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Abstract— Beamforming (BF) improves the error rate per-
formance of multiple-input multiple-output (MIMO) wireless
communication systems by spatial separation of the transmitted
data streams. Spatial separation is achieved by multiplication
of the transmit vector by a steering matrix, which is obtained
through the singular value decomposition (SVD) of the channel
matrix. In this paper, we describe a hardware-efficient VLSI
architecture for steering matrix computation using a hardware-
optimized SVD algorithm. Our architecture contains a high-speed
Givens rotation unit which achieves high processing throughput
at low area. The resulting VLSI implementation requires 3.3 µs
per steering matrix computation at an expense of 41.3 kGEs
and shows a 3.5-fold hardware-efficiency gain compared to a
reference SVD implementation.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems employ
multiple antennas at both sides of the wireless link and
are able to significantly improve the throughput of wireless
communication systems by transmitting multiple data streams
concurrently and in the same frequency band [1]. Orthogonal
frequency division multiplexing (OFDM) modulation drasti-
cally simplifies equalization and thus, MIMO in combination
with OFDM constitutes the basis for many upcoming wireless
standards, such as IEEE 802.11n [2]. Beamforming (BF) is
considered to be a key technology to further improve the
performance of coded MIMO systems by spatially separation
of the transmitted data streams [3]. This separation is achieved
by multiplication of the transmit vectors with a steering
matrix, which is obtained by computing the singular value
decomposition (SVD) [4] of the MIMO channel matrix.

MIMO-OFDM systems that employ BF need to compute
multiple SVDs concurrently, where the number of parallel
tasks corresponds to the number of OFDM tones. Fast but
large SVD computation architectures, e.g., systolic arrays [5],
are often difficult to match to an arbitrary number of parallel
problems, since one instance might be insufficient in terms
of throughput and two instances might exceed the given
requirements. Thus, it is often beneficial to design one small,
but slower architecture and to employ multiple instantiations
thereof in order to achieve a better matching to the throughput
requirements of modern wireless systems. Hence, replication
of low-area instances is a promising strategy to minimize
the area overhead. Further reduction of the total circuit area
can be achieved by improving the hardware-efficiency1 while
attaining the system’s target throughput. Hardware-efficiency
optimization on micro-architectural level of the low-area ar-
chitecture increases the computation speed of each individual

1In the following, hardware-efficiency is measured in terms of circuit area A
times the computation time T .

instance without a significant area expenditure. Hence, the
total number of required instances can be reduced, which
ultimately lowers silicon costs. A practical implementation
of steering matrix computation for MIMO-OFDM systems
employing a large number of tones – as it is the case for
IEEE 802.11n-based systems – asks for multiple instantiations
of a low-area and hardware-efficient VLSI architecture.

Contributions: Based on the more general matrix decom-
position architecture described in [6], we present a dedicated
steering matrix computation unit optimized for MIMO-OFDM
systems. To this end, we modify the GK-SVD algorithm [7]
to efficiently compute steering matrices and use a high-speed
Givens rotation architecture to reduce the computation time
per instance. We perform finite-precision optimizations of
the architecture and provide a detailed hardware-efficiency
optimization, in order to meet the throughput requirements
of MIMO-OFDM systems and to reduce the total circuit area.

Outline: The remainder of this paper is organized as
follows. Sec. II introduces the system model and describes
the steering matrix computation algorithm. The corresponding
VLSI architecture is introduced in Sec. III and the optimization
in terms of hardware-efficiency is outlined in Sec. IV. The
final implementation results are provided in Sec. V and we
conclude in Sec. VI.

II. STEERING MATRIX COMPUTATION

Consider a MIMO system with MT transmit and MR

receive antennas. The input-output relation of the baseband-
equivalent wireless channel corresponds to y = Hs + n,
where s is the MT -dimensional transmit vector, n the MR-
dimensional Gaussian noise vector, and H the complex-valued
MR × MT -dimensional channel matrix. One method to per-
form BF in coded MIMO systems is to transmit s̃ = Vs,
where V is the steering matrix [3]. This matrix is obtained
by computing the SVD of the channel matrix H.

