Downloaded from orbit.dtu.dk on: Aug 27, 2022

DTU Library

=
=
—

i

Hardware assisted clock synchronization with the IEEE 1588-2008 precision time
protocol

Kyriakakis, Eleftherios; Sparsg, Jens; Schoeberl, Martin

Published in:
Proceedings of the 26th International Conference on Real-Time Networks and Systems, RTNS 2018

Link to article, DOI:
10.1145/3273905.3273920

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Kyriakakis, E., Sparsg, J., & Schoeberl, M. (2018). Hardware assisted clock synchronization with the IEEE 1588-
2008 precision time protocol. In Proceedings of the 26th International Conference on Real-Time Networks and
Systems, RTNS 2018 (pp. 51-60). Association for Computing Machinery.
https://doi.org/10.1145/3273905.3273920

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1145/3273905.3273920
https://orbit.dtu.dk/en/publications/6de0b206-0a6b-4dc4-a245-c6a9f3981422
https://doi.org/10.1145/3273905.3273920

Hardware Assisted Clock Synchronization with the IEEE 1588-2008
Precision Time Protocol

Eleftherios Kyriakakis

Technical University of Denmark

Jens Sparsg

Technical University of Denmark

Martin Schoeberl
Technical University of Denmark

(DTU) (DTU) (DTU)
Kogens Lyngby, Denmark Kogens Lyngby, Denmark Kogens Lyngby, Denmark
elky @dtu.dk jspa@dtu.dk masca@dtu.dk

ABSTRACT

Emerging technologies such as Fog Computing and Industrial Internet-
of-Things have identified the IEEE 802.1Q amendment for Time-
Sensitive Networking (TSN) as the standard for time-predictable
networking. TSN is based on the IEEE 1588-2008 Precision Time
Protocol (PTP) to provide a global notion of time over the local
area network. Commonly, off-the-shelf systems implement the PTP
in software where it has been shown to achieve microsecond accu-
racy. In the context of Fog Computing, it is hypothesized that future
industrial systems will be equipped with FPGAs. Leveraging their in-
herent flexibility, the required PTP mechanisms can be implemented
with minimal hardware usage and can achieve comparable synchro-
nization results without the need for a PTP-capable transceiver. This
paper investigates the practical challenges of implementing the PTP
and proposes a hardware architecture that combines hardware-based
time-stamping with a rate adjustable clock design. The proposed
architecture is integrated with the Patmos processor and evaluated
on an experimental setup composed of two FPGA boards commu-
nicating through a commercial-off-the-shelf switch. The proposed
implementation achieves sub-microsecond clock synchronization
with a worst-case offset of 138 ns.

CCS CONCEPTS

* Computer systems organization — Embedded hardware; Em-
bedded software; * Networks — Network protocols;

KEYWORDS

IEEE 1588-2008, Precise Time Protocol, Hardware assist, Clock
synchronization, WCET analysis, FPGA implementation

ACM Reference Format:

Eleftherios Kyriakakis, Jens Sparsg, and Martin Schoeberl. 2018. Hardware
Assisted Clock Synchronization with the IEEE 1588-2008 Precision Time
Protocol. In 26th International Conference on Real-Time Networks and
Systems (RTNS ’18), October 10-12, 2018, Chasseneuil-du-Poitou, France.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3273905.
3273920

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6463-8/18/10...$15.00
https://doi.org/10.1145/3273905.3273920

1 INTRODUCTION

The IEEE 802.1 TSN task group [16] is in the process of standard-
izing Ethernet into a time-sensitive, deterministic, communication
technology, by defining a range of sub-standards based on IEEE
802 networks. TSN is gaining popularity, in automotive and indus-
trial automation networks over commonly used Fieldbus protocols,
such as PROFINET and EtherCAT [4]. This is due to its support for:
mixed-criticality traffic, high bandwidth and well-defined set of open
standards [24, 28] that allow for interoperability between network
devices. The deterministic communication of such systems is based
on time-scheduled traffic with bound end-to-end latencies [3] and
thus it requires a global notion of time to accurately synchronize
network operations.

To ensure a global time reference among network devices, TSN
employs the IEEE 1588-2008 Precision Time Protocol (PTP) [15]
PTP enables accurate clock synchronization over master-slave net-
work hierarchies, where the master is usually equipped with a high
precision source of time (i.e., GPS, atomic clock). The worst-case
precision of this clock synchronization correlates to the available
scheduling accuracy of all network-based operations. There are two
key mechanisms that influence the achieved clock precision of PTP,
the method of time-stamping and the clock adjustment implementa-
tion [5]. These mechanisms are either implemented in software or
via dedicated IEEE 1588-2008 compatible Ethernet PHY [26].

In the context of Industry 4.0, it is hypothesized that most up-
coming industrial embedded systems, such as Fog Nodes, will be
equipped with Field-Programmable Gate Array (FPGA) devices [9].
Based on the current price range of IEEE 1588-2008 compatible
PHY transceivers, which is two times more expensive than standard
PHYs and the decreasing prices of FPGAs, we argue that by taking
advantage of the inherent flexibility of FPGAs, the PTP mechanisms
can be implemented in the existing hardware without the need of
costly PTP-capable PHY transceivers. These mechanisms can still
provide comparable accuracy to PTP-capable PHY transceivers and
at the same time minimize the cost of real-time systems by 30%
while provide design flexibility and hardware reusability.

