
SETIT 2005
3rd International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 27-31, 2005 – TUNISIA

Hardware based Security for Wireless Devices
Engr. Junaid Majeed

FEST Hamdard University
junaidmajeedhu@yahoo.com

Abstract Digital communication has become prevalent over the last few decades. The increasing popularity
of the Internet and the proliferation of wireless networks have allowed people to conduct business and to
communicate “online." Naturally, as the popularity of the medium increases, so do the concerns. Businesses
and individuals alike are demanding security guarantees from the applications and services that they use.
The most basic of these requirements are privacy and authenticity of data in transmission. Portable devices,
including cell phones, Personal Digital Assistants (PDAs), and laptop computers are playing an increasing
role in the lives of consumers. As these devices become more integrated with the daily routines of the end-
users, they are more likely to contain more personal information, including telephone numbers, birthdates,
contact lists, and perhaps even credit card, bank account, or other billing information. Loss of a device
containing this type of information is not only inconvenient; it can easily lead to identity theft. As the theft of
devices like cellular phones becomes more common, end-users would like to see products that not only
contain the latest features, but also provide some assurance of security. For example, a cellular telephone
that allows a user to change providers and technologies without buying new hardware would certainly find
a place in the pockets of consumers. The objective of this effort is to demonstrate the viability of a secured
run-time reconfigurable processor for streaming-data communication applications, and to develop
structured methods for assembling and reconfiguring this type of processor.

Keywords Security ,VLSI , Algorithms

Introduction
Network processors are becoming a predominant
feature in the field of network hardware. As new
network protocols emerge and data speeds
increase, contemporary general-purpose network
processors are entering their second generation
and academic research is being actively
conducted into new techniques for the design
and implementation of these systems. At the
same time, systems ranging from secured
military communications equipment to consumer
devices such as cellular telephones and PDAs are
being updated to provide network connectivity.
Many of these devices require, or would benefit
from, the inclusion of device security in addition
to data security. Whether it is a top-secret
encryption scheme that must be concealed or a
personal device that needs protection against
unauthorized use, security of the device itself is
becoming an important factor in system design.
Unfortunately, current network processor
solutions were not developed with device
security in mind. A secure network processor can
provide the means to fill this gap while

continuing to provide full support for emerging
communication protocols.
Portable devices, including cell phones, Personal
Digital Assistants (PDAs), and laptop computers
are playing an increasing role in the lives of
consumers. As these devices become more
integrated with the daily routines of the end-
users, they are more likely to contain more
personal information, including telephone
numbers, birthdates, contact lists, and perhaps
even credit card, bank account, or other billing
information. Loss of a device containing this type
of information is not only inconvenient; it can
easily lead to identity theft [1]. As the theft of
devices like cellular phones becomes more
common [2], end-users would like to see
products that not only contain the latest features,
but also provide some assurance of security. For
example, a cellular telephone that allows a user
to change providers and technologies without
buying new hardware would certainly find a
place in the pockets of consumers. These same
users would also derive comfort from the idea
that this leading-edge adaptable communication
hardware is keyed to them personally and will
not function should it be lost or stolen.

SETIT2005

As this evolution in communication systems
takes place, network hardware options are
evolving as well. Older network systems relied
upon application-specific integrated circuits
(ASICs) to provide processing of network traffic.
These ASICs provide the high throughput
required, but lack the flexibility needed to
support changing network protocols.
From a security standpoint, ASICs also fall short,
as they can be disassembled at any time to
discover their contents. This type of an attack on
a system not only causes a loss of system
integrity, but also results in a loss of the
intellectual property contained within the device.
Newer network systems require programmable
hardware resources and some have turned to
general-purpose processors. In addition,
processor-based systems are susceptible to
security attacks based upon known processor
functions and operational monitoring.
Exploitation of known processor weaknesses
might allow attackers to interfere with system
operation. In an effort to provide better support
for modern network systems, researchers have
begun developing specialized network
processors. The resulting processors range from
pattern processors and Ethernet classifiers
[20,21,22] to systems consisting of general
purpose RISC (Reduced Instruction Set
Computer) cores [15,16,17,18] or reconfigurable
hardware with additional special-purpose
coprocessors designed to assist in common
network packet processing tasks [19,23,24,26,27].
Network processors also serve to prolong
networking hardware lifetimes beyond ASIC
solutions since they can be programmed to
support alternate protocols or modifications to
existing protocols.
Current devices are designed primarily for
efficient packet routing and high throughput,
and remain somewhat limited in their flexibility
and lack native data processing (encryption,
compression, etc.) capabilities. Those devices that
do provide some security or data processing
support provide only limited support for data
encryption. Additional processing support must
be added in the form of a coprocessor, while no
attempt to secure the device itself against
unwanted use or reverse engineering is made. In
addition, these processors often are based upon
an existing microprocessor core that does not
include a direct hardware implementation of
instructions that are fundamental to the task at
hand.

2 Background
As network data rates and processing
requirements continue to increase, specialized
network processors are being developed as an
alternative to the general-purpose processors and
Application-Specific Integrated Circuits (ASICs)

traditionally found in network data handling
systems. These network processors are designed
to provide systems with both ASIC-like speeds
and microprocessor-like flexibility. Although the
presently available commercial devices are
primarily designed much like augmented RISC
machines, current research is investigating the
use of reconfigurable logic to provide additional
speed and flexibility to end product designs.
As network devices become more prolific,
applications requiring enhanced device security
will arise. Military use of network systems for
encrypted data traffic might depend on
algorithms that are not publicly available. It is
desirable for the structure of these systems to
remain hidden. In the commercial realm, it is
easily within the foreseeable future that
applications such as cellular telephones
customize themselves on a per-user basis.
Reconfigurable processing provides an excellent
basis for this, and enhanced device security can
serve to protect corporate investment in the
intellectual property that goes in to the
technology. From a consumer viewpoint, it is
also desirable to protect these new devices from
unauthorized use. Enhanced security within the
device itself provides user specific customization
without creating a device that is easily modified
for unauthorized use.

