Behavior Research Methods & Instrumentation
1976, Vol. 8 (2), 113-117

Hardware design style: The vital element

DAVID WINKEL and FRANKLIN PROSSER
Division of Computer Services, University of Wyoming, Laramie, Wyoming 82071

This is a tutorial in the application of digital integrated circuits to laboratory experimental design. For
appropriate experiments, a hardware controller may be the most economical as well as the most enjoyable
approach. By and large, the hardware profession has done a poor job of providing clear, straightforward
principles of hardware design; therefore, the design process is often viewed as a “black art” accessible
only to specialists. The computer software profession has begun to realize the vital need for systematic
approaches to problem solving. We hope to contribute to a similar movement in the digital hardware

design area.

The ideai hardware design technique should (1) be
easy to learn, (2) produce clean, easy to understand
devices, (3) produce documentation as a by-product of
the design process, (4) provide a uniform method for de-
signing hardware for any speed and complexity range,
and (5)force the designer to think through the total
design before construction starts.

This paper describes the essential elements of a
method that meets the above criteria. It is the primary
design technique taught to our computer science stu-
dents, who have no prior digital experience. These stu-
dents can rapidly produce elegant designs that typically
require fewer chips than conventional designs (Clare,
1973; Peatman, 1972).

STYLE

[t is important that the designer develop a design
style that forces him to do things correctly. In addition
to the general criteria given in the introduction, some
more technical elements of our style are:

(1) Use only edge-driven synchronous (clocked) logic.
This design style allows the logic to “settle” until all
signals are stable. The machine then branches to the next
state on the basis of stable signals only. This has two im-
portant corollaries: (a) If the machine is misbehaving,
the clock can be slowed down, thereby giving more time
for signals to stabilize. (b) The clock can be stopped,
thereby freezing the machine in a given state. The
machine can then be probed using static signals only.
Removing time as a variable in this fashion vastly simpli-
fies debugging. A simple low-cost logic probe js as useful
as an oscilloscope for a “frozen” machine.

(2) Do not use single shots. A single shot is, by defini-
tion, a time-sensitive element. Single shots cannot
therefore be frozen, which eliminates the possibility of
static debugging. They are easily triggered by noise and,
in addition, drift with time. In rare cases, single shots
will be needed, but the average designer uses far more
than necessary.

The second author is on leave from Indiana University.

(3) Use well-established logic families. A relatively
new logic family such as I?L will have few IC device
types available to the designer, whereas an older line
such as T?L has a wide variety of debugged and useful
devices. CMOS, developing rapidly toward a full line of
devices, is worthy of some consideration because of its
insensitivity to noise and power supply fluctuations.

(4) Do not use fast logic families. High-speed integrat-
ed circuits have important areas of applicability, for in-
stance, in fast computers. But high-speed elements are
much harder to use and require special considerations,
such as terminated transmission lines. For most applica-
tions, slower logic families, such as T*L and CMOS, are
better than such high-speed families as ECL and
Schottky T2L.

(5) Flowchart the process you are trying to auto-
mate. This is much more important than flowcharting
a software program. Programs are easily changed. Hard-
ware is not.

PLAN OF ATTACK

Step A

Begin by selecting integrated circuits which can per-
form the functions of the target device. Some illustra-
tions follow.

Counting. Choose a synchronous IC counter. These
devices typically count in base 10 or base 16 and can be
cascaded to count any desired number of events. Syn-
chronous counters are superior to ripple counters, since
all bits on the output lines will change only at clock
time. Popular T?L counters are the SN74162 for decade
counting and the SN74163 for base 16 counting.

Storing data. For storing small amounts of data, a
register such as the SN74174 can be used. For storing
large amounts of data, a static random access memory
such as the Intel 2102 is convenient.

Adding. Two cases should be distinguished: (1) Al-
ways adding one. This application is easily implemented
using a counter. (2) Adding two arbitrary numbers. Use
4-bit full adders such as the SN74283. These devices can
be cascaded to add larger numbers.

113



114 WINKEL AND PROSSER

Switching. Do not build up data path switches from
gates. Multiplexers can be used to selectively switch a
number of data sources onto one output line. Demulti-
plexers can perform the inverse function.

Gating. A wide range of AND, OR, INVERT gates
is available. The most natural design technique is mixed

logic, an important component of our style (Kintner,
1971).

Step B

Develop the data paths. After the ICs are chosen to
implement the various activities in the target device,
they must be interconnected by data paths. At this stage,
the data paths are lines on 2 page; latcr they will become
wires. How the devices are controlled is not important at
this stage, but it is important to be sure the proposed
data paths and integrated circuits are capable of carrying
out the desired operations if they receive the proper
control signals.

Step C

Draw a flowchart that will model the signals needed
to control the data path structure. In general, the flow-
chart will branch on the values of status signals supplied
by the controlled structure. (The next section illustrates
our preferred flowchart technique.)

