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Hardware emulation of stochastic 
p-bits for invertible logic
Ahmed Zeeshan Pervaiz, Lakshmi Anirudh Ghantasala, Kerem Yunus Camsari & Supriyo Datta

The common feature of nearly all logic and memory devices is that they make use of stable units to 

represent 0’s and 1’s. A completely different paradigm is based on three-terminal stochastic units which 
could be called “p-bits”, where the output is a random telegraphic signal continuously fluctuating 
between 0 and 1 with a tunable mean. p-bits can be interconnected to receive weighted contributions 
from others in a network, and these weighted contributions can be chosen to not only solve problems of 

optimization and inference but also to implement precise Boolean functions in an inverted mode. This 
inverted operation of Boolean gates is particularly striking: They provide inputs consistent to a given 

output along with unique outputs to a given set of inputs. The existing demonstrations of accurate 
invertible logic are intriguing, but will these striking properties observed in computer simulations carry 

over to hardware implementations? This paper uses individual micro controllers to emulate p-bits, 

and we present results for a 4-bit ripple carry adder with 48 p-bits and a 4-bit multiplier with 46 p-bits 
working in inverted mode as a factorizer. Our results constitute a first step towards implementing p-bits 
with nano devices, like stochastic Magnetic Tunnel Junctions.

Contemporary logic and memory devices are largely built from standard MOS (metal-oxide-semiconductor) 
transistors, but the possibility of alternative devices based on new materials and phenomena for both Boolean and 
non-Boolean computation has been discussed extensively (see for example1). �e common feature of nearly all 
such devices is that they make use of stable and deterministic units to represent 0’s and 1’s. A completely di�erent 
paradigm is based on three-terminal stochastic units where the output is a random telegraphic signal mi(t) that 
continuously �uctuates between 0 and 1 and the mean value can be tuned with an analog signal Ii(t) at the input 
terminal. In mathematical terms

= − +m (t) sgn{rand( 1, 1) tanh(I (t))} (1)ii

where rand(−1, +1) represents a random number uniformly distributed between −1 and +1, while the retention 
time  τN of the p-bit is assumed large enough that memory of the last state mi(t) has been lost. If the input is zero, 
the output mi(t,) takes on a value of −1 or +1 with equal probability. A negative input Ii makes negative values 
more likely while a positive input makes positive values more likely.

Each such unit could be called a “p-bit” with an apparent similarity to ref. 2, and many such units can be cor-
related to perform useful functions by building an interconnected network where the analog input to the ith p-bit 
consists of a bias hi added to a weighted sum of the outputs mj(t) of the other p-bits:

I (t) I {h J m (t)}
(2)

i 0 i
j

ij j∑= +

We have recently shown that with a proper choice of the matrices {h} and [J], p-bit networks could be not only 
used to solve problems of optimization and inference3, 4 but also to implement precise Boolean functions in an 
invertible mode5, 6.

�is invertible operation of Boolean gates is a particularly striking characteristic very di�erent from standard 
digital gates which provide a unique output in response to a set of inputs. �is is also true of a Boolean gate imple-
mented with p-bits, but it additionally provides all the inputs that are consistent with a given output. Even when 
there is no unique input, the gate �uctuates among the multiple allowed inputs.

�e inverse operation is made possible by the bidirectional nature of the interconnection matrix [J] whereby 
both Jij and Jji are generally non-zero so that any two p-bits, say “i” and “j”, in�uence each other, unlike stand-
ard digital logic with directed connections. A Boltzmann Machine (BM)7 with fully bidirectional connections,  
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(all Jij = Jji), would put inputs and outputs on an equal footing. However, a BM would normally provide approxi-
mate answers without the kind of accuracy expected from digital logic. A directed network of bidirectional BM’s, 
on the other hand, has been shown to provide a striking combination of digital accuracy and logical invertibility.

