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Abstract—Precision Time Protocol (PTP), a state-of-the-art
clock synchronization protocol primarily designed for wired net-
works, has recently gained attention in the wireless community,
due to the increased use of IEEE 802.11 Wireless Local Area
Networks (WLAN) in real time distributed systems. However, all
the existing WLAN based PTP designs either incorporate soft-
ware Timestamping (TS) delivering poor clock synchronization
accuracy, or Hardware (HW) TS providing better synchroniza-
tion accuracy at the cost of a significant amount of HW overhead.
Moreover, the performance of the existing PTP solutions is mostly
evaluated in single-hop wireless networks, while the performance
across wired and wireless networks is taken for granted. In this
paper, a new Software Defined Radio (SDR) based approach to
implement PTP is introduced and validated for IEEE 802.11
WLAN. Instead of using a dedicated HW clock, the solution
utilizes the Timing Synchronization Function (TSF) clock, an
existing clock in IEEE802.11 standard for synchronization be-
tween access point and WLAN stations. The performance of the
proposed solution is first investigated within a single-hop WLAN
and then across wired-wireless networks. Experimental results
unveil that 90% of the absolute clock synchronization error falls
within 1.4 µs.

Index Terms—PTP, IEEE 802.11, Wi-Fi, Clock Synchroniza-
tion, Hardware Timestamping, openwifi, TSF.

I. INTRODUCTION

CLOCK Synchronization (CS) is one of the prominent
technologies for real-time distributed networks. It en-

ables the nodes in the distributed network to share the same
notion of time. It is crucial for a system where performance
highly depends on the CS accuracy of the networks. For
example, audio or videos streaming over distributed networks,
and network based motion control [1]. Precision Time Protocol
(PTP) is a state-of-the-art CS protocol introduced in the IEEE
1588 standard [2]. It is the de facto CS protocol in wired
networks and is capable of providing sub-microsecond CS
accuracy. The CS process in PTP is typically accomplished in
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Fig. 1. An example of PTP based (a) conventional wired network and (b)
wired-wireless hybrid network when configured in E2E mode.

two steps: (i) establishing master-slave hierarchy wherein the
nodes in a network leverage the best master clock algorithm to
elect a node with the best quality clock as a master clock and
all the rest of the nodes’ clocks are slaves; (ii) synchronizing of
the master-slave clocks in which the master clock periodically
exchanges special messages with slave clocks, which later
extract the master clock information from these messages and
synchronize to it by computing the time difference.

The aforementioned process is not only applicable to single
hop network, but can be used to establish clock synchroniza-
tion in a multi-hop network across different network domains
(e.g., wired and wireless). A multi-hop PTP network may
consist of: (i) a Grand Master (GM) clock which is the primary
reference clock for CS; (ii) one or more devices with multiple
PTP ports fulfilled by either a Boundary Clock (BC) or a
Transparent Clock (TC); and (iii) single-port Ordinary Clock
(OC) which can only be used either as slave or master clock.
The main difference between BC and TC is that in TC the PTP
Sync packet is being forwarded to downstream PTP ports with-
out touching the origin timestamp field, instead the correction
field is being updated to incorporate propagation delay and
residence time inside the device, the slave PTP port then uses
the correction field to update the origin timestamp; whereas
in BC the origin timestamp is being updated directly in the
packet. Hence, BC and TC are mathematically equivalent.
An example of a practical multi-hop PTP based CS network
formed by BC is shown in Fig. 1-a.

In addition, depending on how the link delay between a
PTP master and slave is measured, a multi-hop PTP network
can be realized in End-to-End (E2E) or Peer-to-Peer (P2P)
mode. In case of E2E mode, the slave generates requests to
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Fig. 2. Locations for timestamping in clock synchronization protocols.

measure link delay towards the master; whereas in P2P mode,
a device (can be a slave or bridge) generates requests towards
its directly connected device, and obtain the propagation delay
of only one hop. The total link delay in P2P mode is the
accumulated residence time and propagation time over all
the devices between a PTP slave and master. Both modes
have pros and cons, P2P mode offers more accurate link
delay measurement hence better CS performance, however
it requires all network devices to be PTP capable; whereas
E2E mode can tolerate none PTP supporting devices, but the
obtained CS performance is usually worse over larger network
scale, especially when non-PTP supporting devices are present.

The CS accuracy of PTP is defined as the remaining time
difference between a master and a slave which can not be
further reduced. The CS accuracy of PTP depends on the
timestamps captured at the moment of packet reception or
transmission. Fig. 2 shows the possible locations for Times-
tamping (TS) in PTP. TS in PTP can be achieved via Hardware
(HW) or Software (SW). HW TS is produced at or close to the
physical layer, it is realized by using dedicated HW to assist
the TS. On the other hand, SW TS is generated in device
drivers or at a higher layer of network stack without HW
assistance. The CS accuracy is significantly affected by the
TS location, it is desired to place TS location as close as
possible to the physical layer, so that the TS is least affected
by the time variation of packets going through the network
stack. Hence, a HW TS based PTP clock is generally more
accurate than a SW TS based PTP clock.

Most of the PTP based networks have been implemented
over the wire [3]–[5]. CIPSync is a PTP compliant industrial
solution which provides CS accuracy of a few nanosec-
onds over conventional Ethernet [4]. Another example is
PROFINET, it uses PTP as CS protocol over industrial Eth-
ernet [5]. The industry however is increasingly interested in
extending the PTP from wired network to wireless in the form
of a hybrid multi-hop network for more flexibility, increased
scalability and reduced deployment cost [6]. An example of a
simple hybrid multi-hop PTP network is shown in Fig. 1-b.

