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Figure 1: a) Painting robot with canvas and camera; b) painting tool with distance measuring unit; c) details from a painting.

Abstract

We describe a painting machine and associated algorithms. Our modified industrial robot works with visual feed-

back and applies acrylic paint from a repository to a canvas until the created painting resembles a given input

image or scene. The color differences between canvas and input are used to direct the application of new strokes.

We present two optimization-based algorithms that place such strokes in relation to already existing ones. Using

these methods we are able to create different painting styles, one that tries to match the input colors with almost

transparent strokes and another one that creates dithering patterns of opaque strokes that approximate the input

color. The machine produces paintings that mimic those created by human painters and allows us to study the

painting process as well as the creation of artworks.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—

1. Introduction

In non-photorealistic rendering and particular painterly ren-
dering researchers investigate the production of artistic im-
ages. Typically, results are pixel images that look like human
paintings. In this paper, however, we propose a painting ma-
chine plus associated algorithms that is able to create real
paintings with either thinned or opaque paints. A modified
industrial robot applies thousands of strokes to a canvas un-
til the result resembles a given target function - an image or
an image with additional information such as depth or se-

mantics. It uses ink or acrylic paint for its works and is able
to create different painting styles.

Our machine uses a visual feedback loop to control the
painting process - it supervises itself while painting using a
standard digital camera. Strokes are not determined at the
beginning but are computed iteratively based on the differ-
ence between the given target function and the already cre-
ated strokes on the canvas. This has a number of practical
advantages, but also raises some interesting research ques-
tions:
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Limited palette: Most painterly rendering algorithms as-
sume that strokes can be painted with any color. Typically,
the average color of the input is used for a brush stroke.
However, our machine works with a set of pre-defined colors
since it is not possible yet to automatically mix new colors
using our system. Therefore, we have to find algorithms to
approximate input colors with such a set of paints on the
canvas.

Painting styles: Our visual feedback loop helps to over-
come many practical problems: Real paint strokes interact in
a complex way that is very hard to simulate on a computer.
This is especially the case with thick paint and wet-on-wet
interaction where a number of effects can be created such
as 3D-profile interaction, color smearing and complex de-
formations of the brush tip. Using an iterative feedback loop
we try to imitate the painting process performed by humans
and are able to apply relatively simple simulation methods
for the determination of new strokes. Introduced errors can
be corrected in subsequent steps after a new feedback itera-
tion. Such methods, however, require that painterly render-
ing styles are formulated in a relative manner that apply to
a given target function and a canvas with a partly produced
painting.

Efficiency: Most painterly rendering algorithms neglect
efficiency. If simulated on a computer, tens of thousands of
strokes can be created in order to produce a desired result.
However, our painting robot works at the speed of a human
painter or even less and needs hours to complete a painting.
Thus, efficient strategies have to be developed for minimiz-
ing the required time.

In this paper we present a framework based on Voronoi
diagrams that allows us to realize painting styles for thinned
and also opaque paints. For thinned (almost transparent)
paints, the first variant of the algorithm tries to resemble
the colors of the input image as close as possible by many
paint layers that gradually change the color on the canvas
to approximate the input. For opaque colors we use variant
that creates dithering patterns (known from halftoning meth-
ods for printing) based on discrete strokes that are carefully
aligned and approximate the input colors on average.

2. Related Work

In our review of related publications, we focus on works that
are directly related to our approach, thus we sketch painterly
rendering and image processing methods as well as painting
machines.

Painterly rendering methods: These methods create
non-photorealistic images by simulating brush strokes and
color interaction. Hertzmann [Her98] proposes a painting
method that starts with strokes made by a large brush which
are subsequently painted over with smaller brush strokes.
Strokes are placed within regular grid cells, which can be

seen as a jittered sampling method. This works well but re-
sults in a reasonable amount of unintended over-painting.
Since we have to realize our paint strokes physically, time
is a critical issue and we have to find optimal strategies here.
Furthermore, Hertzmann paints brush strokes with arbitrary
colors. We have a pre-defined color set and thus have to find
other methods to create the wanted color on the canvas.