�ese demonstrations of accurate invertible logic are intriguing, but they are based on purely so�ware imple-
mentations of Eqs. (1,2) and it is natural to ask whether real hardware implementations of these equations would 
preserve these striking properties. It is well-established that so�ware implementations of unrestricted Boltzmann 
Machines need to be serially updated to ensure proper operation and convergence8, 9. In so�ware, this is enabled 
by control �ow statements such as “for-loops” that make each update one by one, negatively impacting perfor-
mance. How does this carry over to hardware implementations? In our hardware emulation, the serial updating 
of p-bits comes naturally without any peripheral control circuity. �is is due to the asynchronous operation of 
p-bits that result from natural time delays between p-bits. In simulation p-bits are assumed identical, but how will 
inevitable process variations in real p-bit retention time e�ect the system operation? �is paper represents a �rst 
step in answering these questions using individual microcontrollers to emulate p-bits described by Eq. (1), while 
the interconnections described by Eq. (2) are implemented by another microcontroller.

Our approach is quite similar to ref. 10, where electronic versions of synapses and neurons are built using 
o�-the-shelf technology to demonstrate experimentally the formation of associative memory in a simple neu-
ral network consisting of three electronic neurons connected by two memristor-emulator synapses. Clearly  
our microcontroller based emulation of p-bit networks is not very scalable. But we envision that the intercon-
nect between stochastic p-bits can be e�ciently built using contemporary CMOS solutions and that nanodevices 
would be needed to build more e�cient stochastic p-bits. �is work primarily motivates such an endeavor and we 
develop essential rules of operation for such future systems.

While the long term goal is to develop miniature integratable devices, the hardware emulation presented here 
has many of its important features. �e variables mi(t) and Ii(t) appearing in Eqs. (1) and (2) are not symbols rep-
resented in so�ware, but actual voltages that can be observed and measured with oscilloscopes and voltmeters. 
�e variability in the operation of real p-bits can be included by programming each microcontroller to have a 
di�erent retention time τN. Interconnect delays can be included into Eq. (2) as desired. �e hardware implemen-
tation also allows us to establish important hardware rules for “interconnect delays” and retention times of p-bits, 
by systematically varying these time-constants.

Note that hardware implementations of Boltzmann Machines exist where Eq. (2) is implemented in dedicated 
hardware while Eq. (1) has been simulated o� chip. Both Eqs. (1,2) have have been used as basis for dedicated 
VLSI based hardware implementations that perform various combinatorial optimization problems11, 12 as well as 
hybrid architectures in context of learning13–18 and combinatorial optimization19. �is work, however, is focused 
on invertible Boolean logic, and is con�gured in a way that should be isomorphic with actual hardware imple-
mentations, where each microcontroller emulating a p-bit could be replaced with a speci�c hardware unit, such 
as a stochastic magnetic tunnel junction20–22, as we progress.

To distinguish our PSL from other probabilistic logic concepts, it is necessary to put things into a historical 
context. �e term “stochastic computing” or “probabilistic computing” has been used since 1960’s. �e pioneering 
work of von Neumann23, Gaines24 and Poppelbaum et al.25 addressed the reliable implementation of Boolean alge-
bra and probabilistic arithmetic using stochastic components and established a �eld called “stochastic computing”. 
�e major attraction of stochastic computing lies in its low complexity arithmetic units and inherent error tolerance.

A basic feature of stochastic computing is that numbers are represented by streams of bits that can be pro-
cessed by simple circuits like AND gates, while the outputs are statistically counted as probabilities under both 
normal and faulty conditions. However, despite the advantages mentioned above, stochastic computing has been 
considered impractical because it takes a large number of bits to represent a value and does not show a cost 
advantage in multiplication - a prototypical inexpensive stochastic operation, when precision and reliability are 
required. Also the building block of such a system26 will resemble some proposals5 of p-bits for PSL, but as we 
will describe in the next section, they are fundamentally di�erent in their requirement to simultaneously read 
and write. An increase in the precision of a stochastic computation requires an exponential increase in bit-stream 
length, implying an exponentially increased computation time27, 28, which is undesirable. To be clear: We are not 
following this type of probabilistic approach but instead use a probabilistic architecture that o�ers substantial 
advantages over conventional computational schemes as described above.

Next we describe the approach we are using to perform a hardware emulation of Eqs. (1) and (2). Figure 1 
shows an emulation of a p-bit using a microcontroller. We then present a 3 p-bit Boltzmann Machine implement-
ing an AND gate in both direct and inverted modes of operation (Figs. 2 and 3) and evaluate the role of sampling 
and retention times in ensuring proper operation (Figs.  4, 5 and 6). We then present results for binary adders in 
both direct and inverted modes (Figs. 7 and 8), and end with results for a 4-bit multiplier working in the inverted 
mode as a factorizer (Fig. 9).

