
 Open access Proceedings Article DOI:10.1109/ISIE.2016.7744903

Hardware-in-the-loop simulation of FPGA-based state estimators for electric vehicle
batteries — Source link

R. Morello, Federico Baronti, X. Tian, Thomas C. P. Chau ...+6 more authors

Institutions: University of Pisa, Intel

Published on: 01 Jun 2016 - International Symposium on Industrial Electronics

Topics: Hardware-in-the-loop simulation, Hardware acceleration, State of charge, Electric vehicle and
Extended Kalman filter

Related papers:

Hardware-in-the-Loop Assessment of a Data-Driven State of Charge Estimation Method for Lithium-Ion Batteries in
Hybrid Vehicles

 Battery state of charge estimation hardware-in-loop system design based on xPC target

 Hardware-In-The-Loop Implementation of a Grid Connected PV System

A Hardware-in-the-Loop (HIL) Development Method for Li-Ion Battery and Micro Turbine-Generation Based High
Power Density Series Hybrid Power System

A hardware-in-the-loop test rig for development of electric vehicle battery identification and state estimation
algorithms

Share this paper:

View more about this paper here: https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-
49gf4r31s5

https://typeset.io/
https://www.doi.org/10.1109/ISIE.2016.7744903
https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-49gf4r31s5
https://typeset.io/authors/r-morello-2s5zw84ckn
https://typeset.io/authors/federico-baronti-267joy51jy
https://typeset.io/authors/x-tian-gta7a8i0sn
https://typeset.io/authors/thomas-c-p-chau-3tay7n4tfv
https://typeset.io/institutions/university-of-pisa-2icrbpa5
https://typeset.io/institutions/intel-2nhd3qnf
https://typeset.io/conferences/international-symposium-on-industrial-electronics-h4jk2gbj
https://typeset.io/topics/hardware-in-the-loop-simulation-2rvw84he
https://typeset.io/topics/hardware-acceleration-1pmf6u7k
https://typeset.io/topics/state-of-charge-27lbli8t
https://typeset.io/topics/electric-vehicle-11ny17b1
https://typeset.io/topics/extended-kalman-filter-3n8pecdx
https://typeset.io/papers/hardware-in-the-loop-assessment-of-a-data-driven-state-of-495cd007r7
https://typeset.io/papers/battery-state-of-charge-estimation-hardware-in-loop-system-2psivy054z
https://typeset.io/papers/hardware-in-the-loop-implementation-of-a-grid-connected-pv-1r27025j3c
https://typeset.io/papers/a-hardware-in-the-loop-hil-development-method-for-li-ion-102b22l3xg
https://typeset.io/papers/a-hardware-in-the-loop-test-rig-for-development-of-electric-xa6v9knckw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-49gf4r31s5
https://twitter.com/intent/tweet?text=Hardware-in-the-loop%20simulation%20of%20FPGA-based%20state%20estimators%20for%20electric%20vehicle%20batteries&url=https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-49gf4r31s5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-49gf4r31s5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-49gf4r31s5
https://typeset.io/papers/hardware-in-the-loop-simulation-of-fpga-based-state-49gf4r31s5

Hardware-in-the-Loop Simulation of FPGA-based

State Estimators for Electric Vehicle Batteries

R. Morello∗, F. Baronti∗, X. Tian§, T. Chau§, R. Di Rienzo∗, R. Roncella∗,

B. Jeppesen§, W. H. Lin§, T. Ikushima§ and R. Saletti∗

∗ Dip. di Ingegneria dell’Informazione, Università di Pisa, Italy
§ Altera (now part of Intel), USA

Abstract—This paper describes a hardware-in-the-loop (HiL)
simulation platform specifically designed to test state estimators
for Li-ion batteries in electric vehicle applications. Two promising
estimators, the Mix algorithm combined with the moving window
least squares and the dual extended Kalman filter, are imple-
mented in hardware on a field-programmable gate array (FPGA)
and evaluated using the developed HiL platform. The simulation
results show the effectiveness of using FPGAs for hardware
acceleration of battery state estimators and the importance of
their assessment under different operating conditions, i.e., driving
schedules, which can be simulated by the HiL platform.

