
Hardware Implementation of Recursive Algorithms

Dmitri Mihhailov
Computer Department,

TUT,
Tallinn, Estonia

d.mihhailov@ttu.ee

Valery Sklyarov
DETI/IEETA,

University of Aveiro,
Aveiro, Portugal

skl@ua.pt

Iouliia Skliarova
DETI/IEETA,

University of Aveiro,
Aveiro, Portugal

iouliia@ua.pt

Alexander Sudnitson
Computer Department,

TUT,
Tallinn, Estonia
alsu@cc.ttu.ee

Abstract—The paper presents new results in the hardware
implementation and optimization of recursive sequential and
parallel algorithms using the known and a new model of a
hierarchical finite state machine. Applicability and advantages
of the proposed methods are confirmed through numerous
examples of the designed hardware circuits that have been
analyzed and compared. The results of experiments and FPGA-
based prototyping demonstrate clearly that the proposed
innovations enable the required hardware resources to be
decreased achieving at the same time better performance of
recursive sorting algorithms compared to known
implementations both in hardware and in software.

I. INTRODUCTION
Recursion is a powerful problem-solving technique [1] that

may be applied to problems that can be decomposed into
smaller sub-problems that are of exactly the same form as the
original problem. Such technique is not always appropriate,
particularly when an efficient iterative solution exists. This is
primarily due to the large number of states that are
accumulated during deep recursive calls. Additionally, a
function call incurs a bookkeeping overhead in most high-
level programming languages. Recursive functions magnify
this overhead because a single initial call to a function can
generate a large number of recursive invocations of the
function. It has been shown [2] however that recursion can be
implemented much more efficiently in hardware. This is
because any activation of a recursive sub-sequence of
operations can be combined with the execution of the
operations that are required by the respective algorithm. The
same is true when any recursive sub-sequence is being
terminated, i.e. when control has to be returned to the point
following the last recursive call and an operation of the
executing algorithm that follows the last recursive call has to
be activated. The number of states required for the execution
of recursion in hardware can be further reduced compared
with software by applying a number of methods, such as those
reviewed in [3]. Besides, such states are accumulated on
stacks that are typically implemented on built-in memory
blocks, which are relatively cheap. The results obtained for
some known methods (see, for example, [2,4,5]) for
implementing recursive calls have shown that many hardware

circuits are faster than software programs executing on
general-purpose computers.

Recursive algorithms are employed most often for various
kinds of binary search [1, 2]. Let us consider an example of
using a binary tree for sorting data [1]. Suppose that the nodes
of the tree contain three fields: a pointer to the left child node;
a pointer to the right child node; and a value (e.g. an integer or
a pointer to a string). The nodes are maintained so that at any
node, the left sub-tree only contains values that are less than
the value at the node, and the right sub-tree contains only
values that are greater. In order to build such a tree and to sort
data, standard techniques can be applied (based on forward
and backward propagation steps that are exactly the same for
each node). Thus, a recursive procedure is very helpful.
Sorting of this type will be considered in the paper as a case
study to demonstrate the proposed innovations.

A brief summary of what is new and distinctive in this
paper is given below:

• HFSM with implicit modules (sub-section II, B);

• Improved methods for sequential recursive sorting
over tree-based data structures (sub-section III, A);

• Parallel recursive sorting algorithms over tree-based
data structures (sub-section III, A);

• Prototyping in FPGA, experiments, profound analysis
and comparison of alternative and competing
techniques clearly demonstrating advantages of the
proposed model and methods (sub-section III, B).

II. HIERARCHICAL FINITE STATE MACHINES
We will base the approach considered here on hierarchical

finite state machines (HFSM) [2] with some useful
modifications and improvements..