This paper explores the challenges of clock synchronization with
PTP and proposes a hardware architecture that combines, a hard-
ware IEEE 1588-2008 clock adjustment unit together with a PTP
message recognition and timestamping unit. The proposed hardware
is integrated within the FPGA-based platform T-CREST [21] and
evaluated using the worst-case execution time (WCET) optimized
processor Patmos [22]. The design is evaluated on a simple network
composed of two T-CREST nodes, acting as a master-slave PTP pair,
and connected through a single commercial-off-the-shelf switch.

https://doi.org/10.1145/3273905.3273920
https://doi.org/10.1145/3273905.3273920
https://doi.org/10.1145/3273905.3273920

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

The achieved clock synchronization between the two nodes is evalu-
ated regarding two metrics, accuracy as average mean and jitter as
standard deviation. The results are compared against a WCET ana-
lyzable software-based implementation of PTP. The contributions of
this paper are:

e A hardware design that allows for network nodes to synchro-
nize with sub-microsecond accuracy using standard PHYs.

o A WCET analysis of the PTP software-stack implementation.

e An evaluation of the achieved synchronization and the identi-
fied parameters affecting its accuracy and jitter.

The paper is organized in 6 sections: Section 2 provides the reader
with a background on the fundamental concepts involved in the IEEE
1588-2008 PTP as well as a short introduction on the T-CREST plat-
form and the WCET optimized processor Patmos. Section 3 reviews
the challenges of implementing PTP and the different approaches
that have been used. Section 4 presents the proposed hardware archi-
tecture and describes its integration with the T-CREST platform. Sec-
tion 5 describes the experimental setup and presents the evaluation
of the collected data from the implementations. Finally, Section 6
concludes the paper.

2 BACKGROUND

Different protocols have been developed over the years to achieve
time synchronization between networked devices. The Network
Time Protocol (NTP) [14] is one the most widely used protocols
due to its compatibility with the Internet protocol as well as simple
operation. It uses a polling mechanism where devices request the
current time from a server to update their own notion of time. This
protocol does not consider the network propagation delays along the
path of the time server response and thus it can lead to significant
offset and jitter. Filtering algorithms are usually implemented to
reduce network-induced jitter and under special conditions (i.e., in
local area networks), NTP can achieve sub-millisecond accuracies.
However, this is not sufficient for real-time systems which often
require microsecond precision.

2.1 IEEE 1588-2008 PTP

The IEEE 1588-2008 standard introduced PTP as an alternative
mechanism to NTP to allow for sub-microsecond clock synchro-
nization on local area networks. PTP is an Ethernet-based protocol
that uses a periodic exchange of messages based on a master-slave
network topology. This allows the precise calculation of each slave’s
clock offset, relative to its master, by considering the propagation
delay of the message [5]. PTP is a distributed protocol that requires
each ethernet port of an IEEE 1588-2008 compatible network device
to execute the same stack of operations and implement the following
fundamental blocks:

e IEEE 1588-2008 software stack
o IEEE 1588-2008 clock

e Clock adjustment

e Timestamp capturing

e Frame/Packet recognizer

These blocks can be implemented either in software or hardware
and the most common cases are reviewed in Section 3. Each IEEE
1588-2008 network port can be either in a PTP_MASTER state or

Eleftherios Kyriakakis, Jens Sparsg, and Martin Schoeberl

M S

100 —
t;: 100.x; sec
101 —
J
P“Q().x]) t,: 76.x, sec
12——------------""» 177
13— —--------------- —1—78
— 79
t3: 79.x3 sec
— 80
t;: 105.x,
— 81
— 82
108 —F—--------------- —1—83=108

Figure 1: Simplified overview of the IEEE 1588-2008 PTP mes-
sage flow. The example assumes a link delay of 1 second and
variable delays x; associated with each timestamp ¢;

a PTP_SLAVE state. The port’s state can be explicitly defined or
implicitly by the best master clock selection algorithm. This paper
focuses on the clock synchronization between two network devices,
and thus the operation of the best master clock algorithm is out-of
the scope of this paper. It is assumed that all ports are explicitly
defined as PTP_MASTER or PTP_SLAVE.

The calculation of the slave clock offset involves two metrics,
offset and delay which are estimated using four timestamps ?1, #3,
13, and 4 that are generated based on the messages, SYNC, FOL-
LOW_UP, DELAY_REQ and DELAY_REPLY respectively. There
are two synchronization mechanisms supported by the PTP pro-
tocol, the one-message model and the two-message model. The
one-message model can be used when high precision is not an appli-
cation requirement and thus the message FOLLOW_UP containing
the precise time of SYNC transmission (#1) is not sent.

This paper implements the two-message model whose operation
is illustrated in Figure 1 and described below. The master port M is
responsible for periodically broadcasting SYNC messages and stor-
ing the transmission time in the timestamp #;. Each SYNC message
is followed by a FOLLOW_UP message containing the timestamp #;.
The slave port S keeps a receipt timestamp , of the SYNC message
and together with the timestamp # contained in the FOLLOW_UP
message it can estimate its offset from the master clock, but this does
not take into consideration the transit time of the received messages.
To calculate the propagation delay involved in the transmission, the
slave port S sends a DELAY_REQ message to the master port M
and keeps a transmit timestamp 73. The master port M that receives
the message replies with a DELAY_REPLY message containing the
exact time it received the request 74. The PTP slave can now accu-
rately calculate its offset from the master taking into consideration
also the transmission delay involved in their communication path.
The use of the gathered timestamps by the slave in the calculations
is shown in Equation 1 as described in [5].

offset =t —t; —delay (@))]

Hardware Assisted Clock Synchronization with PTP

where:
dA+dB
delay = i
2
dA=t —1
dB=1t4—1t3

The example PTP synchronization, presented in Figure 1, assumes
a propagation delay of 1 second and variable delays x; associated
with each timestamp #;. These delays correspond to the time interval
between the actual transmission of a PTP message and the moment
the timestamp is captured. Considering the timestamp capture delay
variations in Equation 1 we calculate:

offset =t +x3 —t; +x1

1
— E (12 +Xp—fH+X1+Hl4+X4—13 +X3) =

1
offset = 5 (12 —+13—1l4+X) —X]+X3 —X4)
Thus we can derive that the approximate jitter is:
.. 1
Jitter = 3 (x2 — X +x3 *)C4> 3)

As illustrated in Equation 3 the need for time-predictable time-
stamp capturing (timestamping) is a crucial step in calculating the
precise clock offset and every component that handles a PTP mes-
sage, until the timestamp is registered, increases the synchronization
error by a small amount. The IEEE 1588-2008 standard defines that
timestamping should occur precisely when the last bit of the start-of-
frame (SOF) byte of an Ethernet frame is received as illustrated in
Figure 2. However, depending on the timestamping technique used
this cannot always be achieved. In general, there are three common
ways of implementing timestamping as discussed in literature [5]:

(1) Software-based timestamping, is handled in software at the
reception/transmission of an Ethernet frame from the MAC
layer. The application has to interface with the MAC con-
troller, pack/unpack the frame and check for valid PTP mes-
sage, or at the transmission of a PTP frame.