I. INTRODUCTION

In the last few years, plug-in hybrid electric vehicles

(PHEVs) and electric vehicles (EVs) have gained popularity

due to the ever more stringent emission standards and the

increasing consumer awareness of environmental issues. The

energy storage system (ESS) is a key component of these

vehicles and the enabler of the transition towards e-mobility.

Li-ion battery technology is considered the most suitable

choice for implementing the on-board ESS (i.e., the traction

battery), because of its high power and energy densities and

long lifetime. An effective battery management system (BMS)

is used to ensure a safe and reliable operation of a Li-

ion battery, by monitoring and controlling its charging and

discharging processes. This requires the knowledge of the

internal state of each battery cell, which is usually expressed

by means of the state of charge (SOC) and the state of

health (SOH) variables. SOC indicates the remaining amount

of charge stored in the battery and SOH is an index of the

battery performance degradation compared to the fresh status,

which accounts for the capacity fading and the increase of the

internal resistance [1].

These variables cannot directly be acquired and need to be

inferred from the voltage, current and temperature measure-

ment. The most straightforward method for SOC estimation is

the integration of the battery current over time and is named

Coulomb Counting (CC). It may provide an accurate SOC

estimate assuming that the initial SOC value is known and

the current is acquired with a high precision sensor. However,

unavoidable errors in the current measurement cause the CC

estimate to become unreliable over time. This problem can

be tackled by also using the voltage information in a model-

based algorithm, such as the popular extended Kalman filter

(EKF) [2] and the Mix algorithm [3], among many others. The

main open issue is reaching the desired estimation accuracy

with a complexity suitable for real-time implementation in the

BMS hardware. A model is used to predict the cell voltage in

these techniques. The predicted cell voltage is compared with

the measured one and the resulting error is used to correct

the estimate of the model state variables. The SOC estimation

accuracy thus depends on the model capability to reproduce

the cell behaviour reliably. An equivalent circuit model (ECM)

is often adopted, because it offers a good trade-off between

complexity and accuracy. The ECM parameters change with

the cell operating conditions (i.e., SOC and temperature) and

ageing. An effective approach to track these variations in a

BMS is to identify the ECM parameters online. This leads to

a joint state and parameter estimation problem.

Although a great deal of research has been conducted on

developing new algorithms, just a few works focus on the

algorithm assessment under realistic operating conditions [4]–

[6]. They exploit the concept of hardware-in-the-loop (HiL)

simulation framework, in which the BMS or just the battery

state estimator is tested in a simulation environment that

reproduces the conditions under which the battery will operate.

In more detail, cell level HiL testing platforms, which includes

a real cell to which an application-specific current profile is

applied under controlled conditions, are described in [4], [5].

In particular, the performance of the battery estimators are

assessed with a current profile based on the electric power

measured on an EV diving the Federal Test Procedure (FTP)

driving schedule in [4] and a current profile representative of

a smartphone use in [5]. A mathematical model of the traction

battery is used in [6]. The simulation results are only limited

to constant current charge/discharge cycles.

The aim of this work is to provide an HiL simulation

platform that allows a battery state estimator to be tested

under a wide range of operating conditions representative of

the EV usage. The developed platform is used to evaluate

two battery state algorithms, the Adaptive Mix Algorithm

(AMA) and Dual EKF (DEKF), which have proved to be a

promising solution for SOC and parameters co-estimation [7],

[8]. The AMA and DEKF estimators have been implemented

on a Altera MAX® 10 field-programmable gate array (FPGA),

which targets low-cost applications and includes non-volatile

memory and integrated ADCs. This allows us to assess also

the computational complexity of these algorithms and their

suitability to be executed in real time on a hardware platform

attractive for industrial BMS implementation.

Fig. 1. Block diagram of the developed hardware-in-the-loop simulation
platform.