Chun et al. [CJK11] use color quantization and segmen-
tation to create many small segments in an input image and
choose the center of each segment as the seed point for a
brush stroke. Vanderhaeghe et al. [VBTS07] propose non-
uniform Poisson-disk distributions with blue-noise proper-
ties for short strokes such as stippling, pointillism, hatch-
ing and painterly rendering. The density of distribution can
be controlled by integrating an importance map. Shiraishi et
al. [SY00] use space-filling curves to distribute seed points at
locations where brush strokes have to be placed. We found
an early optimization scheme by Hertzmann [Her01] most
suitable for our situation in which we have to compute new
stroke on the basis of existing ones and extend his idea by
using a Voronoi-cell-based optimization (Lloyd’s relaxation
[Llo82]) to find new stroke positions.

Recent painterly rendering methods [ZZXZ09, ZZ10,
ZZ11] divide the input images into foreground and back-
ground layers. They use graph cuts [BJ01] with foreground
and background scribbles obtained using the method de-
scribed in Li et al. [LSTS04] and a mixture of interaction
and a bag-of-words classifier to label object types [LFT05].
We use the same approach to separate foreground from back-
ground and classify the objects contained in an input image.
Collomosse and Hall [CH02] introduce salience maps to fil-
ter out regions of strong color variations that should be rep-
resented in more detail.

Color processing: To create rich colors in a painting
with a fixed given set of colors, color transfer and dither-
ing have to be applied. Reinhard et al. [RAGS01] propose
color transformation from one image to another. Pitié et al.
[PKD05, PKD07] refine this method to transform any input
image in a given color space. Cohen-Or et al. [COSG∗06] se-
lect good color schemes and use them for color transforma-
tion. Yang and Yang [YY06] produce renderings of Seurat’s
pointillism with dithering using colored dots. Artists often
use a certain color set to create paintings instead of using
the colors of a given scenery. Therefore, we have to use such
methods to restrict and transfer the colors in our input im-
age to what can be mixed from the given set of colors in our
color repository.

Painting machines: Jean Tinguely (1925-1991, see
[Wik13]) was one of the first artists that built painting ma-
chines to create complex but mostly random patterns. He
followed a tradition from the 19th century, when people
were fascinated by mechanical apparatuses. Harold Cohen
[Coh12] built a plotter with the ability to paint abstract paint-
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ings. His project, known as ’AARON’ is regarded as the
most important painting machine in contemporary art.

Other early artists such as Frieder Nake [Wik12] used
the upcoming pen plotters in the 1960s to create artistic
graphics. Today, a number of artists use painting machines,
Ben Grosser [Gro13] and Holger Baer [Bae13] for creat-
ing abstract paintings. Specialized plotters such as Zanelle
[Arm12] or Vangobot [KM13] are able to create colorful
paintings today, but non of them uses a feedback mecha-
nism. While Zanelle works with brushes and creates only
very discretized, pop-art like paintings, Vangobot uses a so-
phisticated color mixing machine and applies paint directly
on a canvas like an inkjet printer.

Tresset and Fol Leymarie [TFL12, TFL13] created a
robotic installation that is able to create portrait sketches
of people. They use a form of visual feedback to guide the
painting process. This system creates sketches that have an
own artistic style, it is however limited to sketches.

Deussen et al. [DLPT12] present e-David, a painting robot
that works with visual feedback and is thus able to cre-
ate subtle paint representations. Our system builds on this
project, but in contrast to the pen-and-ink drawings pub-
lished in [DLPT12,LPD13] we work with acrylic paint. That
requires a completely modified painting pipeline and im-
poses a number of algorithmical challenges. Furthermore,
our stroke placement mechanism is based on Voronoi dia-
grams which differs from their greedy optimization method.

3. Overview

The purpose of our system is to create acrylic paintings that
look similar to those of human artists. This requires to be
able to handle brushes and paints like humans do; thus, we
use an industrial robot arm (Reis Robotics RV20-6) with six
degrees of freedom instead of a simple pen plotter. This al-
lows us to vary the angle of attack, to realize complex move-
ments, to dip brushes into the paint containers of a reposi-
tory, to clean them and also to change brushes freely during
painting (cf. Figures 1(a) and (b)).

After an input image has been chosen (the system can also
work with additional information such as depth values or se-
mantic information) a set of acrylic paints is selected. We
typically use harmonic color schemes and, as mentioned in
the introduction, transfer the input image into a color space
that can be realized with the set of selected acrylic paints
(cf. [COSG∗06]).

