 2 presents the characteristics of the most commonly
used datasets in the works we reviewed in Section 3. Many datasets might exist for the same task
but different datasets are hardly comparable and their difficulty can significantly vary. Different
datasets reflect to different models and more complex datasets require more complex networks.
The latter translates to more weights and consequently a larger number of operations (MACs).

3 HARDWARE APPROXIMATIONS FOR DNNS
In this section, the state of the art of hardware approximate computing techniques mainly for deep
CNN inference is discussed. Note that although some of these techniques rely on (re)training to
mitigate the accuracy loss due to approximation, training is used only as amechanism to improve the
accuracy of the approximate inference and it is not the target of the approximation itself. In addition,
after identifying common patterns in examined techniques, we organize them in groups with respect
to the type of applied approximation. As illustrated in Fig. 5, hardware DNN approximation can
be clustered in three wide categories: Computation Reduction, Approximate (Arithmetic) Units, and
Precision Scaling. It is noteworthy that although these approximation categories are orthogonal, the
state of the art applies, mainly, approximations from one category or combines Precision Scaling
with approximations from another category.

3.1 Precision Scaling
Low-precision computation is the key to enable high compute densities in DNN hardware accel-
erators across cloud and edge platforms. One of the first and most widely used approximation
techniques to enable effective precision scaling is quantization. Quantized hardware implementa-
tions feature reduced bitwidth dataflow and arithmetic units (as illustrated in Fig. 6) attaining, thus,
very high energy, latency, and bandwidth gains compared to 32-bit floating-point (FP32) imple-
mentations. Traditionally FP32 was used in DNN inference. Rather than executing all the required
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Fig. 5. Clustering of hardware DNN approximation techniques
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Fig. 6. Schematic of a Neuron when applying Precision Scaling approximation. The precision of all the
Neuron’s components is affected (reduced). This example is adapted from [55] and illustrates an integer-
arithmetic-only 8-bit inference.

mathematical operations with ordinary 32-bit/16-bit floating point (as in CPUs and GPUs), quanti-
zation allows us to exploit smaller integer operations instead. Moreover, quantized implementations
reduce the size of the model linearly, leading to high storage gains and low memory transfers. In
integer-arithmetic-only inference weights and activations are quantized to low bitwidth (e.g., 8-bit)
integers and biases are quantized to 32-bit or lower [55]. Other quantization approaches mainly
target model compression and quantize only the weights, e.g., [137]. Advancements in quantization
methods have demonstrated that integer 8-bit (INT8) DNN inference can achieve almost identical
accuracy with FP32 [58]. Finally, a significant advantage of quantization is that although it directly
impacts the hardware requirements, the accuracy loss is fully controlled and defined at software
level. In other words, the hardware gains will depend only on the supported precision(s) of the
accelerator, while the accuracy will depend on the employed quantization method. Though, the
latter assumes that the accumulators of the DNN accelerator have enough precision to avoid any
overflow and accurately accumulate the partial sums [18, 40, 58, 116]. If this is not the case, then
approximate results may be obtained since the intermediate partial sum might be clipped by a
maximum value defined by the precision of the accumulator. However, the works that we studied
in this survey do not consider such an approximation and the size of the accumulator is selected
large enough to avoid any overflow, e.g., based on the largest filter size. Concluding, studying
quantization methods and quantized hardware implementations is out-of-the-scope of this work
and comprehensive discussions can be found in many works [14, 20, 21, 27, 32, 71, 98, 116, 125].
A brief discussion is included in this section for completeness reasons and since many of the
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approximate techniques discussed hereafter are compatible and/or orthogonal with quantized
implementations. Nevertheless, quantized implementations will not be further analyzed.

At the software side, there are multiple quantization methods and several ways to map the data
on the compressed precision levels. For example:

• The simplest method is mapping through static fixed-point (fxp) quantization. A N-bit fixed-
point number is represented by (−1)𝑠 ×𝑚 × 2−𝑓 , where 𝑠 is the sign bit,𝑚 is the (N-1)-bit
mantissa, and 𝑓 is a scale factor. The energy and area of an fxp multiplier scales approximately
quadratically with the number of bits. For example, an 8-bit fxp multiply consumes 15.5x
less energy with 12.4x less area than a 32-bit fixed point multiply, and 18.5x less energy with
27.5x less area than a 32-bit fp multiply [51].

• In dynamic fixed-point format, numbers in similar dynamic range are grouped together and
share a common fraction length. This fraction length is chosen based upon the dynamic
range of each of the three layers, i.e., inputs, weights and outputs. The proper use of this
method combined with the examined network’s weight analysis can achieve even higher
accuracy results than simple fxp method [95].

• Another approach is to use a simple mapping function such as a power-of-two function,
where the distance between different quantization levels varies and implementations can be
done with simple logic such as a shift operation [74].

• Regarding reduced-precision floating-point numbers, several formats have been explored
since the earliest of 2015 [39]. Some of them include IEEE FP16 1-5-10, BFloat 1-8-7 [128] and
DLFloat16 1-6-9 [2] representations. Hybrid-FP8 (HFP8) supports two formats FP8 1-4-3 and
FP8 1-5-2 [125], while Minifloat supports any exponent and mantissa combination [40].

Hereafter, we present some state-of-the-art quantization techniques that enable the exploitation
of precision scaled hardware by mitigating the accuracy loss due to the low numerical precision.

Post-training Quantization: Uniform symmetric [65], asymmetric min/max [55] are post-training
quantization (PTQ) methods and achieve very high accuracy at 8 bits. Similarly, a post-training
quantization method, ACIQ, is proposed in [8]. ACIQ uses an optimal clipping for quantization
which limits the range of activation values in order to reduce the rounding errors while also
containing most of the un-quantized information. In both activations and weights, a bit allocation
is applied for each channel to minimize the mean-square-error (MSE). A bias correction scheme is
also introduced to fix the deviation occurred by quantization. These three methods can be combined
to restore most of the accuracy loss without the need of retraining. [127] presents a PTQ procedure
that supports linear quantization for activations and linear, power-of-two, and two-hot quantization
for the weights. In [127] the error generated in each layer is used to adjust the quantization step
size for both features and weights in an iterative way. Ristretto [40] is an approximation framework
that includes dynamic fxp, minifloat, and power-of-two number formats and performs automatic
network quantization by evaluating different bit-widths and number representations to find the
right balance between compression rate and network accuracy.
Quantization-aware Training: Quantization-aware training (QAT) is an approach for training

quantized networks. In QAT, the forward pass simulates the quantized inference while backpropaga-
tion is performed as usual and weights and biases are in floating point [55]. The latter is crucial since
accumulating the gradients in quantized precision can result in zero or high error gradients [32].
In [59] a quantization method was proposed in which the boundaries of quantization values are
parameterized and trained. Afterwards, values that are smaller than the lower bound are pruned.
The quantizer attempts to optimize the trainable parameters with respect to the task loss of the
entire network and can be applied in both activations and weights with extremely low bit-width
(2/3/4-bit), achieving state-of-the-art classification accuracies. Additional example is [135], where
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training parameters of the batch normalization layers at high precision is included. In [135] the
quantizer introduces a perturbation to the model parameters and are jointly trained together, so
that model can converge to a point with a better loss [32]. The dynamic range and quantization
levels can be parameterized in different ways and trained using iterative optimizations. A weight
quantization scheme, statistics-aware weight binning (SAWB), is also proposed in [20]. SAWB
identifies the optimal scaling factor that minimizes the quantization error based on statistical
characteristics of the weights distribution (i.e., shape of distribution and representative values
throughout the training) without the need for an exhaustive search. [20] demonstrates that very
high accuracy for extremely low bitwidths (less or equal to 2 bits for weights and activations) can
be achieved. PArameterized Clipping acTivation (PACT) [21] uses an activation clipping parameter
that is learned and optimized via back-propagation during training to find the right quantization
scale. PACT demonstrates that although it focuses on activation quantization, also different weight
quantization can normally be enabled, delivering accuracies similar to FP32 representation with
only 4-bit quantized CNNs. Consequently, to quantize the weights it uses DoReFa [138]. DoReFa
is an aggressive and heuristic linear quantization that uses extreme low-precision weights and
activations to all layers, excluding only the first and the last ones, while gradients are also quantized
during the backward pass of the training procedure.
Binary/Ternary Quantization: More aggressive precision scaling can be employed to generate

binary and ternary networks. Such networks achieve the lowest computational bitwidth and can
lead to significant acceleration over higher precisions (e.g., binary arithmetic on NVIDIA V100
GPUs is 8x higher than INT8 [32]). However, they require customized hardware accelerators to be
executed efficiently and training. Moreover, for such low precision (binary valued weights), due
to the typically small derivatives, it is not effective to update the weights with gradient decent
methods [71]. BinaryConnect [23] proposed for the first time to use binary weights in {-1,1} and [5]
used full-precision activations and binary weights. In Binarized Neural Networks [53] (BNN) and
XNOR-Nets [97] both weights and activations are quantized in binary format. Such extremely low
bit-width formats can replace the costly MAC units by simple XNOR gates followed by pop-count
(i.e., count the number of ‘1’). In [3] a CNN accelerator named XNORBIN is proposed with over 25x
higher energy efficiency on competitive models such as AlexNet, while XNOR Neural Engine [22]
is a configurable hardware accelerator integrated into a microcontroller system, which can fully
compute convolutional and dense layers of popular CNNs. Finally, ternary weight networks use a
similar approach but the weights are in {-1,0,1}. A ternary quantization is also presented in [139].
In this approach authors started from a model trained in full precision and then they converted the
weights in 2 bits including a fine-tuning process to restore accuracy loss.

