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Abstract Digital communication has become prevalent over the last few decades. The increasing popularity 
of the Internet and the proliferation of wireless networks have allowed people to conduct business and to 
communicate “online." Naturally, as the popularity of the medium increases, so do the concerns. Businesses 
and individuals alike are demanding security guarantees from the applications and services that they use. 
The most basic of these requirements are privacy and authenticity of data in transmission. Portable devices, 
including cell phones, Personal Digital Assistants (PDAs), and laptop computers are playing an increasing 
role in the lives of consumers. As these devices become more integrated with the daily routines of the end-
users, they are more likely to contain more personal information, including telephone numbers, birthdates, 
contact lists, and perhaps even credit card, bank account, or other billing information. Loss of a device 
containing this type of information is not only inconvenient; it can easily lead to identity theft. As the theft of 
devices like cellular phones becomes more common, end-users would like to see products that not only 
contain the latest features, but also provide some assurance of security. For example, a cellular telephone 
that allows a user to change providers and technologies without buying new hardware would certainly find 
a place in the pockets of consumers. The objective of this effort is to demonstrate the viability of a secured 
run-time reconfigurable processor for streaming-data communication applications, and to develop 
structured methods for assembling and reconfiguring this type of processor.  
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Introduction 
Network processors are becoming a predominant 
feature in the field of network hardware. As new 
network protocols emerge and data speeds 
increase, contemporary general-purpose network 
processors are entering their second generation 
and academic research is being actively 
conducted into new techniques for the design 
and implementation of these systems. At the 
same time, systems ranging from secured 
military communications equipment to consumer 
devices such as cellular telephones and PDAs are 
being updated to provide network connectivity. 
Many of these devices require, or would benefit 
from, the inclusion of device security in addition 
to data security. Whether it is a top-secret 
encryption scheme that must be concealed or a 
personal device that needs protection against 
unauthorized use, security of the device itself is 
becoming an important factor in system design. 
Unfortunately, current network processor 
solutions were not developed with device 
security in mind. A secure network processor can 
provide the means to fill this gap while 

continuing to provide full support for emerging 
communication protocols. 
Portable devices, including cell phones, Personal 
Digital Assistants (PDAs), and laptop computers 
are playing an increasing role in the lives of 
consumers. As these devices become more 
integrated with the daily routines of the end-
users, they are more likely to contain more 
personal information, including telephone 
numbers, birthdates, contact lists, and perhaps 
even credit card, bank account, or other billing 
information. Loss of a device containing this type 
of information is not only inconvenient; it can 
easily lead to identity theft [1]. As the theft of 
devices like cellular phones becomes more 
common [2], end-users would like to see 
products that not only contain the latest features, 
but also provide some assurance of security. For 
example, a cellular telephone that allows a user 
to change providers and technologies without 
buying new hardware would certainly find a 
place in the pockets of consumers. These same 
users would also derive comfort from the idea 
that this leading-edge adaptable communication 
hardware is keyed to them personally and will 
not function should it be lost or stolen. 
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As this evolution in communication systems 
takes place, network hardware options are 
evolving as well. Older network systems relied 
upon application-specific integrated circuits 
(ASICs) to provide processing of network traffic. 
These ASICs provide the high throughput 
required, but lack the flexibility needed to 
support changing network protocols. 
From a security standpoint, ASICs also fall short, 
as they can be disassembled at any time to 
discover their contents. This type of an attack on 
a system not only causes a loss of system 
integrity, but also results in a loss of the 
intellectual property contained within the device. 
Newer network systems require programmable 
hardware resources and some have turned to 
general-purpose processors. In addition, 
processor-based systems are susceptible to 
security attacks based upon known processor 
functions and operational monitoring. 
Exploitation of known processor weaknesses 
might allow attackers to interfere with system 
operation. In an effort to provide better support 
for modern network systems, researchers have 
begun developing specialized network 
processors. The resulting processors range from 
pattern processors and Ethernet classifiers 
[20,21,22] to systems consisting of general 
purpose RISC (Reduced Instruction Set 
Computer) cores [15,16,17,18] or reconfigurable 
hardware with additional special-purpose 
coprocessors designed to assist in common 
network packet processing tasks [19,23,24,26,27]. 
Network processors also serve to prolong 
networking hardware lifetimes beyond ASIC 
solutions since they can be programmed to 
support alternate protocols or modifications to 
existing protocols. 
Current devices are designed primarily for 
efficient packet routing and high throughput, 
and remain somewhat limited in their flexibility 
and lack native data processing (encryption, 
compression, etc.) capabilities. Those devices that 
do provide some security or data processing 
support provide only limited support for data 
encryption. Additional processing support must 
be added in the form of a coprocessor, while no 
attempt to secure the device itself against 
unwanted use or reverse engineering is made. In 
addition, these processors often are based upon 
an existing microprocessor core that does not 
include a direct hardware implementation of 
instructions that are fundamental to the task at 
hand. 
 