A. HFSM with explicit modules
The main feature of any recursive algorithm is the

capability to activate (to call) itself. There are a variety of
synthesizable specifications for recursive algorithms and we
will use hierarchical graph-schemes (HGS) [2]. A HGS can
easily be converted to a HFSM and then formally coded in a

978-1-4244-7772-2/10/$26.00 ©2010 IEEE 225

hardware description language (VHDL will be used). The
coding is done using the VHDL templates proposed in [2],
which are easily customizable for the given set of HGSs. The
resulting VHDL code is synthesizable and permits the
hardware to be designed in commercially available CAD
systems, such as the Xilinx ISE. Let us briefly demonstrate all
the steps mentioned above applied to the synthesis of a simple
recursive circuit that outputs data from a binary tree for data
sort described in section I. Suppose, that the recursive function
treesort is written in the C++ language as follows:

template<class T> void treesort(treenode<T> *node) { // <a0>
 if (node != 0) // if the node exists (X1)
 { treesort (node->lnode); // Sort left sub-tree (Z) <a1>
 // Display value after the hierarchical return
 cout << "value - " << node->val << endl; <a2>
 treesort (node->rnode); // Now sort right sub-tree (Z) <a3>
 } } // <a4>

where the treenode is a structure, described something like the
following:

template <class T> struct treenode {
 T val; // Value of an item of type T
 int count; // Number of items with value val
 treenode <T> *lnode; // Pointer to left node (sub-tree)
 treenode<T> *rnode; // Pointer to right node (sub-tree)
};

Figure 1, a) depicts the HGS, which is designated by Z,

built at the first step from the function treesort. There are two
recursive module calls (HGS calls) in Figure 1, a).

Begin ,<outputs>

X1
0

1

End,<outputs>

a0

a1

a2

a3

a4

<outputs>,Z

when Z =>
case FSM_stack(stack_ptr) is

when a0 => push <= '0'; pop <= '0'; -- <outputs>
if (X1='1') then NS <= a1;
else NS <= a4;
end if;

when a1 => pop <= '0'; NS <= a2; NM<=Z; push <= '1'; -- <outputs>
when a2 => push <= '0'; pop <= '0'; NS <= a3; -- <outputs>
when a3 => pop <= '0'; NS <= a4; NM<=Z; push <= '1'; -- <outputs>
when a4 => push <= '0'; NS <= a4;

if stack_ptr > 0 then pop <= '1'; -- <outputs>
else pop<= '0'; -- <outputs>
end if;

when others => null;
end case;

Z

<outputs>,Z

a) b)

<outputs>

recursive
call

recursive
call

Figure 1. C function treesort described in a HGS (a) and in VHDL (b).

At the second step, the HGS has to be converted to a
HFSM and this is done in two sub-steps: marking the HGS
rectangular nodes with labels a0,a1,…,a4 (considered further as
HFSM states) using the rules [2] (Figure 1, a); and
customizing the HFSM template [2] with state transitions
extracted from the HGS. The labels a0,a1,…,a4 as well as the
recursive call Z and the condition X1 are also shown in the
C++ code. This is done to make clearer a relationship between
the C++ code and Figure 1, a). General HFSM template is
shown in Figure 2 and includes two processes describing: 1)
reusable stacks for modules (M_stack) and states
(FSM_stack); 2) a structure of combinational circuits allowing
transitions at the level of modules and states to be executed
(see example in Figure 1, b). Here NS/NM is the next state/the
next module; stack_ptr is a stack pointer common to both

M_stack and FSM_stack; signals push and pop increment and
decrement the stack_ptr. All the details can be found in [2].
We will call the known model HFSM with explicit modules. It
has the following distinctive features. There are two stack
memories with ⎡log2Q⎤ bits for modules and ⎡log2R⎤ bits for
states (Q is the number of modules and R is the maximum
number of states in a module). States in different modules can
be assigned the same labels (the same codes).

M_stack FSM_stackCombinational
circuit (CC)

current
state

current
module

next
state

new
moduleControl: clock, reset, push, pop

Control: clock,
reset, push, pop

process(clock,reset) -- the first process for the blocks
begin -- M_stack and FSM_stack

if reset = '1' then
-- setting to an initial state and initializing

elsif rising_edge(clock) then
-- test for possible error
-- executing transitions of the following types
-- a) between states within the same module
-- b) between states that belong to different modules

end if;
end process;

process (current_module,current_state,inputs)
begin -- the second process for the block CC

case M_stack(stack_ptr) is
-- see example in Figure 1, b)

-- repeating for all modules
end process;

inputs

outputs

Figure 2. HFSM with explicit modules.

B. HFSM with implicit modules

Figure 3 depicts a new proposed HFSM model called
HFSM with implicit modules. The HFSM in Figure 3 behaves
like an ordinary FSM and a single stack of states is used just
for returns from called modules.