(2) MAC-based timestamping, is handled by dedicated hardware
on the MAC layer, most often implemented by an FPGA or a
micro-controller. The hardware unit is responsible for parsing
and timestamping the received frame from the PHY.

(3) PHY-based timestamping, is handled by a dedicated PHY
device that incorporates both an IEEE 1588-2008 Clock and
a PTP frame recognition & timestamping unit.

2.2 Experimental Platform

The implementation and evaluation described in this paper is built
around the open-source platform T-CREST [21].

T-CREST is an FPGA-based multi-core platform that has been de-
veloped for on-going research in real-time applications and is based
around the WCET-optimized processor Patmos [22]. Patmos is a
time-predictable, dual-issue, RISC processor that has been designed
with focus on WCET analysis. It uses special WCET-optimized in-
struction and data caches along with private scratchpad memories
for instructions and data. It is supported by an LLVM-based [11]
compiler, also optimized for WCET and by the WCET analysis tool
platin [8].

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

The tool platin performs static analysis to compute the WCET
of a certain code segment by using the information generated and
preserved during compilation to determine a control flow graph.
Together with low-level timing information of the processor archi-
tecture it can calculate a safe WCET of the analyzed code segment.

This work is integrated with the T-CREST platform as part of an
on-going effort to provide support for time-triggered communication
over TSN networks. Patmos is used to provide a time-predictable
execution of the PTP software stack and together with the WCET
analysis tool platin it is used to identify software-based causes of
jitter in the PTP clock synchronization.

3 RELATED WORK

This section reviews the challenges and common approaches of
implementing PTP, including timestamping and clock correction
methods, as well as presents a state-of-art clock synchronization
implementation.

Regarding the implementation of a PTP timestamping mechanism,
different solutions have been presented that each tries to address
different system challenges.

Software-based timestamping is very simple to implement in
existing systems as it does not require any additional hardware.
However, it can introduce significant jitter since the application runs
in user space and its performance cannot be guaranteed. Both the
processor load and the delay with handling interrupts or checking
flags impact the precise moment of timestamping and lead to error
offset and jitter. This is investigated in [2], where it was shown
that under special conditions (i.e., low network traffic, high bit-rate
connection) this implementation can achieve sub-millisecond clock
synchronization.

MAC-based timestamping can be found implemented in modern
commercial micro-processors, such as the STM32F105xx or the
STM32F107xx [23] where the clock synchronization has been char-
acterized by [29]. To the best of our knowledge, the implementation
challenges and performance of this method have not been thoroughly
investigated for IEEE 1588-2008 PTP. Related works such as [6]
have investigated the concept of packet reception and timestamping
using the AS6802 [10, 27] synchronization algorithm but the imple-
mentation or the precision of the achieved clock synchronization are
not discussed. Designs for hardware-based PTP timestamping have
been presented in [17, 20], but they have not been implemented in
areal system nor evaluated in terms of their clock synchronization
precision.

Finally, PHY-based timestamping has been implemented in com-
mercial packages such as the Texas Instruments PHYTER [26]. This
off-the-shelf component has been used in different works [12, 18]
where it is presented that it can ensure nanosecond accuracy clock
synchronization.

Regarding the clock correction mechanism, the IEEE 1588-2008
standard does not define an algorithm or procedure for adjusting
the slave clock despite this having a significant influence on the
overall precision of the system. Different approaches have been
implemented to adjust the clock including:

e Clock rate adjustment by pulse addition and swallowing. An
algorithm has been proposed by [30] and the procedure is
also described in [5].

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

PTP over UDP over IPv4 (Type=0x0800)
%Preamble SOF |DstMAC:SrcMAC:Type| Data | FCS

Eleftherios Kyriakakis, Jens Sparsg, and Martin Schoeberl

PTP directly over Ethernet

PTP
Preamble‘ SOF .DstMAC SrCMAC‘Type.Message FCS

IP Header

UDP Header PTP Message

e 224.0.1.129 e Port: 319 e« PTP Header

e PTP Suffix

for all for event ¢ PTP Body
e 224.0.0.107 messages

for peer e Port: 320

delay for other

measurements messages

Figure 2: PTP Ethernet frame format depending on Ethernet Type. Moment of timestamping ¢; is illustrated at SOF byte.

e Error register maintenance instead of clock correction. This
technique is discussed in literature [5]. The error register is
updated with the current offset from the master clock while
the slave clock is never modified.

Finally, PTP has also been investigated in simulation to identify
common sources of jitter and their effects on the synchronization
as well as to estimate the best achievable clock synchronization
in multi-hop large-scale networks [7]. The results show that the
precision reduces as the number of hops increases and guaranteed
precise synchronization proves challenging as the network scales.

At this point it is worth mentioning that research at the European
Organization for Nuclear Research (CERN) has demonstrated the
versatility of PTP and has shown that sub-nanosecond accuracy is
possible. The developed application called White Rabbit [13] made
use of PTP and Synchronous Ethernet standards on a custom network
built on fiber optic links. The application achieved sub-nanosecond
precision in the range of 135.25 ps with a standard deviation of
approximately 6 ps.