2.1 Network Processing
Traditional network data-handling systems
(switches, routers, edge devices, etc.) use either
ASICs for performance [3,4] or general-purpose
processors for flexibility and cost reduction [5,6].
Unfortunately, these devices do not offer the
combination of speed and flexibility sought in
current network systems [7,8]. ASICs provide
high-speed data processing, but do not contain
sufficient flexibility to adapt to new protocols
and features [7]. Additionally, ASIC
development is a costly and time-consuming
process, requiring significant numbers of ASIC
designers and millions of dollars in foundry fees
just to produce a single device [7,8,9]. This level
of investment in a device is a limiting factor to
innovation, and can cause even the most well
established players to hesitate before updating an
established technology or pursuing a new
direction. General-purpose processors are quite
flexible, but do not offer the performance
required for some network system tasks [7]. At
the current rate of growth for network interface
and general purpose processor speeds, this
performance gap is continuing to widen [7].
These issues have created a demand for
specialized network processors.
To meet this demand, several network processor
solutions have been developed. These hardware
solutions range from full single-chip network
processors to individual special purpose
programmable network processing devices, all

SETIT2005

falling into one of the following general
categories: general-purpose processors and focused-
function devices.
A network processor is defined here as a re-
programmable processing device that is designed
specifically for use in a networking environment.
It must be able to provide computing services for
the continuous data flows that comprise a
networking environment.

2.2 Embedded Device Security
Device security becomes a concern as network-
attached devices become more ubiquitous and
competition among vendors increases. For some
applications, such as military communications, it
is important to protect the network hardware
itself from attempts to reverse engineer or
replicate its operation (or from incompetence).
From the manufacturer’s standpoint, it is also
important to protect the intellectual property (IP)
investment contained in a network product.
Gathering the core system function into a single
device limits the number of exposed interfaces
that can be monitored to determine system
function. Organizations involved in proprietary
network data manipulation can take advantage
of this by encapsulating all IP functionality
within a network processor.
Unfortunately, current network processors are
not designed to meaningfully provide this type
of security. Solutions based upon conventional
ASIC and processor techniques fall short of
providing the full protection for the algorithms
they contain. ASICs retain their functionality
even when the system is not operating. As a
result, an ASIC can be opened and studied to
determine its internal structure [10]. A
conventional processor may not retain
information regarding tasks when not in
operation, but it is vulnerable to bus monitoring
attacks while running [11]. In a processor-based
system, the IP investment is in the code fed to the
processor at run-time.
A reconfigurable logic device, such as a Field
Programmable Gate Array (FPGA), does not
need to retain its function while the system is not
in operation. When un-powered, the FPGA is a
generic reconfigurable device containing no user-
specific function. While operating, it can remain a
generic piece of hardware running a simple user
discovery application until a valid user presents
credentials to the system. Once a user is
validated by the system, the device can be
configured to include functionality tailored to
that user. While common FPGA configuration
streams are clear text, protection of the
information using a standard cryptographic
protocol can provide for a measure of security as
this data is transferred to the device [12,13].
In both processor-based and FPGA-based
systems, program information is often held in
static random-access memory (SRAM). In both

cases, a secure application must take care to
eradicate itself from the RAM, since it may be
possible to detect the residual information in
SRAM cells after power has been removed [14].
Since many FPGA technologies hold
configuration information in SRAM, this means
care must be taken when a user is done with the
system.

2.3 Background Summary
The current design techniques used to build
these network processors do not, however, fully
conceal the internal algorithms, nor do they
provide support for security of the hardware
itself. When the reputation of a network
company is based upon its ability to process data
more efficiently than the competition, it is
important to protect the intellectual property of a
design. When that design is critical to the
security of the user, it is important that that
security not be breached. As these systems find
their way into applications in which the
algorithms themselves need to be provided the
utmost security (military encryption, etc.), it
becomes more important to conceal the device
function and control user access. Toward this
end, a new scheme is needed to maintain the
speed and flexibility of network processors while
providing an additional level of device security.
An ideal device provides an efficient means of
run-time reconfiguration to support leading-edge
network protocols, adapts as these protocols
change, and implements an efficient method for
concealing the internal operation and
configuration/programming data presented at its
ports.

3 Structure
The prototype system described in this chapter
distributes the network processor function across
several configurable devices to allow for run-
time reconfiguration and to provide a modular
design structure that promotes independent
development and validation as well as access
points for integration testing (Figure 3.1).
Separate configurable elements are used for
system configuration control and user
processing. Support for both the initial user
specific function and the run-time modification
of that function is contained within a single
device. A second configurable device contains
the interfaces for user hardware and the basic
packet handling systems. A third device provides
system configuration control and authentication
support through during both the user discovery
and the user function modes of operation. This
division allows for external device (wireless
radio-frequency hardware and wired network
physical interface) connection establishment
during initial user configuration. It also permits

SETIT2005

run-time updates to the processing channels that
do not disturb these external connections.