2 Background  
As network data rates and processing 
requirements continue to increase, specialized 
network processors are being developed as an 
alternative to the general-purpose processors and 
Application-Specific Integrated Circuits (ASICs) 

traditionally found in network data handling 
systems. These network processors are designed 
to provide systems with both ASIC-like speeds 
and microprocessor-like flexibility. Although the 
presently available commercial devices are 
primarily designed much like augmented RISC 
machines, current research is investigating the 
use of reconfigurable logic to provide additional 
speed and flexibility to end product designs. 
As network devices become more prolific, 
applications requiring enhanced device security 
will arise. Military use of network systems for 
encrypted data traffic might depend on 
algorithms that are not publicly available. It is 
desirable for the structure of these systems to 
remain hidden. In the commercial realm, it is 
easily within the foreseeable future that 
applications such as cellular telephones 
customize themselves on a per-user basis. 
Reconfigurable processing provides an excellent 
basis for this, and enhanced device security can 
serve to protect corporate investment in the 
intellectual property that goes in to the 
technology. From a consumer viewpoint, it is 
also desirable to protect these new devices from 
unauthorized use. Enhanced security within the 
device itself provides user specific customization 
without creating a device that is easily modified 
for unauthorized use. 
  

2.1 Network Processing 
Traditional network data-handling systems 
(switches, routers, edge devices, etc.) use either 
ASICs for performance [3,4] or general-purpose 
processors for flexibility and cost reduction [5,6]. 
Unfortunately, these devices do not offer the 
combination of speed and flexibility sought in 
current network systems [7,8]. ASICs provide 
high-speed data processing, but do not contain 
sufficient flexibility to adapt to new protocols 
and features [7]. Additionally, ASIC 
development is a costly and time-consuming 
process, requiring significant numbers of ASIC 
designers and millions of dollars in foundry fees 
just to produce a single device [7,8,9]. This level 
of investment in a device is a limiting factor to 
innovation, and can cause even the most well 
established players to hesitate before updating an 
established technology or pursuing a new 
direction. General-purpose processors are quite 
flexible, but do not offer the performance 
required for some network system tasks [7]. At 
the current rate of growth for network interface 
and general purpose processor speeds, this 
performance gap is continuing to widen [7]. 
These issues have created a demand for 
specialized network processors. 
To meet this demand, several network processor 
solutions have been developed. These hardware 
solutions range from full single-chip network 
processors to individual special purpose 
programmable network processing devices, all 
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falling into one of the following general 
categories: general-purpose processors and focused-
function devices. 
A network processor is defined here as a re-
programmable processing device that is designed 
specifically for use in a networking environment. 
It must be able to provide computing services for 
the continuous data flows that comprise a 
networking environment.  
 

2.2 Embedded Device Security 
Device security becomes a concern as network-
attached devices become more ubiquitous and 
competition among vendors increases. For some 
applications, such as military communications, it 
is important to protect the network hardware 
itself from attempts to reverse engineer or 
replicate its operation (or from incompetence). 
From the manufacturer’s standpoint, it is also 
important to protect the intellectual property (IP) 
investment contained in a network product. 
Gathering the core system function into a single 
device limits the number of exposed interfaces 
that can be monitored to determine system 
function. Organizations involved in proprietary 
network data manipulation can take advantage 
of this by encapsulating all IP functionality 
within a network processor. 
Unfortunately, current network processors are 
not designed to meaningfully provide this type 
of security. Solutions based upon conventional 
ASIC and processor techniques fall short of 
providing the full protection for the algorithms 
they contain. ASICs retain their functionality 
even when the system is not operating. As a 
result, an ASIC can be opened and studied to 
determine its internal structure [10]. A 
conventional processor may not retain 
information regarding tasks when not in 
operation, but it is vulnerable to bus monitoring 
attacks while running [11]. In a processor-based 
system, the IP investment is in the code fed to the 
processor at run-time.  
A reconfigurable logic device, such as a Field 
Programmable Gate Array (FPGA), does not 
need to retain its function while the system is not 
in operation. When un-powered, the FPGA is a 
generic reconfigurable device containing no user-
specific function. While operating, it can remain a 
generic piece of hardware running a simple user 
discovery application until a valid user presents 
credentials to the system. Once a user is 
validated by the system, the device can be 
configured to include functionality tailored to 
that user. While common FPGA configuration 
streams are clear text, protection of the 
information using a standard cryptographic 
protocol can provide for a measure of security as 
this data is transferred to the device [12,13].  
In both processor-based and FPGA-based 
systems, program information is often held in 
static random-access memory (SRAM). In both 

cases, a secure application must take care to 
eradicate itself from the RAM, since it may be 
possible to detect the residual information in 
SRAM cells after power has been removed [14]. 
Since many FPGA technologies hold 
configuration information in SRAM, this means 
care must be taken when a user is done with the 
system.  
 