This paper differs from related work as it aims to realize and eval-
uate an FPGA implementable architecture, able to provide nanosec-
ond precision between master-slave node pairs using the IEEE 1588-
2008 PTP on standard LAN networks without the use of dedicated
PTP-capable Ethernet PHY hardware.

4 DESIGN AND IMPLEMENTATION

This section presents the hardware architecture that integrates with
T-CREST, the proposed hardware-assist logic, for timestamping and
clock adjustment, and finally the PTP software stack that is used to
control and evaluate the design.

4.1 Hardware Architecture

The proposed hardware architecture, presented in Figure 3, is inte-
grated with the T-CREST platform as a single IP core that interfaces
with the Patmos processor. Its functionality is to snoop on the media
independent interface RX/TX channels between the PHY and the
MAC controller for PTP messages and provide times stamps for
their arrival and departure accordingly. The unit is composed of
three functional entities:

FPGA Device

PTP
Patmos Software Stack
Processor

(OCP Bus)

MAC Ethernet II

Controller PTP Hardware-Assist

i | TX PTP Frame TSU id— |EEE
1588
» | RX PTP Frame TSU id— Clock

PHY
Device

Figure 3: Implementation of PTP Hardware-Assist unit inside a
T-CREST node. PHY TX/RX signals are split between the MAC
controller and the hardware-assist PTP unit.

(1) The two RX/TX timestamp units (TSUs) that parse and time-
stamp a received or transmitted PTP frame, based on the
SOF byte (see Figure 2). The units also include an interrup-
t/flag signal that is raised when a PTP frame has been parsed
successfully and a valid timestamp is available for reading.

(2) The IEEE 1588-2008 Clock is composed of two counters
representing seconds and nanoseconds that operate under a
pre-scaled frequency. This unit is augmented with the pro-
posed clock adjustment mechanism. In addition, it includes a
configurable timer interrupt which can be used to schedule
time-triggered network operations.

(3) The PTP software stack, executing on the Patmos processor,
is responsible for the PTP message exchange as well as the
offset calculation. The software stack is also responsible for
managing the time-stamping, either by reading the RX/TX
timestamp units or by reading the IEEE 1588-2008 Clock as
well as for controlling the clock adjustment mechanism.

Hardware Assisted Clock Synchronization with PTP

4 Tnitial N

|EEE 1588 clock time

S J
v Ul

Valid PTP Type Timestamp

Figure 4: Implementation of the proposed RX/TX PTP time-
stamp unit (TSU).

4.2 RX/TX Timestamp Unit

The RX/TX timestamp unit (TSU) is presented in Figure 4. The
hardware unit uses a finite state machine (FSM) to parse Ethernet
frames as they are communicated between the PHY and the MAC
controller. Incoming nibbles are de-serialized into bytes and con-
secutively stored into a double-word (64-bit) buffer. The FSM is
initialized in the SFD (start-of-frame-detect) state where it waits and
checks the double-word buffer until the frame’s preamble and SOF
sequence (0x55555555555555D5) is detected, at which moment it reg-
isters the current IEEE 1588-2008 Clock time and transitions to the
next state to start parsing the incoming frame. Stepping through the
FSM is done by keeping a record of how many bytes have been re-
ceived at each state and resetting the counter when transitioning to a
new state. States DSTMAC and SRCMAC read the Ethernet frame’s
destination and source MAC address respectively. State ETHTYPE
is responsible for recognizing the received Ethernet frame’s type
and it provides support for the two PTP frame formats (see Figure
2). After the reception of the Ethernet type the state transitions to
the IP state and consecutively to the UDP state where it parses the
respective protocol headers. If the FSM detects that an IP header
does not contain a valid UDP packet or that the UDP header does
not contain a valid PTP message it proceeds to transition to state
FCS (frame-check-sequence) where it remains until the remaining
bytes have been received. When the FSM reaches the PTPHEAD
state, it registers the stored IEEE 1588-2008 time along with the
PTP message type and a valid bit indicating that a PTP timestamp is
available for reading.

4.3 Clock Adjustment

The proposed IEEE 1588-2008 clock & adjustment mechanism is
presented in Figure 5, and is composed of three parts:

(1) The clock counter which consists of a 48-bit nanosecond
counter and a 32-bit seconds counter and complies with the
time format specified by the IEEE 1588-2008 standard.

(2) The abrupt update register which can be used to instanta-
neously update the clock to a specific time value

(3) The offset correction register which is used to gradually cor-
rect the offset by adjusting the clock rate.

For large offsets (i.e., when a new node is connected to an already
synchronized network or epoch changes), the time can be updated

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

PTP Software Stack

IEEE 1588 Clock &
Adjustment
- Adjustment Control
Rate LUT (ns)

25
20
10

Offset Correction
Register

Abrupt Update
Register

Nanoseconds

Seconds

IEEE 1588 clock counter

Figure 5: Implementation of the proposed IEEE 1588-2008
clock adjustment mechanism. Time-step of 25ns is related to
a clock frequency of 40 MHz and can be tuned accordingly.

through the abrupt update register. For small values, the offset can be
written directly in the offset correction register. The register indexes
a look-up table (LUT) based on a set of configurable thresholds.
The threshold values for this implementation are chosen empirically
and are divided into the following categories for both positive and
negative rates:

+1msto+1us
+1us to =100 ns
4100 ns to =50 ns
+50us to +1ns

The LUT controls the amount added/subtracted to or from the base
time-step of the clock counter nanosecond counter. The operation
increases or decreases the offset correction register according to
the indexed LUT value and stops when its value reaches zero. This
mechanism is based on the pulse addition and deletion technique
discussed in Section 3 and works by gradually correcting the clock
offset by increasing or decreasing the rate (time-step) of the clock
counter. The LUT is indexed by a set of configurable thresholds
for the value of offset correction register. The LUT rate values are
chosen empirically, according to the resolution of the clock counter
and allow to double the rate or completely stop the counter. Further
fine tuning depending on the system’s requirements can be applied.