Figure 3.1 Basic System Block Diagram

The use of multiple devices simplifies the initial
development and debugging process while
allowing for a lower cost prototype. Although
the operation has been divided among three
components for demonstration, the functionality
provided by these three configurable elements
could be folded into a single larger
reconfigurable device. Additional support for
partial run-time reconfiguration must be
developed to support single-device packaging,
however. Along these lines, configurable logic
vendors now provide technologies such as the
internal SelectMAP [30] interface (ICAP) in the
Xilinx Virtex-II [31] FPGA family. These
interfaces allow a device to partially reconfigure
itself while it is running. Fong, Harper, and
Athanas describe in [43] the current state of
ongoing research into this concept of dynamic
self-reconfiguration, the results of which will
permit the full integration of the prototype.

3.1 Configuration Management
The secure network processor operates in two
distinct modes. When a valid user is present, it
provides individualized processing of the user
data. When no user is present, a discovery
application is run on the hardware. This section
describes the system operation as it transitions
from user discovery mode to user function mode.

3.1.1 Authorization
In this particular prototype system, a user is
identified by a token and a biometric. The user
inserts a token into a receptacle attached to the
prototype platform and then allows the system to
identify them via a biometric interface. At the
final stage of authorization, information used in
assembling the embedded user function is
downloaded from the token in the form of a Bit
stream Cache Table.
This prototype uses a custom-designed Bit stream
Cache Table to manage the encrypted

configuration bitstreams. Each table entry
corresponds to an individual bitstream required
for current user operation. As shown in Figure
3.2, a table entry contains an identification tag, a
decryption key, bitstream memory address
ranges, a partial bitstream indicator, and status
flags. This format was chosen to allow for
modular development of the prototype. As the
primary communication point between the
authentication system and the configuration
engine, it allowed the two systems to be
developed independently, and then easily
merged into a whole system. The table itself is
flexible enough to allow for modification of this
interface as needed. Without a valid set of table
entries, the encrypted bitstream data cannot be
retrieved, decrypted, and loaded into processing
elements.
The Start Address and Stop Address fields indicate
where the encrypted bitstream is stored in local
memory after retrieval from a remote server
(Section 3.1.3). Entries with the Default flag set
are to be programmed in as the initial user
function. Entries that do not have this flag set
represent configuration data that may be
swapped in while the network processor is in
User Function mode.

Figure 3.2: 128-bit cache table entry for configuration
management

The Active flag is used to mark which
configurations are currently being used. After a
bitstream is retrieved from the remote server to
local memory, it is marked as Local. The Tag is
used to uniquely identify a configuration
bitstream and its domain. For Valid entries, the
previously mentioned fields represent a user
application bitstream. Invalid table entries
simply represent slots that are not yet filled by
the current application. Finally, the One-time Key
and Domain Key fields contain the keys associated
with a doubly encrypted configuration entry. The
one-time key is determined by reconstruction of
the one-time key used by a remote Configuration
Server. The domain key is retrieved from the
token and used in conjunction with the one-time
key to produce a clear-text configuration
bitstream. Once these keys are in the table, they
are kept inside the secure network processor and
used only by the configuration engine (see Figure
3.5).

SETIT2005

The Bitstream Cache Table can only be modified
by two sources. The first source is the User
Discovery application, which transfers the
original table data upon user verification. The
second source is a Control Register in
Reconfigurable Device 0 that provides an
interface for run-time modification of the system.
This register allows the user application to
request reconfiguration in addition to providing
a debugging interface for the prototype system.
Restricting cache table access in this manner
allows for internal control of reconfiguration
events. Although table access could be restricted
further for other applications, the chosen method
provides a useful combination of control and
accessibility in the prototype system. Support for
user discovery mode is provided by a security
management system running inside of the
Configuration Engine in Reconfigurable Device 0
and by an additional Authentication System
running in Reconfigurable Device 2. Additional
details of user discovery mode operation are
provided in [29].

3.1.2 Stream Management
User bitstreams are retrieved from a network
connection based upon the tags placed in the
Bitstream Cache Table during the user
authentication process. Conversion from User
Discovery Mode to User Function Mode is
outlined in Figure 3.3. It involves retrieving the
appropriate encrypted configuration bitstreams
for reconfigurable devices 0 and 1 from an
external network and placing them in local
storage. The bitstreams are then read by a
Configuration Engine, decrypted, and used to
place the user application in the network
processor.

Figure 3.3: Conversion from user discovery to user
function mode

The security management system employed
during this operation is shown in Figure 3.4. It
consists of a device programmer, a user
authentication unit (described in [29]), a network
interface, and a configuration manager. The
Device Interface shown in the picture is a simple
register-based connection that directly controls
the configuration pins of Reconfigurable Device 1
and Reconfigurable Device 2 [32].

Bitstream data is directly written to this interface
in unencrypted form to configure the
reconfigurable devices that comprise the system.
The Ethernet Interface may be either a direct (local
wired crossover) connection to a display device
such as a tablet computer, or a standard
connection to a full network system. In the case
of a direct connection, the Configuration Store is
the connected device.

 Figure 3.4: Configuration management

The Configuration Manager is comprised of three
major entities: a Decryption Core, a Cache Table,
and a Bitstream Loader. In this implementation,
The Bitstream Loader consults the cache table to
locate encrypted configuration bitstreams in
memory and pass them through the decryption
unit to the Device Programmer. The Decryption
Core decodes the encrypted bitstream using the
associated key (provided by the cache table) and
returns the result to the Bitstream Loader for
forwarding to the Device Programmer.