Methods
Arduino pro mini as a p-bit. A version of Eq. (1) suitable for microcontroller based emulation of a p-bit is 
given as

= − +V (t) sgn{rand( 1,0) S(V (t))} (3)OUT IN

where VOUT and VIN are the digital output and analog input voltages of the p-bit and S(x) is a sigmoidal function 
given by,

=

+
−

S(x)
1

1 e (4)2x
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I/O characteristics. An Arduino pro mini is a 24 pin microcontroller29 that can be programmed to emulate 
the behavior of Eq. (3) as shown in Algorithm 1. It has 6 dedicated analog input pins that have very high input 
resistances (100 MΩ) along with 6 dedicated PWM (Pulse-width modulation) output pins that have very low out-
put resistances (100 Ω) with the ability to source 40 mA of current. �is allows the Arduino to behave as a voltage 
controlled voltage source.

p-bit operation. �e time evolution of the output voltage for a set of input voltages using an oscilloscope 
(Tektronix DPO7104) is shown in Fig. 1(a). As the input voltage is varied from low to high, the microcontroller 
generates more 1’s than 0’s. DC average measurements of the output voltage taken over 100 seconds are also 
shown in Fig. 1(b). �e average voltage follows the sigmoidal function which indicates the tunable nature of the 
p-bit.

Retention time τN. Each p-bit is characterized by a retention time (τN) for which the output voltage is held 
constant. A possible physical component in the implementation of p-bits is the superparamagnet5:

exp
kT (5)

N 0τ τ=




∆ 




where τ0 is a material dependent quantity ranging from 1 ps to 1 ns30, ∆ is the energy barrier of the nanomagnet 
and kT is the Boltzmann energy. For superparamagnets that are in the 10–20 kT range, the characteristic time is 
in the ms regime, assuming a τ0 of 1 ns. We emulate the retention time in our p-bits using a user de�ned delay τN 
as shown in Algorithm 1. We later study the e�ect of retention time and establish some essential rules for proper 
operation of our interconnected p-bits.

Figure 1. p-bit emulated using Arduino microcontroller. Eq. (1) is emulated using the Arduino mini pro 
microcontroller as detailed in Algorithm 1. �e microcontroller shown in the inset of (b) has dedicated 
analog input and digital output pins. �e time evolution of the output voltages of p-bits is shown in (a) using 
a Tektronix DPO7104 oscilloscope. �e p-bits produce more 1’s than 0’s as the input voltage is increased, 
demonstrating the tunable nature of the p-bit. Each of the red markers shown in (b) is a DC average 
measurement taken for a 100 second interval of the output voltage for a given input voltage. �e average output 
voltages follows the sigmoidal function of Eq. (4).

Algorithm 1. Pseudocode for p-bit.
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Weight Logic using microcontroller and DAC. Figure 2(a,b) shows a schematic and a block diagram 
for a 3 p-bit Boltzmann Machine that is programmed as an AND gate. �e electrical wires connecting the com-
ponents are not shown for clarity. �e p-bits are correlated using a weight logic block that computes the input 
voltage of the ith p-bit using the output voltages of all other p-bits in the network using

∑=





+






t h tV ( ) I J V ( )

(6)
IN 0 i

j
ij OUT

where τsample is the time interval for which the input voltages are held constant. Eq. (6) is a modi�ed version of Eq. (2),  
meant to be used for our voltage controlled voltage source p-bits.

