
1

Hardware Based Genetic Evolution of

Self-Adaptive Arbitrary Response FIR Filters

Abstract

This work presents a hardware implementation of an FIR Filter that is self-adaptive; that responds to arbitrary

frequency response landscapes; that has built-in coefficient error tolerance capabilities; and that has a minimal

adaptation latency. This hardware design is based on a heuristic genetic algorithm. Experimental results show that the

proposed design is more efficient than non-evolutionary designs even for arbitrary response filters. As a byproduct,

the paper also presents a novel flow for the complete hardware design of what is termed as an Evolutionary System on

Chip (ESoC). With the inclusion of an evolutionary process, the ESoC is a new paradigm in modern System-on-Chip

(SoC) designs. The ESoC methodology could be a very useful structured FPGA/ASIC implementation alternative in

many practical applications of FIR Filters.

Index Terms

Digital Adaptive Filters, Genetic Algorithms, Finite Impulse Response (FIR) Filters, Arbitrary Frequency Response

Filters, Intrinsic Evolution, System-on-Chip (SoC)

I. INTRODUCTION

Important signal processing functions include removal or enhancement of signal components. Filters are exten-

sively employed for the same. Specifically they are used in many cutting edge electronic applications within which

they form critical elements. Filters could be analog or digital and may posses an Infinite Impulse Response (IIR

type) or a Finite Impulse Response (FIR type). Finite Impulse Response (FIR) digital filters have many applications

in a wide range of Digital Signal Processing (DSP) algorithms. The lack of feedback in the design makes them more

reliable and robust than their IIR counterparts. In practice, Digital Finite Impulse Response (FIR) Filters implement

Eq.(1) where, p is the order of the filter, hi are the filter coefficients, x[n] and y[n] are the nth input and output

signal samples respectively.

y[n] =

p
∑

i=1

hix[n − i] (1)

A. Adaptive Filters

Adaptive filters are those which self-adjust their filter coefficients according to an optimizing algorithm. This

could be due to changing requirements on field as well as due to application specific demands. By way of contrast,

non-adaptive filters have static filter coefficients. Because of the complexity of the optimizing algorithms most

adaptive filters are digital. They are routinely used in a wide range of DSP applications. Equalization of data

transmission channels in high-speed MODEMS, noise cancellation in speaker phones, interface removal in medical
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Fig. 1. A general adaptive FIR filter topology using the output error formulation as a feed. The prediction error (e(n)) could be different from

a simple difference between the output and the desired signal stream.

imaging, canceling narrow-band interference in direct sequence spread spectrum systems and beam reforming in

radio astronomy are some practical applications of adaptive systems. Conventional first generation systems typically

embody basic FIR Linear Filter structures along with simple gradient descent or least squares algorithms for

coefficient adaptation. As such, they have certain performance limitations [1]. A more accurate adaptive structure

is needed to realize a robust filter that adapts to the changing requirements on filed, quickly and correctly. Fig.1

shows a general Adaptive Digital FIR Filter topology. It shows an input sample stream (x[n]) filtered into an output

stream (y[n]) which is compared with the desired sample stream (d(n)). The resulting deviation in the output is

used as the prediction error (e(n)) to guide the adaptive algorithm which reconfigures the filter coefficients (h[n])

dynamically.

B. Some Approaches to FIR Filter Design

Signal processing architectures find adaptive filter fabrics indispensable and often need them to be capable of

responding to various malfunctions caused by endogenous and exogenous factors. Consequently, error tolerance in

adaptive systems demands a need for resilient designs. We can realize this using hardware fault tolerance which

can be achieved by means of redundancy and other supplementary hardware modulation techniques [2]. However

the most critical component of the design - the filter coefficient values, need to be corrected in alternate, quicker

ways for reduced circuit off-times. Also, for error tolerance to be practical and effective, reduced overall on-chip

adaptation latency is also essential. In reconfigurable systems, minimization of adaptive complexity is another

critical objective.

In [3], Adams and Wilson sought adaptation efficiency by dividing the filter design into two stages - a computa-

tionally efficient pre-filter followed by an amplitude equalizer. For the same objective, Nevo, et.al in [4] described

FIR cascaded structures with an interpolated filter; In [5], Wade, Van-Eetvelt and Darwen have described a non-

interactive filter design method; And Suckley [6] has furthered on it to propose band-fit filter designs using cascaded

filter primitives. However, these complex filters exhibit little or no error resilience besides having a limited adaptation

range. Their hardware implementation is plainly impractical. Realistic hardware platforms impose restrictions based

on fixed register widths leading to a loss of precision in the storage of filter coefficients. The resulting filters known

as Finite Word Length (FWL) filters would however accept this trade-off to benefit from faster computations.
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Several simple configuration methods have been proposed for effective FWL design of FIR filters or for filters

with Canonical Signed Digit (CSD) coefficients [7] [8] [9]. Rounding-off the coefficients to the nearest integers

has been another common practice. Coefficients were also sought to be represented as the sum of a few Signed

Power-of-Two (SPT) terms. Further improvements were proposed using Primitive Operator Directed Graph (PODG)

representations in [10]. However, these methods have issues of poor response fidelity and high latency.