Similar to human painters we also paint from back to
front; thus we have to separate the input image into a set
of segments with an associated depth order (cf. [ZZXZ09,
ZZ10]). Each of the segments is painted with a large brush
and subsequently refined using smaller brushes. Background
segments are painted with less detail than foreground seg-
ments. This is realized by defining a set of brushes for each

segment. The machine always starts with a large brush and
continues with smaller ones. The smallest brush determines
the amount of details that can be represented by a layer. For
the foreground layers we additionally use a salience map de-
rived from Collomosse and Hall [CH02] for representing im-
portant details with higher detail. This map then refines the
selection of brushes for these layers.

We use the Canon EOS 5D Mark II camera to take pic-
tures of the canvas for visual feedback and OpenCV [Bra]
for adjusting the camera image in order to get a geomet-
rically correct and white-balanced image. Each of the seg-
ments is painted with visual feedback control. Strokes are
applied until the difference between canvas and given input
is sufficiently small. Details for the general feedback mech-
anism are described in Lindemeier et al. [LPD13].

When using acrylic paints, this general feedback process
has to be modified. Opaque paints will potentially never
come close to a given color of the image, instead we have
to create a dither pattern consisting of carefully selected and
oriented strokes of different color that on average repre-
sent the input color. Such patterns were invented during the
period of impressionism in which painters wanted to cap-
ture a particular moment or lighting situation and had to
paint fast without the time-consuming and mechanically ex-
tremely complex mixing of paints on the palette.

Using the above-mentioned iterative optimization scheme
based on Voronoi diagrams (see Section 5.2), new strokes are
painted in between existing ones by maximizing the minimal
distance, which results in a balanced and aesthetic place-
ment of strokes and allows for gradually approaching an in-
put color with many layers of mostly transparent paints. This
mechanism can be extended to work with opaque paints. As
mentioned above, here we need to create patterns of strokes
with different color that represent an input color on average
over an area. We start with one color and create a layer of
strokes. Using the next color, new brush strokes are placed
in between existing ones. If the space does not allow new
strokes to be placed in between existing ones, overpainting
happens, but always in a way that stroke layers maintain their
overall distribution.

4. Painting in layers from back to front

In order to paint layers from back to front we need to
segment the input image. As reported by other authors
[ZZXZ09, ZZ10, ZZ11] this is typically not possible to do
fully automatic. Thus we use a semi-automatic separation
into layers with depth order. The user scribbles the differ-
ent regions and, based on a pre-segmentation with a water-
shed transformation, the final segmentation is computed us-
ing graph cuts as described in [LSTS04].

In contrast to Zhao and Zhu [ZZ10,ZZ11] we process our
background layers further before painting them. To create
good stroke directions and a smooth painting of such layers,
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(a) (b) (c) (d) (e) 

Figure 2: Processing of layers: a) input image; b) separated layers; c) hole-filling; d) detail without hole-filling; e) detail with 

hole-filling and over-painting. 

Input : Input image 

Output: Acrylic painting 

P +- color palette sorted from dark to bright; 

2 L +- layers sorted from back to front; 

3 foreach layer l E L do 

4 B +- select brushes; 

5 foreach brush b E B do 

6 Db +- orientation field according to b; 

7 W +- distance map (see Equation 1); 

8 while IIW II is too large do 

9 foreacb color c E P do 

10 W +-distance map update; 
11 S +-Sample Strokes (W,Ob,b); 

l2 foreach stroke s E S do 
13 if s improves canvas then 

14 I paints; 

15 end 

16 end 

17 

18 

19 end 

20 end 

end 

end 

Algorithm 1: General painting algorithm. 

we have to fill holes that are caused by foreground objects. 

The reason is the following: stroke directions are computed 

by directing them perpendicular to the image gradient. This 
is a common technique in painterly redering [Lit97]. If, how

ever, small objects of the foreground disturb the image gra

dient of the background the corresponding direction infor

mation is also affected. 