FSM_stack
keeps only
states for

returns from
modules

Register – FSM
memory FSM_stackCombinational

circuit (CC)
current
state

next
state

Control: clock,
reset, push, pop

process (current_state,inputs)
begin -- the second process for the block CC

case FSM_stack(stack_ptr) is
-- description of state transitions

end process;

inputs

outputs

process(clock,reset) -- the first process describes
begin -- just FSM_stack
if reset = '1' then stack_ptr <= 0; -- initializing

FSM_stack(0) <= -- initial module state a0;
elsif rising_edge(clock) then

if push = '1' then
if stack_ptr = stack_size then -- error handling
else stack_ptr <= stack_ptr + 1;

FSM_stack(stack_ptr) <= NewR_S;
end if;

elsif pop = '1' then stack_ptr <= stack_ptr - 1;
end if;

end if;
end process;

states that influence
transitions just for

hierarchical returns

NewR_S

Figure 3. HFSM with implicit modules.

226

In this case states in different modules have to be assigned
different labels (different codes). The FSM_stack in Figure 3
is needed just to know which state has to be the target of the
transition when a called module is terminated. Note that the
return from a called module (such as the return in the state a4
in Figure 1, a) and the transition from the relevant state of the
calling module (such as the transition from the state a1 or a3 in
Figure 1, a) are executed within the same clock cycle. In any
module all the necessary state transitions are realized through
the register, much like it is done in a conventional FSM.
Suppose that a new module Z has to be called in the state a1
(see Figure 1, a). In this case the following operations are
executed at the same time: 1) the state a2 is saved in the
FSM_stack; 2) the stack_ptr is incremented; and 3) the
transition from a1 to a0 (the first state of Z) is performed in the
register (see Figure 3). When the called module Z is
terminated, the stack pointer is decremented and the stack_ptr
points to the register of the stack with the state a2 that has to be
selected for the next state transition. There exist two modes of
returns. In the first mode there are no conditional transitions
from the state like a1, a3 in Figure 1, a). Thus, we can
explicitly save in the stack the target state (such as a2) for
transition after return from the called module. This mode has
to be used for our example in Figure 1, a). In the second (more
complicated) mode there are conditional transitions from the
states where we have to call other modules and conditions for
such transitions can be influenced by the called modules. In
this case the method based on the use of a special return flag
(described in [2] with all the necessary details) can be applied
directly. It is important to note that no delay is introduced.
This is achieved through the technique described below. Let
us consider pairs “amzn”, where am is the state of a calling
module from which the module zn is called (thus, zn is a called
module). All such pairs are unique. When zn is called, the
following steps are executed: 1) the code of am is saved in the
top register of the stack; 2) the code of the first state of zn is
saved in the register (see Figure 3); 3) the stack_ptr is
incremented. Thus, the stack keeps track of returns beginning
with the currently active module. When any module is
terminated, the following steps are performed: 1) the transition
from the state indicated by stack_ptr-1 is executed; 2) the
stack_ptr is decremented. Finally, no extra delay is introduced
in the HFSM compared to a conventional FSM.

Note that module calls (such as Z) might appear in
different states (e.g. a1, a3 in Figure 1, a), and, thus, the returns
might also be to different states (e.g. a2, a4 in Figure 1, a) from
the same called module. That is why the returned state (such
as a2 or a4) has to be chosen in the calling modules (but not in
the called modules). The called modules might change
conditions that influence transitions from the states of calling
modules. Such changes are taken into account with the aid of
the methods proposed in [2]. The stack is needed just to know
which state has to be the target of the transition when a called
module is terminated. The number of states is increased over
that of the previous model (Section II, A). However, the
number of stacks and the size of the stack registers are
reduced. Another feature of the new model is that it is directly
applicable to all known optimization techniques that have
been proposed for conventional FSMs.

