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Abstract—This paper describes a hardware efficient linear pre-
coder for Massive MIMO Base Stations (BSs) comprising a very
large number of antennas, say, in the order of 100s, serving
multiple users simultaneously. To avoid hardware demanding
direct matrix inversions required for the Zero-Forcing (ZF) pre-
coder, we use low complexity Neumann series based approxi-
mations. Furthermore, we propose a method to speed-up the
convergence of the Neumann series by using tri-diagonal pre-
condition matrices, which lowers the complexity even further. As
a proof of concept a flexible VLSI architecture is presented with
an implementation supporting matrix inversion of sizes up-to
16× 16. In 65 nm CMOS, a throughput of 0.5M matrix inversions
per sec is achieved at clock frequency of 420MHz with a 104K
gate count.

I. INTRODUCTION

Conventional Multiple-Input Multiple-Output (MIMO) sys-

tems incorporated in most modern standards such as 3GPP

LTE, LTE-Advanced, IEEE 802.11n, are already starting to

approach theoretical throughput limits. To go beyond, Massive

(or Very Large) MIMO is a promising candidate, where the

Base Station (BS) is equipped with a very large number of

antennas (M ) compared to previously considered systems, while

serving a relatively low number of users or Mobile Stations

(MSs). Basically, by equipping the BS with a large array of

antennas (M → ∞), it has been shown that in favourable

propagation conditions, all effects of uncorrelated noise and fast

fading disappear, as does the Multi-User Interference (MUI) [1].

To reach the full potential of massive MIMO [2], it is

critical to perform efficient pre-coding. In [3], measurements for

massive MIMO systems were performed, showing Zero-Forcing

(ZF) linear pre-coding sum rates of up to 98% of those achieved

by (optimal) Dirty Paper Coding (DPC), for BS to MS antenna

ratios as low as 10. However, even linear pre-coding such as ZF

has high computational and hardware complexity, particularly

when inverting a K×K matrix, where K is the number of

MSs. In addition to having to deal with large matrices, the pre-

coding matrix may have to be updated frequently, depending on

the Doppler spread of the channels.

In this paper we tackle this by approximating the matrix

inversion using the Neumann Series, wherein the inversion is

computed by performing a sum of powers (multiplication) of

matrices. In hardware, matrix multiplication is much preferred

over matrix inversion, since it has a simpler data-flow and

can be highly parallelized. In [4], it was shown that using the

Neumann series leads to a more energy efficient low complexity

implementation than traditional direct inversion methods. This

is mainly due to the fact that the K ×K matrix becomes diago-

nally dominant as the ratio β = M/K , i.e. the ratio of number

of antennas at BS to number of MSs increases, which can

be used as starting point (inverse of diagonal elements) in the

Neumann series. This approach of inversion was implemented

in FPGA for uplink data detection [5], where a reasonable

detection performance was achieved by a first order Neumann

series. However, for scenarios with low β values and for high

correlation between antennas (for instance when MSs are closely

located) the matrix is not strongly diagonally dominant. Thus,

choosing the diagonally dominant elements as initial approxi-

mation of the matrix inverse will lead to slow convergence of

the Neumann series, in-turn requiring more iterations to achieve

a certain accuracy. In addition to high throughput, the accuracy

of the inversion is an important parameter which defines the

suppressing of MUI in downlink.

To simultaneously handle high throughputs and accuracy

(more iterations) with reasonable hardware cost, we develop

a method to improve the convergence of the Neumann series.

The underlying idea is to choose some off-diagonal elements

along with the diagonal elements as initial approximation.

This, in turn, increases the complexity of setting up the initial

approximation, since it is required to invert the initial matrix

before using in the Neumann Series. However, we see that by

choosing tri-diagonal matrix as initial approximation the overall

complexity is reduced significantly. Furthermore, we describe an

efficient VLSI architecture for handling the tri-diagonal initial

matrix with negligible additional latency. Finally, we present a

reference implementation in 65 nm capable of handling matrix

sizes up-to 16× 16 with high throughput.