3.1.3 Configuration Stream Requests
Configuring Reconfigurable Device 1 and
Reconfigurable Device 2 as a user-specific network
processing system changes the platform from a
stand-by state to an operational device. As
described above, this process is based on the
bitstream cache table and handled by the
Configuration Manager. When the bitstream
cache table is first transferred to the network
processor, the Configuration Manager
determines if the required encrypted bitstreams
are stored locally. For non-local bitstreams, a
request is sent over the network interface to a
remote Configuration Store to retrieve the
needed information as depicted in Figure 3.5.

SETIT2005

 Figure 3.5: Configuration key handling

The transmitted request used in this example
structure is in clear text and the assumption is
made that it does not need to be secured. The
request contains only a bitstream identifier. As
such, any outside party intercepting it would
gain information regarding the bitstream
identifiers requested by a particular device.
While they would not gain any knowledge of the
content of the configuration data, this might
provide some advantage in attempting to decode
the returned data. In a non-prototype system,
this request could be protected using the same
scheme that is used here to encrypt returned
configuration data. This additional protection of
the request would conceal the identifiers, but
would also require additional resources. The
marginal gain in security was not considered
worthwhile for the prototype system, as it does
not demonstrate anything outside of the already
established protection scheme.
In response to a request, the network
Configuration Store returns a packet containing
an encrypted bitstream. This bitstream is secured
in a packet conforming to the format. Upon
receipt of this packet, the network processing
system decrypts the packet header and uses a
combiner located in Reconfigurable Device 0 to
produce the decryption key for the bitstream.
The encrypted bitstream is moved into external
storage at the location specified by the key table,
while the internal key table is updated with the
configuration data key and the bitstream is
marked as local.
When all configuration streams are local, the
bitstream loader reads those marked as Default
from local storage, retrieves the one-time key
from the Bitstream Cache Table and the domain
key from the token, and uses a hardware
encryption unit to decrypt the configuration
information and forward the results to the
appropriate programming interface.

3.1.4 User-based Reconfiguration
Once the initial configuration is complete, the
user-specific system may itself request device
reconfiguration. Reconfiguration requests of this
type may result from user input or data flowing
through the system. The process by which these
requests are handled is similar to that of the
initial reconfiguration. The bitstream loader is
notified by the user application that a

configuration update is needed. The update may
consist of a bitstream placed in memory by the
user application or a tag for a bitstream that must
be retrieved from a remote server. In the first
case, only the Bitstream Cache Table is updated
to reflect the location of the new bitstream and its
decryption key. In the later case, the bitstream is
retrieved as described above for the initial
configuration. In both cases, once the bitstream is
local and the table is updated, the bitstream
loader decrypts the configuration data and feeds
it to the appropriate device configuration
interface.
The Bitstream Cache Table keeps track of
recently used bitstreams using identification tags
to refer to bitstream entries (see Figure 3.2).
Bitstream entries may reside anywhere in the
table and the table may be extended as needed
with the only theoretical limitation being the
number of unique identifiers it can contain (231
entries using the current table format). In
practice, table access may be restricted to initial
configuration only or extended to the user or
application for additional device flexibility.

3.2 Structure Summary
It provides the flexibility needed to test user
applications within the network processor
framework and allows for the run-time system
modifications that are the basis of the framework.
It is not, however, an ideal representation of the
network processor. Several steps were taken to
produce a realizable system in currently available
(and relatively inexpensive) hardware including
separation of the functionality across several
programmable devices. While all of these are
reasonable goals in a production system, and
certainly worthy of a second prototype, they do
not add significantly to the preliminary
investigative utility provided by the described
prototype platform.

4 Implementation
The prototype network processor system has
been implemented on a SLAAC1-V
reconfigurable computing platform [33]. The
SLAAC1-V, as shown in Figure 4.1, has three
Xilinx Virtex XCV1000 FPGAs [25] labeled X0,
X1, and X2. There are ten independent on-board
SRAM memories providing a total capacity of
11.5Mbytes, and a significant amount of inter-
FPGA connectivity. In the default SLAAC1-V
system, the Configuration Control FPGA (a
Xilinx Virtex XCV300 [25] device) governs device
configuration.

SETIT2005

 Figure 4.1: SLAAC1-V block diagram [29]

The network processor functionality is divided
among the primary FPGAs as defined by the
structure described in Section 3.1. Given that the
target operations of the prototype all involve
data movement between wired and wireless
networks, this division is made as shown in
Figure 4.2. Here, the reconfigurable device X0
contains the primary system control function, X1
contains user-based processing functions, and X2
contains device interfaces along with associated
data processing.
All permanent configuration and control
functions are embedded in device X0 since this
device has direct access to the Configuration
Control FPGA (Figure 4.1). In the prototype
system, however, the Configuration Control
FPGA consists of nothing more than a data path
to the configuration interfaces of the three
primary FPGAs. The contents of the X0 device
remain unchanged as users arrive (authenticate)
and depart (deactivate). Since it is controlling the
configuration operation, the SLAAC1-V design
does not allow it to be configured itself.