Figure 2 shows the effect. If the background layer is 
not processed before painting, stroke directions as well as 

the smooth appearance of the sky become distorted (Figure 

2(d)). Thus, we use morphologic filters (dilation) to remove 

the foreground objects and apply the method described by 

Barnes et al. [BSFG09] for texture filling with the back

ground pattern ( cf. Figure 2( c)). The structuring element is in 

this case a circle with the maximum brush size as radius. We 

further process this modified layer in each painting iteration 

by applying a morphological opening to mask out objects of 

the foreground that are smaller than tbe currently selected 

brush. This enables us painting thin objects like the anteuna 
not with tbe potentially large brush used for the background 

but with the smaller-sized brush that is used for tbe fore

ground Figure 2(e) shows the final result 

An object type (sky, water, face, etc.) can be assigned to 

each of the layers. This allows us to use different painting 

methods for depicting different materials. A tree might be 

represented by many small and randomly oriented strokes 
while for the sky long and smoothly aligned strokes can be 

used. Section 6 shows style parameters and their values for 

the presented paintings. 

5. Painting a single layer 

To paint a layer, we start with the largest brush and iter

ate through all available colors. For each iteration we take 

a picture of the canvas and compute the difference of can

vas and input on a pixel-per-pixel basis. The resulting color 

distance map W is used to determine new positions for po

tential strokes. This is done using a Voronoi-based optimiza

tion process. Each of the stroke candidates is then evaluated 

and only strokes that improve tbe canvas using the current 

color are realized by the machine. For each brush size that is 
assigned to the segment we repeat this process until tbe over

all difference between input and canvas is sufficiently small 

Then we move on to the next layer. 

5.1. Stroke orientation 

A classic method for calculating the orientation of brush 
strokes is to direct them perpendicular to the image gra-
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(a) (b) (c) (d) (e) 

Figure 3: Voronoi relaxation: (a) source image; (b) the current canvas and a rectangle showing the zoomed area for ((c), 

(d), (e)); (c) zoomed in color distance map W of source and canvas according to (b); (d) Voronoi diagram of initial stroke 

candidates; (e) Voronoi diagram and stroke candidate locations after 150 iterations of the relaxation process (see Algorithm 2 ). 

Stroke candidates place the1nselves in between the existing strokes. 

dient [Lit97, HE04]. In our implementation we use struc

ture tensor fields where the strokes follow the eigenvector 

with smallest eigenvalue [I'D07,ZHT07,K.Kll]. Weak ten

sors without meaningful orientation are smoothed to con

struct valid orientation fields for a large variety of input im

ages. Sometimes image gradients are completely missing. 
Hays and Essa [HE04] interpolate from strong gradients us

ing radial basis functions. We use diffusion methods from 

boundaries to interpolate the missing gradient information 
(see Orzan et al. [OBW*08]). 

5.2. Placement of stroke candidates 

As mentioned above, three classes of methods for stroke po

sitioning have been used in related works, random placement 

and grid-based or Poisson disk stroke positioning. The latter 

two methods position strokes with defined minimal distances 
to each other and thus reach a smooth appearance. 

In our case, having the painting machine, the problem has 

to be reformulated: for each new color layer we need to paint 

a set of strokes that react to the already existing strokes on 
the canvas, are aesthetically distributed and can be arranged 

to a dither pattern if using opaque paints. 

We solve this problem by utilizing Lloyd's method, a lo

cal Voronoi-diagrarn-based optimization method that allows 

distributing graphical objects on the plane. We compute the 
Voronoi cells of each object and move the objects to the cen

ter of gravity of their Voronoi cells during each iteration, 

see [DHVSOO] for a version of this optimization with points. 
To create varying densities a weighted version of this opti

mization is used [Sec02]. 

The idea behind this process is as follows: Lloyd's method 

arranges a set of given objects in a distribution where all 

objects maximize their distances to their neighbours. Using 
weighted Voronoi relaxation [Sec02] the objects (stipples in 
Secord's paper) can be arranged in a way that they concen

trate at places where an underlying image is darker. This 

way objects, if drawn with black color, can be used to repre

sent the gray-scale values of the image. We utilize this effect 

and change the criterion for stroke placement: we define the 

weight for the weighted Voronoi relaxation in a way that the 

strokes concentrate at places where the color distance map 

W has high values, i.e. where the color distance of canvas 

and input is large. This results in a pleasing arrangement and 

concentrates strokes at the right places. 