At the hardware side, low-bitwidth implementations are almost mainstream today. For example,
Eyeriss [18] and DaDianNao [16] used 16-bit while Eyeriss V2 [19], Google TPU v1 [58], Samsung
NPU [91] employ 8-bit MAC units. Moreover, many low-bitwidth transprecision architectures are
proposed. Loom [111] uses bit-serial multiplicators and both weights and activations have fully
variable bit-width, from 1 bit to 16 bits, while the matrix-matrix multiplication core BISMO [120]
supports precision levels from 8 bits downto 1 bit. BitFusion [112] and BitBlade [102] also implement
variable precision operations from 1 up to 16 bits for DNNs with optimized summations using
spatial approach. In [114] fundamental bit decomposition architectures (vertical and horizontal
decomposition) are further approximated by constraining the maximum value of the partial sums.
IBM RAPID [30] uses DLFloat16, 2-bit (INT2) and 1-bit fxp while [1] supports DLFloat16 and
HFP8 formats as well as INT4 and INT2 formats for highly scaled inference. Intel Spring Hill [129]
supports FP16 as well as INT8, INT4, INT2, and even 1 bit precision operations natively. Finally,
NVIDIA Tensor Cores offer a full range of precisions, i.e., TF32, Bfloat16, FP16, INT8, and INT4 [86].
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Fig. 7. Schematic of a Neuron when applying Computation Reduction approximation. A conditional branch
is employed to skip or not some of the Neuron’s computations.

3.2 Computation Reduction
DuringDNN inference, millions ofmultiplications are performed in the convolution operations [125],
leading to high latency and energy consumption, evenwhen considering quantized implementations.
The Computation Reduction approximation category aims in systematically avoiding, at hardware
level, the execution of some computations, e.g., multiplications and convolution operations. As a re-
sult, it significantly decreases the executed workload. Computation Reduction is further subdivided
to the Memoization and Skipping approximation families. Computation Reduction (illustrated in
Fig. 7) uses a conditional statement to avoid a computation and estimate its output (Memoization) or
discard it entirely (Skipping). Among the most popular, effective, and extensively used DNN approx-
imation techniques, that reduce the number of the required computations, is the software-based
DNN pruning. Pruning removes connections, filters, and/or channels based on varying importance
criteria and can be divided in structured (coarse-grained) and fine-grained pruning. Pruning actu-
ally generates a compressed variant of the initial network and is executed offline before inference.
On the other hand, in the hardware approximation techniques, that we study in this section, the
approximation originates from the hardware itself since a conditional statement is integrated in
the accelerator and decides at runtime if a computation will be skipped/estimated or not. Hence,
although several architectures exist, e.g., with zero-skipping support, to optimally support the
software-based pruning approximation [43, 90], such architectures are not inherently approximate
since they will skip computations that do not need to be executed (e.g., multiplication by zero),
while the examined Computation Reduction approximation techniques will skip computations that
many times should be executed in order to obtain full accuracy.

3.2.1 Skipping. Skipping approximations aim in reducing the executed workload. Such approaches
perform a simple computation and evaluate (predict) if a more complex one can be eliminated.
Hence, this approximation family enables dynamic approximation at runtime. The efficiency of
the Skipping approximation relies on how often a computation can be skipped, the complexity of
the conditional prediction, as well as the complexity of the skipped operation. Piyasena et al. [94]
leverages the widely used ReLu activation function to eliminate redundant computations. [94]
estimates the sign of the convolution output using a low-cost prediction scheme. In this scheme, a
power-of-two weight quantization is applied so that multiplications can be replaced with simple
logic shifters. If the estimated sign of the approximate output is negative, the convolution operation
is skipped through the clock-gated circuitry, else the original convolution is performed. [119]
proposes a similar strategy, but the sign estimation is done either after representing weights in
ternary format, or after using a sign function, which simplifies the computations, while maintaining
the prediction accuracy. Minkyu Kim et al. [61] exploits the max-pooling layers and adopts a
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precision-cascading scheme to predict and calculate only the maximum value of a convolution
operation. This technique, combined with a zero-skipping scheme, can efficiently avoid redundant
computations without affecting neuron synapses that contribute a lot in classification accuracy.
In [48], the weights of each layer of a given CNN are clustered offline in groups. K-means is used for
clustering and weights within a cluster feature the highest similarity to each other while weights
of different clusters exhibit the least similarity. During inference (i.e., at the runtime) only some
weight-groups are used while the weights of the rest groups are assumed to be zero. Finally, the
difference of the two output neurons with the highest values is calculated. If the difference is
above a given threshold, the obtained prediction is the output of [48], else the inference is repeated
using gradually more weight-groups. Finally, Huan et al. [52] introduced Near Zero Approximation
(NZA). NZA exploits the fact that when the multiplication operands are very small (close to zero)
the product will be almost zero. [52] counts the leading zeros of the multiplication operands and if
their number is above a threshold, the product is assumed zero and the multiplication is skipped.

3.2.2 Memoization. The second subcategory of the Computation Reduction is Memoization. Mem-
oization avoids a computation (e.g., multiplication or convolution) by replacing its output with
the output of a previously performed similar computation. Hence, the efficiency of this approach
depends on the input similarity (i.e., how often a replacement takes place) as well as the complexity
of the eliminated computation.Jiao et al. [57] applies Memoization through a configurable Bloom
Filter (BF) unit that stores the product of frequently computed patterns and avoids performing the
respective multiplications. A memoization set of 3000 images was used in [57] to identify such
patterns. Mocerino et al. [76] proposed a CAM-enhanced floating-point unit (FPU) to implement
Memoization. Pre-computed multiplication results are reused whenever a similar input pattern
occurs, avoiding thus unnecessary computations of frequent operations. To increase the frequency
of patterns, a clustering approach based on the Jenks Natural Breaks algorithm is applied to weights
and activations. The processing unit of [76] is pipelined and consists of two CAMs (one for the
weights and one for the activations) and an SRAM. If the input pattern is pre-computed, the product
is loaded form the memory and the multiplier is avoided by clock-gated signals. On the other
hand, [101] showed that more than 60% of the inputs of network layer exhibit negligible changes
with respect to the previous execution. Based on that fact, they proposed a method to reuse some
results from the previous execution, avoiding all the computations associated with those results.

3.3 Approximate Units
DNN hardware accelerators comprise thousands of multiply-accumulate (MAC) units [58]. This
wide category improves the energy consumption and/or latency of DNN accelerators by employing
approximate circuits that replace accurate MAC units (Fig. 8). Approximate Units can be fur-
ther divided into three approximation families: Approximate Multipliers/Adders, Multiplierless, and
Approximate Log-Multipliers. Briefly, Approximate Multipliers/Adders modify the circuit implemen-
tation of the multiplier/adder (e.g., logic approximation), Multiplierless replaces the multiplication
with a simpler operation (e.g., addition), and the Approximate Log-Multipliers family replaces the
exact binary multiplier with a logarithmic multiplier that is further approximated.

3.3.1 Approximate Multipliers/Adders. Considering the vast number of MAC operations required
in the inference phase, several works focus on approximating the circuit of the MAC unit itself.
Exploiting a constant energy gain per MAC operation performed, very high energy gains are ob-
tained at inference level. Targeting approximate MAC circuits, state of the art mainly approximates
the multiplier, since it is more complex and power consuming than the adder [10, 78, 108, 134].

Mrazek et al. [79] employ a Cartesian genetic programming (CGP) based optimization – since it is
intrinsically multi-objective and produce efficient approximate arithmetic circuits [78] – to generate
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Fig. 8. Schematic of a Neuron when applying Approximate Units approximation. The multiplication and/or
addition units of the Neuron are replaced by approximate ones.

approximate multipliers for inference accelerators [79]. The multipliers generated by [79] satisfy a
given worst-case error constraint and ensure that multiplication by 0 is always accurate. An iterative
optimization procedure is used to identify the error constraint for the generation of approximate
multipliers in CGP-optimization so that an inference accuracy loss threshold is satisfied. During the
iterative procedure, after replacing the accurate multipliers with the approximate ones, the network
is retrained to obtain the best quality results [79]. Similarly, Vasicek et al. [121] use CGP-based
optimization to generate approximate multipliers. In order to avoid time consuming CNN evaluation
during the optimization phase, [121] used the Weighted Mean Error Distance (WMED) metric
to quantify the accuracy of the approximate multipliers. To calculate WMED, the significance of
each error is determined by the probability mass function of the network’s weight distribution.
Ansari et al. [6] evaluated 600 approximate multipliers (500 CGP-based ones and 100 variants of
deliberately designed multipliers) in CNN inference showing that they can deliver significant gains
in terms of power and area for a minimal accuracy loss. Moreover, [6] discussed that the induced
approximation noise helps to mitigate the overfitting problem, and thus can even improve the
obtained accuracy. After analyzing 600 approximate multipliers, a significant conclusion of [6]
showed that when designing approximate multipliers for CNN inference, the most important
error metrics are the error variance and the root mean square error. Similar to [79], [121] and [6]
apply retraining to mitigate the accuracy loss due to the approximate multiplications. Nevertheless,
approximation-aware retraining can be very time consuming as discussed in Section 2.2.