 Figure 4.2: Network processor embedding

If no valid user is present, device X2 contains
only the User Discovery System and
authorization device interfaces. After a valid user
arrives, X2 contains the primary user data

routing functions as well as connections to user
devices. Add-on modules have been developed
to provide this FPGA with physical connections
to support hardware, including wired and
wireless network, user identification token, and
biometric identification device interfaces [29].
These interfaces also perform any packet
handling (encapsulation, header processing,
error checking) issues associated with an
attached device, allowing the data to interact
with the user processing system. Additional
support for PCI-attached devices is routed
through X0 since it is physically connected to the
PCI bus of the prototyping card. This transceiver
interacts with the PCI core in X0, while user-
configurable data processing for the device takes
place in X2. Device X1 is empty when no valid
user is present. It is configured to contain the
Reconfigurable Processing Channels of the
network processor user function. When a valid
user is detected. This division of functionality
allows for run-time reconfiguration of the
Reconfigurable Processing Channels in X1
without disturbing the hardware interfaces
contained in X2.

4.1 Platform Reconfiguration
Due to limitations in the token processing power,
however, the configuration process does deviate
somewhat from the sequence outlined in Figure
3.3. Rather than transferring encrypted
configuration stream header information to the
token for key assembly, the prototype system
transfers the user credentials via a secured link
from the token to the network processor
platform. The key assembly mechanism is
located in FGPA X0 of the prototype. This
modification creates a slightly less secure system,
as credentials are exposed to the platform, yet
was necessary due to limitations in the iButton
token processing capabilities. The FPGA contains
more processing resources than the selected
token device and provides design access to ease
algorithm development. As technology
progresses and configuration stream key
assembly algorithms are more thoroughly
investigated, the assembly function may be
moved back into the token.
A user fingerprint template is also downloaded
from the token to the platform. This template is
forwarded to a Secugen [34] fingerprint reader
where a match routine authenticates a user. The
result of the match is returned to the network
processor as a pass/fail indication. The template
is a proprietary format developed by Secugen
and cannot be used to reconstruct the fingerprint
from which it was derived. The FDA01 device,
however, can use it to verify a user using internal
hardware to match a current user to the template.
It is impractical to perform this algorithm in the
FPGA due to its proprietary, undisclosed, nature.
In a full implementation of the secure network

SETIT2005

processor, however, the hardware to perform this
match function should be moved into a token
similar to [28].
Upon user verification encrypted configuration
data is read from a Configuration Store device.
The basis of the encryption used in this system is
the Blowfish algorithm [35]. Blowfish was chosen
because it supports a flexible key size and maps
well to hardware [36]. In addition, the open-
source algorithm is similar to other symmetric
cryptographic algorithms and is credible in the
security industry [37]. Blowfish supports key
sizes ranging from 32 bits to 448 bits, although
the prototype restricts itself to 32-bit keys to
reduce the size and complexity of the embedded
hardware. The hardware implementation of
blowfish used in the prototype encrypts or
decrypts up to 35.5 Mbits/sec (using a 20 MHz
clock), regardless of key length. This allows for
an entire X1 or X2 configuration (approximately
6 Mbits in length) to be decrypted in 170 ms.
Once configured for user operation, the user
functions of the current prototype embed wired
and wireless network interfaces into the user
processing elements. An arbiter combines output
data from the four processing channels,
preserving packet boundaries, and forwards the
data to an output device.

4.2 Wireless Network Data Interface
Data destined for the transmission from the
wireless interface is packetized within its
processing channel before being presented to an
arbiter for multiplexing onto the wireless output
channel. This encapsulation of data into a
wireless packet is performed by the packetizer.
This entity adds an appropriate wireless protocol
header to outgoing data and calculates an
attached CRC if it is needed. The wireless packet
format is shown in Figure 4.3.

 Figure 4.3: Wireless packet header

A Start marker in the wireless packet header
allows for receiver synchronization and a
Checksum [38] is provided to verify both header
integrity and the validity of the Start marker. A
control byte, identical to that used on the wired
network input is included to provide packet
content and routing information. Also in keeping
with the wired network input format, the Size
word is presented LSB-first. If a CRC is present, it
is appended to the data and is calculated over the

full packet beginning with the Start marker.
This wireless packet format was constructed to
minimize header overhead while allowing for
lossy connections between wireless stations. As
indicated above, the wireless interface for the
first prototype was implemented using a
commercial wireless transceiver.
This device provides internal data integrity
checking for its own smaller communication
packets. Packets seen by the prototype at the
wireless interface consist of several of these
smaller transceiver packets. Data errors at the
wireless interface therefore consist of either a lost
portion of a packet or reception of data beginning
in the middle of a packet. Lost portions are
readily identified by the CRC, while the
checksum provides some assurance that a
detected packet start marker is indeed the start of
a packet. The checksum and CRC employed are
the same as those used in the Ethernet protocol,
and should provide similar data integrity
assurance. The chosen Ethernet techniques were
primarily selected for ease of hardware
implementation, and have been carried over to
the second prototype in which a user-
configurable wireless system is used [39]. The
data integrity checks provided in the current
system may very well be replaced as the wireless
interface continues to evolve, and new data
transfer protocols are developed.
Data received by the wireless transceiver is
classified for channel processing by the classifier.
This entity routes data to the correct processing
channel, performs any needed CRC check, and
signals an acknowledgement unit when the
sender requests an acknowledgement of packet
receipt. In this case, the classifier also acts to
detect valid packet starting points by searching
for a packet start marker and verifying the
header checksum. Wireless packet information is
reduced to the control byte as data is forwarded
to a channel for processing. Data flowing from
the wireless to the wired interface is placed into
outgoing FIFOs after channel-specific processing
is complete. A separate Control FIFO is used to
indicate the availability of data in these outgoing
data FIFOs. This data is retrieved by an
outbound Ethernet interface for placement on the
wired network.