A. Singular Value Decomposition
The SVD of the complex-valued channel matrix H is

defined2 as H = UΣVH [4], where U and V are complex-
valued unitary matrices of dimension MR×MR and MT×MT ,
respectively. The MR × MT -dimensional matrix Σ contains
r = min{MR,MT } real-valued singular values on the main
diagonal. The SVD algorithm under consideration is outlined
in Fig. 1 and corresponds to a modified version of the two-
phase Golub-Kahan (GK) SVD algorithm [7] briefly summa-
rized below:

2The superscripts H , T , and ∗ stand for conjugate transposition, transpo-
sition, and complex conjugation, respectively.
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Fig. 1. Illustration of the bidiagonalization phase and diagonalization phase of
the GK-SVD according to [7] for a 3×3-dimensional complex-valued matrix.
All entries affected in the corresponding update have been highlighted.

1) Bidiagonalization: In the first phase of the algorithm,
Givens rotations are alternately applied from the left-hand
side (indicated with LHS in Fig. 1) and from the right-hand
side (RHS) to the channel matrix, such that H is transformed
into a real-valued bidiagonal matrix B0 = ŨHHṼ. Note that
Ũ and Ṽ are both unitary and correspond to the total product
of Givens-rotation matrices from the LHS and the RHS to the
channel matrix H, respectively.

2) Diagonalization: The second phase of the GK-SVD
algorithm consists of multiple diagonalization steps (denoted
by k in Fig. 1). Givens rotations are subsequently applied
from both sides to the bidiagonal matrix Bk, such that all
off-diagonal entries fi (for i = 1, 2, . . . , r − 1) converge to
zero. To ensure convergence, the first Givens rotation in
each diagonalization step (indicated with RHS∗ in Fig. 1) is
performed with a modified input vector [x y]T , where y = t12
and x = t11 − µ uses the Wilkinson shift [7]

µ = an + c− sign(c)
√

a2 + b2
n−1 (1)

with c = 1
2 (an−1−an), T = BH

k Bk, and the trailing non-zero
sub-matrix of T corresponds to

T(n− 1 : n, n− 1 : n) =
(

an−1 bn−1

b∗n−1 an

)
. (2)

All Givens rotations performed in the diagonalization phase
are also applied to the corresponding LHS and RHS unitary
matrices. The diagonalization phase is stopped as soon as all
off-diagonal entries are considered to be zero (cf. Sec. II-B).
The result of the diagonalization phase corresponds to a SVD
of H such that Σ = UHHV.

B. Algorithm Modifications for Steering Matrix Computation
In order to perform steering matrix computation efficiently

using an optimized fixed-point implementation, the following
modifications have been applied to the GK-SVD [7]:

i) Since steering matrix computation only requires to com-
pute V, all Givens rotations from the LHS are only ap-
plied to Σ and hence, U is not explicitly computed. This
modification avoids storage and computation effort for
the matrix U and reduces the steering matrix computation
time compared to a full GK-SVD.

ii) An off-diagonal entry fi for i = 1, 2, . . . , r− 1 of Bk is
considered to be zero, whenever [7]

fi ≤ 2−ε(di + di+1) (3)

applies and only integer tolerance values ε are chosen.
This criterion avoids multiplications and leads to more
accurate results than using the criterion employed in [6].
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Fig. 2. Overview of the steering matrix computation architecture.

iii) The computational complexity of the diagonalization
phase is data dependent and might require a large num-
ber of diagonalization steps. Hence, an early-termination
criterion has been introduced to obtain a guaranteed
throughput. As soon as k = Kmax, the diagonalization
phase is stopped and the current matrix Ṽ is used as an
estimate of the true steering matrix.