Choosing between correcting the clock offset using the abrupt up-
date register or the offset correction register is managed in software
and can be configured by the PTP_NS_OFFSET_THRESHOLD parameter
in code.

4.4 PTP Software Stack

The PTP software stack runs on the Patmos processor and involves
the execution of a simplified PTP protocol were the master/slave
mode is explicitly defined. Although open-source software projects
that implement the full IEEE 1588-2008 standard are available [19],
they are not developed with WCET in mind and are hardly time-
predictable, thus they could not be used in our evaluation.

The PTP software stack is responsible for the following tasks:

o Initializing Patmos in master or slave port mode.

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

e Performing the clock synchronization, depending on the port
mode.
e Reporting the clock offset at each synchronization interval.

The software is implemented in a way that both the PTP_MASTER
and the PTP_SLAVE share the same codebase with the following
functions:

(1) ptpv2_issue_message() involves creating, sending and time-
stamping the transmission of a PTP message. Checking the
completion of the transmission and registering the timestamp
is done by function read_tx_timestamp().

(2) check_ptpv2_frame(), involves reading the MAC receive
buffer, checking the ethernet type field of the frame and re-
sponding accordingly. When a PTP frame is detected the
function ptpv2_handle_message() is called.

(3) ptpv2_handle_message() involves the unpacking, timestamping

and the possible clock offset calculation/correction depending
on the received PTP message type. Registering the time of re-

ception timestamp is done by calling the function read_tx_timestamp ().

Correcting the clock offset is done by first calling the func-

tions ptp_calc_one_way_delay() and ptp_calc_offset(), for

seconds and nanoseconds respectively, and finally calling the
function ptp_correct_offset() for adjusting the clock.

Since both the PTP_MASTER and the PTP_SLAVE are explicitly
defined, their operation was implemented as two simple cyclic proce-
dures presented in Figures 6a & 6b respectively. The PTP_MASTER
is responsible for issuing SYNC and FOLLOW_UP messages at a
fixed rate as well as checking for any received PTP messages and re-
plying to DELAY_REQ messages. The PTP_SLAVE is responsible
for checking for any received PTP messages and, if a FOLLOW_UP
message is received, replying with a DELAY_REQ message.

As presented in [2], multi-tasking can have a negative impact on
the clock synchronization precision of software-based PTP. Taking
this into account, to allow us to compare the performance of the
proposed hardware-assist mechanisms with the best-case software
execution, the application is implemented on a single task environ-
ment on the Patmos processor.

5 EVALUATION

This section presents the experimental setup over which the pro-
posed hardware architecture was evaluated as well as its hardware
resources. Finally, the collected results from the WCET analysis and
the clock synchronization are discussed.

5.1 Experimental Setup

The presented hardware architecture was synthesized on two FPGA
Terasic DE2-115 boards and explicitly configured as a PTP mas-
ter/slave pair. The clock synchronization was evaluated on a simple
experimental setup composed of the two FPGA boards communicat-
ing over a single off-the-shelf switch via a 100 Mbps Ethernet. Each
FPGA board used a PLL to generate the internal logic clocks. The
Patmos processor was operating at frequency of 80 MHz. The IEEE
1588-2008 clock was operating at a frequency of 40 MHz and had a
resolution of 25 ns. The PLL input was provided by a commercial
off-the-shelf oscillator operating at a nominal frequency of 50 MHz
with an accuracy of 50 ppm.

Eleftherios Kyriakakis, Jens Sparsg, and Martin Schoeberl

PTPMasterLoop
ElapsedTime?

ptpv2_issue_msg()
ptpv2_issue_msg()
check_ptpv2_frame()

° ISPTPFrame?

ptpv2_handle_msg() ||ptpv2_issue_msg()|

ptpv2_handle_msg() ||ptpv27issue7msg()
A

No Yes

(b) PTP_SLAVE loop

Figure 6: Program flow of PTP master and slave

5.2 Hardware Resources

The hardware was synthesized for an Altera Cyclone IV FPGA
[1]. Table 1 presents the hardware utilization of the proposed PTP
Hardware-Assist IP. The values outside the parentheses indicate the
aggregate resources used by the entity, while the value inside the
parentheses indicate the utilization of the specific entity alone.

The hardware cost of the proposed hardware-assist unit is minimal.
The utilization of PTP Hardware-Assist is only 1.7 % of the total
available resources of the Cyclone IV FPGA device (114480 Logic
Elements) and when compared to the the small-sized processor
Patmos, it is 11 % of its total size (13503 LUTs and 8325 Logic
Registers).

Hardware Assisted Clock Synchronization with PTP

Table 1: Hardware-assist Architecture Resource Utilization

Entity Combinational LUTs Logic Registers
PTP Hardware-Assist 1485 (82) 1182 (142)
MIITimestampUnit 454 (376) 402 (327)
DeserializePHYbyte 13 (13) 11(11)
DeserializePHY Buffer 65 (65) 64 (64)
RTC 431 (431) 234 (234)

Table 2: WCET Analysis of PTP Software Stack

Function WCET

Clock Cycles Time (at 80 MHz)
ptpv2_issue_msg() 2560141 32 ms
readTXTimestamp() 5 62.5ns
check_ptpv2_frame() 684 8.55us
ptpv2_handle_msg() 3893 48.6 us
readRXTimestamp() 5 62.5ns
ptp_correct_offset() 66 850ns
ptp_calc_offset() 4 50ns
ptp_calc_one_way_delay() 7 87.5ns

5.3 WCET Analysis

To reveal possible sources of jitter, as well as to estimate the pro-
cessor load involved in the execution of the PTP software-stack, a
formal WCET analysis was performed using the tool platin [8] and
the results are presented in Table 2.