This paper is organized as follows. The next Section de-

scribes the HiL simulation platform, including the battery and

the electric propulsion models. Section III presents the AMA

and DEKF algorithms, while their FPGA implementation is

discussed in Section IV. The simulation results are discussed

in Section V and finally some conclusions are drawn in

Section VI.

II. HARDWARE-IN-THE-LOOP SIMULATION PLATFORM

In the framework of this paper, the developed HiL sim-

ulation platform aims at testing a battery state estimator

implemented in an FPGA device in a simulation environment

that reproduces its usage in an EV. The traction battery and

the electric propulsion system are represented by mathematical

models, implemented in a MATLAB/Simulink® application,

as shown in Fig. 1. The latter is executed on a PC with a

100ms integration time step, which is suitable for capturing

the system dynamics of interest. The model outputs consist of

the battery current I and the cell voltages Vi. They form the

input of the battery state estimator, which in turn computes

the SOC estimation as well as the ECM parameter vector p.

The traction battery, simulated by the MATLAB/Simulink®

application, and the battery state estimator, implemented in

a MAX® 10 FPGA, interact by using digital signals only.

Consequently, the interface between the HiL model and the

hardware can be implemented as a digital communication layer

mapped over the JTAG link, without the need of reproducing

the power interface of the battery, as instead required for

validating other BMS functions as cell balancing [9]. A brief

description of the electric propulsion system (EV model) and

the traction battery models are reported below.

A. EV Model

The EV model computes the electric power at the battery’s

terminals, so that the vehicle speed follows a driving sched-

ule. The latter can be selected among 11 standard driving

cycles. The Urban Dynamometer Driving Schedule (UDDS),

the Highway Fuel Economy Test (HWFET) and the Federal

Test Procedure (FTP) are defined by the U.S. Environmental

Protection Agency [10]. The New European Driving Cycle

TABLE I
DRIVING SCHEDULES DETAILS

Driving Duration Distance Average speed
schedule (min) (km) (km/h)

UDDS 23 12.0 31.5
HWFET 13 16.5 77.5
FTP 31 17.8 34.1
EUDC 7 6.5 58.6
NEDC 20 8.3 25.4
ECE R15 3 0.9 16.5
WLTP class 3 30 23.2 46.5
ArtUrban 17 4.9 17.6
ArtRoad 18 17.3 57.4
ArtMw130 18 28.7 96.8
ArtMw150 18 29.5 99.5

(NEDC), the Extra-Urban Driving Cycle (EUDC) and the Eco-

nomic Commission for Europe urban driving cycle (ECE R15)

are maintained by the United Nations Economic Commission

for Europe (UNECE) [11]. The Common Artemis Driving

Cycles consist of the Urban cycle (ArtUrban), the Rural

road cycle (ArtRoad) and the Motorway cycles (ArtMw130

and ArtMw150, with a maximum speed of 130 and 150

km/h, respectively). The Worldwide harmonized Light vehicles

Test Procedures (WLTP) Class 3 are developed following the

guidelines of UNECE World Forum for Harmonization of

Vehicle Regulations. The duration, distance and average speed

of each cycle are reported in Table I. The various driving

schedules differ a lot in the average speed and, thus, in the

electric power required from the traction battery.

A dynamic model has been implemented to simulate the

behaviour of an EV on a zero grade road, as in [7]. The

mechanical power Pm is calculated as the sum of three

contributions: one linked to the acceleration, one to the air

resistance and the other to the rolling resistance (1).

Pm = Fv =

✓

Mv̇ +
1

2
ρairSCXv

2 + αRMg

◆

v (1)

In this equation, F is the traction force, v is the speed, M is the

kerb weight, S is the frontal area, CX is the drag coefficient,

αR is the rolling resistance, ρair is the air density and g is the

gravity acceleration.

The electric power Pe is obtained from Pm by using the

equation (2), in which ηwheel is the efficiency from the battery

to the wheels and ηreg is the efficiency in the opposite

direction, i.e., during the regenerative braking.