Academic researchers have proposed several wireless CS
solutions [7]–[13]. SW TS based PTP solutions are easy to
realize, but they provide relatively poor CS accuracy [7]–
[9]. Regarding the realization of HW TS based PTP net-
work, 802.1AS [14], a specific profile of PTP referred to as
the generalized PTP (gPTP) is commonly used in industrial
applications. 802.1AS provides approaches to maintain high
precision CS across Ethernet and Wi-Fi, leveraging on specific
802.11 frames in the Timing Measurement (TM) or Fine
Timing Measurement (FTM) to trigger TS in Wi-Fi cards.
So far only Intel claims to have working CS solution over
Wi-Fi cards with this approach [15], [16], though it seems
to be specific to Windows operating system and has very

limited information exposed. Further exploration regarding this
approach is detailed in Section II. [17] uses TM frames based
802.1AS for CS over Intel Wi-Fi 5 cards in Collaborative
Robotics applications. Though this work focuses on combining
robotic operating system with wireless TSN traffic flow to
maintain optimal network jitter and latency, it never quantified
CS performance directly, and neither exposed any information
regarding how 802.1AS is realized over Wi-Fi TM. Due to the
rather rare and limited FTM/TM support in available Wi-Fi
cards, most academic solutions for HW TS have not followed
this approach [10]–[13], nevertheless the results of these work
demonstrate that HW TS based PTP gives better performance,
though, at the cost of dedicated HW added to realize TS. More-
over, the CS performance of these PTP solutions is mostly
analysed only in a single-hop wireless network. The support
of PTP BC/TC is not mentioned, therefore the performance of
these solutions over a combined wired and wireless network
is either taken for granted or simply left as future work.

In this paper, we enable HW TS based PTP in openwifi
[18], an open-source Wi-Fi chip design. Instead of using an
additional clock for HW TS, we leverage the existing Timing
Synchronization Function (TSF) clock with minimal modifi-
cations in Field Programmable Gate Array (FPGA) to achieve
the same purpose. Moreover, we add necessary callbacks in
the openwifi driver to make the TSF clock compliant to the
PTP Hardware Clock (PHC) subsystem of Linux. In this way,
we can use the existing PTP application and the support
infrastructure in Linux [19]. Lastly, the performance of our
solution is characterized over both single-hop and multi-hop
network across wired and wireless network domains.

The rest of the paper is structured as follows. The state of art
of standardization, available tools and related work is detailed
in Section II. Section III describes the proposed method to
enable PTP on IEEE 802.11 network. Experimental results are
discussed in Section IV. Lastly, conclusions and future work
are given in Section V.

II. STATE OF THE ART

The purpose of this work is to provide a PTP based CS
solution across Wi-Fi and Ethernet network. In this section, we
(i) examine the relevant standardization, (ii) identify potential
solutions based on the standards and available resources, (iii)
present a comparison of the selected approach against existing
work, and (iv) finally summarize the contribution of this paper.

A. Standardization

The Wi-Fi alliance has introduced the Wi-Fi TimeSync cer-
tificate [20], which recommends to follow the IEEE 802.1AS
(or gPTP) for clock synchronization over Wi-Fi. Some of
the key differences between the gPTP and the original PTP
protocols are that gPTP excludes usage of BC, it uses a TC to
operate as a bridge; and all devices involved in gPTP network
should provide HW TS and operate in P2P mode.

Unlike the original PTP protocol, 802.1AS separates the
medium independent and medium dependent layers. Medium
independent layer is common for all network types, which uses
timestamps provided by medium dependent layer to perform
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CS; the medium dependent layer on the other hand is different
for various network types, such as Ethernet and Wi-Fi. For
Ethernet, the packets being timestamped are the event packets
defined in the PTP protocol; whereas for Wi-Fi, the 802.11
Mac Layer Management Entity (MLME) is responsible for
generating packets defined in TM to trigger TS in the Wi-Fi
card. Later on the 802.11 standard introduces FTM, which is
subsequently included in 802.1AS-rev.

FTM and TM both are expected to provide timestamps that
indicate the start of preamble of an Wi-Fi packet accurately,
which serve as a way for Wi-Fi to support HW TS required by
802.1AS. Since functionally FTM and TM are equivalent, we
focus our discussion on TM and the original 802.1AS standard
in subsequent sections.

B. Available resources and potential solutions

In this section, we identify potential solutions and their
available and missing features, focusing on: (i) the available
software to realize 802.1AS over Wi-Fi, (ii) the support of
802.11 TM and PHC in the OS, and (iii) the necessary
features in Wi-Fi driver and hardware to support the operation.
Regarding the software tools, we mainly explore whether the
application supports 802.1AS wireless port (i.e., the interface
to exchange timestamps with 802.11 TM) and the required
802.1AS roles (i.e. end stations and bridges). Regarding the
support of PHC in OS, it comes down to two aspects, namely
the capability to pass HW timestamp through the OS to the
application, and the capability to control the hardware clock
in a PTP compliant way.

gptp1 is a gPTP daemon managed by the AVNU alliance, its
development is mainly lead by Intel. The daemon is an open
source implementation of PTP software stack of 802.1AS for
Windows and Linux OS. Though upon further exploration, we
find that the daemon does not support the 802.1AS wireless
port in Linux OS. The authors in [21] attempt to run gptp
daemon with TM as a hardware stack on Intel 8260 AC
[22] in Windows OS. However, due to non-native support
of PTP hardware clock in Windows OS, they were unable
to measure the CS accuracy. The support of PTP hardware
clock is well present in the Linux OS, its PHC subsystem
allows control of PTP hardware clock, and specific socket
options are provided to pass the timestamps through the OS.
As TM packets are produced and consumed in the 802.11
MLME, we further explore the support of TM in mac80211
subsystem of Linux kernel, the conclusion is however that the
kernel does not provide support for constructing TM packet.
The interface between kernel and Wi-Fi driver only defines
functions to trigger measurement and get results. In addition,
the structure to return TM results does not contain timestamps,
it only passes the averaged round trip time to the upper layers.
This means without kernel modification, even if a Wi-Fi card
supports TM, the result obtained can only be used for ranging
application, not CS. In short, if we want to accomplish our goal
using gptp daemon in Windows, we need to add hardware PHC
support in Windows OS; if we proceed with gptp in Linux,
we need to extend the gptp application to support wireless

1https://github.com/Avnu/gptp

port and modify the Linux kernel for TM support. Both
approaches already require a considerable amount of work in
pure software stack, and above that the driver and hardware
should be able to construct TM packet and timestamp it.

The linuxptp is another open source implementation of the
PTP software stack in Linux OS. It is a widely used software
stack in both academia and industry for CS in Ethernet based
distributed systems. Though it supports both P2P mode and
E2E modes, it only supports the IEEE 802.1AS in the role
of end station. In other words, the default linuxptp cannot
fulfill the role a 802.1AS bridge in a multi-hop network. In
addition, linuxptp replies on standard PTP packets to obtain
the timestamps, the software does not include possibility to
leave 802.11 MLME to handle this task. Hence the support of
802.1AS wireless port needs to be added to the application.
In short, if we want to accomplish our goal using linuxptp
in a fully 802.1AS compliant way, we need to extend the
application to support 802.1AS bridge and wireless port,
modify the Linux kernel for passing timestamps from the
802.11 TM, and finally construct TM packet and timestamp it
in driver and hardware of Wi-Fi interface.