Figure 2. AND gate constructed from 3 p-bits. �e block diagram and the schematic of an AND gate 
constructed using 3 p-bits are shown in (a) and (b). �e electrical wires connecting the components are not 
shown for clarity. A weight logic block is used to correlate the p-bits as detailed in Algorithm 2. �e output 
voltages of the 3 p-bits A, B and C are combined to form an arti�cial node 4 × A + 2 × B + C, which is set using 
the DAC and is used to monitor the state of the system as shown in (c). As the system is le� uncorrelated, it 
goes through all possible 8 states of the arti�cial node with approximately equal probability. When the system is 
correlated using an I0 = 0.8, it visits the lines of the truth table with approximately equal probability. �is is also 
seen by the steady-state statistics of the two cases presented in (d) and (e).
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Arduino mega as weight logic. Our weight logic is implemented using an Arduino mega microcontroller 
in conjunction with MAXIM 5825 Digital to Analog converters31. �e Arduino mega can read as many as 52 dig-
ital inputs and communicates with the DAC using a fast I2C protocol. �e DAC has 8 channels with each having 
a 10-bit resolution. A pseudocode for programming an Arduino mega to emulate Eq. (6) is given in Algorithm 2. 
�e input voltages of the p-bits set by Eq. (6) are not constrained in general, however we limit them to the p-bit 
input range between 0 and 5 Volts. Note that the weight logic not only correlates the p-bits, but can also be used 
for monitoring and recording the state of the Boltzmann Machines. Figure 2(c,d,e) show two possible methods 
for monitoring the state of the system which are,

•	 Arti�cial nodes set through the DAC: �e microcontroller and the DAC can be used to create arti�cial 
voltage nodes that can be used to concurrently read the output of the p-bits as a single voltage. For example, 
in the operation of the AND gate (A ∩ B = C), 4 × A + 2 × B + C is evaluated and set as a voltage in Fig. 2(c) 
to monitor the state of the AND gate.

•	 Serial logging: �e microcontroller that is part of the weight logic can also be used to log data through a 
serial port connection (USB). We have used this method extensively for collecting steady-state (long time) 
statistics for the various Boltzmann Machines that we present in this paper.

Note that even though arti�cial nodes can be used to monitor the correlations of p-bits, serial logging of the 
data is much more convenient to collect long time statistics.

Communication between the DAC and Arduino mega. �e DACs use the I2C protocol that allows 
the Arduino mega microcontroller to communicate with two pins SDA(Data) and SCL(Clock). When the system 
is �rst turned on, the DACs need to be initialized. �is requires knowing the addresses of the individual DACs 
that are connected and setting a reference voltage for the DAC. We utilize at most 2 DACs within a Boltzmann 
Machine and the addresses for those are adjusted using two jumpers on the DAC. For example, to write a voltage 
of 2.5 V to channel 4 of the DAC whose address is set at “0 × 20”, we could send the following 4 bytes over the I2C 
interface: byte1[0010000], byte2, [10110011] byte3, [10000000] byte4[00000000]. �e �rst byte has the address of 
the DAC in its 4 LSBs. �e 4 MSBs of byte 2 has a command signal of writing to whichever channel is speci�ed by 
the 4 LSBs of byte 2. �e �rst 10 bits of byte 3 and 4 are the decimal equivalent of 512 which constitutes 2.5 V for 
a 10 bit DAC with 5 V reference voltage. A library was written to internalize these operations, allowing the user to 
simply set voltages using a single write command that only uses the channel number and voltage for operation.

Figure 3. Direct and Inverted operation. (a) shows the time evolution of the output voltages of A, B and C on 
an oscilloscope. When A and B are clamped to 1, C mostly stays at 1 as shown in (a) and in the steady-state 
histogram shown in (b). (c) Remarkably, the system can operate in the inverted mode: When C is clamped to 0, 
the inputs A and B �uctuate between 00, 01 and 10, consistent for a C = 0, with approximately equal probability 
as shown in the steady-state histogram in (d).
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Results
AND Gate as a Boltzmann Machine. Correlated network of p-bits. Figure 2(c) shows the output voltage 
of an arti�cial node (4 × A + 2 × B + C) as a function of time on the oscilloscope. For the AND gate the [J] and {h} 
are taken from ref. 32. �e strength of correlation between p-bits is adjusted through the parameter I0 in Eq. (2). 
I0 can be thought as the inverse (pseudo) temperature, in the sense that as I0 increases the p-bits get strongly cor-
related. When the system is uncorrelated by using a I0 = 0, the 3 p-bits are independent of each other, resulting in 
the arti�cial node being uniformly distributed between 0 and 7, which can be seen from the steady state statistics 
for I0 = 0 as shown in Fig. 2(d). However, when the system is correlated using an I0 = 0.8, it locks to the states pre-
scribed by [J] and {h} matrices, corresponding to the lines of the truth table for an AND gate which is shown by 
the steady-state statistics for I0 = 0.8 in Fig. 2(e). Note that we have le� all the inputs and outputs �oating, which 
results in all the lines of the truth table getting highlighted as I0 is increased. �is “�oating” mode of operation is 
a unique feature of correlated p-bits. �e statistics shown in Fig. 2(d,e) have been collected through serial logging 
through the weight logic for up to half a million samples.