Pe =

✓

1

ηwheel

1 + sgn(Pm)

2
+ ηreg

1− sgn(Pm)

2

◆

Pm (2)

In order to obtain the battery current, the electric power

is divided by the sum of the cell voltages calculated by the

battery model, as shown in Fig. 1.

B. Battery Model

The battery model is able to simulate a given number of

series-connected cells. The only input is the battery current

which is the same for all the series-connected cells. At each

Fig. 2. Electric circuit model.

time step, the model generates the arrays of the cell voltages

Vi, SOC, as well as the current values of the model parameters.

The model adopted is the ECM shown in Fig. 2 with 2 RC

branches. This is a very common choice to simulate a Li-ion

battery with high accuracy in an HiL platform [9]. The left

hand side models the cell capacity Qn and evaluates the SOC

as the voltage across a linear capacitor with a capacity equal to

Qn (expressed in Coulomb) divided by 1V (this is equivalent

to the CC method). The cell voltage vM is obtained by the sum

of the open-circuit voltage VOC and a dynamic term, which

accounts for the internal ohmic resistance R0 and the double

layer (VRC1
) and diffusion (VRC2

) effects of the Li-ion battery

during charging and discharging (2 RC branches).

The model parameters change with manufacturing varia-

tions, ageing and operating conditions, such as temperature

and state of charge. In order to model the dependency of

the parameters on temperature and SOC, their values are

stored in 2D LUTs. The variability of the cell behaviour is

considered by setting the initial SOC, the model parameters,

the temperature and the capacity of each cell individually.

In this work, the LUTs have been populated with the values

extracted from pulsed current tests performed at different

temperatures and with different pulse amplitudes on a 1.5Ah
NMC cell [12]. The model is then generalized to simulate a

cell with the same technology but different capacity by pro-

portionally scaling the LUT values with the capacity, directly

for the resistive elements and inversely for the capacitive ones.

As an example of the model capability of reproducing the cell

voltage, Fig. 3 shows the comparison between the cell voltage

predicted by the model and the measured one, during a pulsed

current test. We note that the predicted cell voltage agrees very

well with the measured one, as the maximum and rms errors

are 132mV and 13.6mV, respectively.

The simulated traction battery consists of 96 series-

connected NMC cells with a capacity of 66.2Ah. The battery

nominal voltage is 355.2V. The EV model has been param-

eterized to resemble a commercial electric car. The model

parameters are reported in [7]. Fig. 4 shows the results of the

ArtMw150 driving cycle simulation. Together with the speed

profile, the electric power (calculated by the EV model), the

battery current and voltage (computed by the battery model)

are reported.

Time (h)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
3

3.25

3.5

3.75

4

4.25

V
o

lt
a

g
e

 (
V

)

Measured Model

Fig. 3. Model and measured voltages.

III. BATTERY STATE ESTIMATORS

This Section briefly describes the AMA and DEKF battery

state estimators [8]. They are both based on the ECM shown

in Fig. 2, but only one RC branch is used. This reduces the

computational complexity, while preserving a good accuracy,

especially in applications with fast transients. The ECM pa-

rameters are identified online in both approaches to track their

variations with the operating conditions and the ageing of the

battery.

AMA is a technique based on the Mix Algorithm for

SOC estimation [3] and the Moving Window Least Squares

(MWLS) method, applied to the AutoRegressive eXogenous

(ARX) representation of the ECM for online parameter iden-

tification of the ECM [13], [14]. The Mix Algorithm acts

as an observer by comparing the model output voltage to

the measured cell voltage. The resulting error is amplified

and used to correct the estimation of the SOC state variable,

computed using the CC method. The procedure to determine

the observer gain is discussed in [15]. The ARX model

is obtained by firstly linearising the OCV-SOC non-linear

0

40

80

120

160

S
p

e
e

d
 (

K
m

/h
)

-60

-30

0

30

60

90

120

P
e
 (

k
W

)

Time (min)

0 2 4 6 8 10 12 14 16 18
-200

0

200

400

600

800

C
u

rr
e

n
t

(A
)

310

330

350

370

390

410

V
o

lt
a

g
e

 (
V

)