II. SYSTEM DESCRIPTION

The system model and the pre-coding in this section is in

line with the corresponding description in [2], where the channel

gain between the i-th BS antenna and the k-th user is denoted by

hki. The channel matrix to all users is denoted as H ∈ C
K×M ,

where hki is the (k,i)-th entry. Let x = [x1, x2, ..., xM ]T

denote the transmitted vector from the M BS antennas, which

is normalized to satisfy E[xHx] = 1, where ()H is the

Hermitian transpose. The overall symbol vector received by the

K autonomous users is

y =
√

PTHx+w , (1)

where PT is the total transmit power, and w ∼ CN (0, σ2IK),
where IK is an K × K identity matrix, is complex Gaussian

white noise. The pre-coding process at the transmit side is

specified as

x = Fs , (2)



where F is an M ×K pre-coding matrix, and s is a K × 1
vector containing the symbols intended for the K users, as

described in [3]. Although the Massive MU-MIMO model is

similar to a standard MIMO model, the increased number

of BS antennas has several consequences. Things that were

random before, now start to look deterministic. For example,

with increasing BS antennas, the Gram matrix HHH/M ,

asymptotically tends to a diagonal matrix for certain ”nice

enough” channel conditions.

A. Linear Pre-coding Schemes

The Matched Filter (MF) is a simple linear pre-coding scheme

given as FMF ∝ HH . MF, although simple, requires much

more antennas at the BS compared to ZF to attain close to op-

timal performance [2]. On the other hand, ZF requires a central

processing unit and higher processing cost when computing the

pre-coding matrix

F ZF ∝ H
H(HH

H)−1 . (3)

The multiplication with HH can be performed in a distributed

fashion at the remote antenna units (as in MF), whereas the

Gram matrix inversion is performed in the central processing

unit. In hardware, high throughput matrix inversion is expensive

both in terms of area and power, especially when the number of

active users (K) is varying and large. In the next section we will

look into different methods to perform matrix inversion which

are hardware friendly.

III. LOW COMPLEXITY MATRIX INVERSION

To reduce the hardware cost of matrix inversion, we propose

the use of Neumann series in line with [2] and [4]. For an

invertible matrix Z, if a matrix X satisfies

lim
n→∞

(
IK −X−1Z

)n
≃ 0K , (4)

then the inverse of Z can be expressed as

Z−1 ≈
L∑

n=0

(
IK −X−1Z

)n
X−1 , (5)

with equality when L grows to infinity. The matrix X is

an initial approximation of Z, which must be much easier

to invert. Computing the Neumann series (5) requires L − 1
matrix multiplications when the computation of matrix powers

is performed iteratively. This can be accelerated exponentially,

in line with [4], by re-writing (5) as

Z−1 ≈

( P−1∏

n=0

(I + (I −X−1Z)2
n

)

)

X−1, (6)

where a certain P corresponds to L = 2P − 1 in (5), hence

reducing matrix multiplications logarithmically.

For a guaranteed convergence of (5) we must have |λmax| <
1, where λmax is the eigenvalue of the inner matrix (IK −
X

−1
Z) with largest magnitude. Furthermore, the choice for the

pre-conditioner matrix X is critical for the convergence speed

of (5), i.e. the smaller |λmax|, the faster the convergence. In

ZF pre-coders for massive MIMO, the matrix to be inverted is

Z = HHH , from (3), which tends to be a diagonally dominant

matrix. Hence a simple choice of X is a matrix containing only
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Fig. 1. Convergence and Complexity analysis of Neumann series.

the diagonal elements of Z, i.e.Xd = diag(Z). However, there
are scenarios (for low β values or highly correlated channels)

when the matrix Z is not strongly diagonally dominant or

perhaps not at all. For these scenarios choosing only the diagonal

elements would result in a slow convergence, which in-turn

would mean more terms (P ) required in the Neumann series.

A. Convergence Speed-Up

For improving the convergence speed of (5), we would like

to have as small λmax as possible. We propose a method based

on choosing off-diagonal elements along with diagonal elements

for the initial matrix X . This can be expressed as

X = diag0(Z) +
Noff∑

ℓ=1

diagℓ(Z) , (7)

where Noff is the number of off-diagonal elements including

the main diagonal elements and diagℓ(Z) has the same size as

Z with

[diagℓ(Z)]i,j =

{

Zi,j if |i− j| = ℓ

0 otherwise.

The improvement in convergence can be seen in Fig. 1(a), where

the probability of having a smaller |λmax| when choosing off-

diagonal elements is always higher than when choosing diagonal

elements. Consequently, setting up the inner matrix (I−X−1Z)
requires more computation as compared to choosing only diag-

onal elements. However, by doing this we expect the overall

complexity to reduce due to faster convergence, which in-turn

would mean fewer terms (P ) required in the Neumann series.

To elaborate on this, an approximate overall complexity in terms

of multiplications is divided into two parts (computing powers

of matrix, and inner matrix setup) as

CTotal = 2(P − 1)K3

︸ ︷︷ ︸

Iterations

+(2(Noff) + 1) ∗ (2 ∗K2 + 2K)
︸ ︷︷ ︸

Inner matrix setup

.