5.3. Computing the color distance map 

The pictures of our camera system are converted to the per

ceptually linear color space CIELAB for feedback analysis. 
Assume a brush b with size a is selected. LetS, T be input 

and feedback image, tbe latter taken by the camera. We blur 
S according to the current brush size a with a gaussian ker

nel Ga, Sa = Ga * S. Subsequently, for each pair of pixels 
from Sa, T we determine the color difference by: 

W(x,y) = IISa(x,y) - T(x,y) ll ( 1) 

where llx - Yll is defined by the Euclidean distance in 
CIELAB color space and thus accounts for the perceived 

color distances [Poy03]. 

All values of W below a given threshold or not belong

ing to the current segment are set to zero. Such regions are 
discarded from the following relaxation process (see Figure 
4). 

5.4. Relaxation using Lloyd's method 

Hiller et al. [HHD03] propose an enhanced version of 

Lloyd's method for distributing small 20 objects such as 

lines or triangles. They use second order moments for ori

enting their elements. However, in our case the orientations 

are given by the orientation field, which is computed from 

the input image. 

We start our process by selecting initial seeds for stroke 

candidates (Algorithm 2 line 1). This can be random posi

tions, a grid layout or a Poisson disk arrangement. In our 

case a grid layout seems to be sufficient. Please note again 
that not all of these candidates will be painted later, they just 

define positions for potential strokes. The number n of seeds 



(a) (b)

Figure 4: Stroke candidates: a) color distance mask; b) cre-

ated positions and cells by Lloyd relaxation.

Input : Weight map W , orientations Ob, Brush b;
Output: Relaxed stroke distribution;

1 S ← seed points (see Equation 2);
2 m ←∞;
3 while m > 0 do

4 T ← create strokes from S,Ob,b;
5 V ← Voronoi diagram of T ;

6 SW ← weighted centroids of V according to W ;

7 m ← ||S−SW ||;

8 S ← SW ;
9 end

Algorithm 2: Stroke generation and relaxation.

depends on the current brush size σ and a sampling scale λ,
w and h are the dimensions of the input image:

n =
wh

(λσ)2 (2)

The choice of λ influences the size of the Voronoi cells
during the relaxation and thus defines the area which is
used to evaluate the stroke candidate later. If the cell size
is as small as the stroke, only the underlying pixels will be
counted. If it encompasses a larger area, the stroke is able
to react to its neighbourhood, which allows us to create the
already mentioned dither patterns.

For a given seed point the path of a stroke is computed
using stroke integration as proposed by Hertzmann [Her98]
(Algorithm 2 line 4). The path is integrated back and forth
along the orientation field with the current brush radius as
step size. The length is randomly chosen between a given
minimum and maximum value according to the style param-
eters (see Section 6).

The Voronoi diagram is computed using a method pro-
posed in [Hae90, WND97, HKL∗99] that utilizes graphics
hardware (Algorithm 2 line 5). They render three dimen-
sional meshes and exploit the z-buffer to compute distances

of objects. Thus, in fact they compute a Voronoi diagram,
for details please refer to Hiller et al. [HHD03]. We compute
the Voronoi diagram of n Strokes S = {s1, ...,sn}, sampled
as our initial stroke set with V (si) being the Voronoi cell of
a Stroke si. The moments and weighted centroids of Voronoi
cells are computed similar to Hiller et al. [HHD03]. They
pointed out that each Voronoi region can be represented by
a function ΨV (si):

ΨV (si)(x,y) =

{

0 if (x,y) /∈V (si)

W (x,y) if (x,y) ∈V (si)
(3)

with W (x,y) being the value from the distance map at
(x,y)(see Section 5.3).