Inspired by Ethernet based PTP solutions, one can also
achieve accurate CS in multi-hop network with merely PTP
packets. Although linuxptp does not support the 802.1AS
bridge (i.e. a TC operating in 2-step P2P mode), it does
support regular IEEE 1588 BC/TC. We then come up with
configuring AP as a BC using linuxptp in the E2E mode,
combined with TS the PTP event packets in Wi-Fi hardware
and driver. BC in E2E mode is preferred for two reasons: (i)
all PTP packets of different network interfaces are generated
and consumed independently, no bridging is required, hence
simpler in terms of network configuration; (ii) Wi-Fi AP and
clients are almost always connected, using P2P mode will lead
to complexity such as the support of residence time calculation
but without much performance gain. As introduced previously,
BC and TC are mathematically equivalent, and the difference
mainly shows when non-PTP aware devices are involved, we
believe the performance penalty of using E2E BC instead of
P2P TC will be trivial in wireless network domain. The same
conclusion applies for replacing TM packets by PTP event
packets. A summary of the pros and cons of the potential
solutions are given in Table I, where a “Need” indicates a
feature is required and available, a “Need∗” indicates a feature
is required but missing, and “NoNeed” indicates a feature is
not needed for an approach. We observe that the last approach
only requires the Wi-Fi interface to TS regular PTP packets,
whereas all the rest requires some level of modification in the
application and OS, in addition to the TM packet construction
and TS support. Although this approach is not fully 802.1AS
compliant, we believe the gain of the reduced implementation
effort and the convenience to achieve PTP across Ethernet and
Wi-Fi with standard OS and application significantly outweigh
the drawback. Hence this is the selected approach.

C. Comparison against existing work

There have been many attempts to implement PTP over
IEEE 802.11 Wireless Local Area Network (WLAN). These
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TABLE I
COMPARISON OF POTENTIAL WAYS TO REALIZE PTP ACROSS WIRED AND WIRELESS NETWORK, Need INDICATES A FEATURE IS REQUIRED AND

AVAILABLE, Need∗ INDICATES A FEATURE IS REQUIRED BUT MISSING, AND NoNeed INDICATES A FEATURE IS NOT NEEDED FOR AN APPROACH.

Application Operating System Driver & HW
802.1AS

Wireless Port
802.1AS
all roles PHC support TM support TS PTP PKT Construct TM PKT TS TM PKT

gptp in Windows Need Need Need∗ Need∗ NoNeed Need∗ Need∗

gptp in Linux Need∗ Need Need Need∗ NoNeed Need∗ Need∗

linuxptp 802.1AS TS TM Need∗ Need∗ Need Need∗ NoNeed Need∗ Need∗

linuxptp E2E TS PTP [this work] NoNeed NoNeed Need NoNeed Need NoNeed NoNeed

work can be categorized into SW TS based PTP, and HW TS
based PTP implementations.

The metrics commonly used in literature to evaluate the
performance of these solutions are the mean (µ) and standard
deviation (σ) of CS error over time. In addition to these
metrics, the Wi-Fi Alliance has introduced the Wi-Fi TimeSync
certificate to specify the requirement of CS performance
between multiple Wi-Fi devices [20]. The certification requires
the 90th percentile of the absolute CS error (P90) to be within
5.5 µs of the observed time (i.e., 120 sec). In this paper, (1)
is used to quantify the P90

P90 =

{
i, if f(i) = 0.9

0, otherwise
(1)

f(i) =
1

N

N∑
n=1

1Cerr(n) where

1Cerr(n) =

{
1, if |Cerr(n)|≤ i
0, otherwise

(2)

where, i value denotes the P90 when f (i) (empirical cu-
mulative distribution function) is equal to 0.9. To check the
compliance with Wi-Fi TimeSync certificate, We include P90

together with µ and σ metrics to measure the CS performance
of our solution in a network.

1) PTP with software timestamping: [7] proposes a PTP
solution over IEEE 802.11 WLAN with SW TS at the applica-
tion layer. To mitigate the impact of asymmetric bidirectional
delay of WLAN on CS accuracy, they first designed a delay
filtering algorithm based on Kalman filter, and then introduced
a modified Proportional Integral (PI) controller based clock
servo system. [7] is validated on a Linux based embedded
development board. The µ is limited to -14.24 µs with a σ
of 27.65 µs. In [8], PTP SW TS is done inside the interrupt
service routine of the Ath5k Wi-Fi card2 driver of Atheros
AR5xxx chipset in Linux. However, the mean CS accuracy
of this work is still 6.60 µs with σ of 0.58 µs [23]. Another
design of PTP over IEEE 802.11b WLAN is realized in a
Linux Personal Computer (PC) [12]. They have made changes
in the radio driver to achieve SW TS, leading to better CS
accuracy (i.e., µ: 4.6 µs, σ:1.58 µs) when configured in Access
Point (AP) mode. An effort is made in [9] to investigate the
performance of PTP over multi-hop hybrid network. The work
has however used SW TS in the wireless part of the network
and the performance of their work is not tested in the presence
of non-PTP background traffic.

2https://wireless.wiki.kernel.org/en/users/Drivers/ath5k

To summarize, all these SW TS based solutions have
been realized over commercial off-the-shelf WLAN chipsets,
they provide decent CS accuracy (in the order of several
microsecond). However, the performance is evaluated in rather
simple scenario (e.g., no traffic load and mostly over single-
hop network). Additionally, propagation delay asymmetry
caused by different frame sizes and Modulation and Coding
Scheme (MCS) can potentially harm CS performance [23],
[24]. Although these solutions provide important insights for
PTP implementation in wireless network, we argue that they
are inadequate for industrial applications.