The number of iterations reduces as Noff increases, since the

initial matrix (X) has more and more elements of Z. Hence,

based on required accuracy, the properties of the matrix to be

inverted (diagonal dominance, size) the optimal number of off-

diagonal elements can be decided. In Fig. 1(b) we can see that

for a 16-bit precision the optimal Noff = 1, i.e. choosing tri-

diagonal matrix (Xt = diag0(Z) + diag1(Z)). Additionally,
efficient hardware is developed to handle tri-diagonal matrices,
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which may not be the case for Noff > 1, which tend to exact

inversion.

B. Performance Analysis

We now demonstrate the performance of the proposed Tri-

diagonal Neumann series (TNS) by evaluating the SNR-loss

compared to exact-ZF to achieve a Bit Error Rate (BER) of

10−3, as shown in Fig. 2. The performance of the Neumann

series get closer to exact ZF as β increases. For β below 12

there is an improvement with the proposed TNS compared

to Diagonal Neumann Series (DNS). Basically, the proposed

TNS requires 1 (or 2) iterations less than DNS, to achieve

the same performance. This results in lower overall complexity

for TNS, since the initial tri-diagonal computation is of com-

plexity O(6K + 3K2) whereas each iteration requires O(K3)
computations. Additionally, we also expect TNS to have better

performance for a wider range of channel conditions, since it

can cope with matrices that need not to be strongly diagonally

dominant.

IV. VLSI ARCHITECTURE

This section describes the VLSI architecture that realizes the

proposed matrix inversion algorithm with a high throughput

and hardware efficiency. The architecture is highly flexible to

support different matrix sizes (K), iterations (P ), for both TNS

and DNS method. Fig. 3 depicts the top level block diagram of

the architecture, which consists of four major blocks following

the data flow of (6). The initial matrix inversion (X−1) is

performed in the Tri-diag inverse block. If the DNS method

is used, only the division unit is required to invert the diagonal

elements. The inverted initial matrix is then multiplied with Z

in the Tri-diag multiplication block. The inner matrix module

performs the subtraction with an identity matrix (I −X
−1

Z),

which is a trivial operation. Finally, the powers of the matrix

are computed in the generic matrix multiplication module.

Inner Matrix

Matrix Mult

External

Memory

Bank

Division

Gauss Elimination Tri-diag 

Mult

Tri-Diag Inverse

MAC

Banks

Fig. 3. Block diagram of Neumann series based linear pre-coder at BS.

Algorithm 1 Tri-band inversion, exploiting diagonal dominance

and Hermitian symmetry.

for i = 2 → K do //Guass elimination
ratio = A(i, i− 1)/A(i− 1, i− 1)
A(i, i) = A(i, i)− ratio ∗A(i− 1, i)
A(i, i− 1) = 0, Ainv(i, i− 1) = −ratio

end for
for i = 2 → K do //compute inverse

Ainv(i, i) = 1/A(i, i)
Ainv(i, i− 1) = A(i, i− 1)/A(i, i)
Ainv(i− 1, i) = conj(A(i, i− 1)) // conjugate

end for
X−1

t = Ainv

A. Detailed Functional Block

Hardware Efficient Tri-diag Inverse: The inverse of tri-

diagonal matrix is a full matrix. However, the elements out-

side the three center diagonals of the inverted tri-diag ma-

trix are typically small in magnitude, and therefore neglected.

Furthermore, the Tri-diag matrix is Hermitian, hence we can

use these properties to modify the Gauss elimination [6] to

perform inversion, as shown in Alg. 1. This leads to a very

low complexity and hardware friendly tri-diag inversion, using

a division unit and a multiplier. The division unit is required

for both the DNS and the TNS (see Alg. 1) methods. The

diagonal elements have approximately a deterministic dynamic

range depending on M and K . This is used to compute a

first order curve fit (x̂est = ax + b, where x is divisor, a,b
are constants) for initial estimate in a standard unrolled single-

iteration Newton-Raphson method. The first order curve fitting

requires one constant multiplier and one adder, hence avoiding

large look-up-tables, making the division unit more hardware

friendly.

Tri-diag Mult: The multiplication of the tri-diag inverse

(X−1

t ) and Z has a complexity O(3K2). An intuitive low

latency way to perform the Tri-band matrix multiplication is

shown in Fig. 4. The structure resembles an FIR filter, where

the coefficients are the rows of X−1

t and the columns of Z are

streaming input data. The circuit mainly requires 2K buffers

to store diagonal and off-diagonal elements, three multipliers,

and two adders. Furthermore, the circuit can easily be switched

to diagonal matrix multiplication (X
−1

d
) by setting Mux2 and

Mux3 to zero.