The weighted centroid ci of a Voronoi cell is defined by
the moments of a Voronoi cell (Algorithm 2 line 6). These
moments are computed by accumulating the weights and co-
ordinates of pixels that belong to V (si) (cf. [DI13]):

m
0,0
i =

N−1

∑
x=0

M−1

∑
y=0

ΨV (si)(x,y) (4)

m
1,0
i =

N−1

∑
x=0

M−1

∑
y=0

x ·ΨV (si)(x,y) (5)

m
0,1
i =

N−1

∑
x=0

M−1

∑
y=0

y ·ΨV (si)(x,y) (6)

ci =

(

m
1,0
i /m

0,0
i

m
0,1
i /m

0,0
i

)

(7)

Strokes that form cells with a high accumulated color dis-
tance (high zero moments m0,0) should be moved at a slower
velocity during the relaxation process since they already lie
in regions where the color distance is large. Cells with maxi-
mal moments of first order are given velocities that are close
to zero in the relaxation step. Cells with minimal moments
are given the full velocities. The adaptive relaxation veloc-
ity αs is computed by normalizing the moment of first order
of a Voronoi cell with the maximal moment of all Voronoi
regions:

αi = 1−
m

0,0
i

max({m
0,0
1 , ...,m0,0

n })
(8)

The movement within one step of the relaxation is then
defined by:

p(si)
t+1 = p(si)

t +αi · (c
t
i − p(si)

t) (9)

with p(si) being the stroke seed used to integrate the stroke
si.

We compute the stroke path after each relaxation step ac-
cording to the new stroke seed (Algorithm 2 line 8 and 1).
This update of the stroke path and resulting change of orien-
tation influences the next relaxations. As a result, the process
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does not always converge. However, this is typically negli-
gible since it affects only a few strokes and the resulting dis-
tortions will be overpainted in the next iteration due to the
feedback loop. The iteration is stopped once the movement
of the strokes is below a given threshold.

In Figure 3 the process is shown. Assume the input im-
age is already approximated by a stroke layer. In subfigure
(c) the color distances with respect to the current painting
color are shown. A set of seed points is distributed by using
a grid layout. After applying the Voronoi relaxation with re-
gards to the distance map the strokes distribute in between
the existing strokes.

5.5. Stroke candidate evaluation

After the relaxation process has finished we have a large
number of well-positioned stroke candidates. Now we need
to check the quality of each candidate with respect to im-
proving the painting (Algorithm 1 line 13). Only candidates
that improve the color locally will be realized.

We use information contained in the Voronoi diagram to
evaluate the quality of our stroke candidates. The Voronoi
diagram partitions the image in regions that belong to certain
strokes. All pixels in such a Voronoi cell are closest to the
cell-defining stroke candidate. Therefore we roughly know
the region that is affected by each stroke. To determine the
quality of a stroke candidate, we simulate the application of
the stroke to the canvas and compare the color distances of
all pixels of the cell before and after stroke placement.

Color mixing on our virtual canvas is approximated by a
simple alpha blending that yields a sufficient approximation
of dry color mixing. Stroke textures are created from a pho-
tograph of real brush strokes created by the robot. We are
thinking about integrating more complex color mixing mod-
els as discussed in [CAS∗97] in the future by using multi-
spectral imaging. However, the results we achieve using al-
pha blending seem doing well for our purpose. Please recall
here, that due to the visual feedback mechanism and iter-
ative nature of our painting machine a simple color model
and simulation is sufficient.

Thinned paint: An interesting aspect of this evaluation
scheme is that it can be applied to both, thinned paints
and opaque paints (and all intermediate transparency levels).
Figures 1(c), 9(a),(b), 10(a) and 11 show results obtained
with a set of thinned paints that allow to gradually approx-
imate the input colors by many layers of paint. In this case
many stroke candidates are distributed onto the canvas so
that each of the Voronoi cells is not much larger than the
later realized stroke. We estimate the amount of strokes us-
ing Eq. (2) with λ = 1.5. This way the color differences of
the cell reflect directly what would be gained if the stroke is
realized.

Opaque paint: If opaque paints are used we distribute a

smaller number of stroke candidates on the canvas by setting
λ = 3 to reduce the amount of strokes fed to the relaxation
process. The resulting Voronoi cells encompass now a larger
area than occupied by the realized stroke and thus measure
the visual effect of an applied stroke in its entire vicinity.

As mentioned above, this enables us to introduce a form
of dithering: strokes do not just improve the colors of the
canvas directly located under themselves but also their local
neighborhood. Thus, a stroke with a color that is too dark for
representing the color directly on the canvas may be placed
in a certain region since the average of the color differences
within the associated Voronoi cell still improves the result.
In the next painting iteration of the algorithm, when a light
color is selected, it might be placed in its direct vicinity to
improve its Voronoi cell that is far too dark on average due
to the preceding dark stroke. As a result strokes of different
colors will be placed in a close neighborhood to create im-
pressions of new colors not contained in the palette if viewed
from a far distance.

