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Abstract—The paper presents new results in the hardware 
implementation and optimization of recursive sequential and 
parallel algorithms using the known and a new model of a 
hierarchical finite state machine. Applicability and advantages 
of the proposed methods are confirmed through numerous 
examples of the designed hardware circuits that have been 
analyzed and compared. The results of experiments and FPGA-
based prototyping demonstrate clearly that the proposed 
innovations enable the required hardware resources to be 
decreased achieving at the same time better performance of 
recursive sorting algorithms compared to known 
implementations both in hardware and in software. 

I. INTRODUCTION 
Recursion is a powerful problem-solving technique [1] that 

may be applied to problems that can be decomposed into 
smaller sub-problems that are of exactly the same form as the 
original problem. Such technique is not always appropriate, 
particularly when an efficient iterative solution exists. This is 
primarily due to the large number of states that are 
accumulated during deep recursive calls. Additionally, a 
function call incurs a bookkeeping overhead in most high-
level programming languages. Recursive functions magnify 
this overhead because a single initial call to a function can 
generate a large number of recursive invocations of the 
function. It has been shown [2] however that recursion can be 
implemented much more efficiently in hardware. This is 
because any activation of a recursive sub-sequence of 
operations can be combined with the execution of the 
operations that are required by the respective algorithm. The 
same is true when any recursive sub-sequence is being 
terminated, i.e. when control has to be returned to the point 
following the last recursive call and an operation of the 
executing algorithm that follows the last recursive call has to 
be activated. The number of states required for the execution 
of recursion in hardware can be further reduced compared 
with software by applying a number of methods, such as those 
reviewed in [3]. Besides, such states are accumulated on 
stacks that are typically implemented on built-in memory 
blocks, which are relatively cheap. The results obtained for 
some known methods (see, for example, [2,4,5]) for 
implementing recursive calls have shown that many hardware 

circuits are faster than software programs executing on 
general-purpose computers.  

Recursive algorithms are employed most often for various 
kinds of binary search [1, 2]. Let us consider an example of 
using a binary tree for sorting data [1]. Suppose that the nodes 
of the tree contain three fields: a pointer to the left child node; 
a pointer to the right child node; and a value (e.g. an integer or 
a pointer to a string). The nodes are maintained so that at any 
node, the left sub-tree only contains values that are less than 
the value at the node, and the right sub-tree contains only 
values that are greater. In order to build such a tree and to sort 
data, standard techniques can be applied (based on forward 
and backward propagation steps that are exactly the same for 
each node). Thus, a recursive procedure is very helpful. 
Sorting of this type will be considered in the paper as a case 
study to demonstrate the proposed innovations. 

A brief summary of what is new and distinctive in this 
paper is given below: 

• HFSM with implicit modules (sub-section II, B); 

• Improved methods for sequential recursive sorting 
over tree-based data structures (sub-section III, A); 

• Parallel recursive sorting algorithms over tree-based 
data structures (sub-section III, A); 

• Prototyping in FPGA, experiments, profound analysis 
and comparison of alternative and competing 
techniques clearly demonstrating advantages of the 
proposed model and methods (sub-section III, B). 

II. HIERARCHICAL FINITE STATE MACHINES 
We will base the approach considered here on hierarchical 

finite state machines (HFSM) [2] with some useful 
modifications and improvements.. 

A.  HFSM with explicit modules 
The main feature of any recursive algorithm is the 

capability to activate (to call) itself. There are a variety of 
synthesizable specifications for recursive algorithms and we 
will use hierarchical graph-schemes (HGS) [2]. A HGS can 
easily be converted to a HFSM and then formally coded in a 
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hardware description language (VHDL will be used). The 
coding is done using the VHDL templates proposed in [2], 
which are easily customizable for the given set of HGSs. The 
resulting VHDL code is synthesizable and permits the 
hardware to be designed in commercially available CAD 
systems, such as the Xilinx ISE. Let us briefly demonstrate all 
the steps mentioned above applied to the synthesis of a simple 
recursive circuit that outputs data from a binary tree for data 
sort described in section I. Suppose, that the recursive function 
treesort is written in the C++ language as follows: 