III. FPGA-BASED IMPLEMENTATIONS AND EXPERIMENTS

A. Methods

The known method [2] (let us call it S1) was chosen as a
base for comparison. Let us consider the basic ideas making it
possible the method [2] to be improved. The embedded dual-
port memory blocks (available for different FPGAs) permit
two memory cells to be accessed simultaneously. Each cell
holds data+LA+RA for the left (LA) and for the right (RA)
nodes. Initially the input buffer register is loaded with
data+LA+RA for the root of the sorting tree. Firstly, we
examine left sub-trees. If a left sub-tree (node) exists then it is
checked again to determine whether the left sub-tree also has
either left or right sub-trees (nodes). If there is no sub-tree
from the left node, then the value of the left node is the
leftmost data value and can be output as the smallest. In the
last case the node in the input buffer register holds the second
smallest value and the relevant data value is sent to the output.
Secondly, we perform similar operations for right nodes. The
dual-port RAM makes possible LA and RA (for each cell in
the dual-port RAM) to be examined independently. Finally,
compared with [2], for some sub-trees of the tree we are able
to check more than one node (e.g. a left node and a right node
or a left node and a left node of the first left node) at the same
time, which reduces the required processing time. Let us call
the improved method S2.

Note that the known method [2] is sequential and does not
permit parallel processing of different branches of the tree. We
propose to traverse the left and the right sub-trees of the tree
nodes in parallel using the method S2 (let us call this method
S3). It is achieved with the aid of the following technique.
There are two simultaneously functioning HFSMs that are a
master and a slave. The master HFSM: builds the tree; outputs
the left sub-tree; and activates the slave HFSM when
necessary. The slave HFSM outputs the right sub-tree. By
adding a simple counter to the root that counts the number of
left and right nodes during the construction of the tree, we can
easily calculate the addresses for the sorted data in an output
memory. Thus, processing of both sub-trees can be done
simultaneously. Obviously, more parallel branches can be
introduced using cascade structures. Intuitively we can guess
that the result would depend considerably on the balance
between the left and right sub-trees of the root. We would like
to eliminate such dependency, and this can be achieved using
the following technique. The first HFSM implements the
algorithm S2 and when the HFSM detects that for the current
node the left and the right sub-trees are well balanced, the
second HFSM is activated. In this approach each node of the
tree includes an additional field indicating the number of child
nodes on the left and on the right (such fields can easily be
filled in during the construction of the tree). Let us call this
method S4.

B. Experiments
The synthesis and implementation of the circuits from the

specification in VHDL were done in Xilinx ISE 11 for FPGA
Spartan3E-1200E-FG320 of Xilinx.

227

A random-number generator produces 211 items of data
with a length of 14 bits (i.e. values in an interval between 0
and 16383). Values greater than 9999 are removed leaving
1200-1300 items available for further processing. These items
are sorted using the methods S1-S4 and implementations in
FPGA based on the known HFSM with explicit modules (S1e-
S4e) and the new HFSM with implicit modules (S1i-S4i). The
results are presented in Table I, where the Data column
indicates the number of data items that were sorted, the
column Left/Right shows the number of nodes in the left and
right sub-trees from the root. The other columns indicate time
of sorting in ns per data item. Table II presents the maximum
achievable clock frequency (F) in MHz and FPGA resources
(the number of slices - Slices, the number of LUTs – LUTs,
the number of block RAMs - B) needed for two different
implementations: based on HFSM with explicit modules
(HFSMe) and HFSM with implicit modules (HFSMi). In four
lines S1-S4 of Table II not marked with b the stacks are built
from LUTs. In two bottom lines of Table II marked with b the
stacks are built from block RAMs. The results for S1i-S4i are
slightly better than S1e-S4e because the new HFSM model
achieves higher value of F (see Table II). Only the column S1e
(from S1e-S4e) is shown in Table I. Ratios SIe/SIi (I=2,3,4) are
similar to S1e/S1i (see Table I), i.e. for all values I (1-4) the
new model of HFSM gives slightly better results just because
of higher achievable frequency F (see Table II).

Besides, the method S1 [2] was described in C++ and
implemented in software (other algorithms S2-S4 are
hardware-oriented and their advantages have appeared just in
hardware). The same data (randomly generated) were used for
the software implementations. The results were produced on
HP EliteBook 2730p (Intel Core 2 Duo CPU, 1.87 GHz)
computer and shown in column SW of Table I (also in ns per
data item).