Mrazek et al. [80] extended the EvoApprox8b library [78] and generated 8 × 𝑁 -bit approximate
multipliers. CGP-optimization and the quality metric of [79] is used for the generation of the
approximate multipliers. [80] evaluated the generated approximate multipliers in CNN inference.
Through a comprehensive analysis, [80] demonstrated that for less complex CNNs (ResNets [46]
on CIFAR10), approximate multipliers may deliver considerable power savings for minimal ac-
curacy loss (even without retraining). A similar approach that aims to eliminate multiplications
by quantizing one term in power-of-two format, is presented in [74]. In this method, during the
forward pass weights are converted in ternary format, while in back propagation weights and
activations are quantized up to 4 bits to improve the accuracy. Nevertheless, this is not the case
for more complex CNNs (ResNet-164 on CIFAR100) where even for 10% energy reduction the
accuracy loss is considerable. Leveraging that weights are known after training, CAxCNN [100]
uses the Canonic Sign Digit (CSD) representation to encode the weights. CSD uses ternary form
{−1, 0, 1} and to represent a binary number, CSD features the least number of non-zeros {−1, 1}.
In addition, adjacent bits cannot be both non-zero. Exploiting these two features of CSD, [100]
applied truncation and generated approximate CSD multipliers with very small footprint as well as
low latency. Although [100] performs an optimization search to identify the optimal truncation
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parameter, CAxCNN does not require retraining. Exploiting that different layers feature varying
resilience to approximation, ALWANN [81] applied a non-uniform approximation. ALWANN gen-
erates an heterogeneous DaDianNao architecture [16] by using heterogeneous processing elements
(PEs). The employed PEs are built upon different approximate multipliers from the EvoApprox-
Lib [78]. ALWANN [81] implements a layer-wise approximation in which each layer is mapped to
a specific PE type. A genetic optimization procedure is used to identify the approximate multiplier
per PE as well as the layer mapping to PEs. ALWANN avoids retraining and recovers some of the
accuracy loss by employing a simple, approximation aware weight-tuning procedure. Similarly,
Zervakis et al. [131] applied also layer wise approximation. [131] used wire-by-switch replacement
to generate an approximate multiplier with three accuracy (relative error) modes. Hence, using this
reconfigurable multipliers, [131] generated an homogeneous approximate architecture. Through an
exhaustive exploration, [131] determined the accuracy mode per convolution layer and generated
the respective accuracy-energy consumption Pareto front. Tasoulas et al. [118] introduced the
weight-oriented approximation. [118] generated a low-variance approximate multiplier (LVRM)
with three approximation modes (i.e., three error variance values). An greedy procedure is used
in [118] to map weight ranges to the approximation modes of LVRM. The significance of each
convolution layer is also used in the mapping procedure, i.e., weights of less sensitive layers are
entirely mapped to the highest approximation. In addition, [118] proposed a bias-correction method
in order to avoid retraining and mitigate the accuracy loss due to the approximate multiplications.
Hammad et al. [41] performed approximate multiplication using the Dynamic and Static Segmented
Multipliers (DSM, SSM), which perform the multiplication with𝑚-bit input segments (where𝑚 is
smaller than the input bit-width). In SSM the most significant segment that contains an ‘1’ is used
(static) while in DSM the segment is dynamically selected based on a leading one detector (LOD).
To attain high accuracy, [41] generated a reconfigurable accelerator that comprises low precision
(low𝑚) and high precision (high𝑚) approximate multipliers. A low cost classifier is trained to
predict the required precision (low or high) for each input image. At runtime, a controller decides
the precision level and then inference is executed using the respective approximate multipliers.
Guo et al. [38] proposed an approximate multiplier that can support one 16- by 8-bit multiplication
or two 16- by 4-bit multiplications and uses an approximate adder to add/merge the outputs of the
sub-multiplications. The proposed approximate adder extends the block-based adder GeAr [108].
[38] observed that in a quantized CNN, the inputs of the multipliers roughly follow a Gaussian
distribution instead of a uniform distribution. Exploiting the correlation of the bits for Gaussian
distributed inputs, [38] generated approximate adders with an unequally sized block structure
to trade-off between accuracy and circuit delays. [38] considers an Eyeriss-like architecture [18]
that uses the proposed approximate reconfigurable multipliers and employs different quantization
precision for different layers (i.e., 8-bit or 4-bit). Exploiting the proposed reconfigurable approximate
multiplication, layers with 4-bit weights are executed at higher throughput.
Hanif et al. [44] considers a systolic MAC array architecture [58] and introduces a curable

approximation technique. “Curable” approximation refers to approximation approaches that feature
an internal error compensations mechanism that enables them to self-correct the induced error.
This is mainly achieved by estimating the error at runtime and compensating it at a later stage.
CANN [44] splits the adder of the MAC unit in two parts (low and high) and cancels the carry
propagation from the low to the high part. Hence, the carry chain (and thus the delay) of the MAC
unit is decreased. To cure the introduced error, the output carry of the low part is accumulated
in the next cycle by the neighbouring MAC unit. The errors generated by the eliminated carries
of the border MAC units are not cured. Zervakis et al. [133] considered also a systolic MAC array
architecture [58] and replaced the accurate multipliers with the approximate perforated ones [134].
The perforated multipliers omit the generation of some partial products and thus the induced error
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is known apriori [134]. [133] introduced a control variate approximation technique to heal the
approximate multiplication error at runtime. [133] leverages that the weights are known after
training and that the error of the perforated multipliers can be rigorously expressed in order to
formulate a control variate that efficiently estimates the runtime convolution error based on the
values of the input activations. An additional column of MAC units is required to accumulate the
control variate and compensate the error.

Concluding, the integration of Approximate Multipliers/Adders in neural network accelerators
has attracted significant research interest over the last years. The approximation techniques that
belong in this family can be further organized as follows:

• [6, 79, 81, 100, 121] generate NN-specific approximate accelerators, i.e., apply NN-specific
approximations. On the other hand, [38, 41, 44, 80, 118, 131, 133] generate generic approximate
accelerators.

• [6, 79, 121] apply retraining to mitigate the accuracy loss, while [38, 41, 80, 81, 100, 118, 131]
do not require/apply retraining, and [44, 133] employ a runtime curable approximation
technique.

• [6, 44, 79, 80, 100, 121, 133] apply static approximation while [38, 41, 81, 118, 131] employ
dynamically reconfigurable approximate architectures.

3.3.2 Multiplierless. The Multiplierless subcategory aims in maximizing the gains by eliminating
the expensive multiplication circuits. To achieve this, multipliers are replaced by circuits that im-
plement a simpler operation. Parmar et al. [92] exploited the fact that scaling the input feature map
does not affect the features extracted by max-pooling and reduced the span of the scaled weights to
[−1, 1]. This condition allowed to introduce in the convolution equation trigonometric functions,
which can be implemented by the low-cost CORDIC algorithm. In [29], authors proposed reconfig-
urable constant coefficient multipliers (RCCM) that use only adders and shifters. The supported
coefficients are extracted offline based on a distribution matching technique that allows specific
RCCM to be selected depending the model’s weights. Sarwar et al. [105] employed multiplierless
neurons by replacing multipliers with simplified shifts and add operations controlled by a unit. The
so called Alphabet Set Multipliers (ASM) comprise a pre-computer bank to compute lower-order
multiples of the input based on some small-bit sequences termed alphabets ({1, 2, 3, 5, ...}), an adder,
and one or more select, shift, and control logic units. The size of the alphabet defines the accuracy
as well as the energy benefits of ASM. An efficient retraining is finally performed in order to tune
the weights and mitigate the accuracy degradation due to ASMs.

3.3.3 Approximate Log-Multipliers. The Log-Multipliers subcategory converts multiplications into
additions by taking approximate logarithm. Mitchell [75] proposed an approximate multiplier that
employs the log multiplication property. [75] proposed to compute approximate binary log and
antilog by a linear approximation of the log-antilog curves between each power-of-two-interval.
Saadat et al. [103] extended [75] to generate a minimally biased approximate multiplier. [103]
observed that in Mitchell’s algorithm the error value is always negative. Through a mathematical
analysis, [103] demonstrated that with the addition of a constant correction term, overall the
error is reduced and the average error is pushed close to zero. In addition, [103] applied trunca-
tion to reduce the size of the main components required (i.e., adder and barrel shifters). Kim et
al. [62] optimized Mitchell’s logarithmic multiplier for approximate CNN inference. [62] improved
Mitchell’s implementation (LOD, shift, and decoder blocks), introduced a zero-checking block,
that is mandatory to improve the performance of CNNs, and further approximated the design by
applying truncation and one’s complement for negation. In [93], another approximate logarithmic
multiplier with two stages of approximations was proposed. During the first stage, the two operands
are split into two parts and the proposed multiplier selects either the upper part (if it contains at
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least one non-zero bit) or the lower part (if not), for the following computations. The second stage
of approximation concerns the binary-to-logarithm conversion, where, in order to reduce more
the complexity of circuitry, only a number of (leftmost) bits in the mantissa part are kept. Vogel et
al. [126] introduced a quantization scheme to fractional powers-of-two (e.g., 21/4) and showed that
the latter provides higher resolution at higher values and the granularity of weight distribution
becomes more fine-grained. Based on the proposed quantization, [126] replaced the binary MAC
units with logarithmic processing elements (PEs) that use an adder, a lookup table (for the required
exponents), and a barrel shifter before accumulating the result.