template<class T> void treesort(treenode<T> *node) { // <a0> 
  if (node != 0)                 // if the node exists  (X1)          
  { treesort (node->lnode); // Sort left sub-tree (Z) <a1> 
    // Display value after the hierarchical return 
    cout << "value - " << node->val << endl; <a2> 
    treesort (node->rnode); // Now sort right sub-tree (Z) <a3> 
  }           } // <a4> 

where the treenode is a structure, described something like the 
following: 

template <class T> struct treenode { 
  T val;                              // Value of an item of type T 
  int count;                       // Number of items with value val 
  treenode <T> *lnode; // Pointer to left node (sub-tree) 
  treenode<T> *rnode;  // Pointer to right node (sub-tree) 
}; 
 
Figure 1, a) depicts the HGS, which is designated by Z, 

built at the first step from the function treesort. There are two 
recursive module calls (HGS calls) in Figure 1, a). 

Begin ,<outputs>

X1
0

1

End,<outputs>

a0

a1

a2

a3

a4

<outputs>,Z

when Z =>   
case FSM_stack(stack_ptr) is       

when a0 => push <= '0'; pop <= '0'; -- <outputs>          
if (X1='1') then NS <= a1;
else NS <= a4;           
end if;

when a1 => pop <= '0'; NS <= a2; NM<=Z; push <= '1'; -- <outputs>
when a2 => push <= '0'; pop <= '0'; NS <= a3; -- <outputs>
when a3 => pop <= '0'; NS <= a4; NM<=Z;  push <= '1'; -- <outputs> 
when a4 => push <= '0'; NS <= a4;

if stack_ptr > 0 then pop <= '1'; -- <outputs> 
else pop<= '0'; -- <outputs>
end if;

when others => null;    
end case;

Z

<outputs>,Z

a) b)

<outputs>

recursive
call

recursive
call

 

Figure 1.  C function treesort described in a HGS (a) and in VHDL (b).  

At the second step, the HGS has to be converted to a 
HFSM and this is done in two sub-steps: marking the HGS 
rectangular nodes with labels a0,a1,…,a4 (considered further as 
HFSM states) using the rules [2] (Figure 1, a); and 
customizing the HFSM template [2] with state transitions 
extracted from the HGS. The labels a0,a1,…,a4 as well as the 
recursive call Z and the condition X1 are also shown in the 
C++ code. This is done to make clearer a relationship between 
the C++ code and Figure 1, a).  General HFSM template is 
shown in Figure 2 and includes two processes describing: 1) 
reusable stacks for modules (M_stack) and states 
(FSM_stack); 2) a structure of combinational circuits allowing 
transitions at the level of modules and states to be executed 
(see example in Figure 1, b). Here NS/NM is the next state/the 
next module; stack_ptr is a stack pointer common to both 

M_stack and FSM_stack; signals push and pop increment and 
decrement the stack_ptr. All the details can be found in [2]. 
We will call the known model HFSM with explicit modules. It 
has the following distinctive features. There are two stack 
memories with ⎡log2Q⎤ bits for modules and ⎡log2R⎤ bits for 
states (Q is the number of modules and R is the maximum 
number of states in a module). States in different modules can 
be assigned the same labels (the same codes). 

M_stack FSM_stackCombinational
circuit (CC)

current
state

current
module

next
state

new
moduleControl: clock, reset, push, pop

Control: clock,
reset, push, pop

process(clock,reset) -- the first process for the blocks
begin -- M_stack and FSM_stack

if reset = '1' then  
-- setting to an initial state and initializing

elsif rising_edge(clock) then 
-- test for possible error
-- executing transitions of the following types
-- a) between states within the same module
-- b) between states that belong to different modules

end if;
end process;

process (current_module,current_state,inputs)
begin -- the second process for the block CC

case M_stack(stack_ptr) is
-- see example in Figure 1, b)

-- repeating for all modules
end process; 

inputs

outputs

 

Figure 2.  HFSM with explicit modules. 

B. HFSM with implicit modules 

Figure 3 depicts a new proposed HFSM model called 
HFSM with implicit modules. The HFSM in Figure 3 behaves 
like an ordinary FSM and a single stack of states is used just 
for returns from called modules. 