Conventional filter designs hence involve multiple, often conflicting design criteria and finding an optimal solution

is therefore not a simple task. Analytic or simple iterative methods usually lead to sub-optimal designs. This

necessitates optimization based methods for filter design [11] [12] [13]. However, the such methods formulated for

digital filters are often complex, highly non-linear and multi-modal in nature. However, in recent years, a variety

of optimization algorithms have been proposed based on the mechanics of natural selection and genetics, which

have come to be known collectively as genetic algorithms (GAs) [14]. GAs are stochastic search methods that

can be used to search for an optimal solution to the evolution function of an optimization problem [15]. Holland

proposed GAs in the early seventies [16]. De Jong extended GAs to functional optimization [17] based on the

detailed mathematical model for the GA presented by Goldberg in [14]. In the past, GAs have been applied to

a number of optimization designs including digital and analog filters [19]. Genetic filter designs have also been

of considerable interest in recent years. Genetic evolution (application of several instances of a given GA) of FIR

Filters has been of considerable interest in the recent past [1] [6] [18] [20] and [21]. However, the focus in each

of these has been discrete and diverse. In [20], Tufte and Haddow demonstrate a model for GA operations on FIR

filters. But their focus is not on design practicality (hardware implementation). They consider non-integer (floating

point) coefficients which makes their design process all the more complex. In addition, the fitness function of the

GA they use does not scan the entire frequency spectrum but considers only specific frequencies for evaluation.

This limits the accuracy coefficient estimates. The trade-off not considered here is that between integer coefficients

(avoiding floating point operations) and excess spectrum samples (accuracy).

Genetic Algorithms use simple operations over a large number of iterations to optimize system goals making

their implementation easy and effective. Errors in filter coefficients lead to an egress in the prediction error which

could be used to correct the faulty coefficients on-field. GAs also have the flexibility to determine coefficient values

for quite an arbitrary set of frequency response characteristics. Such nasty responses are a common premise of

many real life applications. However the major challenge in the genetic design for FIR filters is the adaptation

latency which can upshoot quite significantly owing to a poor search methodlogy. A GA involves a large number

of heuristics based on the problem dynamics which when exploited appropriately alleviates the latency issue to a

significant extent.

C. Genetic Operators - Principles of Natural Selection

Genetic Algorithms (GAs) manipulate a population of individuals in each generation (iteration), where each

individual, termed as a chromosome or genotype, represents one candidate solution to the problem. Within the

population, individuals with better fitness survive to reproduce. Their genetic material is varied to produce new
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Fig. 2. A Generic GA Cycle - Involves four major steps Initial Population Generation, Variation, Evaluation and Selection

individuals as offsprings which form the seeds for the following generations. The genetic material is modeled using

some data structure with finite attributes. As in nature, selection provides the necessary driving mechanism for better

solutions to survive. Each solution is associated with a fitness value that re- flects how good it is compared to the

other solutions in the population. The variation process comprises of crossover and mutation, which concoct material

by partial exchange among genotypes and by random alterations of data strings respectively. The frequency of these

operations is controlled by certain pre-set probabilities which require heuristics appropriate for the particular problem

at hand. The representation, variation, evaluation and selection operations constitute the basic GA cycle or generation,

Fig.2, which is repeated until some pre-determined criteria are satisfied which also require a comprehension of the

problem heuristics. With increased computing power and hardware, simulation of evolutionary systems is becoming

more and more tractable and GAs are being applied to many real world problems including the design of digital

filters. The crucial need in such designs is the use of appropriate heuristics for probabilistic variation and selection.

In this paper, we present analytical insights into the selection of the Initial Population (IP) and the Genetic Operators

(GO) used by the GA. This exploits the problem heuristics to the maximum and unlike several instances of GA

reported in the literature, the IP for the GA proposed in this paper is not derived at random but is derived using

a deterministic procedure based on the properties of the impulse response of FIR filters. This makes the entire

adaptation process fast and robust. As a byproduct, the paper also proposes a comprehensive methodology for the

design of what is termed as the Evolutionary System on Chip (ESoC).

The rest of the paper is organized as follows. In Sec.II, we explore existing filter architectures and their advantages.