2.3 Background Summary 
The current design techniques used to build 
these network processors do not, however, fully 
conceal the internal algorithms, nor do they 
provide support for security of the hardware 
itself. When the reputation of a network 
company is based upon its ability to process data 
more efficiently than the competition, it is 
important to protect the intellectual property of a 
design. When that design is critical to the 
security of the user, it is important that that 
security not be breached. As these systems find 
their way into applications in which the 
algorithms themselves need to be provided the 
utmost security (military encryption, etc.), it 
becomes more important to conceal the device 
function and control user access. Toward this 
end, a new scheme is needed to maintain the 
speed and flexibility of network processors while 
providing an additional level of device security. 
An ideal device provides an efficient means of 
run-time reconfiguration to support leading-edge 
network protocols, adapts as these protocols 
change, and implements an efficient method for 
concealing the internal operation and 
configuration/programming data presented at its 
ports.  
 

3 Structure  
The prototype system described in this chapter 
distributes the network processor function across 
several configurable devices to allow for run-
time reconfiguration and to provide a modular 
design structure that promotes independent 
development and validation as well as access 
points for integration testing (Figure 3.1). 
Separate configurable elements are used for 
system configuration control and user 
processing. Support for both the initial user 
specific function and the run-time modification 
of that function is contained within a single 
device. A second configurable device contains 
the interfaces for user hardware and the basic 
packet handling systems. A third device provides 
system configuration control and authentication 
support through during both the user discovery 
and the user function modes of operation. This 
division allows for external device (wireless 
radio-frequency hardware and wired network 
physical interface) connection establishment 
during initial user configuration. It also permits 
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run-time updates to the processing channels that 
do not disturb these external connections. 
 

 
Figure 3.1 Basic System Block Diagram 
 
The use of multiple devices simplifies the initial 
development and debugging process while 
allowing for a lower cost prototype. Although 
the operation has been divided among three 
components for demonstration, the functionality 
provided by these three configurable elements 
could be folded into a single larger 
reconfigurable device. Additional support for 
partial run-time reconfiguration must be 
developed to support single-device packaging, 
however. Along these lines, configurable logic 
vendors now provide technologies such as the 
internal SelectMAP [30] interface (ICAP) in the 
Xilinx Virtex-II [31] FPGA family. These 
interfaces allow a device to partially reconfigure 
itself while it is running. Fong, Harper, and 
Athanas describe in [43] the current state of 
ongoing research into this concept of dynamic 
self-reconfiguration, the results of which will 
permit the full integration of the prototype. 
 

3.1 Configuration Management 
The secure network processor operates in two 
distinct modes. When a valid user is present, it 
provides individualized processing of the user 
data. When no user is present, a discovery 
application is run on the hardware. This section 
describes the system operation as it transitions 
from user discovery mode to user function mode. 
 
3.1.1 Authorization 
In this particular prototype system, a user is 
identified by a token and a biometric. The user 
inserts a token into a receptacle attached to the 
prototype platform and then allows the system to 
identify them via a biometric interface. At the 
final stage of authorization, information used in 
assembling the embedded user function is 
downloaded from the token in the form of a Bit 
stream Cache Table. 
This prototype uses a custom-designed Bit stream 
Cache Table to manage the encrypted 

configuration bitstreams. Each table entry 
corresponds to an individual bitstream required 
for current user operation. As shown in Figure 
3.2, a table entry contains an identification tag, a 
decryption key, bitstream memory address 
ranges, a partial bitstream indicator, and status 
flags. This format was chosen to allow for 
modular development of the prototype. As the 
primary communication point between the 
authentication system and the configuration 
engine, it allowed the two systems to be 
developed independently, and then easily 
merged into a whole system. The table itself is 
flexible enough to allow for modification of this 
interface as needed. Without a valid set of table 
entries, the encrypted bitstream data cannot be 
retrieved, decrypted, and loaded into processing 
elements.  
The Start Address and Stop Address fields indicate 
where the encrypted bitstream is stored in local 
memory after retrieval from a remote server 
(Section 3.1.3). Entries with the Default flag set 
are to be programmed in as the initial user 
function. Entries that do not have this flag set 
represent configuration data that may be 
swapped in while the network processor is in 
User Function mode. 
 