FSM_stack
keeps only
states for

returns from
modules

Register – FSM
memory FSM_stackCombinational

circuit (CC)
current
state

next
state

Control: clock,
reset, push, pop

process (current_state,inputs)
begin -- the second process for the block CC

case FSM_stack(stack_ptr) is
-- description of state transitions

end process; 

inputs

outputs

process(clock,reset) -- the first process describes
begin -- just FSM_stack
if reset = '1' then  stack_ptr <= 0; -- initializing

FSM_stack(0) <=  -- initial module state a0; 
elsif rising_edge(clock) then 

if push = '1' then 
if stack_ptr = stack_size then -- error handling 
else    stack_ptr <= stack_ptr + 1;

FSM_stack(stack_ptr) <= NewR_S;
end if;

elsif pop = '1' then stack_ptr <= stack_ptr - 1;
end if;

end if;
end process;

states that influence
transitions just for

hierarchical returns

NewR_S

 

Figure 3.  HFSM with implicit modules. 
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In this case states in different modules have to be assigned 
different labels (different codes). The FSM_stack in Figure 3 
is needed just to know which state has to be the target of the 
transition when a called module is terminated. Note that the 
return from a called module (such as the return in the state a4 
in Figure 1, a) and the transition from the relevant state of the 
calling module (such as the transition from the state a1 or a3 in 
Figure 1, a) are executed within the same clock cycle. In any 
module all the necessary state transitions are realized through 
the register, much like it is done in a conventional FSM. 
Suppose that a new module Z has to be called in the state a1 
(see Figure 1, a). In this case the following operations are 
executed at the same time: 1) the state a2 is saved in the 
FSM_stack; 2) the stack_ptr is incremented; and 3) the 
transition from a1 to a0 (the first state of Z) is performed in the 
register (see Figure 3). When the called module Z is 
terminated, the stack pointer is decremented and the stack_ptr 
points to the register of the stack with the state a2 that has to be 
selected for the next state transition. There exist two modes of 
returns. In the first mode there are no conditional transitions 
from the state like a1, a3 in Figure 1, a). Thus, we can 
explicitly save in the stack the target state (such as a2) for 
transition after return from the called module. This mode has 
to be used for our example in Figure 1, a). In the second (more 
complicated) mode there are conditional transitions from the 
states where we have to call other modules and conditions for 
such transitions can be influenced by the called modules. In 
this case the method based on the use of a special return flag 
(described in [2] with all the necessary details) can be applied 
directly. It is important to note that no delay is introduced. 
This is achieved through the technique described below. Let 
us consider pairs “amzn”, where am is the state of a calling 
module from which the module zn is called (thus, zn is a called 
module). All such pairs are unique. When zn is called, the 
following steps are executed: 1) the code of am is saved in the 
top register of the stack; 2) the code of the first state of zn is 
saved in the register (see Figure 3); 3) the stack_ptr is 
incremented. Thus, the stack keeps track of returns beginning 
with the currently active module. When any module is 
terminated, the following steps are performed: 1) the transition 
from the state indicated by stack_ptr-1 is executed; 2) the 
stack_ptr is decremented. Finally, no extra delay is introduced 
in the HFSM compared to a conventional FSM. 

Note that module calls (such as Z) might appear in 
different states (e.g. a1, a3 in Figure 1, a), and, thus, the returns 
might also be to different states (e.g. a2, a4 in Figure 1, a) from 
the same called module. That is why the returned state (such 
as a2 or a4) has to be chosen in the calling modules (but not in 
the called modules). The called modules might change 
conditions that influence transitions from the states of calling 
modules. Such changes are taken into account with the aid of 
the methods proposed in [2]. The stack is needed just to know 
which state has to be the target of the transition when a called 
module is terminated. The number of states is increased over 
that of the previous model (Section II, A). However, the 
number of stacks and the size of the stack registers are 
reduced. Another feature of the new model is that it is directly 
applicable to all known optimization techniques that have 
been proposed for conventional FSMs.  