2) PTP with hardware timestamping: [13] introduces a
HW TS based PTP solution over IEEE 802.11b WLAN. The
work has used a dedicated Adder Based Clock (ABC) in
FPGA for HW TS. In the prototype, a customized version
of the PTP protocol is used, instead of using standard PTP
messages, the synchronization data from master to slave is
embedded within beacons. Experimental results show that the
solution has the virtues of high CS accuracy; i.e., µ is 0.24
ns with σ of 0.53 ns. Another HW TS based PTP solution
is analyzed over WLAN by using an embedded processor and
Programmable Logic Device (PLD) in [12]. To realize HW
TS, they have implemented 4 hardware modules including
two 64 bits counters on the PLD. The solution gives a µ
of 1.1 ns with a σ of 1.76 ns, but it uses a custom Media
Access Control (MAC) mechanism, which is not compatible
with the IEEE 802.11 standard. Despite the good performance,
the customization of PTP and Wi-Fi stack will hinder the
applicability of these solutions when needed to form a PTP
based CS network across Wi-Fi and Ethernet with traffic load.

D. Contribution of this paper

1) This solution supports HW TS, making it more accurate
than SW TS based PTP in terms of CS accuracy.

2) This work uses the existing TSF clock of Wi-Fi standard
as PTP HW clock, rather than adding a new HW clock,
making it more economical in terms of HW footprint.

3) Existing TSF based solutions [25], [26] only apply clock
offset correction during the CS process. PTP however
requires both clock offset and skew correction [27]. The
CS process between the slave clock (Cs) and the master
clock (Cm) can be modeled by (3)

Cs(t) = S × Cm(t) + b (3)

where S and b represent the skew and offset difference
of the slave clock with respect to its master [28]. Clock
offset is the relative time difference between master
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Fig. 3. Generalized architecture (a) of our proposed PTP design over WLAN, which is primarily composed of (b) software stack and (c) hardware unit.

and slave, whereas clock skew is the relative difference
in clock frequency between the master and slave’s
clocks. As the clock skew between master and slave
remains uncorrected in the existing TSF based solutions,
the clocks quickly diverge after each correction. IEEE
802.11 [29] has specified ±20 ppm frequency skew for
WLAN chipsets, resulting CS errors of up to ±40 µs per
second if only offset correction is applied every second.
Thus, we introduce skew correction feature combined
with clock offset correction in a TSF clock by modifying
the existing TSF block of openwifi in FPGA.

4) The introduction of skew correction in TSF may help to
further enhance the performance of the existing appli-
cations relying on synchronized TSF clocks. Similarly,
the 802.11 MAC sublayer Managment Entity (MLME)
operations relying on the TSF synchronization could
gain benefit from the more accurate TSF synchronization
between client and AP in the same Basic Service Set
(BSS). The enhanced TSF based synchronization can
also be used to maintain the better coordination among
APs in overlapping BSSs.

5) Our solution based on an open source radio chip design
is full stack and Linux compatible, using existing PTP
software and Linux kernel support.

6) Unlike existing work, we have quantified the CS perfor-
mance in terms of P90 to validate the compliance of our

solution with the Wi-Fi TimeSync certificate.
7) Lastly, to examine the adequacy of our solution for in-

dustrial applications, the CS performance is investigated
over a single-hop wireless network as well as a network
across wired and wireless network domains, coexisting
with a large amount of non-PTP traffic.

III. THE PROPOSED SOLUTION

Fig. 3-a displays the block diagram of our proposed ar-
chitecture for PTP design over IEEE 802.11 WLAN. The
architecture is prototyped on a System on Chip (SoC) where
the openwifi is running. PTP software stack and PTP HW
clock are realized on embedded processor and FPGA parts
of the SoC, respectively. To implement the PTP software
stack, we have employed the existing linuxptp3 software as
a userspace application. Linuxptp software is the Linux based
PTP implementation for wired network. It relies on certain
system calls to determine a device’s TS capability (i.e., SW
or HW TS), which are not accessible for Wi-Fi card driver,
hence changes are made to bypass the check without hurting
Linuxptp’s compliance with the PTP standard. We have further
modified the radio device driver, making it able to interface
with the PTP HW clock. Lastly, necessary changes are made
in the existing TSF hardware to enable skew corrections, so

3http://linuxptp.sourceforge.net
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TABLE II
HARDWARE UTILIZATION COMPARISON WHEN EITHER TSF OR A

DEDICATED CLOCK IS USED AS PTP HW CLOCK.

Resources LUTs FFs
Default TSF 76 74
TSF as PTP HW Clock 177 130
Dedicated PTP HW Clock 154 136
HW Efficiency 23% 38%

that it can be used as a PTP HW clock. In short, the proposed
PTP solution can be generalised into two steps: (1) design
a wireless PTP software stack, and (2) modification of the
existing TSF clock in HW to allow PTP HW TS. These two
steps are detailed in this section.

A. Design of the PTP software stack
A diagram containing the main components used in the PTP

software stack is shown in Fig. 3-b. There is an existing PTP
Hardware Clock (PHC) subsystem in the Linux kernel. The
PHC subsystem offers Application Programming Interfaces
(APIs) for both userspace applications and device drivers to
control the HW clock. Introducing PTP clock support for
a WLAN interface requires the integration of these APIs
together with TS at both userspace level and device driver.

We adopt linuxptp as the software stack of PTP in userspace.
linuxptp uses the APIs of the PHC subsystem in combination
with SO TIMESTAMPING socket option to regulate the HW
clock. SO TIMESTAMPING is a socket attribute used by
recvmsg() in userspace to generate timestamps on transmis-
sion, reception or both. The socket attribute supports both
HW and SW TS. To run linuxptp over WLAN, it is essential
that the radio driver has support for the PHC interface and
SO TIMESTAMPING socket option. To this end, the following
steps are taken to run linuxptp over openwifi in the radio driver:

1) linuxptp uses SIOCSHWTSTAMP in ioctl system call to
configure which outgoing and incoming packets should
be timestamped. The packet selection is needed, as non-
PTP packets on the network stacks requires no HW
TS. The corresponding callback function implemented
in our driver is 80211hwts set (see 1© in Fig. 3-b).
SIOCGHWTSTAMP is a system call to read the already
configured packet settings and its callback function in
the driver is 80211hwts get. 80211hwts info is another
callback function which returns the TS capabilities of
a Network Interface Card (NIC), when ethtool4 -T
sdr0 command is executed, where sdr0 represents the
openwifi interface recognized by the Linux OS.