The parameters ε and Kmax are used to optimize the arith-
metic precision of the steering matrix computation hardware
in Sec. IV and have a strong impact on the computational
complexity of the modified GK-SVD algorithm.

III. HIGH-SPEED VLSI ARCHITECTURE

Fig. 2 provides an overview of the steering matrix com-
putation unit designed for MT = MR = 4 MIMO systems.
The architecture consists of a memory, a high-speed Givens
rotation engine, and a finite state machine (FSM) which
controls the memory and the rotation unit.

A. Matrix Memory
The matrix memory consists of one 32 × 32 bit two-port

SRAM macro cell and stores Σ and V. Prior to the SVD
computation, the matrix Σ is initialized with the channel
matrix H and V = IMT

, where IMT
is a MT × MT -

dimensional identity matrix. Each memory word corresponds
to one complex-valued entry of either Σ or V and each
real and imaginary part is represented by 16 bits. The Givens
rotation engine described in the next section does only achieve
moderate clock frequencies and the memory bandwidth has
been identified to be critical for the overall throughput. Thus,
we have decided to use the two-fold system clock for the
memory in order to double the memory bandwidth.

B. Givens Rotation Engine
As shown in Sec. II, steering matrix computation mainly

consists of two-dimensional vector rotations. A specialized
Givens rotation engine initially developed for high-speed QR
decomposition [8] is used to achieve low computation time of
the modified GK-SVD algorithm.

Master-Slave CORDICs: Coordinate rotation digital com-
puters (CORDICs) [9] can efficiently rotate complex numbers
to real values and zero-out real-valued entries in H and are
therefore, well-suited to compute the Givens rotations of the
algorithm described in Sec. II. The main idea of the CORDIC
is to decompose two-dimensional vector rotations into a
sequence of hardware-friendly micro-rotations which only
require elementary operations, such as additions/subtractions
and arithmetic right shifts.
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Fig. 3. High-speed Givens rotation engine: the master-slave CORDIC (shown
on the left) computes − sin(θ) and cos(θ) to perform the corresponding
rotations on v1 and v2 with complex-valued multipliers (shown on the right).

The master CORDIC (see Fig. 3) of the Givens rotation
engine only operates in vectoring mode [9] and performs a
two-dimensional rotation on v = [x y]T such that(

z
0

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

) (
x
y

)
= G(θ)v (4)

where3 z ≈ ±
√

x2 + y2 and G(θ) corresponds to the Givens
rotation matrix. In the following paragraph, we describe a
high-speed Givens rotation unit. In order to perform the same
rotations on the remaining entries of Σ and V (cf. Fig. 3) with
this unit, the slave CORDIC computes − sin(θ) and cos(θ) of
the corresponding matrix G(θ). This computation is achieved
by feeding [1 0]T into the slave unit (which operates in rotation
mode only) and by performing exactly the same micro-rotation
sequence as the master CORDIC.

Rotation with Complex-Valued Multipliers: Since the mod-
ified GK-SVD requires more rotations than vectoring opera-
tions, a more faster architecture for two-dimensional rotations
with G(θ) can significantly reduce the total computation time.
Instead of using CORDICs to rotate two-dimensional vectors,
we use complex-valued multipliers (see Fig. 3) as in [8]

w =
(
cos(θ)− j sin(θ)

)
(x + jy)

which is fully equivalent to a one-cycle vector-matrix multipli-
cation according to [x′ y′]T = G(θ)[x y]T , since the real part
of w corresponds to x′ and the imaginary part corresponds
to y′. Note that multipliers are required anyways in order to
compute (2) and hence, the external values a1 and a2 can also
be applied to the input of the complex-valued multipliers as
shown in Fig. 3.

IV. HARDWARE-EFFICIENCY OPTIMIZATION

Optimization in terms of hardware-efficiency is performed
in two steps. First, the arithmetic precision is adjusted to the
requirements of MIMO-OFDM systems. Second, hardware-
efficiency optimization on micro-architectural level is used
to reduce the steering matrix computation time without a
significant increase in terms of circuit area.