Step D

Before a single wire is connected, carefully study the
interaction of the control algorithm (flowchart, ASM
chart) and the controlied device. Some iteration of Steps
A, B, and C may be necessary to correct oversights.
This is the critical phase in the design process, since it
determines the final success or failure of the project.
Errors found at this stage may be corrected gracefully;
errors discovered after wiring often result in confusing
patches 1n the logic.

HARDWARE FLOWCHARTS

Clare (1973) has devised a convenient way to repre-
sent hardware flowcharts. His ASM (Algorithmic State
Machine) chart notation has several advantages over the
usual state diagram representation (Hill & Peterson,
1968). Perhaps most important is the natural way in
which sequences of events are represented. There is con-
siderable similarity to the familiar flowchart used by
programmers, but this analogy must be applied with
caution.

ASM symbols have a very exact definition which
implicitly includes time. This is an important difference
between an ASM chart and a normal flowchart. It is
obvious that hardware flowcharts must deal with time,
since their function is to issue time-sequenced control
signals. In synchronous designs, time is divided into

y 01

) STATE 01

10

v 1

Figure 1. ASM chart of 2-bit sequential counter.

quanta by an oscillator commonly called the clock. The
time quanta (clock period) can range from less than a
microsecond to several seconds in typical designs. The
clock period is chosen by the needs of the external logic
being controlled. For example, if you are trying to
measure reaction times to an accuracy of 1 msec, the
clock period must be less than that; .1 msec would be a
good value to start with. A move from one spot to
another on the flowchart will take place only on a clock
tick. A clock tick will normally be the rising edge of the
clock waveform.

A state is an identifiable location on the ASM flow-
chart which exists for one clock duration. Consider the
very simple four-state sequential flowchart in Figure 1.
This flowchart could be implemented with a 2-bit binary
counter sequenced by the system clock. Each rising edge
of the clock will cause the counter to increment, moving
the system into a new state. The system will stay in the
new state until the next rising clock edge arrives. For
convenience, the values assumed by the counter are
shown in Figure 1 above the state boxes. Consider State
01. State 01 is reached from State 00 by applying a
clock pulse to the counter. Let the top of the box be the
time which starts the state. Time then flows uniformly
to the bottom of the box, at which time a clock pulse
causes the counter to leave State 01 and enter State 10.
Thus, from a time standpoint, the top of box 10 and the
bottom of box 01 are simultaneous.

A sequential flowchart can exist as a logical construct
without the corresponding hardware which implements
it. In this case, the states would be identified by sym-
bolic names. These are conventionally written to the left
of the states, as illustrated in Figure 2.

The meaning of the state “reset printer” is indepen-
dent of the hardware used to realize the ASM chart. A
state is identified by its location on the flowchart and,
once initiated, exists for one clock period. Within each
state box, the designer would normally indicate any



IDLE

RESET PRINTER

LOAD PRINTER

!

Figure 2. Labeled ASM states.

,___)[

00

y n

01

10

\

Figure 3. An awkward state assignment.

signals to be generated during that state time. Such
signals, called outputs, are used to control the move-
ment of data in the data path structure; illustrations
might be “clear register T,” “set RUN flip-flop,” “‘enable
memory read.” The flow of control from state to state
specified by an ASM chart is independent of such
signals. In the remainder of this exposition, we will con-
centrate on the implementation of ASM chart structures,
and to avoid unnecessary particularization of the
examples, we have omitted signals generated during state
times.

The general design problem can be stated: “How can
I build hardware to implement any given ASM chart?”

An implied problem is the representation of a given
state by some convenient hardware device. This is most
easily done with flip-flops that are set and reset by the
system clock (the unit of time will then be the duration
between clock pulses). States are commonly represented
by an encoding. With n flip-flops, 2® combinations are
possible. A state assignment results when each state is
represented by a unique encoding. It should be empha-

HARDWARE DESIGN STYLE 115

sized that the encoding is the designer’s choice. Some
choices will lead to neater solutions than others. For
example, the state assignment shown in Figure 1 yields
a ready made implementation, namely, the 2-bit binary
counter. If the state assignment shown in Figure 3 is
made, a binary counter cannot be used to sequence
through the ASM chart. (The design technique discussed
later in this paper could, however, be used to implement
this ASM chart.)

While purely sequential ASM charts are useful in
some cases, most algorithms require branching. A state
with a two-way branch can be represented as in Figure 4.

Time flows uniformly from the top to the bottom of
the state. The clock pulse at the bottom causes the state
controller to jump to one of two states, b or c. This
decision is based on the value of the test variable X. If
X =0, then the jump is to State b; if X = 1, the jump is
to State c. The voltage representing the logic variable X
must, of course, be stable at the clock edge causing exit
from Statea. It is conventional to label only the

STATE

Figure 5. Multiple branches.



tie WINKEL AND PROSSER

v
® 6 O

Figure 6. Emphasizing paraliel nature of test evaluation.

rectangle with the state name (here a). Actually State a
encompasses the entire area enclosed by the dotted line.