The WCET revealed that the worst-case delay between the arrival
of a PTP message and the software capturing the timestamp to be
8.6 us. This includes the software packing/unpacking the frame plus
registering the time of arrival/departure that amounts to 685 +5 =
689 WCET clock cycles. As shown in Equation 3 this can lead to
significant error in the calculated clock offset and consecutively
lead to jitter. If hardware-based timestamping is used, the worst-
case delay of 689 clock cycles does not introduce any jitter, since
the timestamp has already been captured in hardware and thus the
software only needs to read the stored value.

Furthermore, the WCET analysis of functions ptpv2_issue_msg()
and ptpv2_handle_msg() showed that there is a significant overhead
in the processor to execute the PTP protocol.

We propose as future work a complete in-hardware implemen-
tation of the PTP synchronization. Building up from the presented
results, the proposed hardware-assist architecture can be extended
with the addition of a PTP message generator controller. This is
hypothesized to both minimize jitter but also significantly reduce
the processor load especially in multi-tasking environments where
the precision of PTP can be reduced significantly [2]. This will also
allow for greater scalability on large scale networks, were devices
require more than one ethernet ports to synchronize using PTP.

5.4 Clock Synchronization

To evaluate the clock synchronization, the PTP_SLAVE was con-
figured to report, over serial a port, the calculated clock offset at
each PTP synchronization interval (after all four timestamps were

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

gathered). To best evaluate the performance of the proposed imple-
mentation, four sets of results were collected by testing different
combinations of implementation, namely:

software-based timestamping

hardware-based timestamping
abrupt clock updates

clock rate control adjustment

As a base of comparison to the evaluation of the results and to
determine the static drift between the master and slave clocks on
the two FPGA boards, measurements were gathered using PTP but
without implementing any corrections or adjustments to the slave
clock. Figure 7 presents the PTP slave’s clock offset as calculated
after an initial correction and no further adjustments. The relative
drift was estimated at an average of 34 us/sec, which corresponds to
34 ppm and illustrates the need for accurate synchronization.

First, the effects of the proposed hardware-based timestamping
against software-based timestamping were compared in terms of
jitter as standard deviation. Figure 8 presents the results from 18000
collected samples from two different measurements with a SYNC
period of 0.5 ms. The calculation used only abrupt updates for cor-
recting the clock offset, to clearly reveal the influence of the time-
stamping mechanism. The hardware-based timestamp mechanism
managed to reduce jitter to a standard deviation of 49.8 ns, while
software-based timestamping could only achieve a standard devia-
tion of 95.3 ns.

Secondly, the effects of the proposed rate control mechanism were
investigated in terms of accuracy (avg. mean) of the calculated offset.
The measurements presented in Figure 8 show that there is an avg.
mean offset of 154 ns. This offset is introduced by the time it takes
to read the clock, add the delay and write-back the new value into
the clock. Figure 9 presents and compares the improved avg. mean
using the proposed rate control mechanism against the achieved
accuracy using only abrupt updates. The data were collected from
two different measurements that both used a 0.5 ms SYNC message
period and hardware-based timestamping. The achieved achieved
accuracy of rate-control was within 17 ns with a std. deviation of
48.7 ns.

The results show that the timestamping method influences the
jitter of the calculated offset, while the clock adjustment method was
mainly responsible for the accuracy of the achieved synchronization
but also revealed a slight improvement in jitter.

The proposed PTP Hardware-Assist implementation offers sub-
microsecond clock synchronization of an avg. mean of —17.3ns
and a jitter of approx. 48.7ns with a worst-case clock offset of
138 ns. The results improve the worst-case synchronization offset
of 500 ns that was achieved when using only software-based time-
stamping and abrupt updates. The presented results also achieve
better worst-case offset when compared to the related architecture of
the STM32F107xx microprocessor, which as characterized by [29]
it achieves a worst-case offset of 260 ns. Moreover, the achieved
performance is comparable to the clock synchronization of a com-
mercial PTP-capable Ethernet PHY transceiver that is presented
in [12, 18], and allows for an avg. mean of 10ns and a jitter of
approximately 50 ns.

We propose as future work to extend the experimental setup and
evaluate the presented architecture over a large-scale TSN network

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

Measured Clock Offset using PTP
T T

Eleftherios Kyriakakis, Jens Sparsg, and Martin Schoeberl

-2000 :] 1 : ;
e [~—Not corrected clock offset|
\«,\A*»;
. -4000 |- T |
o) I
c e
o e
ﬁ -6000 - T -
1) N
~ ““\\K
g -8000 S -
O e
~—
-10000 - T J
N
| | | | | | I | | o]
0 50 100 150 200 250 300 350 400 450 500

Time (samples)

Figure 7: Measured clock offset between the two FPGA boards (using hardware-based time-stamping).

3000

2000~

1000

Samples Count

Software-based Timestamping Clock Synchronization (std.dev=95.3ns)
T T T T T T T

| |

|
-500 -400 -300 -200

-100 0 100 200 300

Clock Offset (ns)

Hardware-based Timestamping Clock Synchronization (std.dev=49.8ns)

2000 ‘ ‘ ;

1500

1000

500 -

Samples Count

-500 -400 -300 -200

-100 0 100 200 300

Clock Offset (ns)

Figure 8: PTP-Slave clock offset timestamping method comparison between software-based (top) and hardware-based (bottom).

composed of multiple T-CREST nodes. It is hypothesized that traffic
load and multiple-hops will have a negative effect on the clock syn-
chronization precision between network nodes due to an increased
transit time of PTP messages, as shown in the analysis of [7] [2].
In addition we plan to increase the resolution of the clock counter.
Finally, the WCET analysis highlighted the need for hardware-based
timestamping as well as revealed how time intensive the execution
of PTP is. Based on the results we plan to investigate a complete
in-hardware solution for performing the PTP synchronization, in-
cluding transmission of PTP frames, that will effectively reduce the
processor load of network devices as well as provide transparent to
the user clock synchronization.