Figure 5 gives an overview of the process: given is a color
ramp we want to paint with yellow and black color, in one
case with opaque paints, in the other case with thinned paints
(we typically thin the acrylic paints by dissolving them in
acrylic medium with a factor of 1:4-1:10). In both cases our
algorithm is able to produce painterly representations of the
input images. The dithering effect is furthermore illustrated
in Figure 6. The painting simulation was rendered using a
palette of six colors and one brush size. If viewed from a
distance it can be seen that the application with just a few
colors in a local neighborhood produces an impression of
multiple colors (e).

The strokes are then applied one after the other to the can-
vas. This follows the general methods that were described
in [DLPT12, LPD13].

6. Results

We demonstrate our results by showing photographs of the
paintings created by our machine.

Figure 9 shows three versions of a small tower painted
with a set of four transparent paints (mixed from pale gray,
raw umber, van Dyke brown, light ochre, sand and titanium
white). No visual feedback was used to create the painting
in (a). The system was therefore not able to react to impre-
cise applications of brush strokes and inaccurately measured
color values and opacity. This results in wrong colors and
missing details. The other two paintings in subfigures (b)
and (c) were painted using visual feedback. While the paint-
ing shown in (b) was painted without using layers, in (c)
three different layers were applied. This allows us to com-
bine a softly painted background with enhanced details in the
foreground. All paintings were created using approximately
9,000 strokes and needed 17 hours each to complete.

A comparison of our Voronoi-based relaxation method
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(a) (b) (c) (d)

Figure 5: Visualization of the evaluation process: Given is a color ramp (a) that is to be represented with yellow and black color.

In the upper row opaque paints are used, in the lower row thinned paints. (b) canvas after a number of painting iterations (25

for opaque and 39 for thinned paint, (see Algorithm 1 line 8)); (c) Voronoi diagram in both cases, for the opaque paint much less

cells are used. The color indicates if a stroke applied for this cell would improve the painting (red=worsen, green=improving);

(d) when the process is continued in both cases an approximation to the input is reached (65 iterations for opaque paint, 137

for thinned paint).

(a) (b) (c) (d) (e)

Figure 6: Simulation of the Voronoi cell dithering painting process using six different colors and a single layer: (a) input image;

(b) canvas after one iteration, each color has been applied once; (c) iteration 2; (d) iteration 3; (e) iteration 10, viewing the

result from a distance shows that the dithered strokes approximate the input quite well.

with Hertzmann [Her98] shows that on average we are able
to save 20% of the strokes, while still retaining a similar vi-
sual quality. For the above paintings this means three hours
less of painting time.

Figure 11 shows a winter scene composed of six layers.
The background layers were painted in a very rough style,
while the bridge has been realized with detailed strokes.
Here we used five colors (mixed from van Dyke brown, tita-
nium white, lamp black, cobalt blue hue deep, lilac, cerulean
blue and primary blue cyan) performed approximately 8,000
strokes in total and needed 15 hours for completion.

Figure 10 shows the effect of slightly changing the used
colors. Our visual feedback adapts to the new situation and
creates a new and yet not too dissimilar painting. By just
using black and white as colors in combination with a gray
background, our robot is able to create aesthetically pleasing
paintings (see Figure 8) with expressive character.

Figure 12 demonstrates the dithering possibility of our
proposed method. A palette with four different paints mixed
from krapp dark, carmine red, cadmium red, indian yellow,
sand, black and white were used to represent the image. All
paints were opaque, thus the corresponding version of our
algorithm was used. Especially the sky shows that the dither-
ing pattern represents the needed variations in the input im-
age quite well.

6.1. Style parameters

Table 1 shows the different style parameters we use to con-
trol the layout of strokes. The values lmin and lmax are the
minimum and maximum number of sample points defining
the path of a stroke. Since sampling is done with approx. one
mm this also defines the length of the strokes. All painting
shown below are painted on a 50x70cm painting cardboard
that was mounted on our stable canvas.
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Table 1: Style parameters and available labels.