4 ERROR COMPENSATION TECHNIQUES
Although DNNs feature an inherent error resilience, naive or aggressive approximation may result
in unacceptable accuracy loss. In addition, complex networks can become very sensitive to even
slight approximation [80, 118, 132]. In this section, we discuss techniques employed by the state
of the art to achieve high accuracy albeit the applied approximations. Such techniques enable
satisfying tight accuracy constraints and/or increasing the applied approximation to further boost
the attained gains.

4.1 Accuracy Recovery with Retraining
Mrazek et al. [79] showed that when approximate multiplication is used instead of accurate one, the
classification accuracy of the examined network decreased to almost 10%. However, [79] applied
approximation-aware retraining and after only 5 epochs, the accuracy was recovered to more
than 90% for MNIST dataset. The backpropagation algorithm was employed in [79] using the
approximate multipliers in the forward pass. A similar approach is followed in [6]. Despite the
high accuracy achieved, retraining can become very time consuming since i) retraining large NNs
can be very slow and ii) in the feedforward it requires emulation of the approximate hardware. To
accelerate the accuracy evaluation when using approximate multipliers, [123] proposed TFApprox,
a GPU-based hardware emulation framework that extends TensorFlow and supports approximate
multiplication through lookup tables.

A hindering factor to efficient retraining can be the non-uniformity of the approximatemultipliers.
Although a proper learning rate, i.e., a multiplication factor in the weight update equation [88], can
efficiently adjust network with approximations in place, many approximate multipliers may require
careful regulation. For example, in the ASM multipliers [105] using one alphabet, the allowed
weight levels are 0×, 1×, 2×, 4× and 8×. The distance between 2× and 4× is 2×, while the distance
between 4× and 8× is 4×. In this case, a low learning rate would not be enough for weights to be
updated properly and overcome the distance barrier between allowed levels. This would cause
weights to condense in a specific level, resulting in a high network accuracy loss. The same effect
would have a high learning rate, too. Hence, [105] used initially the highest learning rate that
was used to train the CNN without approximation. If the accuracy improves and satisfies given
constraints, retraining is carried on with the same learning rate for a few more iterations and until
no significant improvement in the accuracy is observed. If the accuracy does not improve, the
learning rate is reduced by a factor and the approximate CNN is further retrained. This process of
regulating the learning rate is continued until the accuracy improvement saturates.
Beyond the conventional backpropagation algorithm, some works have proposed extended

formulations for approximate DNN retraining. AxTrain [47] is a hardware-oriented framework
for DNN training which supports approximate inference. In [47] two DNN training techniques
were introduced, referred as passive and active methods. During retrain a stochastic error model
is back propagated to the network parameters in order to minimize the noise sensitivity and
the network’s accuracy. Substantially, passive method concerns the training procedure, trying
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to recover accuracy loss, while active method helps the network to learn the noise distribution
with minor modifications in each epoch and become more robust to hardware approximations.
A novel regularization [11] method, called alpha regularization, to bias the training algorithm
for approximate CNN was presented in ProxSim [24]. Similarly with passive training of AxTrain,
ProxSim simulates approximate hardware elements during the computations of CNN forward
pass and then a regularization term is added to minimize the propagated approximation error
for each CNN layer. Although this method was about 2% slower than AxTrain, it appeared to be
more efficient in 90% of the cases, as it delivered better improvements in accuracy. Considering
implementations with large approximation errors, [67] presented a novel methodology for efficient
error recovery through Knowledge Distillation (KD) [49] for approximate DNNs. This methodology
consists of two stages in which firstly FP information are distilled into a quantized model and then
into a approximated model. This recovery error scheme achieved a small accuracy loss (<3%), having
energy savings but no improvement in retraining time. On the contrary, [25] achieved a reduction
in retraining time of up to 11×, compared to a behavioral simulation of approximate multipliers in
DNNs using ProxSim. In [25] an obtained error model was added to each NN layer before activation
function, targeting to an improvement in the DNN generalization. This generalization can be
considered as a regularization method, which leads to better and faster results than training with
the behavioural simulation.

4.2 Statistical Error Compensation
Several works investigate alternatives to retraining in order to improve the accuracy achieved. As
aforementioned, retraining is time consuming and might not always be feasible (e.g., proprietary
datasets). ALWANN [81] proposed a fast weight-tuning algorithm that adapts the weights according
to the employed approximate multiplier and does not require any preprocessing or inference
evaluation. [81] replaced the weights in each layer based on the error characteristics of the employed
approximate multiplier. Each weight𝑤 was replaced by𝑤 ′ as follows:

argmin
∀𝑤′

∑︁
∀𝛼

|𝑀𝑎𝑥 (𝑎,𝑤 ′) − 𝑎 ·𝑤 |, (4)

where 𝑀𝑎𝑥 corresponds to the approximate multiplication. Using (4), [81] selected the value 𝑤 ′

that minimizes the sum of absolute differences (error) between the output of the approximate and
accurate multiplication over all inputs (∀𝛼). In other words, given an approximate multiplier, [81]
updated the weights so that the Mean Error Distance (MED) of the performed approximate multi-
plications is minimized.

The main computation of a convolution operation is given by:

𝑌𝑜 =

𝑁∑︁
𝑖=1

𝑊𝑜,𝑖𝑋𝑖 + 𝑏𝑜 , (5)

where𝑊𝑜,𝑖 are the filter’s weights, 𝑋𝑖 are the input activations, and 𝑁 is the number of weights.
The error (𝜖) of an approximate multiplier can be viewed as a random variable defined by its

mean value E[𝜖] and its variance Var(𝜖) [118]. Therefore, if the approximate multiplication error
is systematic, it can be compensated by a constant correction term [118]. Given the convolution
operation (5) and following this reasoning, [118] proposed a bias-update method to encompass
this correction term and compensate, thus, the error induced by the approximate multiplications.
Tasoulas et al. [118] proposed to replace the bias term 𝑏𝑜 in (5) by 𝑏 ′𝑜 . The latter is given by:

𝑏 ′𝑜 = 𝑏𝑜 +
𝑁∑︁
𝑖=1

E[𝜖𝑊𝑜,𝑖
] (6)
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where E[𝜖𝑊𝑜,𝑖
] is the mean error of the approximate multiplication𝑊𝑜,𝑖 ×𝑋𝑖 , ∀𝑋𝑖 . Hence, the mean

convolution error is given by [118]:
E[𝜖𝑌𝑜 ] = E[𝑌𝑜 − 𝑌 ′

𝑜 ]

= 𝑏𝑜 − 𝑏 ′𝑜 −
𝑁∑︁
𝑖=1

E[𝜖𝑊𝑜,𝑖
] = 0

(7)

As a result, by just updating the bias term using (6) the mean convolution error is effectively nullified.
However, fully exact inference cannot be achieved since the convolution error features non-zero
variance. To demonstrate the impact of the bias update, [118] showed that for the same accuracy
loss constraints, the bias update enables using higher approximation and more energy-efficient
multipliers. For example, for 0.5% accuracy loss constraint, using the bias update [118] achieved
1.4x higher energy reduction compared to the case that does not consider the bias update.

Finally, Zervakis et al. [133] introduced a control variate approximation to improve the accuracy
of the convolution operation. Instead of (5), [133] proposed to compute:

𝑌𝑜 = 𝑏𝑜 +
𝑁∑︁
𝑖=1

𝑀𝑎𝑥 (𝑊𝑜,𝑖 , 𝑋𝑖 ) +𝑉𝑜 (8)

again𝑀𝑎𝑥 corresponds to the approximate multiplication and 𝑉𝑜 is the proposed control variate.
The selection of 𝑉𝑜 depends on the approximate multiplier. The control variate 𝑉𝑜 estimates the
convolution error at runtime and though an extra addition, 𝑉𝑜 is added to the approximate convo-
lution result to mitigate the error. It is mandatory that 𝑉𝑜 can be easily computed in order not to
annihilate the gains of the employed approximation (𝑀𝑎𝑥 ). In [133], 𝑉𝑜 is calculated as a function
of the input activations and the average value of the weights. Specifically, in [133], 𝑉𝑜 is given by:

𝑉𝑜 =𝑊

𝑁∑︁
𝑖=1

(𝑋𝑖 mod 2𝑚), 𝑊 =
1
𝑁

𝑁∑︁
𝑖=1

𝑊𝑜,𝑖 , (9)

where𝑚 is a configuration parameter of the perforated approximate multiplier [134] that used
in [133]. Higher𝑚 refers to higher approximation and higher energy gains. [133] demonstrated
that the proposed control variate approximation technique nullifies the mean convolution error
and minimizes its variance. Over VGG-13/16, ResNet-44/56, ShuffleNet, and GoogleNet trained on
CIFAR10, [133] improved, the inference accuracy, on average, from 0.86% (when𝑚=1) up to 21%
(when𝑚=3) compared to the same approximation without the control variate (i.e., using [134] in (8)
without 𝑉𝑜 ). For the same CNNs on CIFAR100, the respective improvement is from 3.6% to 21%.