 
Figure 3.2: 128-bit cache table entry for configuration 
management 
 
The Active flag is used to mark which 
configurations are currently being used. After a 
bitstream is retrieved from the remote server to 
local memory, it is marked as Local. The Tag is 
used to uniquely identify a configuration 
bitstream and its domain. For Valid entries, the 
previously mentioned fields represent a user 
application bitstream. Invalid table entries 
simply represent slots that are not yet filled by 
the current application. Finally, the One-time Key 
and Domain Key fields contain the keys associated 
with a doubly encrypted configuration entry. The 
one-time key is determined by reconstruction of 
the one-time key used by a remote Configuration 
Server. The domain key is retrieved from the 
token and used in conjunction with the one-time 
key to produce a clear-text configuration 
bitstream. Once these keys are in the table, they 
are kept inside the secure network processor and 
used only by the configuration engine (see Figure 
3.5). 
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The Bitstream Cache Table can only be modified 
by two sources. The first source is the User 
Discovery application, which transfers the 
original table data upon user verification. The 
second source is a Control Register in 
Reconfigurable Device 0 that provides an 
interface for run-time modification of the system. 
This register allows the user application to 
request reconfiguration in addition to providing 
a debugging interface for the prototype system. 
Restricting cache table access in this manner 
allows for internal control of reconfiguration 
events. Although table access could be restricted 
further for other applications, the chosen method 
provides a useful combination of control and 
accessibility in the prototype system. Support for 
user discovery mode is provided by a security 
management system running inside of the 
Configuration Engine in Reconfigurable Device 0 
and by an additional Authentication System 
running in Reconfigurable Device 2. Additional 
details of user discovery mode operation are 
provided in [29]. 
 
3.1.2 Stream Management 
User bitstreams are retrieved from a network 
connection based upon the tags placed in the 
Bitstream Cache Table during the user 
authentication process. Conversion from User 
Discovery Mode to User Function Mode is 
outlined in Figure 3.3. It involves retrieving the 
appropriate encrypted configuration bitstreams 
for reconfigurable devices 0 and 1 from an 
external network and placing them in local 
storage. The bitstreams are then read by a 
Configuration Engine, decrypted, and used to 
place the user application in the network 
processor. 
 

 
Figure 3.3: Conversion from user discovery to user 
function mode 
 
The security management system employed 
during this operation is shown in Figure 3.4. It 
consists of a device programmer, a user 
authentication unit (described in [29]), a network 
interface, and a configuration manager. The 
Device Interface shown in the picture is a simple 
register-based connection that directly controls 
the configuration pins of Reconfigurable Device 1 
and Reconfigurable Device 2 [32]. 

Bitstream data is directly written to this interface 
in unencrypted form to configure the 
reconfigurable devices that comprise the system. 
The Ethernet Interface may be either a direct (local 
wired crossover) connection to a display device 
such as a tablet computer, or a standard 
connection to a full network system. In the case 
of a direct connection, the Configuration Store is 
the connected device. 

               Figure 3.4: Configuration management 
 
The Configuration Manager is comprised of three 
major entities: a Decryption Core, a Cache Table, 
and a Bitstream Loader. In this implementation, 
The Bitstream Loader consults the cache table to 
locate encrypted configuration bitstreams in 
memory and pass them through the decryption 
unit to the Device Programmer. The Decryption 
Core decodes the encrypted bitstream using the 
associated key (provided by the cache table) and 
returns the result to the Bitstream Loader for 
forwarding to the Device Programmer. 
 
3.1.3 Configuration Stream Requests 
Configuring Reconfigurable Device 1 and 
Reconfigurable Device 2 as a user-specific network 
processing system changes the platform from a 
stand-by state to an operational device. As 
described above, this process is based on the 
bitstream cache table and handled by the 
Configuration Manager. When the bitstream 
cache table is first transferred to the network 
processor, the Configuration Manager 
determines if the required encrypted bitstreams 
are stored locally. For non-local bitstreams, a 
request is sent over the network interface to a 
remote Configuration Store to retrieve the 
needed information as depicted in Figure 3.5. 
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        Figure 3.5: Configuration key handling 
 
The transmitted request used in this example 
structure is in clear text and the assumption is 
made that it does not need to be secured. The 
request contains only a bitstream identifier. As 
such, any outside party intercepting it would 
gain information regarding the bitstream 
identifiers requested by a particular device. 
While they would not gain any knowledge of the 
content of the configuration data, this might 
provide some advantage in attempting to decode 
the returned data. In a non-prototype system, 
this request could be protected using the same 
scheme that is used here to encrypt returned 
configuration data. This additional protection of 
the request would conceal the identifiers, but 
would also require additional resources. The 
marginal gain in security was not considered 
worthwhile for the prototype system, as it does 
not demonstrate anything outside of the already 
established protection scheme. 
In response to a request, the network 
Configuration Store returns a packet containing 
an encrypted bitstream. This bitstream is secured 
in a packet conforming to the format. Upon 
receipt of this packet, the network processing 
system decrypts the packet header and uses a 
combiner located in Reconfigurable Device 0 to 
produce the decryption key for the bitstream. 
The encrypted bitstream is moved into external 
storage at the location specified by the key table, 
while the internal key table is updated with the 
configuration data key and the bitstream is 
marked as local. 
When all configuration streams are local, the 
bitstream loader reads those marked as Default 
from local storage, retrieves the one-time key 
from the Bitstream Cache Table and the domain 
key from the token, and uses a hardware 
encryption unit to decrypt the configuration 
information and forward the results to the 
appropriate programming interface.  
 