Clamping p-bits. For Boolean computation, the p-bits need to be clamped to produce a given output. �is is 
done by simply connecting the input voltage of the p-bit to either ground or 5 V. �is in essence corresponds to 
applying a large bias, hi, to a given p-bit according to Eq. (6). A clamped p-bit operates on the corners of the sig-
moidal response shown in Fig. 1(b). Note that the input and output bits of a Boltzmann Machine are on an equal 
footing and can be clamped for direct and inverted operation respectively, as we discuss below.

Direct Operation. Figure 3 shows two cases of using an AND gate for computation purposes. Figure 3(a) shows 
the time evolution of output voltages of p-bits A and B being clamped to 1 on the oscilloscope. As a result, the out-
put voltages of C mostly stay in 1 as shown. �is is also con�rmed by the steady state statistics shown in Fig. 3(b) 
which are acquired using serial logging through the weight logic.

Inverted Operation. A remarkable feature of the design is the inverted operation. Figure 3(c) shows the time 
evolution of output voltages for A, B and C when C is clamped to 0. It can be seen that A and B follow the states 
prescribed by lines of the truth table of an AND gate, as shown in Fig. 3(d). �is feature stems from the fact that 
the system places all p-bits, whether input or output, on an equal footing. It is this inverted operation that can be 
used to solve more complex problems such as the 4-bit factorizer presented later in this paper.

Sampling and retention time. Consider the Boltzmann Machine presented in Fig. 2. For each such net-
work there are two major time constants:

•	 Retention time τN: Time interval for which the output voltage is held constant by the p-bit.
•	 Sampling time τsample: �e time interval for which the input voltages to the p-bits are held constant by the 

weight logic. �e sampling time can be thought of as the sum of the user de�ned delay τD of Algorithm 2 and 
the time it takes to compute everything else in the Repeat block of Algorithm 2.

Algorithm 2. Pseudo code for weight logic.
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Boltzmann Law. We now study the e�ect of both these time constants on the operation of the system using the 
AND gate. For such networks of correlated p-bits, an energy functional E for the state m{ } [m , m , ]i j

T
=   can be 

de�ned as5:

( )mE({ }) I
1

2
J mm h m

(7)i j
0

,
ij i j

i
i i∑ ∑= −






+







�e Boltzmann Law accurately captures the steady state probabilities of the system to be in di�erent states {m} 
according to,

=
−

∑ −
P({m})

exp( E)

exp( E) (8)i j,

Sampling time distribution. Figure 4 shows the steady state statistics of an AND gate with each of the three p-bits 
having τN = 200 ms, with their sampling times τsample varying from 1 ms to 400 ms. It can be seen from Fig. 4(a) 
that for extremely small τsample the behavior of the system is captured well by the Boltzmann law. However as 
τsample is increased to 100 ms, two incorrect states 001 and 110 stand out more. As τsample is increased to 200 ms, the 
system breaks down completely, with only the 001 and 110 states being highlighted. �is continues for all τsample 
greater then 200 ms as shown by τsample = 400 ms.

We observe that when the sampling time is close to the retention time (τsample ≈ τN), Fig. 5(b) shows the euclid-
ean distance between steady state distributions for various normalized sampling times (sampling times from 1 ms 
to 400 ms with p-bit retention time of 200 ms). We observe that a boundary (τsample ≈ τN) exists for proper opera-
tion of the system. Around this boundary, p-bits can change their state before their input to the other p-bits are 
communicated, and this results in an incorrect operation. However, for fast sampling τ τsample N, the updating 
is approximately instantaneous. It is important to note that this requirement of τ τsample N  necessitates a fast 
weight logic operation in any hardware implementation of p-bits.