4.3 Error Metric Optimization
Many hardware approximation algorithms and frameworks are usually guided by the mean relative
error distance (MRED) metric [122, 131]. Nevertheless, MRED might not be an optimal metric for
approximate DNN inference accelerators. To increase the achieved accuracy, several works optimize
the generated approximate multipliers targeting specific error metrics. The generated approximate
multipliers are most suitable for DNNs and can achieve higher accuracy when combined with
the previously analyzed compensation techniques or even when applied in isolation. In [79] the
authors design approximate multipliers that satisfy:

|𝑀𝑎𝑥 (𝑤, 𝑎) −𝑤 · 𝑎 | ≤ 𝑐 ∀𝑎, ∀𝑤 and
𝑀𝑎𝑥 (0, 𝑎) = 𝑀𝑎𝑥 (𝑤, 0) = 0∀𝑎, ∀𝑤 (10)

again 𝑀𝑎𝑥 corresponds to the approximate multiplication and 𝑐 is an error threshold. In other
words, [79] ensures that the worst-case error of the approximate multiplier is below a given
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Table 3. Error features evaluated in [6].

Feature Description
ER Error Rate
Var(ED) Variance of ED
E[ED] Mean value of ED
RMS(ED) Root Mean Square of ED values
Var(RED) Variance of RED
E[RED] Mean value of RED
RMS(RED) Root Mean Square of RED values
Var(AED) Variance of AED
E[AED] Mean value of AED

threshold and that multiplication by 0 is always accurate. Then, [79] performs an exploration to
find the maximum value of 𝑐 that a given DNN can tolerate. Mrazek et al. [79] concluded that
although the impact of approximate multipliers on the accuracy is DNN-specific, aiming for high
accuracy it is mandatory to have the accurate multiplication by 0. The same error metric is used
in [80]. Vasicek et al. [121] used the weighted mean error distance (WMED), which considers the
input data distribution:

1
|{𝑎 |∀𝑎}| |{𝑤 |∀𝑤}|

∑︁
∀𝑎

∑︁
∀𝑤

D(𝑤) |𝑀𝑎𝑥 (𝑤, 𝑎) −𝑤 · 𝑎 | ≤ 𝑐, (11)

where D is the probability mass function and 𝑐 is an error threshold. Using (11) and exploiting
that the weights are known after training (and thus D), [121] assigns higher significance to the
weights that appear more often (i.e., higher D(𝑤)). Hence, [121] tries to ensure that the more
often multiplications are performed more accurately, leading to higher inference accuracy overall.
Ansari et al. [6] evaluated several error metrics in order to identify critical features that render
an approximate multiplier suitable for DNN inference. Specifically, the error rate (ER), the error
distance (ED), the absolute ED (AED) and the relative ED (RED) metrics were examined. Using
these error metrics, nine relevant error features of the approximate multipliers were evaluated.
These features are reported in Table 3. Through extensive experimentation, [6] concluded that the
most important features that make an approximate multiplier superior to others are Var(ED) and
RMS(ED). Tasoulas et al. [118] reached the same conclusion. Through a rigorous mathematical
analysis, [118] demonstrated that the mean convolution error can be cancelled using a constant
correction term as (6)-(7) show. Thus, [118] deduced that the ED variance (Var(ED)) is a more
important error feature when designing approximate multipliers for DNN inference. [118] showed
that the mean and variance values of 𝜖𝑌𝑜 , i.e., of the convolution error (ED), are given by:

E[𝜖𝑌𝑜 ] = 0 and

Var(𝜖𝑌𝑜 ) =
𝑁∑︁
𝑖=1

Var(𝜖) = 𝑁Var(𝜖),
(12)

where 𝑉𝑎𝑟 (𝜖) is the error (ED) variance of the approximate multiplier and N is the number of the
filter’s weights. Note that the variance after the constant compensation (i.e., (6)) equals the mean
squared error (i.e., square of RMS(ED)). Hence, the mathematical analysis of [118] is validated by
the experimental findings of [6] and vice versa.

5 ENERGY-ACCURACY EVALUATION
In this section we evaluate the efficiency, in terms of potential energy reduction and accuracy loss,
of hardware approximation when targeting CNN accelerators. As we will observe in the remainder
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Fig. 9. The allocation of the datasets that are used in the evaluation of hardware DNN approximation. The
pies present the percentage of the accuracy/energy evaluations that examine the respective dataset. The
middle and right pies refer to the Computation Reduction and Approximate Units categories, while the left
pies presents the aggregated results among all the approximate works. This figure evaluates the complexity
of the performed evaluations with respect to the dataset difficulty. To generate this figure, all the works
described in Section 3.2 and 3.3 have been considered.
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Fig. 10. Evolution of the number of approximate works (in percentage) that target MNIST and ImageNet. All
the works of Sections 3.2 and 3.3 are considered to generate this figure.

of this analysis, both the accuracy loss and the energy savings depend on the complexity of the
evaluated use cases/benchmarks (i.e., neural network, dataset, and/or precision). Hence, we first
provide a comprehensive discussion regarding the complexity of the considered use cases and then
we evaluate the accuracy-energy results as obtained from the respective publications of Section 3.

5.1 Assessing the Complexity of the Evaluation Scenarios
To assess the efficiency of approximate DNN accelerators, it is mandatory to analyze the datasets
that are used to evaluate the accuracy loss due to the introduced approximation. In other words, to
evaluate how efficient an approximation is, we need to determine the complexity of the benchmark
that was used to measure the attained accuracy after the approximation. For example, although
the MNIST dataset is widely used in early ML research, it is a fairly simple dataset and it is fairly
easy to achieve high accuracy even with high approximation [79]. As a result, MNIST cannot be
considered as a representative example of the complex services that modern DNN-based systems
deliver today. Hence, impressing results observed for the MNIST dataset, are hardly expected to be
achieved in more complex datasets.
Among all the works analyzed in our survey (techniques discussed in Sections 3.2 and 3.3),

various datasets have been used to evaluate the accuracy of the proposed DNN approximation
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Fig. 11. The DNNs that are examined in the accuracy/energy evaluations of the approximate works. Each bar
represents the number of works (in percentage) that used the respective DNN.

techniques. In Fig. 9, we present the respective dataset allocation. As shown, the most popular
datasets are MNIST, SVHN, CIFAR10 and ImageNet. Overall, there is a quite balanced research
effort distributed among the simple MNIST dataset and the more complex CIFAR10 and ImageNet.
It is noteworthy that the Computation Reduction approximation category mainly targets MNIST
while the Approximate Units category focuses on CIFAR10 and ImageNet.

Despite the fact that several works targeted the fairly simple MNIST dataset, Fig. 10 demonstrates
that DNN hardware approximation follows the current research trend. The evolution of DNNs has
led researchers to target more complex use cases. Over time, as shown in Fig. 10, more and more
DNN hardware approximation works focus on the ImageNet dataset while fewer and fewer works
target MNIST. For example, the percentage of approximate DNN techniques that used ImageNet
increased from 24% in 2016/17 to 42% in 2020/21. In the same period the percentage of works that
use MNIST decreased from 38% to 14%.
Moreover, in addition to the considered dataset, it is also essential to examine the complexity

of the DNNs that are used to evaluate the accuracy of the DNN approximation techniques. In
Fig. 11, we present the most widely used DNNs evaluated on our survey. As shown, the 30% of the
accuracy evaluations are performed on the fairly simple LeNet network. Nonetheless, significant
research also targets complex networks such as the VGG (19%) and ResNet (27%) networks. Fig. 12
presents a more descriptive view of Fig. 11. In Fig. 12, we analyze the size (in terms of numbers
of required MAC operations) of the DNNs used in the accuracy evaluation of the state-of-the-art
approximation techniques. Note that the numbers of MAC operations depends on both the number
of the DNN parameters as well as the input size (i.e., dataset used). As shown in Fig. 12, many
approximate works (i.e., the 44%) examine DNNs that require only a few tens of million (< 100M)
MAC operations. Nevertheless, significant research (> 24%) is also performed on larger DNNs that
require billions (> 2G) of MAC operations.

It is noteworthy that although the main objective of hardware approximation is energy efficiency
(that is crucial especially for embedded devices) only a small portion of DNN approximation tech-
niques targeted mobile-oriented DNNs such as MobileNet and Squeezenet (included in others).
Although this might be explained by the fact that such networks are already very compressed be-
coming, thus, very sensitive to further approximation, a wider and more comprehensive evaluation
(i.e., more approximation techniques must be evaluated on such challenging architectures [55]) is
required to draw such conclusions.
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Fig. 12. The number ofMacOperations required by the DNNs that are used in the accuracy/energy evaluations
of the approximate works. Each bar represents the number of works (in percentage) that considered a DNN
of the respective size. This figure evaluates the complexity of the performed evaluations w.r.t. the DNN size.