3.1.4 User-based Reconfiguration 
Once the initial configuration is complete, the 
user-specific system may itself request device 
reconfiguration. Reconfiguration requests of this 
type may result from user input or data flowing 
through the system. The process by which these 
requests are handled is similar to that of the 
initial reconfiguration. The bitstream loader is 
notified by the user application that a 

configuration update is needed. The update may 
consist of a bitstream placed in memory by the 
user application or a tag for a bitstream that must 
be retrieved from a remote server. In the first 
case, only the Bitstream Cache Table is updated 
to reflect the location of the new bitstream and its 
decryption key. In the later case, the bitstream is 
retrieved as described above for the initial 
configuration. In both cases, once the bitstream is 
local and the table is updated, the bitstream 
loader decrypts the configuration data and feeds 
it to the appropriate device configuration 
interface. 
The Bitstream Cache Table keeps track of 
recently used bitstreams using identification tags 
to refer to bitstream entries (see Figure 3.2). 
Bitstream entries may reside anywhere in the 
table and the table may be extended as needed 
with the only theoretical limitation being the 
number of unique identifiers it can contain (231 
entries using the current table format). In 
practice, table access may be restricted to initial 
configuration only or extended to the user or 
application for additional device flexibility. 
 
 

3.2 Structure Summary 
It provides the flexibility needed to test user 
applications within the network processor 
framework and allows for the run-time system 
modifications that are the basis of the framework. 
It is not, however, an ideal representation of the 
network processor. Several steps were taken to 
produce a realizable system in currently available 
(and relatively inexpensive) hardware including 
separation of the functionality across several 
programmable devices. While all of these are 
reasonable goals in a production system, and 
certainly worthy of a second prototype, they do 
not add significantly to the preliminary 
investigative utility provided by the described 
prototype platform. 
 

4 Implementation 
The prototype network processor system has 
been implemented on a SLAAC1-V 
reconfigurable computing platform [33]. The 
SLAAC1-V, as shown in Figure 4.1, has three 
Xilinx Virtex XCV1000 FPGAs [25] labeled X0, 
X1, and X2. There are ten independent on-board 
SRAM memories providing a total capacity of 
11.5Mbytes, and a significant amount of inter-
FPGA connectivity. In the default SLAAC1-V 
system, the Configuration Control FPGA (a 
Xilinx Virtex XCV300 [25] device) governs device 
configuration. 
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      Figure 4.1: SLAAC1-V block diagram [29] 
 
The network processor functionality is divided 
among the primary FPGAs as defined by the 
structure described in Section 3.1. Given that the 
target operations of the prototype all involve 
data movement between wired and wireless 
networks, this division is made as shown in 
Figure 4.2. Here, the reconfigurable device X0 
contains the primary system control function, X1 
contains user-based processing functions, and X2 
contains device interfaces along with associated 
data processing. 
All permanent configuration and control 
functions are embedded in device X0 since this 
device has direct access to the Configuration 
Control FPGA (Figure 4.1). In the prototype 
system, however, the Configuration Control 
FPGA consists of nothing more than a data path 
to the configuration interfaces of the three 
primary FPGAs. The contents of the X0 device 
remain unchanged as users arrive (authenticate) 
and depart (deactivate). Since it is controlling the 
configuration operation, the SLAAC1-V design 
does not allow it to be configured itself. 

 
          Figure 4.2: Network processor embedding 
 
If no valid user is present, device X2 contains 
only the User Discovery System and 
authorization device interfaces. After a valid user 
arrives, X2 contains the primary user data 

routing functions as well as connections to user 
devices. Add-on modules have been developed 
to provide this FPGA with physical connections 
to support hardware, including wired and 
wireless network, user identification token, and 
biometric identification device interfaces [29]. 
These interfaces also perform any packet 
handling (encapsulation, header processing, 
error checking) issues associated with an 
attached device, allowing the data to interact 
with the user processing system. Additional 
support for PCI-attached devices is routed 
through X0 since it is physically connected to the 
PCI bus of the prototyping card. This transceiver 
interacts with the PCI core in X0, while user-
configurable data processing for the device takes 
place in X2. Device X1 is empty when no valid 
user is present. It is configured to contain the 
Reconfigurable Processing Channels of the 
network processor user function. When a valid 
user is detected. This division of functionality 
allows for run-time reconfiguration of the 
Reconfigurable Processing Channels in X1 
without disturbing the hardware interfaces 
contained in X2. 
 