Figure 4. Sampling time. �e sampling time τsample is systematically varied from 1 ms to 400 ms while 
maintaining a constant retention time of τN = 200 ms for each of the 3 p-bits. �is is done by changing the user 
de�ned delay τD in Algorithm 2. When τsample = 1 ms, sampling is done much faster than the p-bit retention 
time and for this case steady-state statistics are well-described by the Boltzmann Law. As τsample is increased to 
100 ms becoming comparable to the retention time of p-bits, two erroneous states 001 and 110 get highlighted 
more. When τsample is further increased to 200 ms the system completely breaks down. �is trend repeates for 
τsample = 400 ms.
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An essential requirement for Hop�eld networks and unrestricted Boltzmann Machines is the need for sequen-
tial updating, where each p-bit is updated serially but in any random order8, 33, as opposed to parallel updating 
where each p-bit is updated at once. To enforce serial updating in asynchronous networks in simulation requires 
control �ow statements which regulate the updating procedure of p-bits to one by one. Serial updating arises nat-
urally in our setup since each p-bit is completely independent of each other and small phase di�erences that are 
present initially get greatly magni�ed as the system is run for longer periods of time, in the absence of a central 
clock signal. �is type of updating is also known as the “asynchronous dynamic” in Hop�eld networks33. �is is 
shown for an AND gate with 3 p-bits in Fig. 5(a), where each of the 3 p-bits are almost perfectly aligned to each 
other initially, however this alignment is broken as system continues to run with time. Asynchronous machines 
are known to converge slowly, while their synchronous counterparts allow for parallel updating, allowing much 
faster convergence. For hardware implementations, it is the synchronous Boltzmann Machines or Restricted 

Figure 6. p-bit retention time τN. �e retention time τN of the p-bits is varied while maintaining a sampling 
time τsample = 1 ms. �is can be done by changing the variable τN de�ned in Algorithm 1. In the most trivial case 
all 3 p-bits have the same τN = 200 ms, while in the other two they are distributed over the mean as shown in 
histogram of τN in (a) with a spread of ±33% and ±75%. �e steady-state statistics for each of the 3 cases shown 
in (b) are good matches with Boltzmann Law. �is shows that as long as τsample is much greater than τN the 
system functions properly.

Figure 5. Normalized sampling time ( )
sampling

N

τ

τ

. (a) An oscilloscope snapshot of the 3 p-bits is shown above as it 

changes as a function of time. Initially all 3 p-bits are almost perfectly aligned with extremely small phase 
di�erences between them. As time goes on this alignment is broken allowing each p-bit to update separately 
which leads to the system naturally having serial updates. (b) �e euclidean distance between the steady state 
distribution of implemented hardware (as a function of sampling time τsampling) and the Boltzmann law is plotted 
as a function of normalized sampling time. �e sampling time τsampling of the AND gate is varied from 1 ms to 
400 ms, while the retention time of all p-bits is 200 ms. For proper operation there is a hard threshold for the 
sampling time τsampling which is close to the retention time τN for a system with all p-bits having the same 
retention time. �is condition reduces the probability of more then one p-bits getting updated simultaneously.
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Boltzmann Machines that would require some master control to ensure parallel updating making the system 
grow in resources as the number of p-bits increase.

Retention time distribution. We now investigate the behavior of an AND gate in the presence of p-bits with 
di�erent retention times that would arise due to inevitable process variations in a nanoscale implementation. 
Figure 6(a) shows the histogram for three di�erent retention time con�gurations of the AND gate. In the most 
trivial case, all three p-bits have the same retention time τN = 200 ms while having a sampling time τsample = 1 ms. 
�e steady state statistics for this case exhibit a good match with the Boltzmann law (Fig. 6(b)). However, this 
con�guration is unlikely in the case of any physical system where some distribution is to be expected due to pro-
cess variations.

Figure 7. Full Adder. A Full Adder is implemented using 14 p-bits as shown in (a) along with its truth table 
in (b). �e electrical wires connecting the components are not shown for clarity. (c) When the inputs A, B and 
CIN are clamped to 1,1 and 0 respectively, the Full Adder performs binary addition which can be seen from the 
time evolution of S and COUT on the osilloscope. (d) �e steady-state statistics acquired through serial logging 
are shown in (d). Since the Full Adder is bidirectional similar to the AND gate, the outputs COUT and S can be 
clamped to 1 and 0 respectively, that cause the inputs A, B and CIN �uctuate among three states consistent with 
lines in the truth table as shown in (e) and (f).
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A more realistic scenario is that of the 3 p-bits having di�erent retention times. Figure 6(a) shows two cases 
where p-bits are distributed in two sets of {137, 200, 263} ms and {50, 200, 350} ms with a spread of ±33% and 
±75% around the mean value of 200 ms respectively, while maintaining very fast sampling times of τsample = 1 ms. 
Both cases show a good match with the Boltzmann Law (Fig. 6(b)). We conclude that if the sampling time τsample 
is much greater than the smallest τN, the system operation is well described by the Boltzmann Law, which can be 
attributed to the much reduced probability of parallel updating.