4.3 Wired Network Data Interface
A header is required for all data entering the
wired network side of the processor, as shown in
Figure 4.4. This header allows for classification
and processing of packetized data before it is sent
to the wireless interface for transmission. The
Control Byte determines the processing channel to
which the packet will be routed as well as
providing some packet processing control
information. The Size fields specify the size of the
data set in bytes, where the size is a 16-bit value
provided Least Significant Byte (LSB) first. A

SETIT2005

network protocol-specific module translates from
the external network packet format to this
internal format.

Figure 4.4: Wired network input packet

The user_classifier parses the control byte (Figure
4.5) to determine packet destination. An optional
16-bit Cyclic Redundancy Check (CRCCCITT
[40]) may be attached to the data for error
checking. If that is the case, the CRC flag is set in
the Control Byte, the Size field is expanded to
include the CRC, and the user_classifier performs
a CRC check over the data set as it is read in. The
result of the CRC check is passed to the
appropriate channel following the data. The Key
Change flag in the Control Byte is set to indicate
the fact that the data in the packet is a new key to
be used for following transmissions on the
channel. The Configuration flag indicates the
packet data is a new configuration for the
indicated processing channel. An Ack Request
field allows the sender to request an
acknowledgement of packet receipt from the
recipient. If an acknowledgement is requested,
the user classifier signals a separate
acknowledgement unit to reply. Finally, the
Channel ID field provides a mask for routing this
packet, where each bit is used to enable a
processing channel. Note that data may be
broadcast to more than one channel by setting
multiple bits of the Channel ID.

 Figure 4.5: Incoming data control byte

4.4 Secured Network Gateway
Making use of alternate hardware for the
network and radio connections, the new system

increases potential throughput. In addition, the
user processing space of X1 is used for
reconfigurable processing channels that are used
to encrypt and decrypt data traffic for the
wireless network. The user function provided by
this prototype is a Secured Network Gateway. A
Secured Network Gateway is a device providing
a link between two network systems that is
adapted to a particular user and active only in
that user’s presence. Applications for this type of
device include any high-security installations
with a private network that have a controlled
external access point. This type of installation
might include the radio room of a naval vessel or
the communications center of a military
installation. While many users may not need this
level of security, the adaptable nature of the
system does provide some benefit even the
security features are not essential. For example,
simply indicating the presence of a particular
user may modify the features of a gateway. Real
benefit for all users can be seen in the adaptable
nature of the system as it is deployed in devices
like cellular telephones where the interface
between voice and radio may be adapted to suit
the services used by an individual. In this
situation, run-time adaptability of the system
also comes in to play as the user moves from one
location to another, potentially changing radio
communication protocols along the way. It
requires the presence of a valid user to provide a
link between a wired network and a wireless
system. A block diagram of the system is shown
in Figure 4.6.

 Figure 4.6: Secure network gateway prototype

SETIT2005

4.5 Network Gateway Structure
Configuration of the gateway is done in a secure
manner using a remote Configuration Store.
Once a user is authenticated, the user
requirements and credentials are transferred
from the token to the network processor. The
network processor then initiates a configuration
request sequence to retrieve user settings for the
X1 and X2 FPGAs as well as the connected radio
hardware. These requests and the return data are
handled with the exception that the information
contained within the Configuration Store is not
pre-encrypted and does not require a domain
configuration key for decoding. While the
addition of this security level could easily be
added, it is more convenient to deal with
unencrypted bitstreams in the prototype
environment. The encrypted user configurations
stored in local SRAM are therefore encrypted
only with the one-time key used for the transfer.
A local security agent processes the attached
header data to create keys for each configuration
and writes the results to the Bitstream Cache
Table. The Configuration Manager then parses
the table and configures attached devices as
needed.
The wireless network still operates on a
serialized FIFObased interface with an arbiter
feeding data to it and a classifier reading from it.
The wired network still feeds data to a classifier,
but it now uses an output arbitration unit to feed
multi-channel data through a single path. A
second wired connection is included as well to
allow for a directly connected user device (PDA,
laptop PC) for control and monitoring in
addition to a local area network (LAN)
connection for data flow. Wiznet IIM7010
Ethernet modules [41,42] are used for the wired
network interfaces. These modules read and
write data using a FIFO interface and provide
raw Ethernet, UDP/IP (User Datagram Protocol
over IP), or TCP/IP network protocol handling.
For this prototype, data exchange with the LAN
is done at the Ethernet level, while data is
exchanged with the local user device using
TCP/IP via a crossover cable connection. The
Configuration Store is contained within the user
device to simplify testing and demonstration.

5 Conclusion
Several approaches to the design of a network
processor currently exist, each of which provides
some means of efficiently handling high-speed
network traffic and adapting to new protocols.
As these devices find their way into applications
in which the very algorithms need to be
protected, it becomes more important to conceal
the device function, control user access, and
otherwise limit the possibility of interacting with,
participating in, or interfering with the operation
of a privileged communications system. Most