5.5 Source Access

The presented hardware-architecture is integrated with the open-
source project T-CREST which is hosted at [25]. The PTP Hardware-
Assist design can be found at https://github.com/t-crest/ patmos/

tree/master/hardware/ src/main/scala/ptp1588assist. The PTP soft-
ware is part of the ethernet lib of Patmos and is available at Atps:
// github.com/t-crest/ patmos/tree/master/c/ethlib. To monitor the
live offset from a connected PTP_SLAVE T-CREST node, a visual-
ization script was developed available at https:// github.com/t-crest/
patmos/blob/master/c/ethlib/ other/plotPTPOffset.py

6 CONCLUSION

This paper investigated the IEEE 1588-2008 Precise Time Proto-
col, which provides a global time reference for IEEE 802.1 TSN
networks. We explored the design of a hardware-assisted imple-
mentation of PTP using a standard Ethernet PHY transceiver and
finally implemented a hardware architecture that can achieve sub-
microsecond precision.

The proposed architecture was successfully integrated with the T-
CREST and synthesized on FPGA with minimal hardware overhead.
The PTP software stack was implemented on the time-predictable

https://github.com/t-crest/patmos/tree/master/hardware/src/main/scala/ptp1588assist
https://github.com/t-crest/patmos/tree/master/hardware/src/main/scala/ptp1588assist
https://github.com/t-crest/patmos/tree/master/c/ethlib
https://github.com/t-crest/patmos/tree/master/c/ethlib
https://github.com/t-crest/patmos/blob/master/c/ethlib/other/plotPTPOffset.py
https://github.com/t-crest/patmos/blob/master/c/ethlib/other/plotPTPOffset.py

Hardware Assisted Clock Synchronization with PTP

1500

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

1000

500

Samples Count

-300 -250 -200 -150

Clock Synchronization Using Abrupt Updates (mean=-153.9ns)
T T T T T

| 1 L

-100 -50 0 50 100

Clock Offset (ns)

1500

Clock Synchronization Using Rate-Control (mean = -17.3ns)
T T T T T

1000~

500 -

Samples Count

1
-300 -250 -200 -150

-100 -50 0 50 100
Clock Offset (ns)

Figure 9: PTP-Slave clock offset adjustment method comparison between abrupt-updates (top) and rate-control (bottom).

Patmos processor which allowed for a full WCET analysis of the
application.

The clock synchronization was evaluated on an experimental
setup, composed of two FPGA boards implementing the proposed
architecture and communicating through a commercial off-the-shelf
switch at 100 Mbps. The evaluation was performed using two met-
rics, jitter as standard deviation and accuracy as average mean, and
data were collected over a variety of timestamping and clock adjust-
ment combinations.

The results showed that the proposed architecture greatly im-
proved the precision of software-based timestamping and it achieved
comparable results with commercial off-the-shelf PTP-capable Eth-
ernet PHY transceivers, showing that FPGA-based PTP clock syn-
chronization is feasible.

ACKNOWLEDGMENTS

This is work was part of the Fog Computing for Robotics and In-
dustrial Automation (FORA) European Training Network (ETN)
funded by the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sklodowska-Curie grant agreement
No 764785.

REFERENCES

[1]1 ALTERA 2016. Cyclone IV FPGA Device Family Overview. ALTERA. Retrieved
03/07/2018 from https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/
cyiv-51001.pdf

[2] L Benetazzo, C Narduzzi, and M Stellini. 2007. Analysis of clock tracking
performances for a software-only IEEE 1588 implementation. In Proceedings
of the Instrumentation and Measurement Technology Conference Proceedings
(IMTC). IEEE, 1-6.

[3] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelik, and Wilfried Steiner.
2016. Scheduling real-time communication in IEEE 802.1 Qbv time sensitive

networks. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems. ACM, 183-192.

[4] Peter Danielis, Jan Skodzik, Vlado Altmann, Eike Bjoern Schweissguth, Frank

Golatowski, Dirk Timmermann, and Joerg Schacht. 2014. Survey on real-time

communication via ethernet in industrial automation environments. In Proceedings

of the Emerging Technology and Factory Automation (ETFA). IEEE, 1-8.

John C. Eidson. 2006. Measurement, Control, and Communication Using IEEE

1588 (1st ed.). Springer Science & Business Media.

Friedrich GroB, Till Steinbach, Franz Korf, Thomas C Schmidt, and Bernd

Schwarz. 2014. A hardware/software co-design approach for ethernet controllers

to support time-triggered traffic in the upcoming IEEE TSN standards. In Pro-

ceedings of the Fourth International Conference on Consumer Electronics—Berlin

(ICCE-Berlin). IEEE, 9-13.

[7] Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Punnekkat. 2017.

Synchronization quality of IEEE 802.1 AS in large-scale industrial automation

networks. In Proceedings of the Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS). IEEE, 273-282.

Stefan Hepp, Benedikt Huber, Jens Knoop, Daniel Prokesch, and Peter P. Puschner.

2015. The platin Tool Kit - The T-CREST Approach for Compiler and WCET Inte-

gration. In Proceedings 18th Kolloquium Programmiersprachen und Grundlagen

der Programmierung, KPS 2015, Portschach, Austria, October 5-7, 2015.

[9] Intel 2018. Intel’s Fog Reference Design Overview. Intel. Retrieved
22/06/2018 from https://www.intel.com/content/www/us/en/internet-of-things/
fog-reference-design-overview.html

[10] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. 2005.
The time-triggered ethernet (TTE) design. 1IEEE. 22-33 pages.

[11] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization (CGO’04). IEEE Computer Society, 75-88.