Conditional branching during a state time can be
extended to cover more than one test. For example,
Figure 5 shows transfers from State a dependent on two
test variables, with variable X having priority over
variable Y. At the moment of leaving State a, we jump
to only one next state: b, ¢, or d. The jump conditions
are: to State b, X=1; to State ¢, (X=0)* (Y =0) or
X+Y=1toStated, (X=0)-(Y=1)orX-Y=1.

Note that all of these test conditions are computed
in parallel during State a. Only one jump condition will
be satisfied, so there will be only one next state. An
ASM chart must not be interpreted as if it were a soft-
ware program. In software, you would interpret the flow-
chart as specifying first a test on X, then a teston Y.

The power of hardware lies in its ability to make
parallel instead of sequential decisions. In the above
case, we could emphasize the parallel nature of the deci-
sions by rewriting the block as in Figure 6. However, the
designer will usually find it more convenient to use the
serial form of Figure 5, since in that form the priority of
the X test over the Y test is immediately obvious.

GENERAL METHOD FOR IMPLEMENTING
ASM CHARTS

We are now ready to consider a universal design tech-
nique for implementing ASM charts of arbitrary com-
plexity. As preliminaries we note the following:

(1) We will assume that the state identifiers are held
in “D”-type flip-flops. (2) The sequencing problem is
fundamentally one of computing the jump address to
the next state. (3) The starting point of the implemen-
tation is a well thought out ASM chart.

The design process proceeds in the following steps

Step 1
Start with the ASM chart. For example, consider the
simple three-state chart of Figure 7.

Step 2

Make a state assignment. In this case, 2 bits are suffi-
cient to encode four states (1 bit will only encode two
states; therefore, we will need 2 bits). For example,
assume the state assignment shown in Figure 8. Note
that the choice is arbitrary and up to the designer. How-
ever, some choices may lead to simpler logic, although
the technique described here tends to minimize
complexity generated from different assignments. We
may refer to a given state either by its symbolic name or
by its assignment, as convenient.

Step 3

Select the state generator configuration. Assume
there are n state flip-flops. Each state flip-flop will have
2" input multiplexer (MUX) feeding its D input. Each
MUX will be controlled by all the state flip-flop outputs.
Thus, each MUX will be addressed to the current state of
the system. If the corresponding MUX inputs develop
the next address (jump address), the controller will
properly follow the flow chart.

For the case above, label the most significant bit of
the state code “B,” and the least significant bit “A.”
Figure 9 shows the desired configuration.

®

®

Figure 7. An example ASM chart.

Figure 8. A state assignment for the example ASM chart.



To

—{CLK

BA BA —|OK

Figure 9. Structure for a four-state generator.

10

Figure 10. Lockup in unused state.

Step 4

Derive the MUX inputs. In our simple example, we
can develop the MUX inputs by inspection. (a) In State
00 the next state address is 11. The output of each MUX
must therefore be a one, since both bit A and bit B must
become one. This will be true if the zero address input
of each MUX is a one. (b) In State 01 the next state ad-
dress is 00. Therefore, a zero must be connected to the
one address input of both MUXs. (c) State 11 involves a
conditional branch, which in turn will involve condition-
al inputs to the MUXs. State 11 may go either to State
00 or to State O1. For either case, the B bit must go to
zero. Therefore, the three address input to the B MUX
is an unconditional zero. The A bit, however, is a one
only if X =0; therefore, the three address input to the
A MUX must be X. (d) One of the nice features of this
design technique is the ease of handling unused states,
for example, State 10 in Figure 10. With conventional
designs, it is sometimes possible to get “lockup” in an
endless loop unless careful provision is made to avoid

HARDWARE DESIGN STYLE 117
1 1
0
> ot °
() 0
0 X

B A BA "ﬁ

Figure 11. MUX-driven state generator for example ASM
chart.

the condition. “Lockup” in the present example would
be shown in Figure 10. With the present technique, it
is a simple matter to force a transition to any state. Sup-
pose the designer chooses State 00, so that if the flip-
flops ever happen to be set to the unused State 10 (e.g.,
at power-up time) the system will always go to State 00.
The complete design is shown in Figure 11.

SUMMARY

Good hardware design style is the most important
ingredient in the successful application of digital logic.
In this paper, we outlined the elements of a systematic
design style that we have found useful. Using the ASM
chart notation (an important ingredient in our style),
we have proposed a straightforward procedure for im-
plementing an arbitrary next-state generator. Future
contributions will emphasize other aspects of the design
process.

REFERENCES

CLare. C. R. Designing logic systems using state machines.
New York: McGraw-Hill. 1973.

Hire, F. J.. & PetersoN. G. R. Introduction to switching
theorv and logical design. New York: Wiley, 1968.

KiNTNER, P. M. Mixed logic: A tool for design simplification.
Computer Decisions. 1971, 10, 55.

Peat™MAN, 1. L. The design of digital systems. New York:
McGraw-Hill, 1972,