Fig. 4. Speed, electric power, battery current and voltage during an ArtMw150
driving cycle.

relationship of the ECM around the time-varying cell operating

point and then by calculating the discrete-time relationship (3)

between the input samples u(k) and output samples y(k), i.e.,

between the current input and the cell terminal voltage output.

y(k) =− a1y(k − 1)− a2y(k − 2) + α0(1 + a1 + a2)

+ b0u(k) + b1u(k − 1) + b2u(k − 2)
(3)

The parameters [a1, a2, b0, b1, b2] are identified by applying

the LS method to a set of current and voltage samples in

a given time window, which is periodically shifted in time.

The ECM parameters [R0, R1, C1] are then extracted from the

coefficients of the ARX model [7].

In the DEKF technique, two cooperating Kalman Filters for

non linear systems are executed simultaneously: one for the

state and the other for the parameter estimation. The use of

the dual estimation, instead of a joint estimation (in which

only one Kalman Filter is used) reduces the state matrix

dimensions and may improve the estimation robustness [16].

The parameter evolution is described by the process equation

(4), which is used in combination with the measurement

equation (6), in order to build the first EKF. The state evolution

is instead represented by (5), which is again combined to the

measurement equation (6) to form the second EKF.

p(k + 1) = p(k) + χ(k), (4)

x(k + 1) = F(x(k), iL(k), p(k)) + ξ(k), (5)

vT(k) = G(x(k), iL(k), p(k)) + ψ(k). (6)

The measurement equation (6) is the same for both filters. In

the above equations, k is the discrete time, p is the parameter

vector, x = [SOC, VRC1
] is the battery state vector. χ, ξ and

ψ are the parameters, the state and the measurement noise

with zero mean and covariance matrices Σ
χ, Σ

ξ and Σ
ψ ,

respectively.

IV. FPGA IMPLEMENTATION OF THE AMA AND DEKF

BATTERY ESTIMATORS

FPGAs have proven their effectiveness in many industrial

applications. They are capable of high throughput, low latency

processing through parallelism and optimized data paths. The

flexibility of user-defined circuits enables the combination of

different data types and precisions, which improves perfor-

mance and reduces cost. An FPGA is also highly scalable for

design upgrade and system expansion [17].

The AMA and DEKF battery estimators are implemented

using the Altera design flow as illustrated in Fig. 5. Hard-

ware design starts in DSP Builder where the algorithm is

described in Simulink models and synthesized to low-level

hardware description. The design is optimized for performance

and resource by applying pipelining, time-division multiplex-

ing/folding and customizing precision. In the Qsys system

integration tool, the generated hardware components, such as

the AMA module and matrix processor in Fig. 6, are connected

to other components in the system, including a Nios II 32-

bit soft processor, JTAG and memory. A complete design

is synthesized and programmed for the target FPGA using

Simulink® /

MATLAB®

Algorithm

in ‘C’

Algorithm

using

DSP Builder

Nios II

Embedded Design

Suite

Qsys System

Integration
Quartus II

Software

FPGA

Model

System

Algorithm in

Software

Integrate with

Application Software

Optimize Algorithm

In Hardware
Integrate in

Hardware
Compile

Design

System

Placement

Fig. 5. Altera FPGA design flow.

(a) AMA (b) DEKF

Fig. 6. Block diagram of the implemented estimators.

Quartus II design software. For the DEKF implementation,

which includes application software running on Nios II, Em-

bedded Design Suite compiles the C software and runs the

compiled application on the FPGA. To support HiL simulation,

DSP Builder provides an interface to the System Console

system debugging tool. Through this interface, the Simulink

application can perform memory-mapped access to the design

running on the FPGA.

The AMA estimator is entirely built in hardware and is

provided with a memory mapped interface (Fig. 6(a)), which

can be used to integrate the module in a system on chip. This

interface consists of input and output registers, to write the

algorithm input values (i.e., cell voltage and current) and to

read the computed cell state (i.e., SOC and ECM parameters).