Specifically, we dwell on the comparison between the spatial design and the frequency domain design of FIR Filters.

In Sec. III, we present the functions used by the evolutionary algorithm with analytical justifications for choosing

them. In Sec.IV, we propose and describe the complete Evolutionary System-on-Chip (ESoC) hardware design

and its parallelism, scalability and Built in Error Tolerance (BiET), . Sec.V provides experimental results for the

proposed design and hardware architecture where we present simulation cases for exemplary linear phase FWL test

cases. Finally we conclude in sec.VI.
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Fig. 3. Direct Form Implementation of Digital FIR Filters Fig. 4. Transposed Direct Form Implementation

II. FIR ARCHITECTURES AND DESIGN

A. FIR filter architectures

Digital FIR filter outputs are related to their inputs by the following difference equation (Expanded from Eq.(1))

y[n] = h0x[n] + h1x[n − 1] + . . . + hpx[n − p] (2)

where p is the filter order, x[n] is the input signal, y[n] is the output signal and hi are the filter coefficients.

Hardware implementation of the filters in the time domain can have the canonical form translating equation (2)

directly or the broadcast(transposed direct) architecture obtained using the inversion property of the resulting Signal

Flow Graph (SFG) - Fig.3 and Fig.4. We use the broadcast architecture in our hardware design. FWL constraints

require truncation of coefficient lengths besides their magnitudes. The minimum length of linear phase low-pass

FIR filters to meet the frequency domain specifications is approximately

N =
−20log10

√

δpδs − 13

14.6∆F
+ 1 (3)

where δp and δs are the passband and stop band ripples and ∆F is the transition bandwidth [4]. Eq.(3) forms the

initial coefficient length constraint on our filter specification which is done offline.

B. Spatial and frequency domain design

The filter coefficients used in the FIR architecture form a sinc function, the Fourier transform of which is a

window, Fig. 5. Frequency selective filters could be designed in the Frequency Domain (FD) for which a multitude

of complex algorithms exist. They focus on the process of cumulatively windowing the uniform frequency span to

approximately reach the desired frequency response. This is then inverse transformed to translate to a sinc in the

time domain. Some popular FD domain design algorithms are outlined in [22]. Spatial Design (SD) is an alternative

to the Frequency Domain Design (FDD) of FIR filters. It is advantageous over the FDD as it eliminates the need

for the complex operations of transformation and inverse transformation of the response to determine its fitness in

an iterative design. This has tremendous implications in hardware implementability simplifying the design flow to

basic operations and hence speeds up the compuational steps substantially. However a large number of samples

may still be needed for an accurate determination of the fitness function for the GA. This trade-off is a design

choice and we stick to simpler operations in the spatial domain for the filter operation. In the next few sections, we
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Fig. 5. A Sinc Function expressed as f(x)=sin(x)/x and its transform, a window function. The FIR filter coefficients form a sinc function.

propose the genetic evolution of filter coefficients in the time domain including appropriate heuristics with analytical

justifications and describe its complete implementation in hardware.

III. EVOLUTIONARY SYSTEM DESIGN

The objective of spatial design of FIR filters is to accurately estimate the coefficients hi, 1 ≤ i ≤ p, in Eq.(1) at

any point of time. This section explains how a GA can be employed for the same. The proposed algorithm has the

following steps.

Step 1 Limiting the search space for the coefficients

(A) Determination of the largest coefficient hmax

Given the order of a filter p, the first step in the FIR design process is to estimate the largest value, hmax, that

could be assigned to the coefficients hi, 1 ≤ i ≤ p in Eq.(2). This is done as shown in Eq.(4) [22].

hmax =

∫ 1

0

(Gid)dfn (4)

where Gid is the expected frequency response normalized w.r.t fn, fn = f
fs

, fs is the sampling frequency and f is

the range of frequencies considered in the spectrum. The summation shown in Eq.(5) is a trapezoidal approximation

to the integral in Eq.(4). This is easily implementable in hardware as an alternative evaluation of hmax.

hmax =

Nj
∑

j=0

9
∑

i=1

10j+1

2fNyq

× Gid(10j + i) (5)

The limits in Eq.(5) for i and j are chosen so as to span the frequency spectrum containing the frequency components

of the input signal. fNyq in the equation is the Nyquist Frequency obtained as an input parameter and Nj is the

highest decade order of the expected response. This is a tunable factor which dictates the accuracy of initial

evaluation.

(B) Determination of coefficient search range hmax
i

The odd number (p) of filter coefficients, hi in Eq.(1), are symmetric about the mean value hq, where q = (p+1)
2 .