Label lmin lmax ν hc

Sky (Figure 9)(b) 5 10 2 1
Water (Figure 9)(b) 3 7 1.5 0
Building (Figure 9)(b) 3 5 1 0.4
Winter tree (Figure 11) 4 8 1 0.8
Desert tree (Figure 12) 7 9 1 0.9
Sand (Figure 12) 6 8 1 0.6

The degree of smoothness of the orientation field that is
used to guide the brush strokes can be scaled (see Section
5.1). The smoothness scale ν is an additional parameter we
use for our stylization. Large values for smoothing are used,
for example, to paint skies or water since we do not want to
include fine details here (see background in Figure 9).

Since we are restricted by the size of real brushes we have
to use a fixed set of predefined brush sizes for each layer. Ev-
ery brush in a set is defined by its radius, another important
parameter is the maximum number of color and brush lay-
ers allowed for painting on the canvas. This number prevents
the robot from too much over-painting a certain area on the
canvas.

The curvature of the stroke hc as introduced by Hertz-
mann [Her98] defines the impact of the current directions
of the brush during integration of a stroke (see Section 5.2).
A value of hc = 0 leads to straight strokes that are oriented
according to the orientation of the image gradient at the
first point of the stroke. A value of hc = 1 results in curved
strokes where the stroke follows the orientation field for its
whole path.

(a) (b) (c) (d)

(e) (f)

Figure 7: Input images for paintings in Figures 9, 10, 12 and

11.

7. Conclusion

Our painting machine in combination with acrylic paints
and its feedback control allows us to create paintings in a
painterly style that reminds to those of human painters. We
separate the painting into a number of layers of different
depth and use individual style parameters for each of the lay-
ers to create an adequate painterly representation.

The method allows us to separate foreground objects from
the background visually. The optimization method based on
Voronoi diagrams reduces painting time about 20%. Further-
more, the optimization allows us to paint with thinned paints
as well as with opaque paints while distributing the strokes
in a aesthetically pleasing way. We are sure that this unified
way of processing color layers will be useful for a number
of applications.

Moreover, the robot can be used to study the painting pro-
cess and to find out to what extent artistic paintings can be
created by machines. This raises interesting questions about
the necessity and importance of creative processes during
painting and could even enable new forms of paintings in
the future: painters can focus on the creative aspects of a
painting and teach their ideas to the painting machine. The
machine then realizes the artisanal aspects of the painting
and eventually the artist finishes it to reach the desired effect.
This way manual labor and creative idea might be decoupled
to a large extent.

Future works will furthermore encompass new painting
styles such as expressionism and pointillism. We further
want to move from digital images as our input towards more
complex target functions such as 3D scenes and implicitly
given objects such as fractals. We also think about automatic
composition as described in Kalaidjian et al. [KKM09].
Therefore, we have to teach the robot how to draw certain
objects and object classes in particular painting styles. The
robot then chooses by itself how to represent objects in a
painting.
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(a) (b) (c)

Figure 8: Black and white paintings created with our painting robot. (a) Input Figure 7 (c); (b) input Figure 7 (d); (c) painting

after a photograph of Robert de Niro.
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(a) (b) (c)

Figure 9: A tower (Figure 7(a)) painted using our robot: (a) Painted without visual feedback but using layers.; (b) Painted

with visual feedback but without layers. The color differences to (c) are due to daylight changes when taking the photography

and a slightly different color balance when creating the painting.; (c) painted with visual feedback and layers. In this result the

reflections in the water look more realistic.

(a) (b)

Figure 10: Paintings after the Thinker by Auguste Rodin (Figure 7 (b)). Slight changes in paint colors results in a new but yet

not too different painting due to the feedback mechanism. Note: here we did not do the Voronoi optimization for the background

strokes, this results in a less regular distribution of the strokes.
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Figure 11: A winter scene painted using layers and a blue color palette (see Figure 7(e) for the input image). In this painting,

we intentionally highlight the bridge by using a detail brush for the foreground.

Figure 12: A desert scene painted using layers and stroke dithering with a palette with four opaque paints (mixed from krapp

dark, carmine red, cadmium red, indian yellow, sand, black and white) (see Figure 7(f) for the input image).
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