III. FPGA-BASED IMPLEMENTATIONS AND EXPERIMENTS  

A. Methods 

The known method [2] (let us call it S1) was chosen as a 
base for comparison. Let us consider the basic ideas making it 
possible the method [2] to be improved. The embedded dual-
port memory blocks (available for different FPGAs) permit 
two memory cells to be accessed simultaneously. Each cell 
holds data+LA+RA for the left (LA) and for the right (RA) 
nodes. Initially the input buffer register is loaded with 
data+LA+RA for the root of the sorting tree. Firstly, we 
examine left sub-trees. If a left sub-tree (node) exists then it is 
checked again to determine whether the left sub-tree also has 
either left or right sub-trees (nodes). If there is no sub-tree 
from the left node, then the value of the left node is the 
leftmost data value and can be output as the smallest. In the 
last case the node in the input buffer register holds the second 
smallest value and the relevant data value is sent to the output. 
Secondly, we perform similar operations for right nodes. The 
dual-port RAM makes possible LA and RA (for each cell in 
the dual-port RAM) to be examined independently. Finally, 
compared with [2], for some sub-trees of the tree we are able 
to check more than one node (e.g. a left node and a right node 
or a left node and a left node of the first left node) at the same 
time, which reduces the required processing time. Let us call 
the improved method S2. 

Note that the known method [2] is sequential and does not 
permit parallel processing of different branches of the tree. We 
propose to traverse the left and the right sub-trees of the tree 
nodes in parallel using the method S2 (let us call this method 
S3). It is achieved with the aid of the following technique. 
There are two simultaneously functioning HFSMs that are a 
master and a slave. The master HFSM: builds the tree; outputs 
the left sub-tree; and activates the slave HFSM when 
necessary. The slave HFSM outputs the right sub-tree. By 
adding a simple counter to the root that counts the number of 
left and right nodes during the construction of the tree, we can 
easily calculate the addresses for the sorted data in an output 
memory. Thus, processing of both sub-trees can be done 
simultaneously. Obviously, more parallel branches can be 
introduced using cascade structures. Intuitively we can guess 
that the result would depend considerably on the balance 
between the left and right sub-trees of the root. We would like 
to eliminate such dependency, and this can be achieved using 
the following technique. The first HFSM implements the 
algorithm S2 and when the HFSM detects that for the current 
node the left and the right sub-trees are well balanced, the 
second HFSM is activated. In this approach each node of the 
tree includes an additional field indicating the number of child 
nodes on the left and on the right (such fields can easily be 
filled in during the construction of the tree). Let us call this 
method S4.   

B. Experiments 
The synthesis and implementation of the circuits from the 

specification in VHDL were done in Xilinx ISE 11 for FPGA 
Spartan3E-1200E-FG320 of Xilinx.  
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A random-number generator produces 211 items of data 
with a length of 14 bits (i.e. values in an interval between 0 
and 16383). Values greater than 9999 are removed leaving 
1200-1300 items available for further processing. These items 
are sorted using the methods S1-S4 and implementations in 
FPGA based on the known HFSM with explicit modules (S1e-
S4e) and the new HFSM with implicit modules (S1i-S4i). The 
results are presented in Table I, where the Data column 
indicates the number of data items that were sorted, the 
column Left/Right shows the number of nodes in the left and 
right sub-trees from the root. The other columns indicate time 
of sorting in ns per data item. Table II presents the maximum 
achievable clock frequency (F) in MHz and FPGA resources 
(the number of slices - Slices, the number of  LUTs – LUTs, 
the number of block RAMs - B) needed for two different 
implementations: based on HFSM with explicit modules 
(HFSMe) and HFSM with implicit modules (HFSMi). In four 
lines S1-S4 of Table II not marked with b the stacks are built 
from LUTs. In two bottom lines of Table II marked with b the 
stacks are built from block RAMs. The results for S1i-S4i are 
slightly better than S1e-S4e because the new HFSM model 
achieves higher value of F (see Table II). Only the column S1e 
(from S1e-S4e) is shown in Table I. Ratios SIe/SIi (I=2,3,4) are 
similar to S1e/S1i (see Table I), i.e. for all values I (1-4) the 
new model of HFSM gives slightly better results just because 
of higher achievable  frequency F (see Table II). 