A. Arithmetic Precision Optimization
Optimizing the arithmetic precision of the computational

units reduces the area and the critical path of the circuit
and therefore, adjusting the arithmetic precision to MIMO-
OFDM systems can improve the overall AT -efficiency of the
architecture. In order to adjust the tolerance ε in (3), the
maximum number of diagonalization steps Kmax, the number

3Note that the output of the master CORDIC z ≈ ±
p

x2 + y2 can also
be used to compute the square root in the Wilkinson shift (1).
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Fig. 4. Bit error rate (BER) performance of the steering matrix computation
hardware dependent on Kmax. The ideal (floating-point) BER and the
performance without using beamforming is shown for comparison.

of CORDIC micro rotations, and the fixed-point requirements
without a significant error rate performance loss, bit error
rate (BER) simulations4 with the proposed steering matrix
computation architecture have been performed,

In the first optimization step, we minimized the tolerance
value, while the remaining circuit operates with floating-point
precision. Simulations have shown that ε = 4 achieves near-
optimal error rate performance. Then, using nine CORDIC
micro rotations proved to induce no noticeable performance
loss. In the next step, we evaluated all fixed-point parameters
(i.e., number of integer and fraction bits) in the Givens rotation
engine. We found that 16 bits per real and imaginary part in the
memory and in the complex-valued multipliers are sufficient.
Furthermore, 19 bits are required in the master CORDIC and
16 bits in the slave CORDIC to achieve a close-to-optimal
BER. The final phase of our arithmetic precision optimization
is shown in Fig. 4 and corresponds to the identification
of the minimum Kmax such that the BER remains near-
optimal. Using less than three diagonalization steps results
in a noticeable error rate performance degradation. Note that
small values of Kmax are beneficial in terms of worst-case
computational complexity, but disadvantageous in terms of
error rate performanc and hence, choosing Kmax = 3 leads to
a good trade-off between BER performance and throughput.

B. Micro-Architectural AT-Efficiency Optimization
Since the high-speed Givens rotation engine performs two

different operations on two different units, i.e., vectoring
is performed with the CORDIC and rotations are carried
out on complex-valued multipliers, we assume that the AT -
efficiency of the entire unit5 is heavily affected by the ratio
between vectoring and rotation operations. Further influencing
parameters are the CORDIC unroll factor [6], [9] and the
number of complex-valued multipliers. In order to visualize

4We consider a coded (rate 1/2 convolutional code with constraint length 7,
generator polynomials [133o 171o], random interleaving) MR = MT = 4
MIMO-OFDM system without and with BF [3], 16-QAM (Gray mapping),
64 tones, and a soft-output MMSE detector. One code block contains 1024
bits, a TGn type C [10] channel model is used, and perfect channel state
information is assumed.

5It is important to note that AT -efficiency optimization requires to consider
the total circuit area, i.e., including memories and the control logic.



10:1  8:1  6:1  4:1  2:1  1:2  1:4  1:6  1:8  1:10
0

50

100

150

200

250

300

350

400

vectoring:rotation ratio

ha
rd

w
ar

e-
ef

fic
ie

nc
y

 

 

MSC, 1 CMult serial
MSC, 1 CMult parallel
MSC, 2 CMult serial
MSC, 2 CMult parallel
VR CORDIC [6]
Final implementation

Fig. 5. Hardware-efficiency (measured in kGE µs) of the total architecture
dependent on the vectoring/rotation ratio of the underlying algorithm. The
master-slave CORDIC (MSC) clearly outperforms a minimum-area architec-
ture using a vectoring/rotation (VR) CORDIC [6] for ratios lower than 1 : 5.

the dependence of AT -efficiency to the algorithm’s vector-
ing/rotation ratio, hardware-efficiency can be written as