Finally, the complexity of the evaluation is highly correlated to the precision that is used to repre-
sent the weights and activations. Low precision representations require low bitwidth arithmetic and
thus smaller circuits (e.g., multipliers and adders). As a result, they constitute more challenging use
cases to apply approximate computing since they exhibit limited space for additional approximation.
In other words, compared to 8-bit implementations, it is easier to achieve high energy savings
combined with small accuracy loss when 32 bits are used for weights and activations. However,
note that 8-bit precision is mainly used today in the state-of-the-art exact DNN accelerators [58].
Fig. 13 presents the weight precision that is used in the evaluation of the approximate DNN

techniques. Similar results are obtained for the precision of the activations. As shown in Fig. 13,
a considerable amount of the approximation techniques (> 30%) uses high precision (i.e., ≥ 16b).
Nevertheless, the majority of the works (> 40%) examine the conventional 8b precision. It is
noteworthy that many works (> 18%) examined also more challenging cases in which very low
precision is used for the weights (≤ 6b).

5.2 Performance Analysis
In this subsectionwe evaluate the energy reduction and accuracy loss achieved by the CNNhardware
approximation techniques that are analyzed in Sections 3.2-3.3. Tables 4-6 present the corresponding
results. For each technique, the columns Neural Network and Dataset present the neural network
model and dataset that was used in the respective evaluation. The columns #Conv Layers and #MAC
Ops report the number of convolutional layers and the number of MAC operations required for
the corresponding neural network. The required MAC operations of [41, 80, 81, 118] are calculated
using the data reported in the corresponding paper while for the rest works we used pytorchcv [106].
Though, some works don’t provide adequate information to calculate the MAC operations of their
employed networks. The column Precision Baseline refers to the precision that the exact (baseline
design) uses for the weights and activations. A x-bit baseline uses x bits to represent the weights
and activations as well as a x-bit exact multiplier to perform the multiplications. The column
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Fig. 13. The weight precision that is used in the accuracy/energy evaluations of the approximate works. Each
bar represents the number of works (in percentage) that used the respective precision. This figure evaluates
the complexity of the performed evaluations with respect to the inference precision.

Table 4. Evaluation of Computation Reduction Approximation Category

Ref
Neural
Network Dataset

Precision
Approximate

Precision
Baseline

#Conv
Layers #MAC Ops

Acc. Loss(%)/
Energy Sav.(%)

Memoization

[76]
LeNet MNIST 32b 32b 2 0.34M 0.50 / 69
LeNet GTRSB 32b 32b 2 0.34M 0.10 / 22
Custom GSC 32b 32b - - 2.00 / 57

[57] LeNet MNIST 32b 32b 2 0.34M 0.50 / 45

[101]
Kaldi Librispeech 32b 32b 0 4.64M 0.47 / 49
C3D UCF101 32b 32b 8 0.11G 1.38 / 77

Autopilot Videos 32b 32b 5 2.22M 0.06 / 76

Skipping
[61] VGG-16 ImageNet 12b 12b 13 15.48G 0.80 / -1

[48]

VGG-16 ImageNet 32b 32b 13 15.48G 1.43 / 24
MobileNetV2 ImageNet 32b 32b 35 0.33G 2.70 / 15
LeNet300-100 MNIST 32b 32b 0 0.27M 0.12 / 89

LeNet MNIST 32b 32b 2 0.34M 1.29 / 51
CIFAR10 CIFAR10 32b 32b - - 2.00 / 68

[94]

VGG-16 ImageNet 8b 8b 13 15.48G 0.21 / 10
AlexNet ImageNet 8b 8b 5 1.13G 0.27 / 10

CIFAR10-Quick CIFAR10 8b 8b 3 0.33M 0.45 / 12
LeNet MNIST 8b 8b 2 0.34M -0.02 / 10

[119]
Custom MNIST 32b 32b 2 - -0.20 / 14
Custom CIFAR10 32b 32b 2 - 1.10 / 14

[52] Custom MNIST 16b 16b - 0.08M <1.00 / 74
1 [61] reports 1.7x higher energy-efficiency (TOPS/W).

Precision Approximate refers to the precision that the approximate implementation uses for the
weights and activations. The column Acc Loss/Energy Sav. presents the energy reduction and
accuracy loss of the approximate implementation with respect to the corresponding baseline.

Table 4 presents the evaluation of the Computation Reduction category and its Memoization and
Skipping subcategories. As shown in Table 4, the Memoization approximation family achieves very
high energy reduction (up to 77%) for a minimal accuracy loss (0.53%) on average. Nevertheless,
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only 32-bit precision is considered in this family and the examined networks are shallow (up to
8 convolutional layers). On the other hand, the Skipping family examines deeper networks, e.g.,
VGG-16 and MobileNet with 13 and 35 convolution layers, respectively. In addition, the DNNs
examined from the Skipping family feature many MAC operations (4.8G on average). With respect
to the employed precision, the Skipping approximation techniques mainly use high precision
(i.e., 16-bit and 32-bit precision). However, [61] and [94] use lower precision, i.e., 12-bit and 8-bit
respectively. Again, when considering simpler evaluation cases (e.g., LeNet, MNIST, and/or 32-bit
precision) Skipping approximation delivers minimal accuracy loss and very high energy gains. On
the contrary, this is not the case for more complex evaluations. When considering 8-bit precision
the energy gains drop to around 10%. Similarly, when ImageNet is considered (even with 32-bit
precision) the energy savings drop significantly and the accuracy loss increases. For example, [48]
achieved 24% energy reduction and 1.43% accuracy loss on VGG-16 while the respective values are
15% and 2.7% when considering MobileNet. Notably, with 12-bit precision, [61] features 1.7x better
energy efficiency (TOPS/W) and only 0.8% accuracy loss for VGG-16 on the ImageNet dataset.
Tables 5-6 present the respective analysis for the Approximate Units category. The results for

the Multiplierless and Log-Multipliers families are reported in Table 5. As shown in Table 5, the
Multipliers approximation targets low precision inference. This family exhibits a broad evaluation
that covers a wide spectrum from simple use cases to very complex ones (such as ResNet-164
on CIFAR100 and ResNet-50 on ImageNet). Remarkably, with 8-bit precision, [105] achieved 53%
energy reduction (compared to the 12-bit baseline) and only 0.37% accuracy loss for the very chal-
lenging ResNet-164 on CIFAR100. Note that although [105] used only 4-bit for simpler benchmarks
(e.g., MNIST, SVHN) it required 8-bit precision for more complex evaluations (e.g., CIFAR10 and
CIFAR100). As Table 5 also illustrates, the Approximate Log-Multipliers family focuses on more
complex datesets such as CIFAR10 and ImageNet and examines varying precision values (4-bit to
32-bit). As in the previous techniques, when 32-bit is used, very high energy reduction is achieved
(more than 70%) with a negligible accuracy loss (less than 0.5%). On the other hand, when the
employed precision decreases, the energy savings drop significantly (down to 22% for 4 bits) and
the accuracy loss increases (to 4.32% for 4 bits). Still, the obtained energy savings are considerable.

Table 6 reports the respective results for the Approximate Multipliers/Adders family (subcategory
of Approximate Units). This is the largest approximation family, comprising the most works. The
latter can be explain by the vast research activities that focused on approximate multiplication and
addition circuits since the introduction of approximate computing [56]. As shown in Table 6, the
approximation techniques of this family mainly target low precision implementations (i.e., 8-bit
mostly) and examine a variety of datasets and DNNs (from simple to more complex ones). As in
the previous approximation categories, when considering less complex benchmarks, very high
energy savings are achieved, combined with minimal accuracy loss. For example, for LeNet-5 on
MNIST, [79] delivered 77% energy reduction and only 0.09% accuracy loss. Similarly, using 16-bit
precision, [41] attained 81% energy savings and 0.47% accuracy loss for VGG-19 on ImageNet. In
more complex evaluations, the obtained energy gains are still significant albeit being decreased.
Remarkably, using 8-bit the dynamic weight-oriented approximation of [118] achieved 19% energy
reduction and 2% accuracy loss for MobileNet on CIFAR100 while the curable control variate
approximation of [133] delivered 35% energy savings and only 0.03% accuracy loss for VGG-16 on
CIFAR100. Compared to the 8-bit baseline, [80] used an approximate 8 × 4 multiplier (8 bits for the
activations and 4 bits for the weights) and achieved 70% energy reduction and 1.21% accuracy loss
for ResNet-26 on CIFAR10. Nevertheless, compared to the accurate 8 × 4 multiplier, these values
translate to 15% energy reduction and 0.08% accuracy loss.