The FIR filter coefficients lie on a sinc function. In general, a sinc function is given by sinc(x) = sin(x)
x

as
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Fig. 6. Reduced GA search space with the Gaussian Switch. fc=0.25

and p = 60

Fig. 7. Sample case with fc=0.1 and p = 60

explained in Sec.II-B. From Eq.(5) the mean value hq of the filter coefficients is determined which is the largest

value among the coefficient set of cardinality p. To estimate an upper bound (hlim
i ) for coefficients other than

hq, we use a 1
x

functional model. The upper bound is used to limit the search space for the forthcoming genetic

algorithm. This model starts with hq as the highest value of the function with a gradient modulated by the lowest

cut-off frequency, fcutoff , of the filter which is obtained as an input parameter. This is shown in the computation of

the interpolating step in Eq.(7). The modulation is justified by the fact that the gradient fall for the 1
x

model close

to the mean coefficient for steeper cut-off filters is lesser than that for filters with wider transition bands. Fig.6 and

Fig.7 show comparative effects of incorporating fcutoff in the range estimation. In Fig.7, the normalized cut-off

frequency is lower and hence the gradient fall from the mean value is slower compared to that in Fig.6. This model

captures the fact that a large number of coefficients are close to the mean value for filters with lower cut-offs.

Hence, based on the maximum coefficient value, hmax, determined in Step 1(A) we can compute the maximum

range for each of hi in Eq.(1) by modeling a 1
x

behaviour. This can be done by linear interpolation in the inverse

coefficient space, Eq.(8). As a starting point for this, we compute ∆mean and δstep as shown in Eq.(6) and Eq.(7).

hlim
i , the coefficient search range for each of the ith coefficient is hence computed using δstep linear increments

from the mean value ∆mean.

∆mean =
1

hmax
(6)

δstep =
fcutoff

hmax
(7)

∆lim
i = ∆mean + i.δstep (8)

hlim
i =

⌈(

1

∆lim
n−i

)⌉

(9)

Based on the description of functional model in this section, we can determine the coefficient limit envelope hlim
i ,

Eq.(9), which determines the range within which each of the filter coefficients, hi, 1 ≤ hi ≤ q, in Eq.(1) lie. This

methodology helps narrow down the search domain from infinity to hlim
i within which the possible coefficients
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may lie. To translate the ∆lim
i values into the coefficient limits, we take upper integer ceils of the reciprocals of

Eq.(8) and flip their order to get the coefficient limits.

Step 2 User Configuration

The filter hardware is designed to accomodate a maximum of IPmax Initial Populations (IP) in the parallel process

such that a given population set can hold upto pmax coefficients. The user can configure the number of coefficients

and the size of the IP such that they lie within the above limits. The user also inputs the ideal filter response

Gid, the filter cut-off frequencies and the sampling rate fs. The evolutionary hardware estimates hmax and hlim
i ,

1 ≤ i ≤ p, as described in Step 1.

Step 3 IP Generation

As mentioned earlier, the GA generates a user defined number of chromosomes. Each chromosome is a vector

(h1, h2 . . . hp) of p integers such that hi = ±hlim
i (based on the binary switch) in the first iteration and are

restrained within −hlim
i ≤ hi ≤ hlim

i in subsequent iterations. The hi’s start with hlim
i as initial estimates and

slowly evolve towards the required coefficients. It is easy to see that, each chromosome describes a filter albeit

with a different frequency response. The following steps describe the GA used in the design.

Step 4 Genetic Evolution

There are two evolution stages in the design. At the parallel macro-evolution stage, a random normal binary switch

toggles the sign of the coefficient limit hlim
i randomly for each of the ith coefficients in the GA search. This

introduces more variation in the population. The GA search range is [0,±hlim
i ] at this stage. At the second micro-

evolution stage, we follow a similar methodology but the GA search space in this case is [−hlim
i , hlim

i ]. A matrix

of switched hmax
i coefficient sets is formed again. The number of elements of the matrix are user defined to be IP.

Each of the randomly switched initial population vectors are used to independently and parallely evolve towards the

best fit solution. The following section explains the evolution strategy for each independent vector in the matrix.