The DEKF is built on an architecture with a Nios II em-

bedded processor and a dedicated matrix processor, as shown

in Fig. 6(b). Nios II is a 32-bit soft-core processor which is

implemented in FPGA logic and is customizable for specific

application requirements. In this application, a floating-point

custom instruction IP component is included and supported by

the C compiler to accelerate standard floating point operations.

In simulation, Nios II uses JTAG to read from and write to the

Simulink application. The prediction phase of SOC estimation

and parameter identification are also performed on Nios II. To

improve performance, the correction phase is offloaded to the

matrix processor, which is a generic matrix processing engine

able to perform various matrix calculations using Fadeev and

matrix multiply-accumulate cores [18]. The matrix size is

programmable at run-time and a number of matrix calculations

can be scheduled in sequence.

TABLE II
ESTIMATOR RESOURCE USAGE

Resource AMA DEKF

Logic Elements 38 k/50 k (76%) 23 k/50 k (46%)
9-bit Multiplier 219/288 (76%) 39/288 (14%)
Memory bits 170 Kb/1638 Kb (10%) 230 Kb/1638 Kb (26%)

Execution time 34 µs (@100MHz) 33 µs (@100MHz)

The AMA and the DEKF hardware implementations have

been implemented in a low cost Altera MAX® 10 FPGA

(10M50DAF484C6GES device). A comparison of the FPGA

resource usage is shown in Table II. Both estimators fit in the

chosen device, but the DEKF uses fewer resources than the

AMA. They need a similar execution time to update both the

state and the parameters (the value in the table is obtained with

a clock frequency of 100MHz). Such a very short execution

time allows the same module to be used for estimating a large

number of cells in a time multiplexing fashion. The number of

cells affects the required memory inside the AMA and DEKF

modules (the memory bits figure reported in the table refers

to 12 cells).

V. SIMULATION RESULTS

The developed HiL platform has been used to assess the

performance of the hardware implementations of the AMA and

DEKF estimators. The sampling time is equal to 100ms, the

length of the moving window in the AMA is set to 90 s and the

noise covariance matrixes in the DEKF have been empirically

determined. The simulation selects one driving schedule from

Table I and repeats it until the battery becomes fully discharged

(i.e., SOC = 0). Even if the parameters, as well as SOC

initialisation and temperature, of each cell of the battery can

be set independently, the simulations described below have

been carried out with identical cells all starting from the full

charge state (i.e., SOC = 100%). Moreover, the temperature

of all the cells has been kept constant at 25 �C throughout all

the simulation. Thus, all the battery cells behave in exactly

the same way and consequently so do the estimators, which

are capable of handling up to 12 cells.

As an example, Fig. 7 shows the simulation results for

the UDDS and ArtMw150 cycles, which are representative

of urban and motorway driving, respectively. The ArtMw150

electric power is on average significantly higher than the

UDDS one, leading to a much shorter driving time. The driving

range is 93.3 km for the ArtMw150 cycle and 166.4 km for

the UDDS cycle. The SOC estimated by both algorithms is in

good agreement with the reference one evaluated by the HiL

battery model, apart from the SOC range 50% down to 25%,

in which the SOC is poorly observable from the cell voltage,

as discussed in previous works [8], [15]. In this range, AMA

provides a better SOC estimation than DEKF for the UDDS

cycle, whereas the opposite behaviour can be observed for the

ArtMw150 cycle.

Fig. 7 shows also the comparison between the identified

Ohmic resistance R0 and the time constant τ1 = R1C1 of the

single RC branch of the ECM used in the estimator and the

TABLE III
SOC ESTIMATION ERROR

Driving AMA DEKF
Schedule Max (%) rms (%) Max (%) rms (%)