4.1 Platform Reconfiguration 
Due to limitations in the token processing power, 
however, the configuration process does deviate 
somewhat from the sequence outlined in Figure 
3.3. Rather than transferring encrypted 
configuration stream header information to the 
token for key assembly, the prototype system 
transfers the user credentials via a secured link 
from the token to the network processor 
platform. The key assembly mechanism is 
located in FGPA X0 of the prototype. This 
modification creates a slightly less secure system, 
as credentials are exposed to the platform, yet 
was necessary due to limitations in the iButton 
token processing capabilities. The FPGA contains 
more processing resources than the selected 
token device and provides design access to ease 
algorithm development. As technology 
progresses and configuration stream key 
assembly algorithms are more thoroughly 
investigated, the assembly function may be 
moved back into the token. 
A user fingerprint template is also downloaded 
from the token to the platform. This template is 
forwarded to a Secugen [34] fingerprint reader 
where a match routine authenticates a user. The 
result of the match is returned to the network 
processor as a pass/fail indication. The template 
is a proprietary format developed by Secugen 
and cannot be used to reconstruct the fingerprint 
from which it was derived. The FDA01 device, 
however, can use it to verify a user using internal 
hardware to match a current user to the template. 
It is impractical to perform this algorithm in the 
FPGA due to its proprietary, undisclosed, nature. 
In a full implementation of the secure network 
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processor, however, the hardware to perform this 
match function should be moved into a token 
similar to [28]. 
Upon user verification encrypted configuration 
data is read from a Configuration Store device. 
The basis of the encryption used in this system is 
the Blowfish algorithm [35]. Blowfish was chosen 
because it supports a flexible key size and maps 
well to hardware [36]. In addition, the open-
source algorithm is similar to other symmetric 
cryptographic algorithms and is credible in the 
security industry [37]. Blowfish supports key 
sizes ranging from 32 bits to 448 bits, although 
the prototype restricts itself to 32-bit keys to 
reduce the size and complexity of the embedded 
hardware. The hardware implementation of 
blowfish used in the prototype encrypts or 
decrypts up to 35.5 Mbits/sec (using a 20 MHz 
clock), regardless of key length. This allows for 
an entire X1 or X2 configuration (approximately 
6 Mbits in length) to be decrypted in 170 ms. 
Once configured for user operation, the user 
functions of the current prototype embed wired 
and wireless network interfaces into the user 
processing elements. An arbiter combines output 
data from the four processing channels, 
preserving packet boundaries, and forwards the 
data to an output device. 
 

4.2 Wireless Network Data Interface 
Data destined for the transmission from the 
wireless interface is packetized within its 
processing channel before being presented to an 
arbiter for multiplexing onto the wireless output 
channel. This encapsulation of data into a 
wireless packet is performed by the packetizer. 
This entity adds an appropriate wireless protocol 
header to outgoing data and calculates an 
attached CRC if it is needed. The wireless packet 
format is shown in Figure 4.3. 

 
            Figure 4.3: Wireless packet header 
 
A Start marker in the wireless packet header 
allows for receiver synchronization and a 
Checksum [38] is provided to verify both header 
integrity and the validity of the Start marker. A 
control byte, identical to that used on the wired 
network input is included to provide packet 
content and routing information. Also in keeping 
with the wired network input format, the Size 
word is presented LSB-first. If a CRC is present, it 
is appended to the data and is calculated over the 

full packet beginning with the Start marker. 
This wireless packet format was constructed to 
minimize header overhead while allowing for 
lossy connections between wireless stations. As 
indicated above, the wireless interface for the 
first prototype was implemented using a 
commercial wireless transceiver. 
This device provides internal data integrity 
checking for its own smaller communication 
packets. Packets seen by the prototype at the 
wireless interface consist of several of these 
smaller transceiver packets. Data errors at the 
wireless interface therefore consist of either a lost 
portion of a packet or reception of data beginning 
in the middle of a packet. Lost portions are 
readily identified by the CRC, while the 
checksum provides some assurance that a 
detected packet start marker is indeed the start of 
a packet. The checksum and CRC employed are 
the same as those used in the Ethernet protocol, 
and should provide similar data integrity 
assurance. The chosen Ethernet techniques were 
primarily selected for ease of hardware 
implementation, and have been carried over to 
the second prototype in which a user-
configurable wireless system is used [39]. The 
data integrity checks provided in the current 
system may very well be replaced as the wireless 
interface continues to evolve, and new data 
transfer protocols are developed. 
Data received by the wireless transceiver is 
classified for channel processing by the classifier. 
This entity routes data to the correct processing 
channel, performs any needed CRC check, and 
signals an acknowledgement unit when the 
sender requests an acknowledgement of packet 
receipt. In this case, the classifier also acts to 
detect valid packet starting points by searching 
for a packet start marker and verifying the 
header checksum. Wireless packet information is 
reduced to the control byte as data is forwarded 
to a channel for processing. Data flowing from 
the wireless to the wired interface is placed into 
outgoing FIFOs after channel-specific processing 
is complete. A separate Control FIFO is used to 
indicate the availability of data in these outgoing 
data FIFOs. This data is retrieved by an 
outbound Ethernet interface for placement on the 
wired network. 
 