(A) Mutation

The variation strategy of the filter involves random normal perturbation of the object parameter, hi, between the

preset limits decided by hlim
i . The mutation incorporates progressive reduction and occasional bursts in standard

deviations of the perturbation, Eq.(10). This can be seen as analogous to the temperature surges in simulated

annealing (SA) and has shown emperically better results than other variation methodlogies.

h
′

i = hi + N

(

0,
hi

mod(Gf
id, i)

)

(10)

where G
f
id is the Gid gain at frequency f , h

′

i is the mutated coefficient value of hi and N(µ, σ) represents a normal

distribution function with mean µ and variance σ as shown in Eq.(11)

N (µ, σ) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

(11)

Fig.8 shows the standard deviations for the mutation of the coefficients for a symmetric test filter. The test case is

of length p = 21. Note that the values decrease with the coefficient number. The heuristic for this being that the
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Fig. 8. Decreasing σ with increasing coefficient numbers j in the normal random mutation. The tallest peak stands for the mean coefficient

whose deviation is the least and the deviation increases with reducing coefficient index

upper bound of h
j
lim forms a closer estimate of the ideal filter coefficients for near mean coefficient numbers than

the farther ones the deviation between which can be modeled close to (11).

(B) Evaluation

The evaluation of the coefficient set is based on the fitness value computed by summing up the absolute deviations

of the evolved gain Gev from the expected gain, G
f
id over the entire frequency spectrum using the isolated filter

hardware.

ξcurr(s) =
M
∑

i=1

[Gev(i) − Gid(i)] (12)

This evaluation shown in Eq.(12) is unlike in [20] where rather than evaluating the entire frequency spectrum,

specific sinusoids are used for fitness evaluation.

(C) Selection and Termination

The selection of the chromosome set for every, parallel macro-evolution stage is based on the overall fitness criterion

which is terminated after a pre-determined best fitness has been reached or when the fitness improvements over the

previous generations are not substantial. Eq.(13) is used to estimate δstep for the GA termination.

δstep =























0 if ξcurr < ξbest

0 if (ξcurr − ξpast) < δmin

δnorm
step Otherwise

(13)

If the difference between the current fitness estimate, ξcurr, and the best estimate over a pre-determined set of

iterations, ξpast, does not exceed δmin, a minimal distinction criterion, the genetic algorithm is terminated. Hence

obtaining the required filter coefficients.
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Fig. 9. Macro-Evolutionary System on Chip Fig. 10. Parallel and Scalable Micro-Evolution Stage

IV. INTRINSIC DESIGN

Intrinsic (or hardware) design of evolvable systems has been an issue of great interest in recent times. However

the implementation complexity of traditional GAs make it very difficult to translate the algorithmic design into

hardware. Insights into approximations and simplified heuristics are essential for effective hardware translation. In

[21], Redmill and Bull use the Primitive Operator Directed Graph (PODG) representation to simplify the design.

The GA is used to provide a Non Dominated Set (NDS) of solutions. However the entire FIR structure is evolved

from scratch. In [23], Miller follows a similar approach using gate arrays. He points out the difficulties in hardware

implementation and falls back to extrinsic evolution. Tufte and Haddow [20], propose the Complete Hardware

Evolution (CHE) implementation of the GA pipeline. But their implementation description is only a traditional GA.

The Evolutionary System on Chip (ESoC) serves to address this lacking balance between convergence speeds and

implementation practicality. In the following sections, we highlight the implementation mechanism at module level

hardware logic for the previously described two stage heuristic evolution of the FIR filter. We demonstrate that the

filter is self sustaining and independently evolving. The reconfiguration and adaptation times for the filter are quite

practical and the hardware architecture described can form a backbone for evolution of FIR filters in many real

life applications. The degree of scalability and the level of parallelism in the design are customizable and provide

a flexibility for fast convergence of results keeping the evolutionary genetics practical.
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A. The Evolutionary System on Chip (ESoC):

In the following sections, the paper proceeds to present details of the hardware implementation of the two stage

evolution mechanism described in the previous section. In a practical Evolutionary System on Chip (ESoC), we

have a macro-evolution stage for a faster but coarser convergence and a micro-evolution stage for more accurate

coefficient estimates with slower convergence rates.

Macro-Evolution Stage Fig.9 shows the Evolutionary System on Chip (ESoC) architecture that implements the

GA. In other words, all the heuristics proposed in the previous sections are translated into hardware and shown

implementable on a structured FPGA/ASIC platform.

The population generation block The population generator integrates the ideal gain contour specified by the user

w.r.t the normalized frequency to determine the maximum coefficient value. This is then randomly switched using

the Normal Random, N(0, 1), switch. This is multiplexed through to the filter in the first macro-generation.

The evolution and filtering block The isolated filter, which comes offline temporarily, filters out a stream of

spectrum spanning sinusoidal inputs to determine the corresponding outputs. The filter coefficients are the coefficient

limits during the first iteration and the best fit coefficients, hbest
i , progressively. The mutation of the coefficients

occur as in Eq.(10). The normal random generator is again modulated with an intrinsically self-adaptive strategy

parameter. The deviation space is [0, |hlim
i |] in every macro-iteration. The filtering block used in the design is the

broadcast architecture which provides a pipelined and fast filter implementation to evaluate the fitness span over

the entire spectrum of frequencies in realistic time frames.