UDDS 3.3 1.3 5.7 1.9
NEDC 3.7 1.4 5.4 1.8
HWFET 6.2 2.6 5.9 2.3
FTP 3.8 1.4 6.0 2.0
EUDC 5.4 2.3 7.6 2.7
ECE R15 1.2 0.4 3.8 1.3
WLTP class 3 4.6 2.0 5.6 2.2
ArtUrban 2.5 1.1 5.1 2.0
ArtRoad 5.5 2.2 7.1 2.5
ArtMw130 9.0 4.5 5.4 2.8
ArtMw150 9.5 4.5 3.5 1.9

corresponding values used in the HiL battery model (regarding

its time constants, the fastest one is considered). It is worth

noticing that R0 is well identified by both estimators, espe-

cially during the UDDS cycle. This is an important result, as

this parameter affects the accuracy of the model and provides

a good indication of the battery ageing. The identification of

the time constant seems to be more noisy.

The maximum and rms SOC errors for all driving schedules

are reported in Table III. We note that both estimators provide

a good SOC estimation for all the driving cycles, as the

rms error is always below the 4.5% and 2.8% for AMA

and DEKF, respectively. As a comparison, the SOC errors

reported in [4] are 4.1% and 9.2% for two different Li-

ion batteries subject to a current profile based on the electric

power measured on an EV driving the FTP cycle. Finally, we

observe that the characteristics of the driving cycle and thus

of the related battery current have a remarkable impact on

the performance of the state estimator. In more detail, AMA

provides better results for urban driving schedules, whereas

DEKF is more reliable for motorway driving schedules, such

as the HWFET, the ArtMw130, and ArtMw150.

VI. CONCLUSIONS

This paper has discussed the development of a HiL platform

for testing battery state estimators under realistic operating

conditions found in EV applications. The HiL platform con-

sists of a dynamic model of an EV and an ECM of the traction

battery. It is implemented in a MATLAB/Simulink® applica-

tion, which interacts with the estimator implemented on an

Altera MAX® 10, using a highly automated design flow, which

starts from describing the algorithm in a MATLAB/Symulink®

model. Two promising model-based estimators, the AMA and

the DEKF algorithm, have been implemented and tested using

the developed HiL platform. Simulation results show that both

estimators are suitable for battery state estimation in EVs,

providing good SOC estimation accuracy and reliable iden-

tification of the ECM parameter embedded in the estimator.

This work has demonstrated that FPGAs can be an effective

solution for hardware acceleration of battery state estimators,

so that a single low cost device can be used to estimate all the

cells of a battery module (typically consisting of 12 cells) or

-20

-10

0

10

20

30

40

50
UDDS

P
e
 (

k
W

)

0

20

40

60

80

100

S
o

C
 (

%
)

Reference AMA Dual EKF

0

0.5

1

1.5

2

2.5

R
0
 (

m
Ω

)

Time (h)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

50

100

150

τ
1
 (

s
)

-60
-40
-20

0
20
40
60
80

100
ArtMw150

P
e
 (

k
W

)

0

20

40

60

80

100

S
o

C
 (

%
)

0

0.5

1

1.5

2

2.5

R
0
 (

m
Ω

)

Time (h)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

τ
1
 (

s
)

Fig. 7. Behaviour of SOC and ECM parameters during an UDDS test (left-hand side) and an ArtMw150 test (right-hand side).

even all the cells in the traction battery (typically consisting

of 8 modules). Moreover, it has highlighted the importance

of assessing a battery state estimator for an EV battery under

a wide range of driving schedules, as its performance may

change with the current load profile of the battery in a

remarkable way. To the best of our knowledge, this is the

first time that this result is clearly shown.

REFERENCES

[1] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M.-Y. Chow, “Battery
Management System: An Overview of Its Application in the Smart
Grid and Electric Vehicles,” IEEE Ind. Electron. Mag., vol. 7, no. 2,
pp. 4–16, jun 2013.

[2] G. L. Plett, “Extended Kalman filtering for battery management
systems of LiPB-based HEV battery packs: Part 3. State and parameter
estimation,” J. Power Sources, vol. 134, no. 2, pp. 277–292, aug 2004.

[3] F. Codeca, S. M. Savaresi, and G. Rizzoni, “On battery State of Charge
estimation: A new mixed algorithm,” in 2008 IEEE Int. Conf. Control

Appl. IEEE, sep 2008, pp. 102–107.