Finally, the above analysis (Tables 4-6) is summarized in Fig. 14. To generate Fig. 14, we identified
the most widely used datasets as well as the most common network sizes (≤ 100M or > 100𝑀 MAC
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Table 5. Evaluation of Approximate Units Approximation Category (Multiplierless & Log-Multipliers)

Ref
Neural
Network Dataset

Precision
Approx. (W/A)

Precision
Baseline

#Conv
Layers #MAC Ops

Acc. Loss(%)/
Energy Sav.(%)

Multiplierless

[105]∗

MLP MNIST 4b 12b 0 0.08M 0.35 / 61
MLP TiCH 4b 12b 0 0.42M 1.71 / 79
MLP SVHN 4b 12b 0 1.05M 1.68 / 79
NIN CIFAR10 8b 12b 2 0.97M 0.00 / 53

ResNet-164(BN) CIFAR100 8b 12b 163 0.26G 0.37 / 53

[29]∗
AlexNet ImageNet 4b / 8b 8b 5 1.13G -0.30 / 25
ResNet-18 ImageNet 4b / 8b 8b 17 1.82G 0.90 / -1

ResNet-50 ImageNet 4b / 8b 8b 49 3.88G 0.40 / -1

[92] VGG-16 ImageNet 8b 8b 13 15.48G 0.10 / 552

Approximate Log-Multipliers

[93]∗
ResNet-20 CIFAR10 8b 32b 19 41.29M 3.14 / 53
ResNet-20 CIFAR10 16b 32b 19 41.29M 0.50 / 76

[62]
Cuda-convnet CIFAR10 32b 32b 3 0.33M 0.00 / 74

AlexNet ImageNet 32b 32b 5 1.13G 0.30 / 74

[126]
VGG-16 ImageNet 5b 8b 13 15.48G 2.72 / 223

AllCNN ImageNet 4b 8b 9 - 4.32 / 223

[103] AlexNet ImageNet 32b 32b 5 1.13G -1.00 / 733

1 [29] reports only area reduction (up to 55% LUTs reduction).
2 [92] is compared only to recent proposed architectures and reports about 55% power savings.
3 The same operating frequency is assumed for the approximate and baseline designs
* Retraining/Fine-tuning is used (see Section 4.1)

operations4) and we set two precision levels, i.e., low precision (≤ 8 bits) and high precision (> 8
bits). Then, we created a decision tree that helps the reader to identify the optimal approximation
technique/family with respect to the complexity of the evaluation (i.e., dataset , size of the network,
and precision) and the desired accuracy loss constraint. For the accuracy loss we considered
two thresholds, i.e., small accuracy loss (less than 1%) and moderate accuracy loss (less than
5%). The leafs represent the two approximation techniques (highest and runner-up) that achieve
the highest energy reduction in each case. In addition, the respective energy reducton is also
reported below the corresponding technique. The techniques are color-coded with respect to the
approximation family that they belong and underlined techniques require DNN retraining to achieve
the respective accuracy loss threshold. Note that some tree branches are empty since the respective
cases haven’t been considered in the evaluation of the examined approximate DNN works. For
example, considering the MNIST/SVHN datasets, only small DNNs are evaluated since they can
achieve almost perfect accuracy. As shown in Fig. 14, when high precision is used (mainly 32-bit)
the energy savings are maintained and remain very high (more than 74%) in all cases. However,
when low precision is examined (mainly 8-bit) the energy savings mainly drop as the complexity
of the evaluation increases.
Overall, the Approximate Multipliers/Adders family dominates Fig. 14 but this might also be

subject to the fact that the Approximate Multipliers/Adders is the largest examined approximation
family. Nonetheless, we can observe a considerable diversity in the tree’s leafs with respect to the
approximation family. Specifically for the Approximate Units category (Section 3.3), as shown in

4As an example, ResNet-44 on CIFAR10 requires 97.8M MAC operations.
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Table 6. Evaluation of Approximate Units Approximation Category (Approximate Multipliers/Adders)

Ref
Neural
Network Dataset

Precision
Approx. (W/A)

Precision
Baseline

#Conv
Layers #MAC Ops

Acc. Loss(%)/
Energy Sav.(%)

Approximate Multipliers/Adders

[79]∗

LeNet MNIST 8b 8b 2 0.34M 0.09 / 77
LeNet SVHN 8b 8b 2 0.34M -0.07 / 57
LeNet MNIST 12b 12b 2 0.34M -0.02 / 66
LeNet SVHN 12b 12b 2 0.34M -0.01 / 66

[6]∗
MLP MNIST 8b 8b 0 0.24M -0.01 / 71
LeNet SVHN 8b 8b 2 0.34M -0.07 / 71

[80]∗

ResNet-8 CIFAR10 6b / 8b 8b 7 21.10M 0.32 / 37
ResNet-14 CIFAR10 6b / 8b 8b 13 35.30M 0.18 / 37
ResNet-20 CIFAR10 5b / 8b 8b 18 49.50M 0.34 / 56
ResNet-26 CIFAR10 4b / 8b 8b 25 63.60M 1.21 / 70

[121]
MLP MNIST 8b 8b - 0.24M -0.20 / 60
LeNet SVHN 8b 8b 2 0.34M -0.12 / 70

[44] LeNet CIFAR10 8b 8b 2 0.34M -1.08 / 46

[81]†
ResNet-8 CIFAR10 8b 8b 7 21.10M 0.10 / 16
ResNet-14 CIFAR10 8b 8b 13 35.30M -0.32 / 20
ResNet-50 CIFAR10 8b 8b 49 0.11G -0.15 / 17

[41]
VGG-19 ImageNet 16b 16b 16 19.64G 0.47 / 81
Xception ImageNet 16b 16b 36 8.40G 0.90 / 81

DenseNet201 ImageNet 16b 16b 200 3.35G 1.14 / 85

[100]

LeNet MNIST 8b 8b 2 0.34M 0.03 / -1

CIFAR10 CIFAR10 8b 8b - - 0.62 / -1

AlexNet ImageNet 8b 8b 5 1.13G 0.02 / -1

VGG-16 ImageNet 8b 8b 13 15.48G 4.80 / -1

[38] VGG-16 ImageNet 8b / 16b 16b 13 15.48G 3.00 / 37

[133]†

GoogleNet CIFAR10 8b 8b 22 0.76G -0.16 / 23
GoogleNet CIFAR100 8b 8b 22 0.76G 0.05 / 23
ResNet-44 CIFAR10 8b 8b 43 97.80M 0.03 / 23
ResNet-44 CIFAR100 8b 8b 43 97.80M 0.77 / 23
shufflenet CIFAR10 8b 8b 3 80.85M -0.48 / 35
shufflenet CIFAR100 8b 8b 3 80.85M 0.20 / 23
VGG-13 CIFAR10 8b 8b 10 0.23G -0.30 / 35
VGG-13 CIFAR100 8b 8b 10 0.23G 0.89 / 23
VGG-16 CIFAR10 8b 8b 13 0.15G 0.38 / 35
VGG-16 CIFAR100 8b 8b 13 0.15G 0.03 / 35
ResNet-56 CIFAR10 8b 8b 55 0.13G 0.49 / 23
ResNet-56 CIFAR100 8b 8b 55 0.13G -0.34 / 23

[118]†

ResNet-20 LISA 8b 8b 21 40.80M 0.50 / 20
ResNet-32 GTSRB 8b 8b 33 69.10M 0.50 / 15
ResNet-44 LISA 8b 8b 45 97.40M 0.50 / 20
ResNet-56 LISA 8b 8b 57 0.13G 0.50 / 22

MobileNet-V2 CIFAR100 8b 8b 35 82.10M 2.00 / 19
VGG-11 CIFAR10 8b 8b 8 153M 1.00 / 19
VGG-13 CIFAR100 8b 8b 10 0.23G 0.50 / 19

[131] ResNet-8 CIFAR10 8b 8b 7 21.10M 0.50 / 19
1 [100] reports only area benefits in terms of BELs usage from 45% up to 97%
* Retraining/Fine-tuning is used (see Section 4.1)
† Statistical error compensation technique is used (see Section 4.2)
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Fig. 14. Classification of the optimal hardware approximation techniques with respect to the complexity of
the performed evaluation, i.e., dataset, DNN size, precision, and an accuracy loss threshold (1% and 5%). The
leafs present the corresponding optimal approximate technique (i.e., highest energy reduction) as well as
the respective runner up technique. Below each technique the attained energy reduction is reported. The
approximate color-coded with respect to the approximation family (see Fig. 5) that they belong. Underlined
techniques require retraining.

Fig. 14, techniques from all the three families (i.e., Multiplierless, Approximate Log-Multipliers,
Approximate Multipliers/Adders) appear among the optimal solutions. When high precision is
required then the Approximate Log-Multipliers constitute mainly the best solutions. On the other
hand, considering the most challenging evaluation (i.e., complex dataset and low bitwidth) then
the Approximate Multipliers/Adders and Multiplierless families prevail. In is noteworthy that
Multiplierless is represented by two different works ([105] and [29]) that both require retraining
however. On the other hand, the Approximate Multipliers/Adders is represented by one work
(i.e., [133]) that employs a statistical error compensation method (see Section 4.2). It is noteworthy
that although the impact of the error compensation techniques is not always comprehensively
analyzed in the respective works, from Fig. 14 we can deduce that such techniques are mandatory
to achieve high energy savings combined with low accuracy loss.

Moreover, we observe, in Fig. 14, that the approximation techniques that require or not retraining
are quite balanced. Out of all the techniques reported in the leafs of Fig. 14, [6, 29, 79, 80, 93, 105]
require retraining while [41, 44, 48, 52, 62, 81, 118, 133] do not. Hence, although significant research
focused on approximation-aware retraining, in the challenging evaluations (e.g., ImageNet in
Fig. 14), the optimal techniques do not apply retraining. The latter could be explained by fact that
retraining for ImageNet is very time consuming. This further highlights the need for more efficient
approximation-aware retraining or for techniques that apply curable approximations without
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retraining. Finally, hardware approximation for DNNs can deliver significant energy savings even
when considering complex scenarios and low accuracy loss constraints. However, by highlighting
the high difference in energy savings between the “easy” and “complex” evaluation scenarios, it is
derived that significant research is still required in more challenging benchmarks.