2) After configuring the HW timestamp settings for PTP
packet, the next step is to enable the HW TS in
the radio driver. sk buff is a data structure in Linux
networking stack to handle the packet that has been
received or is about to be transmitted. The structure
allows the HW timestamps to be stored in the field
skb shared hwtstamps optionally. A device driver is re-
sponsible for reading the timestamps from hardware reg-
isters and writing them into the skb shared hwtstamps.

4ethtool command: https://linux.die.net/man/8/ethtool

The function callback where the radio driver copies
TS value from HW register to sk buff upon packet
transmission is shown in Fig. 3-b (see 2© in radio
driver).

3) The last step is to expose the HW clock to linuxptp,
so that it can regulate the clock from userspace. The
ptp clock is a structure representing the PTP clock in a
radio driver. It provides an abstraction on top of the HW
clock and allows the userspace application to get, set and
adjust the HW clock automatically. An example of the
code snippet with the key functionalities of ptp clock is
shown in Fig. 3-b (see 3© in the radio driver).
The 80211 ptp adjtime and 80211 ptp adjfreq are the
most important callback functions. The former function
performs clock offset correction and the latter does skew
correction of PTP HW clock. The clock skew correction
value is calculated using (4).

Sc =

(
109

Fr × ppb

)
× 106 (4)

Where, linuxptp computes the ppb (part per billion)
value based on the received HW timestamps, and sends
it to the radio driver. Our radio driver uses this value to
calculate the Sc (skew correction) value, which corre-
sponds to the duration in microsecond that the clock is
adjusted periodically based on the ppb value. Fr denotes
the desired frequency in Hz of PTP HW clock. Let’s
say the quantified ppb value is 78,096 and Fr value is
1 MHz, then the actual frequency of PTP HW clock
becomes 1.000078096 MHz. The calculated Sc value
using (4) is 12,805 µs, which is later used by PTP HW
clock (see Fig.3-c) to correct clock skew. Lastly, the
ptp clock is exposed as a character device (/dev/ptpX)
to userspace, where linuxptp directly uses it to regulate
the HW clock.

B. Design the assisting HW for PTP HW TS

As shown in Fig. 3-c, the assisting HW in our design
primarily consists of (1) PTP HW clock representing real time
local HW clock, (2) TimeStamp Unit (TSU) responsible for
generating HW TS upon detection of reception or transmission
of frame preamble, and (3) IEEE 802.11 datapath employed
for sending and receiving PTP packets. The PTP software
stack uses the existing openwifi interface to communicate with
802.11 datapath.

Instead of using a conventional way to design a PTP HW
clock, our design realizes the PTP HW clock by leverag-
ing the existing TSF clock. The motivation of this design
choice is twofold: (i) modifying the existing TSF clock costs
less hardware resources than adding an additional clock; (ii)
applications relying on TSF for synchronization may also
benefit from this approach. The Wi-Fi standard provides basic
synchronization across the TSF clocks in a Basic Service Set
(BSS), though there is no rate correction and neither link delay
measurement, hence the CS accuracy of the Wi-Fi standard
is worse than PTP. For instance, IEEE 802.11 has specified
±20 ppm frequency skew for WLAN chipsets, which can
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additionally introduce CS errors of up to ±40 µs per second if
basic TSF based CS (without rate correction) is applied every
second. Despite of this fact, many researchers and developers
take advantage of this feature. For instance, [30] uses the
synchronized TSF in a Wi-Fi BSS for Time Division Multiple
Access (TDMA), though due to the poor CS accuracy, the
solution requires 20 µs guard interval in a TDMA slot. In [31],
the synchronized TSF is used to coordinate transmission from
a Wi-Fi BSS to avoid interfering with a sensor network, it is
required to mute the Wi-Fi transmission somewhat in advance
to account for the CS inaccuracy. On top of that, IEEE 802.11
standard also uses TSF for maintaining coordination between
APs in overlapping BSS. With our approach, applications
relying on TSF synchronization can greatly improve their
performance without any additional effort. Hence we believe
that the improved CS accuracy of TSF clocks in a Wi-Fi
network is substantial.

While HW CS demands both clock offset and skew correc-
tion, default TSF design is only able to do offset correction.
Thus, we have modified the TSF HW making it capable of
performing skew correction as well (see colored blocks in
Fig. 3-c). Table. II shows a comparison of hardware utilization
when the default TSF clock (i.e., without skew correction
capability), the modified TSF clock supporting skew correction
feature, or a dedicated HW is allocated for the PTP HW clock.
The HW efficiency in the Table. II is calculated using (5)

Efficiency =

(
HWptp +HWdftTSF −HWTSF

HWptp +HWdftTSF

)
× 100

(5)
where HWdftTSF , HWtsf and HWptp represent the hardware
consumed by the default TSF in openwifi, the modified TSF
in our work, and a hardware clock allocated as dedicated
PHC, respectively. The consumed hardware can be either Look
Up Table (LUT) or Flip Flop (FF). Table. II shows that
the modified TSF clock saves 23% LUTs and 38% FFs as
compared to a dedicated HW PTP clock added on top of the
default TSF.

The radio driver calculates the upper limit (i.e. the Sc
value) for Skew Correction Counter (SCC) using (4), and
loads the calculated value into the Skew Correction Register
(SCR). SCC increments with the TSF clock at 1MHz operating
frequency. Upon reaching the Sc value, SCC overflows and
performs the skew correction of the TSF clock. In normal
situations, the TSF counter is incremented by one after each
1 µs according to the desired rate of local oscillator. Upon
skew correction, the TSF counter is either incremented by
two or zero depending upon the sign of carry bit. For instance,
SCC performs skew correction after each 12,805 counts in the
example given in the previous section.

Lastly, the TSU is composed of a controller and a First-
In, First-Out (FIFO). The controller is in charge of executing
TS upon either frame preamble transmission (or reception),
and storing it into the FIFO. The radio driver later reads and
copies these TS values into sk buff by calling 80211hwts tx()
function ( see 2© in the radio driver in Fig. 3-b). The radio
driver also performs a similar action for reception process,
for simplicity, it is not shown in Fig. 3-b. The radio driver

Fig. 4. Experimental setup of the single-hop network used to measure the
performance of our proposed PTP over WLAN.