Evaluation and Selection block The fitness evaluation for multiple frequencies is done using the multiplier and

accumulator. This evaluated fitness ξcurr(s) is compared against the best available fitness value ξbest(s) or with the

previous fitness value ξpast(s) to either terminate the macro-evolution or to update the coefficient sets h
past
i with

the current (more) fit coefficients, hcurr
i , respectively, Eq.(13). This comparison records the best coefficient set by

write enabling (WE) the Coefficient Register File (CRF) from which the coefficients are read out to be used in

successive generations.

Micro-Evolution Stage The Micro-evolution stage of the adaptive filter is shown in Fig.10. The parallel ESoC

design is a set of Macro-Evolution stages running in parallel over a customized number of parallel processes. These

arrive at their own respective fitness values. The minimum fitness, ξ
j
min, among them is chosen to be the best fitness

and the micro-stage runs another GA very similar to the one in the macro-stage using the h
best,mac
i as the initial

coefficient estimate. The sole difference between the macro and the micro stages is that the search space for the

micro stage is [−hlim
i , hlim

i ]. This makes this stage a little diverse in search albeit very precise. The convergence

of the microstage of evolution is a little slow compared to the macro stage. However this is faster when run in

unison with the macrostage than when run alone.

a) Parallelism and Scalability in the design: The proposed design has a high degree of customizable parallelism

and scalability. This is reflected in the number of macro-stages which could be used for the GA. The trade-offs in this

choice are speed and accuracy. This customizable similarity among the macro and micro stages is advantageous
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to the effect that the same filter and hence the GA can be run over multiple cycles providing good hardware

re-usability.

b) Built in Error Tolerance (BiET): Isolated self repair is a built in feature of the design. The advantage of

the design is that any error occurring in the system coefficients after it has evolved and is running on field can be

easily corrected by re-evolving the filter . This provides a robust architecture immune to externalities. This BiET has

important applications in noise cancellation and adaptive channel equalization. The filter architecture is summarized

Fig. 11. The evolutionary adaptive filter design including the UI

as a flow diagram in Fig.11. The user inputs the parameters as described in Step 2. The initial coefficient estimation

occurs as explained in Step 1. This limits the search space. Step 3 is the IP generation which is controlled by the UI

as shown. The genetic evolution step is shown as a separate block. Monofrequency sinusoidal samples spanning the

spectrum are input to the filter with the initial estimate of the coeffients (tap weights). The FIR filter operation yeilds

an output sample stream y[n] which is used to estimate the gain as shown in Eq.12. The gain is evaluated based on

the maximum average output of the stream y[n] when the input stream, x[n] has unit amplitude, mono-frequency,

spectrum spanning sinusoids. This evaluated gain is used to estimate the fitness and finally decide the termination

as shown in Eq.(13).

V. EXPERIMENTAL RESULTS

The results presented here are from the design experiments done using the architecture in Sec.IV. The entire

ESoC architecture shown in Fig.9 and Fig.10 was emulated on MathWorks Inc. Matlab Version 7.0.0.19901(R14)

and was run on a RHEL Linux workstation with a 3.0 GHz Pentium IV processor. Fig.13 and Fig.14 show the

macro and micro fitness progress of some sample filter cases. An initial choice for a test filter was with cut-off
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Fig. 12. The fitness evaluator for the system under evolution.

Fig. 13. Macro and Micro fitness evolution progress. Testcase with

p = 21, δs/p = [15, 250, 15] and fs/p = [0.11, 0.2]

Fig. 14. coarser case with p = 21, δs/p = [320, 90, 100, 320] and

fs/p = [0.1, 0.25, 0.43, 0.5]

frequencies, fcutoff = 0.22, 0.33, 0.44, 0.66, band gains Av = 10.0193, 106.667, 203.314, 300, length p = 21 and

sampling frequency fs = 18 × 103Hz. Fig.15 1 and Table.I and Table.II show the response characteristics. The

algorithm converged within less than 100 generations (compare with 1171 generations in [20]). Fig.15 shows the

expected frequency response of the actual filter, the response obtained from the Parks-McClellan algorithm (remez

exchange in Matlab) and the evolved filter response using our genetic methodlogy. The response characteristics are

within reasonable practical specifications and with an acceptable adaptation latency. Fig.16 shows the macro-fitness

evolution where the fitness values evaluated using the algorithm progress w.r.t time.