[12] Yan Lin, Li Hao, and Tian Dan. 2011. Research and implementation in synchro-
nized system of data acquisition based on IEEE 1588. In Proceedings of the 10th
International Conference on Electronic Measurement & Instruments (ICEMI),
Vol. 2. IEEE, 198-201.

[13] Maciej Lipiriski, Tomasz Wtostowski, Javier Serrano, and Pablo Alvarez. 2011.
White rabbit: A PTP application for robust sub-nanosecond synchronization. In
Proceedings of the International IEEE Symposium on Precision Clock Synchro-
nization for Measurement Control and Communication (ISPCS). IEEE, 25-30.

[14] David L. Mills. 2006. Computer Network Time Synchronization: The Network
Time Protocol. CRC Press.

[15] Institute of Electrical and Electronics Engineers. 2008. 1588-2008 - IEEE Standard
for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems. 1EEE.

[5

[6

=

[8

=

https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51001.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51001.pdf
https://www.intel.com/content/www/us/en/internet-of-things/fog-reference-design-overview.html
https://www.intel.com/content/www/us/en/internet-of-things/fog-reference-design-overview.html

RTNS ’18, October 10-12, 2018, Chasseneuil-du-Poitou, France

[16] Institute of Electrical and Electronics Engineers. 2016. Time-Sensitive Networking
Task Group. Retrieved 22/06/2018 from http://ieee802.org/1/pages/tsn.html

[17] Jae Won Park, Jin Ha Hwang, Won Young Chung, Seung Woo Lee, and Yong Surk
Lee. 2011. Design time stamp hardware unit supporting IEEE 1588 standard. In
SoC Design Conference (ISOCC), 2011 International. IEEE, 345-348.

[18] Jeff Preston, Dan Blankenship, Les Hoy, MF Ohmes, Andrey Gueorguiev, and
Juergen Stein. 2010. Novel timing method using IEEE 1588 and synchronous
Ethernet for Compton telescope. In Proceedings of the Nuclear Science Symposium
Conference Record (NSS/MIC). IEEE, 1404-1407.

[19] PTPd. 2015. PTPd. Retrieved 02/06/2018 from https://github.com/ptpd/ptpd

[20] Mingzhu Qi, Xiaoli Wang, and Zhigiang Yang. 2011. Design and implementation
of IEEE1588 time synchronization messages timestamping based on FPGA. In
Electric Utility Deregulation and Restructuring and Power Technologies (DRPT),
2011 4th International Conference on. IEEE, 1566-1570.

[21] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele
Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold
Heckmann, Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki,
Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter Puschner,
André Rocha, Cldudio Silva, Jens Sparsg, and Alessandro Tocchi. 2015. T-CREST:
Time-predictable Multi-Core Architecture for Embedded Systems. Journal of
Systems Architecture 61, 9 (2015), 449-471. https://doi.org/10.1016/j.sysarc.
2015.04.002

[22] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. 2018. Patmos: A Time-predictable Microprocessor. Real-Time Systems

23

[24]

[25]

[26]

[27]
[28]

[29]

[30]

Eleftherios Kyriakakis, Jens Sparsg, and Martin Schoeberl

54(2) (Feb 2018), 389—423. https://doi.org/10.1007/s11241-018-9300-4

ST Microelectronics 2017. STM32F107VC. ST Microelectronics. Retrieved
03/07/2018 from https://www.st.com/en/microcontrollers/stm32f107vc.html
Wilfried Steiner and Stefan Poledna. 2016. Fog computing as enabler for the
Industrial Internet of Things. e & i Elektrotechnik und Informationstechnik 133, 7
(2016), 310-314.

T-CREST. 2017. Patmos Source. Retrieved 02/06/2018 from https://github.com/
t-crest/patmos

Texas Instruments 2015. DP83640 Precision PHYTER-IEEE 1588 Precision
Time Protocol Transceiver. Texas Instruments. Retrieved 03/07/2018 from
www.ti.com/lit/ds/symlink/dp83630.pdf

TTTech. 2011. AS6802: Time-Triggered Ethernet. SAE International.

TTTech. 2015. Deterministic Ethernet & TSN: Automotive and In-
dustrial IoT. Industrial Ethernet Book 89 (July 2015). Retrieved
03/07/2018 from https://www.tttech.com/fileadmin/content/general/secure/pdf/
IEB89_2015-Deterministic- Ethernet- TSN_Automotive-and-Industrial-IoT.pdf
Guang You Yang, Yi Zheng, Zhi Yan Ma, and Xin Yu Hu. 2012. The Imple-
mentation of IEEE 1588-2008 Precision Time Protocol on the STM32F107. Key
Engineering Materials 522 (2012), 868-873.

Weidong Ye. 2009. IEEE1588 Clock servo algorithm. In Proceedings of the
9th International Conference on Electronic Measurement & Instruments. IEEE,
5274861.

http://ieee802.org/1/pages/tsn.html
https://github.com/ptpd/ptpd
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1007/s11241-018-9300-4
https://www.st.com/en/microcontrollers/stm32f107vc.html
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos
www.ti.com/lit/ds/symlink/dp83630.pdf
https://www.tttech.com/fileadmin/content/general/secure/pdf/IEB89_2015-Deterministic-Ethernet-TSN_Automotive-and-Industrial-IoT.pdf
https://www.tttech.com/fileadmin/content/general/secure/pdf/IEB89_2015-Deterministic-Ethernet-TSN_Automotive-and-Industrial-IoT.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 IEEE 1588-2008 PTP
	2.2 Experimental Platform

	3 Related Work
	4 Design And Implementation
	4.1 Hardware Architecture
	4.2 RX/TX Timestamp Unit
	4.3 Clock Adjustment
	4.4 PTP Software Stack

	5 Evaluation
	5.1 Experimental Setup
	5.2 Hardware Resources
	5.3 WCET Analysis
	5.4 Clock Synchronization
	5.5 Source Access

	6 Conclusion
	Acknowledgments
	References