Fig. 5. Cumulative Distribution Function (CDF) of the absolute clock
synchronization error of our proposed PTP solution over single-hop WLAN
when no traffic load, UDP traffic and TCP traffic is applied.

performs all these actions inside the Interrupt Service Routine
(ISR). Subsequently, the linuxptp calls recvmsg() function to
read these TS values and perform CS.

IV. RESULTS AND DISCUSSIONS

In this section, first, the experimental setup used to evaluate
the CS performance of our design is presented. Then, the CS
performance of our design is analysed over both a single-hop
Wi-Fi network and across Ethernet and Wi-Fi network. The CS
performance of our design is quantified in terms of µ, σ and
P90. Lastly, the CS performance of our design is compared
against the performance of existing CS solutions. Since the
solutions in literature only provides information regarding µ
and σ values, we have estimated P90 value with the help of (6).
We assume that the samples in a CS error measurement follows
Gaussian distribution, then its absolute value will follow folded
Gaussian distribution, whose cumulative distribution function
is given in Eq 6

f(Cerr) =
1

2

[
erf

(
Cerr + µ

σ
√
2

)
+ erf

(
Cerr − µ
σ
√
2

)]
(6)

erf

(
Cerr ± µ
σ
√
2

)
=

2√
π

∫ (
Cerr±µ
σ
√

2

)
0

e−t
2

dt (7)

where, f (Cerr) reflects the estimated percentile of absolute CS
error at |Cerr|th point and Cerr represents CS error between
the master and the slave clock. In other words, the |Cerr| value
corresponds the estimated P90 when f (Cerr) is equal to 0.9.

A. Experimental Setup for a Single-Hop Network

To measure the performance of our proposed PTP solution
with HW TS over single-hop WLAN, a wireless network
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TABLE III
THE MEASURED CLOCK SYNCHRONIZATION PERFORMANCE OF OUR

PROPOSED PTP OVER SINGLE-HOP WLAN.

Parameters No load UDP load TCP load
µ -0.279 µs -0.330 µs -0.325 µs
σ 0.820 µs 0.872 µs 0.868 µs
P90 1.40 µs 1.48 µs 1.46 µs

between two openwifi Software Defined Radio (SDR) boards
has been established, as illustrated in Fig. 4. The WLAN is set-
up in infrastructure mode, where one SDR acts as the Access
Point (AP) and the other behaves as a client. Due to the lack of
Power Amplifier (PA) in the used RF frontend, the SDRs are
placed in close proximity (i.e., the measured transmit power
of the used SDR is -15 dBm). The SDR used in the particular
experiment is composed of Zynq UltraScale+MPSoC ZCU102
Evaluation Kit5, and FMCOMMS26, an analog RF frontend.
The Zynq SoC on ZCU102 Evalutaion Kit further comprises
Programmable Logic (PL) (FPGA) and Processing Subsystem
(PS) (ARM Cortex-A53). The PTP hardware unit along with
the low MAC and physical layers of openwifi are implemented
in the PL part, while high MAC and other layers of network
stacks of openwifi and PTP software stack are running on
embedded PS part. The OS running on the PS is Linux
with kernel version 4.14. In the particular setup, the openwifi
is configured in IEEE 802.11a mode operating in 5 GHz
frequency band with 20MHz channel bandwidth. The MCS
values for IEEE 802.11a is dynamically adapted up to 7 by
Linux mac80211 minstrel rate control algorithm.

The AP acts as the PTP master and the client is the PTP
slave. In our setup, PTP is configured in E2E mode. The
PTP messages in the linuxptp are transmitted or received
using UDP/IPv4 via sockets API (see Fig. 3-a). The linuxptp
v2.0 is used in the experiment, it is configured to perform
synchronisation once per second. The CS accuracy is measured
by analysing the Pulse Per Second (PPS) signal based on TSF
clock from both slave and master with Saleae logic analyzer7.
The sampling rate of the logic analyzer is configured at
100MHz, resulting in 10 ns resolution. Subsequently, the PPS
signals captured with the help of the logic analyser are fed
to post processing unit indicated in Fig. 4, where the CS
performance metrics (i.e. µ, σ and P90) are derived based on
the difference between the PPS pulses.

B. Experimental Evaluation over single-hop WLAN

Before evaluating the CS accuracy over the single-hop
WLAN, We first quantify the Convergence Time (CT) of our
proposed PTP solution using experimental setup shown in
Fig. 4. We define CT as a time when CS error or frequency
offset(i.e., the measured clock skew between the PTP master
and slave clocks in ppb) reaches a stable range which can be
positive or negative depending on whether the slave clock is
leading or lagging behind the master clock. Short CT is always

5https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
6https://www.analog.com/en/design-center/evaluation-hardware-and-

software/evaluation-boards-kits/eval-ad-fmcomms2.html
7Saleae logic analyzer https://www.saleae.com/

Fig. 6. Experimental setup used to measure the performance of our proposed
PTP across wired-wireless network.

desired, since time critical applications can run only when CS
error is stable and small enough. Experimental results show
that CT takes ≈4-6 master-slave interactions on the typical
SDR platform with oscillator frequency error of ±61.5 ppm8

to get stabilized.

A realistic wireless network in the industrial environment
contains background traffic in addition to PTP messages which
can degrade the CS performance, due to the delay or dropping
of PTP packets when encounter network congestion. To this
end, the CS performance is quantified when no network load is
present between the SDRs to show the optimum performance,
and also when network load is present between the SDRs to
show the performance in a more practical condition. The mea-
surement is conducted in an office environment, the presence
of other Wi-Fi devices does not show visible impact to the ex-
periment result. The HW setup displayed in Fig. 4 is leveraged
to quantify the CS error. Note that the experimental evaluation
uses results of the stable phase of PTP. The measurements last
for 20 minutes with the synchronization performed once per
second between master and slave devices.