Fig.17 shows the frequency response characteristics and Fig.18 shows the macro-fitness evolution of a band-

pass filter case with cut-off frequencies, fcutoff = 0.1, 0.11, 0.22, 0.33, band gains Av = 10, 300, 300, 10, length

p = 21 and sampling frequency fs = 18 × 103Hz. Fig.21 shows the micro-fitness evolution of the filter. The

micro-evolution stage fine tunes the convergence of the macro stage. The refinement is systematic and typically

stops in fewer iterations than the macro-evolution stage. Fig.19 shows a low pass filter characteristic, Fig.18 shows

the Macro fitness evolution and Fig.22 shows the Micro fitness evolution progress. The filter was designed using

1scaled/fs normalized samples. The fitness is scaled w.r.t the best fit value based on the selection criterion in Eq.(13)
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Fig. 15. Frequency response evolution progress. Testcase with coarse

spec p = 21, δs/p = [10.0193, 106.667, 203.314, 300] and fs/p =

[0.22, 0.33, 0.44, 0.66]

Fig. 16. Macro fitness evolution progress. Testcase with coarse spec

p = 21, δs/p = [10.0193, 106.667, 203.314, 300] and fs/p =

[0.1, 0.11, 0.22, 0.33]

Fig. 17. Frequency response evolution progress. Testcase with p = 21,

δs/p = [10, 300, 300, 10] and fs/p = [0.1, 0.11, 0.22, 0.33]

Fig. 18. Macro fitness evolution progress. Testcase with p = 21,

δs/p = [10, 300, 300, 10] and fs/p = [0.1, 0.11, 0.22, 0.33]

Fig. 19. Frequency response evolution progress. Testcase with

p = 21, δs/p = [199.9873, 136.6667, 73.3460, 10] and fs/p =

[0.22, 0.33, 0.44, 0.67]

Fig. 20. Macro fitness evolution progress. Testcase with p =

21, δs/p = [199.9873, 136.6667, 73.3460, 10] and fs/p =

[0.22, 0.33, 0.44, 0.67]
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fcutoff = 0.22, 0.33, 0.44, 0.67, band gains Av = 199.9873, 136.6667, 73.3460, 10, length p = 21 and sampling

frequency fs = 18 × 103Hz. Implementation of the adaptable genetic filter on a dedicated ASIC would require

very short reconfiguration times with an acceptable convergence precision.

Table.II presents the coefficient sets for varying filter lengths and specifications before and after evolution. The

table also gives comparisons with the software evaluated coefficients using the approximate remez-exchange algo-

rithm in Matlab. The Parks-McClellan algorithm uses the Remez exchange algorithm and Chebyshev approximation

theory to design filters with an optimal fit between the desired and actual frequency responses [27]. The algorithm

maximizes the error between the desired frequency response and the actual frequency response characteristic. Filters

designed this way exhibit an equiripple behavior in their frequency responses and are sometimes called equiripple

filters. [27]. Fig.13 and Fig.14 show the evolution of the filter fitness over the genetic iterations for some sample

filters. They demonstrate the evolution speed of the filter coefficients. From the results obtained, we conclude that

the filter evolution performs best for sharp cut-off filters. Arbitrary response landscapes are evolved to a far better

precision than other approximate algorithmic designs. The major strength in the entire ESoC heuristic however lies

in the practicality and robustness of the design which can provide on-line self adaptation within the hardware with

reduced iterative effort. The implementation of the genetic method described in this paper is practically feasible since

it has simpler operations. This is easily implementable when compared to complex transformations and trigonometric

function evaluations in other approximate algorithms like the Parks-McClellan. The complex operations pose a major

challenge to the implementation feasibility of these other approximate algorithms. An extension of this work may

Fig. 21. Macro fitness evolution progress. Testcase with p = 21,

δs/p = [10, 300, 300, 10] and fs/p = [0.1, 0.11, 0.22, 0.33]

Fig. 22. Micro fitness evolution progress. Testcase with p =

21, δs/p = [199.9873, 136.6667, 73.3460, 10] and fs/p =

[0.22, 0.33, 0.44, 0.67]

involve an evident method of reducing the hardware costs by restricting the filter coefficients to integers. This

simplifies the filter design without mitigating its performance. This design approach has been explored in many

recent research works [1] [6] [21]. This has also involved exploration of the design using evolutionary algorithms.

The current work has furthered this design simplification and approach. The ingenuity of this work lies in the
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deterministic methods presented for generation of the genomic population and mutative variations while keeping

faster convergence speeds for filter coefficients making them practical design choices with low implementation

complexities and reduced latencies. Also the hardware architecture (ESoC) presented in Sec.IV has a high degree

of parallelism and scalability. In [26], a reconfigurable switching architecture for filters is presented which could

be effectively used in tandem with the ESoC design of Sec.IV to make the evolutionary switching more effective.