TABLE I. THE RESULTS OF EXPERIMENTS

Data Left/Right S1e S1i S2i S3i S4i SW
1286 1/1284 39.5 36.6 31.3 48.1 28.2 147.2
1278 53/1224 39.5 36.6 31.4 46.1 27.9 151.1
1248 143/1104 39.5 36.6 31.1 42.6 28.0 153.6
1211 185/1025 39.5 36.6 31.2 40.8 28.1 167.3
1216 266/949 39.5 36.6 31.3 37.6 28.0 154.1
1248 332/915 39.5 36.6 31.3 35.3 27.6 148.6
1203 460/742 39.5 36.6 31.2 29.7 26,3 155.6
1228 528/699 39.5 36.6 31.3 27.4 25.1 151.5
1212 556/655 39.5 36.6 31.0 26.0 24.7 148.5
1230 623/606 39.5 36.6 31.6 24.3 23.1 155.2
1305 742/562 44.7 41.5 30.9 26.1 24.7 147.8
1259 822/436 39.5 36.6 31.1 28.5 28.0 149.1
1230 799/430 39.5 36.6 31.1 28.4 27.8 150.0
1304 849/454 39.5 36.6 31.0 28.4 27.9 148.7
1276 963/312 39.5 36.6 31.3 31.4 28.1 148.0
1225 958/266 39.5 36.6 31.2 32.2 27.7 151.0
1225 986/238 39.5 36.6 31.3 32.9 28.0 148.8
1199 1051/147 39.5 36.6 31.0 35.0 27.9 157.6
1309 1288/20 39.5 36.6 31.6 38.1 28.6 149.6
1204 1203/0 39.5 36.6 31.5 38.5 27.8 157.0

From the results of the experiments it is clearly observable
that the proposed in sub-section III,B HFSM model permits
the hardware resources to be reduced and it supports faster
clock frequency. This is achieved because the stacks (needed
to support modularity and recursion) were simplified as much
as possible. The improved methods of data sort (S2-S4) are
faster than the known method S1. Although the method S3 of
parallel sorting gives the worst results for some lines of Table
I, the improved version S4 of this method (see sub-section III,
A) is undoubtedly the fastest. Both methods S3 and S4 were
implemented with two parallel communicating HFSMs.

TABLE II. IMPLEMENTATION DETAILS

Method Known model (HFSMe) New model (HFSMi)
F Slices LUTs B F Slices LUTs B

S1 101.36 714 1391 5 109.24 365 708 5
S2 82.84 790 1548 6 89.27 435 855 6
S3 102.6 1115 2203 8 103,88 701 1397 8
S4 101.54 1256 2497 8 101.71 728 1346 8
S1b 70.44 149 277 7 97.33 131 241 6
S2b 59.91 233 449 8 69.27 197 379 7

IV. CONCLUSION
An analysis of experimental results clearly demonstrates

the following: 1) the proposed new model of HFSM consumes
almost two times less hardware resources and it is slightly
faster than the known HFSM model; 2) the hardware
implementations are faster than software implementations for
all the experiments (in the best case in about 6 times) even
though the clock frequencies of the FPGA and the PC differ
significantly (the clock frequency of the PC is about 20 times
faster than that of the FPGA); 3) the proposed methods of data
sort are faster than the known methods in about 1.5 times for
the best case (S4); 4) although the results of S3 depend
considerably on the balance between the left and right sub-
trees of the root, the improved version S4 of S3 for parallel
sorting eliminates such dependency and gives the best results.

ACKNOWLEDGMENT
This research was supported by the European Union

through the European Regional Development Fund.

REFERENCES
[1] F.M. Carrano, Data Abstraction and Problem Solving with C++, The

Benjamin/Cumming Publishing Company, Inc., 2006.
[2] V. Sklyarov, “FPGA-based implementation of recursive algorithms,”

Microprocessors and Microsystems. Special Issue on FPGAs:
Applications and Designs, vol. 28/5-6, pp. 197–211, 2004.

[3] I. Skliarova, V. Sklyarov, "Recursion in Reconfigurable Computing: a
Survey of Implementation Approaches", Proc. 19th Int. Conference on
Field Programmable Logic and Applications – FPL’2009, Prague,
Czech Republic, 2009, pp. 224-229.

[4] T. Maruyama, M. Takagi, T. Hoshino, “Hardware implementation
techniques for recursive calls and loops”, Proc. 9th Int. Workshop on
Field-Programmable Logic and Applications - FPL’99, Glasgow, UK,
1999, pp. 450-455.

[5] S. Ninos, A. Dollas, “Modeling recursion data structures for FPGA-
based implementation”, Proc.18th Int. Conference on Field
Programmable Logic and Applications – FPL’08, Heidelberg,
Germany, 2008, pp. 11-16.

228