Full Adder as a Boltzmann Machine. Figure 7(a) shows a schematic of a 14 p-bit Full Adder implemented 
as a Boltzmann Machine. Of the 14 p-bits only 5 serve as the actual terminals of the Full Adder while the remain-
ing 9 are auxiliary p-bits. �e retention and sampling times are chosen as τN = 200 ms for all the p-bits with a 
τsample = 10 ms. However, now two DACs are needed to set the input voltages for all the p-bits since each DAC has 
8-channels.

�e design of [J] and {h} matrices follows the treatment presented in ref. 5. Direct computations can be per-
formed by clamping p-bits as discussed earlier. Figure 7(c,d) shows an example of 1-bit binary addition.�e inputs 
A, B and CIN have been clamped to 110 respectively, and the time evolution of output the voltages of S and COUT 
are shown in Fig. 7(c) which follow the states prescribed by the truth table of the Full Adder. �is can also be seen 
from the steady state statistics shown in Fig. 7(d) which have been collected through serial logging.

Similar to the AND gate, the Full Adder implemented as a Boltzmann Machine can also be operated in 
inverted mode. �e time evolution of the the inputs A, B and CIN are shown in Fig. 6(e) when the outputs S and 
COUT are clamped to 0 and 1 respectively. �e inputs A, B and CIN follow the three prescribed states of the Full 
Adder truth table which is also con�rmed by the steady state statistics shown in Fig. 7(f).

Figure 8. 4-bit Ripple Carry Adder (RCA). A 4-bit adder is implemented using 3 Full Adders and a Half Adder. 
A schematic and a block diagram are shown in (a) and (b). We assign each p-bit a separate retention time 
τN, with a normal distribution shown in the inset. (c,d) When the inputs are clamped to A = 10 to B = 13 the 
output S is 23. (e,f) In the inverted mode the output S is clamped to 23, resulting in A and B going through all 8 
combinations (that can be probed by 4-digit binary inputs A and B) of producing A + B = S = 23.
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Directed Networks of Boltzmann Machines. To build more complex systems, one possible approach is 
to design the entire system as a single Boltzmann Machine, but the reversible nature of the Boltzmann Machines 
can hinder in the correct operation of such systems5. A more practical alternative is to interconnect simpler 
Boltzmann Machines with directed connections to build up more complex systems such as a 4-bit Ripple Carry 
Adder (RCA) (Fig. 8(a)) or a 4-bit multiplier/factorizer (Fig. 9(a)).

Directed Connections. Separate Boltzmann Machines can be connected in a directed fashion such that the con-
nections between the two are not reciprocal Jij ≠ Jji. In hardware, this corresponds to disconnecting the input 
voltage of p-bit “i” from its native weight logic and connecting to it the output voltage of p-bit “j” from a di�erent 
Boltzmann Machine so that Jij = 1 and Jji = 0. Consider the case of a 4-bit adder that is built using a Half Adder and 

Figure 9. 4-bit multiplier/factorizer. A 4-bit multiplier constructed out of 3 Full Adders and 4 AND gates 
working in inverted mode operates as factorizer. A schematic and a block diagram are shown in (a) and 
(b). (c) When the sum of the 4-bit adder (product of the multiplier) is clamped to 6, the inputs A and B 
�uctuate between decimal 2 and 3 with approximately equal probability for the correlated system (e). For the 
uncorrelated system (f), the inputs �uctuate randomly among 16 possible states.
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3 Full Adders. In this case there are 3 directed connections as shown in Fig. 8(a). Each connection takes the out-
put voltage of COUT of the (n − 1)th adder and connects it to the input terminal of CIN of the nth adder. Due to this 
connection scheme, no information can �ow from the nth adder to the (n − 1)th adder, which makes the system 
no longer bidirectional. However, as noted in ref. 5, bidirectional connections of adders hinders proper operation 
of a n-bit adder. Also note that since the connection from one Boltzmann Machine to another is an electrical 
connection, the strength of the correlation between the two machines is at most 1 (Jji = 1).