The CS errors quantified under different network loads are
shown in Fig. 5 and Table. III. As seen from Fig. 5, the
P90 is 1.40 µs with σ of 0.82 µs without traffic load. The
iperf9 software is used to generate traffic between the SDRs.
First a TCP stream is enabled from the client to the AP
accompanied by PTP message exchange. Since TCP is by
design bi-directional, using TCP of iperf will automatically
find the maximum throughput (i.e. 12 Mb/s in this experiment)
between the client and AP, it shows that we can push the limit
of traffic load between the SDRs while keeping PTP stable.
The P90 rises to 1.46 µs with σ of 0.87 µs while running
the TCP traffic (see Fig. 5). Then UDP traffic is enabled in
similar way, UDP is unidirectional, the average throughput
found in TCP is applied as the target throughput in UDP
stream. The P90 jumps to 1.48 µs with σ of 0.87 µs when 12
Mb/s UDP iperf is enabled. The results show that the impact
of network load on the CS error is almost negligible; i.e.,
the P90 only increases by 0.08 µs and 0.06 µs with UDP
and TCP traffic load applied, respectively, when compared
against the case when no load is applied. Last but not least,
experimental results unveil that our solution is capable of
providing a P90 much better than 5.5 µs, which is required for
Wi-Fi TimeSync [20] certification, in both optimum and more
practical scenarios.

8https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
9Iperf command: https://iperf.fr/
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Fig. 7. Cumulative Distribution Function (CDF) of absolute clock synchronization error of our proposed PTP across wired and wireless network when no
traffic load, UDP traffic and TCP traffic is applied.

TABLE IV
THE MEASURED CLOCK SYNCHRONIZATION PERFORMANCE OF OUR PROPOSED PTP ACROSS WIRED AND WIRELESS NETWORK.

Description No load UDP load TCP load
µ (µs) σ (µs) P90 (µs) µ (µs) σ (µs) P90 (µs) µ (µs) σ (µs) P90 (µs)

ClientA to GM 0.94 1.42 2.88 0.98 1.49 2.98 0.90 1.65 3.16
ClientB to GM 0.87 1.43 2.81 0.93 1.42 2.82 0.87 1.68 3.10
ClientA to ClientB -0.08 0.94 1.54 -0.05 1.02 1.66 -0.03 1.19 1.80

C. Experimental evaluation across WLAN and Ethernet

The experimental setup used to measure the CS performance
across the Wi-Fi and Ethernet network is shown in Fig. 6. An
additional Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
(refferred to as ZCU102 hereafter) is used as PTP GM, as
the board supports PTP HW TS and PPS on its Ethernet port.
The openwifi AP composed of a ZCU102 and FMCOMMS2
behaves as a BC. The AP has two PTP HW clocks. The HW
clock attached to Ethernet interface acts as a slave clock to
the GM and the HW clock attached to the openwifi interface
functions as the master clock to the Wi-Fi clients. Within the
AP, the openwifi interface’s PTP HW clock is synchronized
against the Ethernet’s PTP HW clock, using phc2sys command
offered in the linuxptp software. Thanks to the selection of
E2E mode, the PTP packets are sent in layer 3 encapsulation
(i.e., IPv4/UDP packets). There is no bridging of PTP packets
between Wi-Fi and Ethernet, each interface is an independent
PTP port that generates and consumes PTP packets in its own
IP subnet, which greatly simplifies the network configuration.
The wireless network includes two Wi-Fi clients. Each client
consists of a ZCU102 and an FMCOMMS2 board. The HW
clocks of the two clients in the wireless network are slaves to
the AP’s openwifi PTP HW clock.

The duration of the measurements is set to 20 minutes with
the synchronization performed once per second between PTP
master and slave devices. Similar to the single-hop WLAN, the
CS performance is quantified both with and without network
load. For the network load setting, first two TCP iperf streams
are simultaneously enabled from both Wi-Fi clients to the AP.
Then the TCP streams are replaced by UDP streams, with a
target throughput of 8.5 Mb/s on each client (i.e., 8.5 Mb/s is
the average throughput observed in the TCP measurement).

The µ, σ and P90 values between the GM and Wi-Fi client
across Wi-Fi and Ethernet network is shown in Table. IV
and Fig. 7. Comparing to the results obtained in single-hop
WLAN, the P90 between GM and client has increased from
1.4 µs to 2.8 µs approximately. This change is mainly caused

by the additional CS error being accumulated over the extra
hop (i.e., AP acting as a BC in between GM and Wi-Fi client).
Intuitively, the AP clock is varied periodically as a BC, making
it more challenging for the clients to synchronize, hence
increasing the CS error of the downstream network. Though,
similar to the conclusions from the single-hop experiment, it
can be observed that the impact of network load on CS error
between each client and GM is almost negligible. In addition,
we also measure the difference of PPS pulses between the two
Wi-Fi clients, which is much smaller than the error between
a client and GM. We believe this is important for applications
such as a wireless speaker or synchronized movement of
robotic arms. In this type of applications, the end goal is that
the actions taken on multiple PTP slaves’ are synchronized. In
general, even with traffic load and AP configured as a BC in
between the GM and Wi-Fi clients, the P90 of E2E CS error
is still well within the 5.5 µs required by the Wi-Fi Timesync
certificate for performance over a single hop WLAN.

D. Comparison against the existing PTP solutions

A detailed CS performance comparison of the proposed
PTP design with the existing CS solutions over WLAN is
depicted in Table. V. The NA (i.e., Not Available) in Table. V
corresponds to a metric which is not available for a solution
in the literature. The column Sync interval indicates the time
interval in seconds after which the synchronization procedure
is repeated. For a fair comparison of our validation, we have
also estimated the P90 (see bold values in Table. V) of the
existing solutions using (6).

First, we examine the performance in the single-hop WLAN
without non-PTP traffic applied. The two solutions (i.e., [13],
[12]) using HW TS perform better than ours because they
rely on a clock with finer resolution (i.e., a few ns in [12],
11.36 ns in [13]). As elaborated previously, we opt for the
existing TSF in Wi-Fi as the PTP HW clock, which counts at
1 µs. Although this choice affects our performance, it is more
hardware efficient and brings benefits to other applications
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TABLE V
PERFORMANCE COMPARISON WITH EXISTING CLOCK SYNCHRONIZATION SOLUTIONS OF WLAN IN THE LITERATURE.