4.3 Wired Network Data Interface 
A header is required for all data entering the 
wired network side of the processor, as shown in 
Figure 4.4. This header allows for classification 
and processing of packetized data before it is sent 
to the wireless interface for transmission. The 
Control Byte determines the processing channel to 
which the packet will be routed as well as 
providing some packet processing control 
information. The Size fields specify the size of the 
data set in bytes, where the size is a 16-bit value 
provided Least Significant Byte (LSB) first. A 
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network protocol-specific module translates from 
the external network packet format to this 
internal format. 

 
Figure 4.4: Wired network input packet 
 
The user_classifier parses the control byte (Figure 
4.5) to determine packet destination. An optional 
16-bit Cyclic Redundancy Check (CRCCCITT 
[40]) may be attached to the data for error 
checking. If that is the case, the CRC flag is set in 
the Control Byte, the Size field is expanded to 
include the CRC, and the user_classifier performs 
a CRC check over the data set as it is read in. The 
result of the CRC check is passed to the 
appropriate channel following the data. The Key 
Change flag in the Control Byte is set to indicate 
the fact that the data in the packet is a new key to 
be used for following transmissions on the 
channel. The Configuration flag indicates the 
packet data is a new configuration for the 
indicated processing channel. An Ack Request 
field allows the sender to request an 
acknowledgement of packet receipt from the 
recipient. If an acknowledgement is requested, 
the user classifier signals a separate 
acknowledgement unit to reply. Finally, the 
Channel ID field provides a mask for routing this 
packet, where each bit is used to enable a 
processing channel. Note that data may be 
broadcast to more than one channel by setting 
multiple bits of the Channel ID. 

 
           Figure 4.5: Incoming data control byte 
 

4.4 Secured Network Gateway 
Making use of alternate hardware for the 
network and radio connections, the new system 

increases potential throughput. In addition, the 
user processing space of X1 is used for 
reconfigurable processing channels that are used 
to encrypt and decrypt data traffic for the 
wireless network. The user function provided by 
this prototype is a Secured Network Gateway. A 
Secured Network Gateway is a device providing 
a link between two network systems that is 
adapted to a particular user and active only in 
that user’s presence. Applications for this type of 
device include any high-security installations 
with a private network that have a controlled 
external access point. This type of installation 
might include the radio room of a naval vessel or 
the communications center of a military 
installation. While many users may not need this 
level of security, the adaptable nature of the 
system does provide some benefit even the 
security features are not essential. For example, 
simply indicating the presence of a particular 
user may modify the features of a gateway. Real 
benefit for all users can be seen in the adaptable 
nature of the system as it is deployed in devices 
like cellular telephones where the interface 
between voice and radio may be adapted to suit 
the services used by an individual. In this 
situation, run-time adaptability of the system 
also comes in to play as the user moves from one 
location to another, potentially changing radio 
communication protocols along the way. It 
requires the presence of a valid user to provide a 
link between a wired network and a wireless 
system. A block diagram of the system is shown 
in Figure 4.6. 

 
           Figure 4.6: Secure network gateway prototype 
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4.5 Network Gateway Structure 
Configuration of the gateway is done in a secure 
manner using a remote Configuration Store. 
Once a user is authenticated, the user 
requirements and credentials are transferred 
from the token to the network processor. The 
network processor then initiates a configuration 
request sequence to retrieve user settings for the 
X1 and X2 FPGAs as well as the connected radio 
hardware. These requests and the return data are 
handled with the exception that the information 
contained within the Configuration Store is not 
pre-encrypted and does not require a domain 
configuration key for decoding. While the 
addition of this security level could easily be 
added, it is more convenient to deal with 
unencrypted bitstreams in the prototype 
environment. The encrypted user configurations 
stored in local SRAM are therefore encrypted 
only with the one-time key used for the transfer. 
A local security agent processes the attached 
header data to create keys for each configuration 
and writes the results to the Bitstream Cache 
Table. The Configuration Manager then parses 
the table and configures attached devices as 
needed. 
The wireless network still operates on a 
serialized FIFObased interface with an arbiter 
feeding data to it and a classifier reading from it. 
The wired network still feeds data to a classifier, 
but it now uses an output arbitration unit to feed 
multi-channel data through a single path. A 
second wired connection is included as well to 
allow for a directly connected user device (PDA, 
laptop PC) for control and monitoring in 
addition to a local area network (LAN) 
connection for data flow. Wiznet IIM7010 
Ethernet modules [41,42] are used for the wired 
network interfaces. These modules read and 
write data using a FIFO interface and provide 
raw Ethernet, UDP/IP (User Datagram Protocol 
over IP), or TCP/IP network protocol handling. 
For this prototype, data exchange with the LAN 
is done at the Ethernet level, while data is 
exchanged with the local user device using 
TCP/IP via a crossover cable connection. The 
Configuration Store is contained within the user 
device to simplify testing and demonstration. 
 