Besides, the method S1 [2] was described in C++ and 
implemented in software (other algorithms S2-S4 are 
hardware-oriented and their advantages have appeared just in 
hardware). The same data (randomly generated) were used for 
the software implementations. The results were produced on 
HP EliteBook 2730p (Intel Core 2 Duo CPU, 1.87 GHz) 
computer and shown in column SW of Table I (also in ns per 
data item). 

TABLE I.  THE RESULTS OF EXPERIMENTS 

Data Left/Right S1e S1i S2i S3i S4i SW
1286 1/1284 39.5 36.6 31.3 48.1 28.2 147.2
1278 53/1224 39.5 36.6 31.4 46.1 27.9 151.1
1248 143/1104 39.5 36.6 31.1 42.6 28.0 153.6
1211 185/1025 39.5 36.6 31.2 40.8 28.1 167.3
1216 266/949 39.5 36.6 31.3 37.6 28.0 154.1
1248 332/915 39.5 36.6 31.3 35.3 27.6 148.6
1203 460/742 39.5 36.6 31.2 29.7 26,3 155.6
1228 528/699 39.5 36.6 31.3 27.4 25.1 151.5
1212 556/655 39.5 36.6 31.0 26.0 24.7 148.5
1230 623/606 39.5 36.6 31.6 24.3 23.1 155.2
1305 742/562 44.7 41.5 30.9 26.1 24.7 147.8
1259 822/436 39.5 36.6 31.1 28.5 28.0 149.1
1230 799/430 39.5 36.6 31.1 28.4 27.8 150.0
1304 849/454 39.5 36.6 31.0 28.4 27.9 148.7
1276 963/312 39.5 36.6 31.3 31.4 28.1 148.0
1225 958/266 39.5 36.6 31.2 32.2 27.7 151.0
1225 986/238 39.5 36.6 31.3 32.9 28.0 148.8
1199 1051/147 39.5 36.6 31.0 35.0 27.9 157.6
1309 1288/20 39.5 36.6 31.6 38.1 28.6 149.6
1204 1203/0 39.5 36.6 31.5 38.5 27.8 157.0

From the results of the experiments it is clearly observable 
that the proposed in sub-section III,B HFSM model permits 
the hardware resources to be reduced and it supports faster 
clock frequency. This is achieved because the stacks (needed 
to support modularity and recursion) were simplified as much 
as possible. The improved methods of data sort (S2-S4) are 
faster than the known method S1. Although the method S3 of 
parallel sorting gives the worst results for some lines of Table 
I, the improved version S4 of this method (see sub-section III, 
A) is undoubtedly the fastest. Both methods S3 and S4 were 
implemented with two parallel communicating HFSMs. 

TABLE II.  IMPLEMENTATION DETAILS 

Method Known model (HFSMe) New model (HFSMi)
F Slices LUTs B F Slices LUTs B

S1 101.36 714 1391 5 109.24 365 708 5
S2 82.84 790 1548 6 89.27 435 855 6
S3 102.6 1115 2203 8 103,88 701 1397 8
S4 101.54 1256 2497 8 101.71 728 1346 8
S1b 70.44 149 277 7 97.33 131 241 6
S2b 59.91 233 449 8 69.27 197 379 7

IV. CONCLUSION 
An analysis of experimental results clearly demonstrates 

the following: 1) the proposed new model of HFSM consumes 
almost two times less hardware resources and it is slightly 
faster than the known HFSM model; 2) the hardware 
implementations are faster than software implementations for 
all the experiments (in the best case in about 6 times) even 
though the clock frequencies of the FPGA and the PC differ 
significantly (the clock frequency of the PC is about 20 times 
faster than that of the FPGA); 3) the proposed methods of data 
sort are faster than the known methods in about 1.5 times for 
the best case (S4); 4) although the results of S3 depend 
considerably on the balance between the left and right sub-
trees of the root, the improved version S4 of S3 for parallel 
sorting eliminates such dependency and gives the best results. 
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