HW
TS

Extra
HW
clock

Sync
inte-
rval
(sec)

Clock synchronization performance over single-hop
wireless network

Clock synchronization performance across wired-wireless
network

No load Network load No load Network load
µ σ P90 µ σ P90 µ σ P90 µ σ P90

PTP based clock synchronization solutions
Our

√
× 1.0 -279 ns 820 ns 1.40 µs -325 ns 868 ns 1.46 µs 866 ns 1.43 µs 2.81 µs 929 ns 1.42 µs 2.82 µs

[13]
√ √

0.1 0.24 ns 0.53 ns 1.00 ns NA NA NA NA NA NA NA NA NA
[12]

√ √
2.0 1.10 ns 1.76 ns 3.40 ns NA NA NA NA NA NA NA NA NA

[7] × × 2.0 -14.2 µs 27.7 µs 51.2 µs NA NA NA NA NA NA NA NA NA
[8] × × 1.0 6.60 µs 0.58 µs 7.34 µs NA NA NA NA NA NA NA NA NA
[12] × × 2.0 4.60 µs 1.58 µs 6.63 µs NA NA NA NA NA NA NA NA NA
[9] × × 1.0 NA NA NA NA NA NA -0.7 µs 0.64 µs 1.52 µs NA NA NA
[24] × × 1.0 109 ns 360 ns 0.62 µs 316 ns 1.26 µs 2.13 µs NA NA NA NA NA NA
non-PTP based clock synchronization solutions
[25] × × 1.0 37.5 ms 6.80 µs 37.6 ms NA NA NA NA NA NA NA NA NA
[28] × × 1.0 6.00 µs 341 ns 6.44 µs 21.0 µs 1.14 µs 22.5 µs NA NA NA NA NA NA

relying on a synchronized TSF. A secondary factor is the Sync
interval, [13] uses a much shorter synchronization period (i.e.
0.1 second), which means the solution makes a trade-off be-
tween performance and network overhead. Among the SW TS
based solutions, [24] also outperforms ours in this condition.
The authors of [24] has investigated the synchronization bias
caused by the asymmetrical link delay measured when MCS
used in the Sync and Delay request packets are different. They
have then carefully measured the delay in the Wi-Fi interface
for PTP event packets, and use the measurement to calibrate
the SW TS in the Wi-Fi driver. Although this solution achieved
optimal performance for one Wi-Fi card, the calibration is
hardware-dependent, and hence has to be performed for each
Wi-Fi card and its corresponding driver. They also need to
modify the PTP application to avoid using the default link
delay measured on the fly. Our solution on the other hand uses
standard PTP approach, it does not require pre-calibration and
the performance is not subject to the used MCS in PTP event
packets thanks to the nature of HW TS (i.e., TS happens at
the start of frame).

Most solutions have not evaluated the impact of traffic
load, and neither the performance beyond single-hop Wi-Fi
network. The exceptions are [9], [24], [28]. [24] and [28] are
the only solutions which provide information pertaining to the
CS performance in the presence of network load. Unlike our
solution, it is shown that the CS performance of these solutions
is significantly degraded by network traffic. The CS error’s σ
increases from 360 ns to 1.26 µs in [24] and from 341 ns to
1.14 µs in [28].

[9] is the only solution other than ours that has evaluated
CS performance across wired and wireless network segment.
The CS performance of this solution is apparently better than
ours in the absence of network load. The network topology
of this work does resemble ours in the sense that it also has
a GM in wired network, a Wi-Fi AP as a BC, and a Wi-Fi
client as a PTP slave. However, further exploration unveils
that the experiment setup employs expensive industrial PCs
and dedicated NIC for PTP support. More particularly, they
attach the syn158810 NIC on each of the devices (i.e., GM, AP

10Syn1588 NIC https://www.oreganosystems.at/products/syn1588/
hardware/syn1588r-pcie-nic

and client), which costs more than 3000 USD per unit. The
syn1588 NIC offers an adder-based clock as the PTP hardware
clock running on a 25 MHz oscillator. The clock is accessed
by the customized driver of the Atheros 5212 Wi-Fi card to
provide SW TS on the Wi-Fi interface. Hence the superior
performance of [9] is thanks to the dedicated high quality
clock with very fine resolution. The work has however used
SW TS in the wireless part of the network and the performance
of their work is not tested with non-PTP background traffic.
Though the authors do mention that the solution is susceptible
to non-PTP background traffic due to SW TS. Further, all the
SW TS based solutions likely to suffer from propagation delay
asymmetry due to different frame sizes and MCS [23].

To summarize, despite that some of the previous work do
have good performance in specific settings, these solutions
either rely on customized PTP stack, Wi-Fi stack or expensive
and dedicated hardware, whereas our solution offers standard
compliant PTP and Wi-Fi stack with no specific hardware
requirement, making it more easily adopted in a real-life
industrial network. In addition, our solution shows stable
performance under network traffic, and it is the first to offer
experimental analysis of PTP CS performance across Wi-Fi
and Ethernet when traffic load is applied.

V. CONCLUSIONS

In this paper, a new approach for PTP with HW TS is
proposed and verified over openwifi, an open-source IEEE
802.11 design on SDR. The linuxptp application and PHC
subsystem of Linux kernel are employed as PTP software
stack. Instead of adding a dedicated hardware clock, we aim
to use the existing TSF timer of Wi-Fi standard as PTP HW
clock, for the improved hardware-efficiency and the potentials
of applications and Wi-Fi management layers relying on TSF
for synchronization to benefit. The TSF timer however can
only correct clock offset, hence modification is done to enable
skew correction, making it qualified as a PTP HW clock. It
is shown that P90 of our work is 1.40 µs, well below the
5.5 µs requirement of Wi-Fi TimeSync certificate introduced
by the Wi-Fi alliance. In addition, the impact of traffic load
on the clock synchronization accuracy is also investigated
and proven to be insignificant. Lastly, the performance of our
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approach is tested across wired-wireless network and observed
that the overall performance is stable and satisfactory. In the
future, we consider to enhance the CS accuracy by tuning
the hardware clock at finer granularity without compromising
the hardware utilization. Though our novel approach for clock
synchronization is validated on IEEE 802.11 standard, it is not
specific for this standard. In other words, the methodology to
support skew correction in an existing timer with support for
PTP software stack can be applied on any wired or wireless
standard incorporating embedded timer.

Our solution satisfies the performance requirement of Wi-
Fi Timesync certificate, however it is not entirely 802.1AS
compliant in the sense that we capture timestamps of regular
PTP packet rather than the 802.11 Time Measurement packet,
and we use a PTP boundary clock rather than transparent
clock to form multi-hop PTP connections. The choice of this
approach is mainly based on the maturity of available software
and OS support. For future work, we are open to support
802.11 Time Measurement or Fine Time Measurement for
clock synchronization when the relevant upper layer compo-
nents are in place and when the performance requirement can
not be reached by the current solution.
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