4-bit Adder. We next demonstrate the correct operation of a 4-bit RCA comprised of 48 p-bits each having dif-
ferent τN as shown in the inset of Fig. 8(d). �e values of τN are normally distributed around an average of 200 ms 
with a minimum of 137 ms to a maximum of 263 ms, with a sampling time of 10ms for all Full Adders. 4-bit 
binary addition is performed by clamping the input p-bits of each adder, as demonstrated by the time evolution 
of the sum shown in Fig. 8(c) with A = 10 and B = 13 resulting in the sum being 23 when converted to decimal. 
We observed for AND gates that their exists a boundary for proper operation of Boltzmann Machines with all 
p-bits having the same retention time. Similarly with a distribution such as the one studied here there also exists 
a boundary for proper operation which is ⪅ min( )sampling Nτ τ . �is is due to the interconnect delays that need to be 
small.

Inverted mode. A more remarkable case is that of the sum bits of each of the adders being clamped to S = 23, 
with A and B le� �oating. In this case, A and B �uctuate among 8 possible integer combinations that satisfy 
A + B = 23. Note that since A and B are 4-digit binary numbers, not all integer combinations can be probed by 
the system, for example A = 22 and B = 1. �is can be seen from the histogram presented in Fig. 8(f). Although 
there are 8 peaks in the histogram, the height of each peak is not the same since statistics presented in Fig. 8(f) 
are not exactly steady state. With 48 p-bits in the system, the number of samples needed for steady state statis-
tics is prohibitively large. Unrestricted Boltzmann Machines converge slower compared to restricted Boltzmann 
Machines9, but since asynchronous updates come naturally in hardware while synchronous updating will require 
more control circuitry, a design choice needs to be made between resources utilized and speed of convergence. 
Although it still remains to be seen how much of an improvement in the speed of convergence can be achieved by 
RBM’s as compared to unrestricted Boltzmann machines.

4-bit multiplier/factorizer. In this �nal example, we show how a standard digital multiplier built out of AND 
gates and Full Adders can be operated in reverse to function as a factorizer as shown in Fig. 9, similar to what was 
proposed in ref. 34 in the di�erent context of memcomputing. Implementation of practically useful factorizers 
usually requires dedicated algorithms, here our purpose is simply to illustrate the remarkable invertibility of 
directed networks of p-bits.

�e block diagram of a digital multiplier is shown in Fig. 9(b). �e individual bits of A and B are �rst multi-
plied to produce A1B1, A2B1, A1B2 and A2B2 which are then added together to produce the product S. To convert 
this multiplier to a factorizer, we reverse the directed connections from the AND gates to the adders, while keep-
ing the original directed connections of the Full Adders from the LSB to the MSB.

�e output voltages from the AX and BX (where X is the nth Full Adder) are now sent as inputs to the output 
p-bits of the 4 AND gates. �e 4 AND gates used here are part of one Boltzmann Machine instead of 4 separate 
Boltzmann Machines. �is is because some inputs of the AND gates need to be the clones of each other as they go 
to di�erent gates. For example, in Fig. 9(b), A1 is a common input for the two right most AND gates, while A2 is a 
common input for the two le� most AND gates. �e retention and sampling times are chosen as τN = 200 ms for 
all the p-bits with a τsample = 100 ms.

Figure 9(c) shows the time evolution of output voltages of A1, B1, A2 and B2 using an oscilloscope when the 
sum of the adder is clamped to 6. �is results in the input p-bits of the AND gates producing the correct factors 
of 3 × 2 and 2 × 3. �is can also be seen by the statistics of the input p-bits of the AND gate as shown in Fig. 9(e). 
As previously, the heights of both peaks are not the same due to the statistics not being exactly steady state. �e 
results are collected through serial logging via the Boltzmann Machine for the AND gates. For comparison, we 
also show the statistics for an uncorrelated factorizer where 16 combinations are equally probable as shown in 
Fig. 9(d).
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