design techniques currently used to build these
network processors do not, however, attempt to
conceal the internal algorithms or to provide
support for security of the hardware itself. Those
that do provide some security support typically
add hardware co-processing for common
security functions (RSA, SHA, etc.) or provide
internal storage for program streams. When the
reputation of a network company is based upon
its ability to process data more efficiently than
the competition, it is important to protect the
intellectual property of a design. When that
design is critical to the security of the user, it is
important that device security not be breached.
Fixed-function ASIC devices are inherently
insecure, as they not only require external
devices for production of a useful network
processing solution, but their hardware nature
leaves them susceptible to offline reverse
engineering. Processor-based systems have the
potential for slightly increased security since
more functionality might be contained in a single
device. Unfortunately, their reliance on external
instruction streams means that they are
susceptible to instruction bus monitoring attacks
while operational. While offline observation of
the devices themselves might reveal very little
about these processor-based systems, attacks that
determine the contents of instruction storage are
particularly effective. Devices like the Intel IXP
2850 reduce the effectiveness of operational bus
monitoring for applications that can fit in the
internal instruction storage space. They do,
however, still remain vulnerable to offline
analysis of this instruction store. Finally,
reconfigurable systems like the USC/ISI GRIP
are particularly vulnerable to IP theft, as they
provide the hardware functionality in the form of
an unsecured configuration stream that could
easily be used in other devices to provide the
same function. These systems could easily
increase security somewhat by using current
vendor bitstream encryption, or more fully by
adapting the interface structure.
The flexible hardware basis for the secure
network processor permits the construction of
systems fully self-contained within a single
device. It is also a consideration when attempting
to minimize components in a network processing
design. The least self-contained systems, such as
the IDT PAXport 2500 classifiers are designed to
simply provide a portion of a larger solution.
Devices based upon processing cores provide
more self-contained solutions, as a wider variety
of system function can be performed in a single
component. Many of these devices do not,
however, contain basic network interfaces and
still require off-chip storage of instruction
streams during system operation. The on-chip
storage and MAC support of the IBM
PowerNP2G allows for a somewhat more self-
contained solution. Reconfigurable systems
provide the most potential for self-contained

SETIT2005

systems. The Chameleon CS2112 does not require
external instruction data, and provides a
reconfigurable processing base that can
implement a variety of network functions. In a
system requiring user authentication, it may fall
short; however, as no internal security functions
are included. Finally, reconfigurable systems like
the USC/SI GRIP are designed using several
components, and are inherently multi-device
solutions. It would certainly be possible,
however, to incorporate the function that they
provide into a single system like the secure
network processor to make them a truly single-
device solution. Lastly, the dynamic nature of
this system allows for an increased level of
dynamic user adaptability. Clearly,
reconfigurable solutions like the USC/ISI GRIP
could be as adaptable as the secure network
processor. Their current lack of user
identification and authorization means that in
their current incarnations they are not inherently
suited to user adaptation. Some additional
support hardware and minor internal
modification could remedy this, however.
General-purpose processing solutions are
likewise not currently user-adaptable. They to
could benefit from additional support in this
area, but remain somewhat limited in their
potential by the restriction to a fixed instruction
set. Finally, ASIC devices designed for a specific
purpose like the Agere APP750NP may provide
some flexibility within their intended function,
are clearly not adaptable to provide other
functions. As reconfigurable hardware
technology continues to improve, the size of
standard reconfigurable devices will continue to
grow. The space available within current
reconfigurable systems allows for custom
hardware and standard processor cores to be
mixed together on a single device. Newer
technology will allow even more functionality
within a device, making single-chip solutions
even more practical.

6 Bibliography
[1] Thompson, J.F., J. Bernstein, and J. Crane,
“Identity Theft,” Presentation to the President’s
Information Technology Advisory Committee
(PITAC) 12th meeting, February 7, 2001.
[2] Evers, J., “Dutch police fight cell phone theft
with SMS bombs,” IDG News Service
\Amsterdam Bureau, March 27, 2001.
[3] Juniper Networks, T-Series Routing Platform
Data Sheet, Part Number 100051-0006, Juniper
Networks Inc., Sunnyvale, CA, February 2003.
[4] Austrian Aerospace, “Spacewire Router ASIC
Development,” ESM-006, Presentation to the
European Space Agency (ESA) Spacewire
Working Group, September 18, 2001.
[5] May, M.D., P.W. Thompson, and P.H. Welch,

ed., Networks, Routers and Transputers: Function,
Performance and Applications, IOS Press,
Headington Burke, VA 1993.
[6] Smitt, E. L. and R.J. Collins, “Microprocessor
based control and switching device,” United
States Patent no. 4,685,124, assigned to Data
General Corporation, Westboro, MA, April 30,
1985.
[7] Lawson, S., “Network processors enter new
generation,” IDG News Service, Network World
Fusion, June 19, 2002
[8] Husak, D., “Programmable NPUs ‘edge’ out
ASICs,” EE Times, November 18, 2002.
[9] Foremski, T., “Network chips: battleground
for the big boys,” Financial Times Survey, FT.com,
April 15, 2002.
[10] Blythe, S., B. Fraboni, S. Lall, H. Ahmed, and
U. de Riu, “Layout reconstruction of complex
silicon chips,” IEEE Journal of Solid-State Circuits,
volume 28, pp.138 – 145, February 1993.
[11] Huang, A., “Keeping Secrets in Hardware,
the Microsoft XBoxTM Case Study,” CHES 2002,
August 2002.
[12] Erickson, C.R., D. Tavana, and V. A. Holen,
“Encryption of Configuration Stream,” United
States Patent no. 6,212,639 B1, assigned to Xilinx
Inc., San Jose, CA, April 3, 2001.
[13] Batinic, I., L. Kraus and M. P. Loranger,
“Field Programmable Gate Array With Program
Encryption,” United States Patent no. 6,351,814
B1, assigned to Credence Systems Corporation,
Fremont, CA, February 26, 2002.
[14] Anderson, R. and M. Kuhn, “Tamper
Resistance – a Cautionary Note,” Proceedings of
the Second USENIX Workshop on Electronic
Commerce, Oakland, CA, November 18-21, 1996,
pp 1-11.
[15] Intel Corp., Intel IXP1250 Network Processor
Data Sheet, Intel Corporation, Part number
278371-006, December 2001.
[16] Chandra, V., “Selecting a network processor
architecture,” IBM Microelectronics Technology
Group, August 2002.
[17] C-port Corp., C-5 Network Processor
Architecture Guide, C-port technical library
C5NPD0-AG/D, C-port Corporation, North
Andover, MA, May 2001.
[18] Vitesse Semiconductor, IQ2200 Product Brief,
Vittesse Semiconductor Corp, Camarillo, CA,
2002.
[19] Wirbel, L., “Network processors take
reconfigurable approach,” EE Times, May 22,
2000.
[20] Agere Systems, Smart Processing for Terabit
Networks, PayloadPlus Processor Family Overview,
Agere Systems Incorporated, Allentown, PA,
1999.
[21] Agere Systems, 10G Network Processor Chip
Set (APP750NP and APP750TM) Product Brief,
Agere Systems Incorporated, Allentown, PA,
November 2002.
[22] PMC-Sierra, RM9000x2 Integrated
Multiprocessor Data Sheet (preliminary), PMCSierra