In [25], Haseyama and Matsuura present a novel method for tuning the filter coefficients to greater floating point

precision. The method incorporates Simulated Annealing (SA) with the GA for coefficient quantization. The results

demonstrated in Sec.V from the ESoC design could be bettered by cascading a second stage of the GA-SA tuning

routine presented in [25] if the ESoC filter needs to be extended to floating point precision. This may be seen as

a design enhancement to the ESoC methodlogy.

TABLE I

COEFFICIENT SETS FOR FILTER TEST CASES

filt
(1−5)
testcase hj , halfset p

hj
evo [26,28,31,0,-1,25,38,-16,-59,-11,84] 21

hj
rem [-1,2,2,0,0,0,-6,-7,16,55,84] 21

hj
evo [14,-1,17,18,20,22,25,0,-1,85,105] 21

hj
rem [-126,62,57,58,62,68,74,79,84,87,108] 21

hj
evo [61,-41,-1,-36,-76,47,84,26,-130,-20,187] 21

hj
rem [1,-2,-2,1,0,1,10,11,-24,-84,186] 21

hj
evo [0,22,33,21,-24,-39,0,-10,-26,0,39] 21

hj
rem [55,-11,-25,-39,-43,-35,-18,1,17,26,38] 21

hj
evo [140,-50,157,-77,-33,-90,200,-92,0,-134,282] 21

hj
rem [-19,4,9,13,15,12,6,0,-6,-9,290] 21

VI. CONCLUSION

The designs and results set out in this paper clearly describe the implementation techniques for self-adaptive FIR

filters with an arbitrary response. We use a modified genetic algorithm for the same. Deterministic heuristics in

filter evolution at various stages show a praticality of implementation with fast convergence rates. We demonstrate

a heuristic based limitation of the initial search space for the filter coefficients(tap weights) reduces the convergence

latency. The maximum (mean) coefficient value, the filter cut-off and sampling frequencies and a 1
x

functional model

is used to restrict this search domain. The Genetic Algorithm (GA) used in this work incorporates a mutation of

the strategy parameter based on a random normal perturbation which is modulated based on the coeffficient number

with a sign selecting switch. The Evolutionary System on Chip (ESoC) design presented in Sec.IV provides a clear,
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TABLE II

COEFFICIENT EVOLUTION RESULTS OVER MAC/MIC GENERATIONS FOR TEST FILTER CASES - fs/p = STOP/PASS BAND CUTOFFS AND δs/p

= STOP/PASS BAND GAINS

filt
(1−5)
testcase f

(norm)

s/p
δs/p NMac/Mic

hj
lim

0,0.22,0.33,0.44,0.67,1.0 200,199.99,136.67,73.4,10,10 -

hj
evo 0,0.22,0.33,0.44,0.67,1.0 200,199.99,136.67,73.4,10,10 65/26

hj
rem 0,0.22,0.33,0.44,0.67,1.0 200,199.99,136.67,73.4,10,10 -

hj
lim

0,0.1,0.1111,1.0 400,400,10,10 -

hj
evo 0,0.1,0.1111,1.0 400,400,10,10 46/7

hj
rem 0,0.1,0.1111,1.0 400,400,10,10 -

hj
lim

0,0.22,0.33,0.44,0.66,1.0 10,10,106.67,203.3,300,300 -

hj
evo 0,0.22,0.33,0.44,0.66,1.0 10,10,106.67,203.3,300,300 84/5

hj
rem 0,0.22,0.33,0.44,0.66,1.0 10,10,106.67,203.3,300,300 -

hj
lim

0,0.1,0.11,0.22,0.33,1.0 10,10,300,300,10,10 -

hj
evo 0,0.1,0.11,0.22,0.33,1.0 10,10,300,300,10,10 70/13

hj
rem 0,0.1,0.11,0.22,0.33,1.0 10,10,300,300,10,10 -

hj
lim

0,0.1,0.11,0.22,0.33,1 300,300,200,200,300,300 -

hj
evo 0,0.1,0.11,0.22,0.33,1 300,300,200,200,300,300 126/98

hj
rem 0,0.1,0.11,0.22,0.33,1 300,300,200,200,300,300 -

detailed and structural architecture for the implementation of the evolutionary architecture on a standalone hardware

platform. The ESoC architecture provides a high level of parallelism and scalability which typically lack in the

design of evolutionary systems. The need for practical fault-tolerant adaptive filters is also addressed in this work.

The solution presented here is a complete hardware evolution model which is robust and speedily self-adaptive.

With the advent of modern safety critical systems, ESoC might be the right direction to take. In this context, the

proposed technique has significantly large practical relevance in many real life applications.
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