6 NOT JUST ENERGY EFFICIENCY
In the previous sections, we analyzed the impact of approximate computing on the energy efficiency
and accuracy of DNN accelerators, demonstrating that significant energy gains are achieved
for a minimal accuracy loss. In this section, our analysis goes beyond the energy efficiency of
DNNs. Recent research has shown that approximate computing principles enable designers to
overcome degradation effects (reliability-aware approximation) and security weaknesses (defensive
approximation) of DNN accelerators.

6.1 Reliability-Aware Approximation
In contrast to traditional thermal management approaches [87], Amrouch et al. [4] employed
approximate computing as a solution. Through precise chip modeling and multi-physics simulations
using Ansys, [4] demonstrated that DNN accelerators are subject to excessive power density
and elevated on-chip temperatures. [4] proposed the first hybrid thermal management for DNN
accelerators that employs runtime approximation as a cooling mechanism. Dynamic precision
scaling through clock gating and low bitwidth quantization is applied in [4]. As a result, at the
cost of some accuracy loss, reduced switching activity and thus lower power and power density
are achieved. Hence, as [4] demonstrated, for the same cooling cost, precision scaling can reduce
the power and thus the temperature. Similarly, the power gain of precision scaling can be traded
to increase both the frequency and the cooling cost and achieve higher performance for same
temperature and total power consumption. It is noteworthy that for 85℃ temperature constraint,
precision scaling boosted the efficiency (throughput/Joule) of the DNN accelerator by 1.5x [4].

The very high utilization of the DNN accelerator’s MAC units exposes the underlying transistors
to continuous stress with very little time for relaxation and recovery [104]. As a result, transistors age
faster. The presence of excessive temperatures [4] exacerbates further the problem as the majority
of mechanisms behind transistor aging exponentially depend on the operating temperature [104].
Salamin et al. [104] proposed a circuit aging aware approximation framework that applies a graceful-
approximation technique to suppress, over time, aging effects in DNN accelerators. Through aging-
aware cell libraries, [104] analyzed the delay of MAC units at varying aging levels. Exploiting
that lower bit-width inputs activate shorter paths and thus the circuit can operate faster, [104]
performed static time analysis to identify the maximum precision for each MAC input so that
no aging induced timing errors occur. The obtained precision was used to quantize the weights
and activations of the NN at runtime. A library of quantization methods [8, 55, 65] was used to
achieve the highest accuracy. [104] eliminated the aging-induced timing gurdbands, boosting the
throughput by 23%, and delivered a progressive accuracy degradation over time. At 10 years aging,
the accuracy loss was only 2.96% on average [104].

6.2 Defensive Approximations
Recent research showed that DNNs have intrinsic security weaknesses and are susceptible to
adversarial attacks [82, 109]. Approximate computing has emerged as a means for making DNN
models more robust against such attacks, while maintaining its effective trade-offs, i.e., high energy
savings for a small accuracy loss. The scope of an adversarial attack, in the case of vision tasks,
is to introduce a noise in the input image to create a spiteful sample, which is misclassified by
the DNN. Two categories of adversarial attacks that have preoccupied defensive approximations,
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Fig. 15. Classification of DNN Adversarial Attacks.

regarding the knowledge of attackers, are White-Box attacks (when attackers know the training
data, model parameters, and model architecture) and Black-Box attacks (when they don’t know
model information) [84]. The rest of them can be categorized according to different properties,
e.g., the target of attack, the kind of perturbation and the phase in which an attack occurs. These
attributes are summarized and explained in Fig. 15.

Most of the proposed methods that used approximate computing as defense aim at increasing the
generalization of DNNs, as observations show they perform better against various types of attacks.
It has been also noticed that low-precision models exhibit, in general, higher adversarial accuracy
compared to the full-precision models with identical network structures [31, 89]. This could be
explained due to quantization effect that enhances the amount of non-linearity, which prevents
small changes in the input from drastically altering the output and forcing a misclassification.

Guesmi et al. [37], in order to handle such threats, proposed an approximate CNN implementation,
where the exact multiplier replaced with an approximate FP multiplier that injects data-dependent
noise in convolution operations. This approximate mantissa multiplier induced an error, which was
propagated through the whole model. It was observed that this error could further the difference
between the first class and the “runner-up” and help the classifier to generalize and enhance its
confidence. Experimental evaluation over LeNet-5 trained on MNIST showed that, for a negligible
accuracy loss, the proposed defensive approximate scheme made the model 87.5% more robust
against Black-Box attacks than the conventional CNN, with 50% power and 67% area reduction.
A quantization-based defense, which exploits low precision implementations, was proposed

in [60]. First, [60] selects a number of quantization levels based on the application’s resilience to
errors and perturbations. Next, an additional layer is added at the input of the network that has
one-to-one relation with the input pixels. This relation with the rest quantization scheme supports
different configurations based on whether training is needed or not. The idea of this proposed
defense is based on the observation that when the input of a CNN is quantized, the confidence of a
clean image’s prediction remains almost the same. On the contrary, the confidence of an incorrectly
classification of a perturbed image is decreased. Evaluating the proposed scheme under different
white-box and black-box settings showed an increase in the classification accuracy of perturbed
images by up to 50% and 96% for CIFAR10 and MNIST datasets, respectively.
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7 CONCLUSIONS, CHALLENGES, AND PERSPECTIVE
In this article, hardware approximation techniques for DNNs are reviewed, characterized, classified
and evaluated. Moreover, we provide a comprehensive and analysis of error metrics and error
mitigation approaches specific for DNN approximations in order to provide an in depth analysis of
the studied field. Note that, in addition to the traditional exploitation of Approximate Computing
for energy reduction, we present how approximate computing can be employed in DNNs to
address reliability and security concerns. Our analysis clustered the hardware DNN approximation
techniques in three categories: Precision Scaling, Computation Reduction, and Approximate Units.

Precision scaling is the most widely used method and already adopted by most commercial DNN
accelerators. Advancements quantization aware (re-)training methods have led to minimal accuracy
loss even with 4-bit or 2-bit inference. Nevertheless, note that quantization aware training can be
very time consuming and post-training quantization approaches are efficient for 8-bit inference –
that is considered mainstream today – and with some limitations might enable 4-bit inference.
The Computation Reduction approximation is demonstrated to deliver very high energy re-

duction for minimal accuracy loss. However, this approximate category mainly examines 32-bit
inference and the energy gains dropped significantly when considering more challenging evalua-
tions such as 8-bit inference and/or ImageNet. As a result, to obtain conclusive results regarding
the Computation Reduction a more in depth comprehensive analysis is required either with respect
to more challenging evaluation scenarios or to NNs that indeed require high precision inference.
After Precision Scaling, the Approximate Units category has attracted the highest research

interest. Typically, Approximate Units is combined with low precision (mainly 8-bit inference).
Again, despite the high energy gains reported in many cases, a more comprehensive and challenging
evaluation is required. Although the results seem promising, evaluations on the state of the art
ImageNet datasets are still limited. Still, it is noteworthy that for small DNNs the Approximate
Multipliers/Adders family delivers immense energy reduction with negligible accuracy loss. The
latter appears ideal for IoT devices that need to run sophisticated DNN-based services. Moreover,
although some works aimed at evaluating the trade-off between low precision (8-bit and below)
and approximate units in DNN inference and showed that a combination of the two outperforms
the isolated application of very low precision, this correlation is not comprehensively analyzed yet.
Finally, note that an inherent limitation is this category that many techniques require retraining to
recover the accuracy loss. In contrast to quantization-aware training that can run efficiently on
CPUs and GPUs, retraining with approximate units requires hardware emulation that can even
become infeasible in complex DNNs. To avoid retraining, curable approximation and/or statistical
error compensation methods appear to be very promising solutions but are still understudied.
Hardware approximation for DNNs has shown remarkable advancements over the past years

moving from simple DNNs to very complex ones. Although, Approximate Computing has demon-
strated a great potential through some impressive results, still, significant innovation is required to
enable hardware approximation to be actively adopted in the design of complex DNN accelerators.
Finally, a crucial but not well addressed topic is the relation between approximate computing and
the standardization of ML-based systems in safety critical applications. Safety standards for systems
ML-based are yet to be formalized [117] and as a result, the impact of approximate computing on
the system’s certification remains unclear. The examined hardware approximation techniques are
deterministic and are not expected to impact the certification process. On the other hand, despite
the high inference accuracy achieved by these approximations, the ML system will not work as it
was trained to do (due to the induced approximation during inference). Thus, this might hinder the
certification of approximate ML-based systems in safety-critical scenarios. Nevertheless, such issues
could be solved through approximation-aware retraining. As discussed in Section 6, approximate
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computing enhances the reliability and robustness of DNN accelerators and thus might ease the
certification of the system. Overall, a deep investigation and analysis is required.
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