AT = A
(
NvTv + NrTr

)
(5)

where A, Tv , and Tr correspond to the total circuit area (in
kGEs) and the time (in µs) required to perform one vectoring
and one rotation operation in hardware, respectively. Nv and
Nr in (5) denote the total number of vectoring and rotation op-
erations, respectively, and the resulting vectoring/rotation ratio
is defined as Rvr = Nv/Nr. Fig. 5 confirms our assumption
that for the high-speed Givens rotation unit, AT -efficiency
mainly depends on the vectoring/rotation ratio. The upper-
limit of the curve corresponds to the case where vectoring
and rotation operations are performed serially and the lower
limit corresponds to a fully parallel operation. Note that data-
dependence peculiarities of the algorithm in conjunction with
the limited memory bandwidth restrict the maximum amount
of parallelism and hence, the true hardware-efficiency of our
final implementation lies in-between (cf. Fig. 5).

In order to allow a comparison with architectures that use a
single vectoring/rotation CORDIC for Givens rotations, e.g.,
as in [6], the corresponding efficiency is also shown in Fig. 5.
Using complex-valued multipliers for rotation often leads to
a more efficient implementation than pure CORDIC-based
architectures. The overhead of using two dedicated units for
vectoring and rotation can be compensated for a ratio in the
order of Rvr = 1 : 5. Furthermore, two complex-valued
multipliers can achieve a better AT -efficiency and a higher
throughput than a single instance. However, memory band-
width limitations inhibit an efficiency gain by using more than
two multipliers. Thus, we implemented our steering matrix
computation architecture with two complex-valued multipliers.
Further investigation of the AT -efficiency has shown that a
CORDIC with unroll factor three is the best choice for our
particular algorithm and implementation.

V. IMPLEMENTATION RESULTS

The final implementation results are given in Tbl. I and cor-
respond to post-synthesis figures for the steering matrix com-
putation architecture. Note that the reference implementation
results of MDU-I and MDU-II of [6] correspond to post-layout

TABLE I
VLSI IMPLEMENTATION RESULTS OF THE STEERING MATRIX

COMPUTATION ARCHITECTURE IN 0.18 µM (1P/6M) CMOS TECHNOLOGY

MDU-I [6] MDU-II [6] This Work
Areaa [kGE] 42.3 38.1 42.3
Clock freq. [MHz] 133 272 149
Comp. timeb [ µs] 11.6 15.8 3.3
Efficiency [kGE µs] 489.4 602.0 136.3

aOne gate equivalent (GE) corresponds to the area of a two-input drive-one
NAND gate of size 9.7 µm2.
bCorresponds to the SVD computation time of MDU-I and MDU-II using
maximum precision [6] and to the modified GK-SVD computation time by
using the steering matrix computation unit of this work.

figures. Our presented steering matrix computation architec-
ture clearly outperforms the reference implementation in terms
of computation speed and hardware-efficiency (see Tbl. I).
The 3.5-fold hardware-efficiency gain is mainly a result of
joint algorithmic and architectural optimizations of the GK-
SVD in Sec. II and of using the hardware-efficiency optimized
high-speed Givens rotation engine described in Sec. III-B.
However, we emphasize that the reference implementation [6]
provides more flexibility and is programmable to perform QR
decomposition as well as the full SVD of the channel matrix.

VI. CONCLUSION

We described a hardware-efficient steering matrix compu-
tation architecture suitable for MIMO-OFDM systems with
beamforming. Hardware-efficiency is achieved by modifying
the Golub-Kahan SVD algorithm to efficiently compute steer-
ing matrices, by using and optimizing a high-speed Givens
rotation engine, and by adjusting the arithmetic precision
for MIMO-OFDM systems. The final VLSI implementa-
tion has proved to offer more than a 3.5-fold hardware-
efficiency gain compared to a reference SVD implementation
and is well-suited for wireless communication systems, such
as IEEE 802.11n.
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