5 Conclusion 
Several approaches to the design of a network 
processor currently exist, each of which provides 
some means of efficiently handling high-speed 
network traffic and adapting to new protocols. 
As these devices find their way into applications 
in which the very algorithms need to be 
protected, it becomes more important to conceal 
the device function, control user access, and 
otherwise limit the possibility of interacting with, 
participating in, or interfering with the operation 
of a privileged communications system. Most 

design techniques currently used to build these 
network processors do not, however, attempt to 
conceal the internal algorithms or to provide 
support for security of the hardware itself. Those 
that do provide some security support typically 
add hardware co-processing for common 
security functions (RSA, SHA, etc.) or provide 
internal storage for program streams. When the 
reputation of a network company is based upon 
its ability to process data more efficiently than 
the competition, it is important to protect the 
intellectual property of a design. When that 
design is critical to the security of the user, it is 
important that device security not be breached. 
Fixed-function ASIC devices are inherently 
insecure, as they not only require external 
devices for production of a useful network 
processing solution, but their hardware nature 
leaves them susceptible to offline reverse 
engineering. Processor-based systems have the 
potential for slightly increased security since 
more functionality might be contained in a single 
device. Unfortunately, their reliance on external 
instruction streams means that they are 
susceptible to instruction bus monitoring attacks 
while operational. While offline observation of 
the devices themselves might reveal very little 
about these processor-based systems, attacks that 
determine the contents of instruction storage are 
particularly effective. Devices like the Intel IXP 
2850 reduce the effectiveness of operational bus 
monitoring for applications that can fit in the 
internal instruction storage space. They do, 
however, still remain vulnerable to offline 
analysis of this instruction store. Finally, 
reconfigurable systems like the USC/ISI GRIP 
are particularly vulnerable to IP theft, as they 
provide the hardware functionality in the form of 
an unsecured configuration stream that could 
easily be used in other devices to provide the 
same function. These systems could easily 
increase security somewhat by using current 
vendor bitstream encryption, or more fully by 
adapting the interface structure.  
The flexible hardware basis for the secure 
network processor permits the construction of 
systems fully self-contained within a single 
device. It is also a consideration when attempting 
to minimize components in a network processing 
design.  The least self-contained systems, such as 
the IDT PAXport 2500 classifiers are designed to 
simply provide a portion of a larger solution. 
Devices based upon processing cores provide 
more self-contained solutions, as a wider variety 
of system function can be performed in a single 
component. Many of these devices do not, 
however, contain basic network interfaces and 
still require off-chip storage of instruction 
streams during system operation. The on-chip 
storage and MAC support of the IBM 
PowerNP2G allows for a somewhat more self-
contained solution. Reconfigurable systems 
provide the most potential for self-contained 
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systems. The Chameleon CS2112 does not require 
external instruction data, and provides a 
reconfigurable processing base that can 
implement a variety of network functions. In a 
system requiring user authentication, it may fall 
short; however, as no internal security functions 
are included. Finally, reconfigurable systems like 
the USC/SI GRIP are designed using several 
components, and are inherently multi-device 
solutions. It would certainly be possible, 
however, to incorporate the function that they 
provide into a single system like the secure 
network processor to make them a truly single-
device solution. Lastly, the dynamic nature of 
this system allows for an increased level of 
dynamic user adaptability. Clearly, 
reconfigurable solutions like the USC/ISI GRIP 
could be as adaptable as the secure network 
processor. Their current lack of user 
identification and authorization means that in 
their current incarnations they are not inherently 
suited to user adaptation. Some additional 
support hardware and minor internal 
modification could remedy this, however. 
General-purpose processing solutions are 
likewise not currently user-adaptable. They to 
could benefit from additional support in this 
area, but remain somewhat limited in their 
potential by the restriction to a fixed instruction 
set. Finally, ASIC devices designed for a specific 
purpose like the Agere APP750NP may provide 
some flexibility within their intended function, 
are clearly not adaptable to provide other 
functions. As reconfigurable hardware 
technology continues to improve, the size of 
standard reconfigurable devices will continue to 
grow. The space available within current 
reconfigurable systems allows for custom 
hardware and standard processor cores to be 
mixed together on a single device. Newer 
technology will allow even more functionality 
within a device, making single-chip solutions 
even more practical. 
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