SETIT2005

Incorporated, Burnaby, B.C., 2001.
[23] Solidum Systems, PAX.port 2500 Product
Brochure, IDT Canada Inc., Ottawa, Ontario, 2002.
[24] Bellows, P., V. Bhaskaran, J. Flidr, T.
Lehman, B. Schott, K. Underwood, “GRIP: A
Reconfigurable Architecture for Host-Based
Gigabit-Rate Packet Processing,” IEEE Symposium
on Field-Programmable Custom Computing Machine
(FCCM) ‘02, Napa, CA, April 2002, pp. 121-130.
[25] Xilinx, Inc., Virtex Data Sheet, Xilinx Inc., San
Jose, CA, February 2000.
[26] Lockwood, J.W., “An Open Platform for
Development of Network Processing Modules in
Reprogrammable Hardware,” IEC DesignCon ‘01,
Santa Clara, CA, January 2001, paper WB-19.
[27] Brebner, G., “Single-chip Gigabit Mixed-
version IP Router on Virtex-II Pro,” IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM)‘02, Napa, CA, April
2002, pp. 35-44.
[28] Hansen, S. “Rugged, Biometric “Match-On-
Device” Token In R&D at Datakey Electronics,
Inc.,”
http://www.datakeyelectronics.com/PR6.htm,
Datakey Electronics, Inc., Burnsville, MN,
August 14, 2002, last accessed April 3, 2003.
[29] Abraham, A., It is I, An Authentication System
for a Reconfigurable Radio, M.S. thesis, Virginia
Polytechnic Institute and State University,
August 2, 2002.
[30] Xilinx Inc., Virtex Series Configuration
Architecture User Guide, Xilinx, Inc, San Jose, CA,
February, 2000.
[31] Xilinx Inc., Virtex-II Handbook, Xilinx, Inc.,
San Jose, CA, November 2002.
[32] Sundararajan, P., and S. A. Guccione, “XVPI:
A Portable Hardware / Software Interface for
Virtex,” Reconfigurable Technology: FPGAs for
Computing and Applications II, Proc. SPIE 4212,
Bellingham, WA, November 2000, pp. 90-95.
[33] ISI/East, SLAAC1-V VHDL Users Guide,
Release 0.1.3, University of Southern California
Information Sciences Institute/East, 2001.
[34] SecuGen Corporation, SecuGen FDA01
Developer’s Guide, DC1-0001B Rev A, SecuGen
Corporation, Milpitas, CA, April 24, 2001.
[35] Schneier, B., “Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blowfish),” Fast
Software Encryption, Cambridge Security
Workshop Proceedings (December 1993),
Springer-Verlag, 1994, pp. 191-204.
[36] Landaker, W.J., “Free Blowfish VHDL
Code,” SourceForge,
http://sourceforge.net/projects/blowfishvhdl/,
registered October 18, 2000, development status
4-Beta, last accessed April 3, 2003.
[37] Counterpane Labs, “Counterpane Labs:
Blowfish,”
http://www.counterpane.com/blowfish.html,
last accessed April 3, 2003.
[38] RFC 760, “DOD Standard Internet Protocol,”
prepared by Information Sciences Institute,
University of Southern California, January 1980,

p. 14.
[39] Red River Engineering, WaveRunner PMC
Model 301 Datasheet, Red River Engineering,
Richardson, TX.
[40] Tanenbaum, A. S., Computer Networks, 2nd
Edition, Prentice Hall, Englewood Cliffs, NJ, 1988,
p. 212.
[41] Wiznet Inc., IIM7010 Product Description,
Wiznet Incorporated, Kangnam-ku, Seoul, Korea.
[42] Wiznet Inc., i2Chip W3100A Technical
Datasheet v1.3, Wiznet, Incorporated, Kangnam-
ku, Seoul, Korea.
[43] Fong, R.J., S.J. Harper, and P.M. Athanas, "A
Versatile Framework for FPGA Field Updates:
An Application of Partial Self-Reconfiguration,"
Proceedings of the 14th IEEE International Workshop
on Rapid System Prototyping, San Diego, CA, June
2003.