[4] Y. He, W. Liu, and B. J. Koch, “Battery algorithm verification and
development using hardware-in-the-loop testing,” J. Power Sources,
vol. 195, no. 9, pp. 2969–2974, may 2010.

[5] G. Avvari, B. Pattipati, B. Balasingam, K. Pattipati, and Y. Bar-Shalom,
“Experimental set-up and procedures to test and validate battery fuel
gauge algorithms,” Appl. Energy, vol. 160, pp. 404–418, dec 2015.

[6] H. Wu, “Hardware-in-loop verification of battery management system,”
in 2011 4th Int. Conf. Power Electron. Syst. Appl. IEEE, jun 2011,
pp. 1–3.

[7] F. Baronti, W. Zamboni, N. Femia, H. Rahimi-Eichi, R. Roncella,
S. Rosi, R. Saletti, and M.-Y. Chow, “Parameter identification of Li-Po
batteries in electric vehicles: A comparative study,” in 2013 IEEE Int.

Symp. Ind. Electron. IEEE, may 2013, pp. 1–7.

[8] R. Morello, W. Zamboni, F. Baronti, R. D. Rienzo, R. Roncella,
G. Spagnuolo, and R. Saletti, “Comparison of State and Parameter
Estimators for Electric Vehicle Batteries,” in IECON 2015 - 41st Annu.

Conf. IEEE Ind. Electron. Soc., 2015, pp. 5433–5438.
[9] H. Dai, X. Zhang, X. Wei, Z. Sun, J. Wang, and F. Hu, “Cell-BMS

validation with a hardware-in-the-loop simulation of lithium-ion battery
cells for electric vehicles,” Int. J. Electr. Power Energy Syst., vol. 52,
pp. 174–184, nov 2013.

[10] “United States Environmental Protection Agency (U.S. EPA).” [Online].
Available: http://www3.epa.gov/

[11] “United Nations Economic Commission for Europe (UNECE).”
[Online]. Available: http://www.unece.org/info/ece-homepage.html

[12] F. Baronti, G. Fantechi, E. Leonardi, R. Roncella, and R. Saletti,
“Enhanced model for Lithium-Polymer cells including temperature
effects,” in IECON 2010 - 36th Annu. Conf. IEEE Ind. Electron. Soc.

IEEE, nov 2010, pp. 2329–2333.
[13] H. Rahimi-Eichi, F. Baronti, and M.-Y. Chow, “Modeling and

online parameter identification of Li-Polymer battery cells for SOC
estimation,” in 2012 IEEE Int. Symp. Ind. Electron. IEEE, may 2012,
pp. 1336–1341.

[14] ——, “Online Adaptive Parameter Identification and State-of-Charge
Coestimation for Lithium-Polymer Battery Cells,” IEEE Trans. Ind.

Electron., vol. 61, no. 4, pp. 2053–2061, apr 2014.
[15] F. Baronti, R. Roncella, R. Saletti, and W. Zamboni, “FPGA Implemen-

tation of the Mix Algorithm for State-of-Charge Estimation of Lithium-
Ion Batteries,” in IECON 2014 - 40th Annu. Conf. IEEE Ind. Electron.

Soc., 2014, pp. 5641–5646.
[16] R. Restaino and W. Zamboni, “Rao-blackwellised particle filter for

battery state-of-charge and parameters estimation,” in IECON 2013 -

39th Annu. Conf. IEEE Ind. Electron. Soc. IEEE, nov 2013, pp.
6783–6788.

[17] J. J. Rodriguez-Andina, M. D. Valdes-Pena, and M. J. Moure,
“Advanced Features and Industrial Applications of FPGAsA Review,”
IEEE Trans. Ind. Informatics, vol. 11, no. 4, pp. 853–864, aug 2015.

[18] D. Pritsker, “Hybrid implementation of Extended Kalman Filter on an
FPGA,” in 2015 IEEE Radar Conf. IEEE, may 2015, pp. 0077–0082.