B. Timing Analysis

Based on the two methods DNS and TNS, the latency of tri-

diag-inverse module is 6K and K clock cycles, respectively.

The Tri-diag-mult and Inner-matrix module has a latency of

Scheduler

Mux1

Reg Reg

Gram Matrix 

0 0

Mux2 Mux3

Diagonal Off-Diagonal
en1 en2

sel1 sel2 sel3

sel en

Fig. 4. Circuit description of Tri-diagonal matrix multiplication.
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three and one clock cycles, respectively. These modules are of

streaming nature (non-iterative) and have a relatively low latency

compared to the matrix-mult module. The Matrix-mult module

is implemented using Multiply-Accumulate (MAC) banks, with

the number of MAC units α as a parallelization factor. For a

K×K matrix the latency is around 2(P−1)K3/α clock cycles.

The α value can be decided based on maximum value of K and

throughput requirements. During the execution of matrix-mult,

the other modules perform pre-conditioning for the next matrix.

This overlap of execution (Scheduling in Fig. 5) results in 100%

hardware utilization of the Matrix-mult module. It is important

to note that for best-case scenarios, for e.g., large β values and

low correlation, a first order (P = 1) Neumann series suffices,

hence no matrix multiplication are required. For these scenarios

the total latency is around 6K cycles dominated by the Tri-diag

inverse module.

V. IMPLEMENTATION RESULTS

A reference design of the matrix inversion based on Neumann

series was synthesized in 65 nm technology for 16-bit internal

precision. The maximum frequency is 420MHz with an area

cost of 0.21mm2 or 125K gates. The hardware cost of the

proposed improvements in convergence (TNS method) has a

small overhead of (10+19)% compared to the overall area

as shown in Fig. 5. Moreover, the throughput improvement is

remarkable, for e.g., a system scenario with β = 6, K = 16
MSs, using TNS and DNS would require P = 2 and P = 3
iterations respectively to achieve same accuracy. This translates

to a latency of 820 and 1650 cycles when α = 10, operating at

420MHz results in a throughput of 0.5M and 0.25M inversions

per sec respectively.

To the best of our knowledge, there are no VLSI imple-

mentations for large matrix inversion of varying size. Table I

shows results to give the reader a rough idea of the benefits

of our proposed method. Furthermore, scaling up the existing

implementations would not be fair comparison. This is mainly

because the algorithms are not tuned to exploit the properties of

matrices due to Massive MIMO. It is observed that the Neumann

TABLE I
ASIC RESULTS OF MATRIX INVERSION.

QR-Decomposition Direct Inv This Work

GR [7]# GS [8] BMI [9] DMI [10] α = 5 α = 10

Order 4× 4 4× 4 8× 8 4× 4 K ×K,K ∈ (2, 16)

Technology 0.18µm 90nm 90nm 0.25µm 65nm

Gate Count 111K 334K 90K 73K 82K 104K

Max Freq. 100 300 500 170 420 420

Throughput 12.5M 50M 0.65M 1.72M 0.025M 0.51M

N.T* 0.19 0.26 0.016 0.016 0.06 0.12

N.H.E+ 0.88 0.39 0.18 0.21 0.74 1.17

# Additional processing required to compute inverse, i.e. R−1QH , which adds to the
hardware cost.

* Normalized Throughput for K = 16 at 100MHz =
Throughput∗order3∗100

Freq∗K3

+ Normalized Hardware Efficiency = N.T/(Gate Count)

series approach is better than brute force computations both

in terms of complexity and hardware efficiency. Additionally,

with an almost similar gate count the implementation supports

a range of matrix sizes from K = 2, .., 16. This is important

in practice since the size varies based on number of MSs.

Furthermore, the proposed approach has a high hardware re-

usability, in-particular the generic matrix multiplication unit,

which can be used for other purposes in BS when called for.

VI. CONCLUSION

In this paper we develop a high throughput, hardware efficient

matrix inversion required for the ZF linear pre-coder in Massive

MIMO. We propose a method to improve the convergence of the

Neumann series with tri-diagonal pre-condition matrices, which

provides an overall improvement in performance. In particular,

lowering the number of iterations in the Neumann series and

hence increasing the throughput. Additionally, a VLSI architec-

ture with low latency and cost was implemented to handle the

overhead of the proposed improvement. The evaluations were

performed for idealistic channels and more detailed studies are

ongoing for different measured channel scenarios.
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