
This item was downloaded from IRIS Università di Bologna

(https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Manuel Schmuck, Luca Benini, and Abbas Rahimi. 2019. Hardware

Optimizations of Dense Binary Hyperdimensional Computing:

Rematerialization of Hypervectors, Binarized Bundling, and

Combinational Associative Memory. J. Emerg. Technol. Comput.

Syst. 15, 4, Article 32 (October 2019), 25 pages.

The final published version is available online at:

https://doi.org/10.1145/3314326

Rights / License:

© ACM 2019. This is the author’s version of the work. It is posted here by

permission of ACM for

your personal use. Not for redistribution.

https://cris.unibo.it/
https://doi.org/10.1145/3314326

Hardware Optimizations of Dense Binary Hyperdimensional
Computing: Rematerialization of Hypervectors, Binarized
Bundling, and Combinational Associative Memory

MANUEL SCHMUCK, ETH Zürich

LUCA BENINI, ETH Zürich and Università di Bologna

ABBAS RAHIMI, ETH Zürich

Brain-inspired hyperdimensional (HD) computing models neural activity pa�erns of the very size of

the brain’s circuits with points of a hyperdimensional space, that is, with hypervectors. Hypervectors are

D-dimensional (pseudo)random vectors with independent and identically distributed (i.i.d.) components

constituting ultra-wide holographic words: D = 10, 000 bits, for instance. At its very core, HD computing

manipulates a set of seed hypervectors to build composite hypervectors representing objects of interest. It

demands memory optimizations with simple operations for an efficient hardware realization. In this paper,

we propose hardware techniques for optimizations of HD computing, in a synthesizable open-source VHDL

library, to enable co-located implementation of both learning and classification tasks on only a small portion

of Xilinx® UltraScale™ FPGAs: (1) We propose simple logical operations to rematerialize the hypervectors on

the fly rather than loading them from memory. �ese operations massively reduce the memory footprint by

directly computing the composite hypervectors whose individual seed hypervectors do not need to be stored

in memory. (2) Bundling a series of hypervectors over time requires a multibit counter per every hypervector

component. We instead propose a binarized back-to-back bundling without requiring any counters. �is

truly enables on-chip learning with minimal resources as every hypervector component remains binary

over the course of training to avoid otherwise multibit components. (3) For every classification event, an

associative memory is in charge of finding the closest match between a set of learned hypervectors and a

query hypervector by using a distance metric. �is operator is proportional to hypervector dimension (D), and

hence may take O(D) cycles per classification event. Accordingly, we significantly improve the throughput

of classification by proposing associative memories that steadily reduce the latency of classification to the

extreme of a single cycle. (4) We perform a design space exploration incorporating the proposed techniques

on FPGAs for a wearable biosignal processing application as a case study. Our techniques achieve up to 2.39×
area saving, or 2337× throughput improvement. �e Pareto optimal HD architecture is mapped on only 18340

configurable logic blocks (CLBs) to learn and classify five hand gestures using four electromyography sensors.

CCS Concepts: •�eory of computation→ Random projections and metric embeddings; Online learn-

ing theory; Active learning; •Computer systems organization → System on a chip; Embedded hard-

ware; Neural networks; •Hardware → Hardware accelerators;

Additional Key Words and Phrases: Hyperdimensional computing, on-chip learning, FPGA, rematerialization,

binarized temporal bundling, single-cycle associative memory, electromyography, biosignals

1 INTRODUCTION

Hyperdimensional (HD) computing [13, 15] is a brain-inspired computational approach based
on the understanding that brains compute with pa�erns of neural activity that are not readily
associated with scalar numbers. In fact, the brain’s ability to calculate with numbers is feeble.
However, due to the very size of the brain’s circuits, we can model neural activity pa�erns with
points of a hyperdimensional space, that is, with hypervectors. When the dimensionality is in
the thousands, operations with hypervectors create a computational behavior with remarkable
properties [11]. HD computing builds upon a well-defined set of highly parallel operations with

random hypervectors, is extremely robust in the presence of failures, and offers a complete com-
putational paradigm that is easily applied to many learning applications [29]. Examples include
analogy-based reasoning [14], latent semantic analysis [16], language recognition [10, 32], text
classification [23], speech recognition [8, 34], physical activity prediction [35, 36], robot learn-
ing by demonstration [19, 24], and several biosignal processing tasks such as electromyography
(EMG) [18, 21, 22, 28], electroencephalography (EEG) [31, 33], electrocorticography (ECoG) [1],
and in general ExG [30].
In contrast with traditional approaches, learning in HD computing is fast and computationally

balanced with respect to classification by reusing the same algorithmic and architectural constructs
for both modes of operation. Its learning is not iterative and thus requires far fewer operations
than other approaches (see [30] for an overview). Another advantage of HD computing is the
simplicity of its basic operations, which is an important factor for energy efficiency. For instance,
HD computing achieves 2× lower energy consumption at iso-accuracy when compared to a highly-
optimized support vector machine (SVM) with fixed-point operations on a commercial embedded
ARM Cortex M4 processor for an EMG classification task [22]. In what follows, we brief these basic
operations.

At its very core, HD computing is all about generating, manipulating, and comparing hypervec-
tors as ultra-wide words. As the first step, D-dimensional hypervectors are initially generated with
independent and identically distributed (i.i.d.) components. Second, these seed hypervectors are
manipulated to construct composite hypervectors, as richer representations, with componentwise
arithmetic operations by needing to communicate with only a local component or an immediate
neighbor. By using dense binary codes for hypervectors [12], the arithmetic operations simply
involve bitwise XOR, shi� (or rotate), and majority gates [32]. Finally, the constructed hypervec-
tors are compared for similarity using a distance metric whose computation involves a reduction
operator proportional to the hypervector dimension (D) [9, 32]. See Section 2 for details. �ese
operators—at the basis of both learning and inference (Section 3)—demand a memory-centric
architecture for efficient and local ultra-wide word processing. Emerging nanotechnologies with
dense 3D integration can provide a natural fit [20, 39, 40].
In this paper, we propose hardware techniques to optimize the aforementioned operators to

build an efficient acceleration engine on an FPGA. As a result of our hardware optimizations
(Section 4), we provide a synthesizable VHDL library1 of fully configurable modules exploring
trade-offs between area and throughput of the operators. Our contributions are as follows:

(1) We propose a generic hypervector manipulator (MAN) module as a fully combinational logic
consisting of OR-XOR gates and preprogrammed connections. �eMAN module substitutes the
expensive memory storage for maintaining seed hypervectors with cheaper logical operations to
rematerialize them. Hence, representations of composite hypervectors are constructed directly by
rematerializing the seed hypervectors as a consequence of reusing the generic MAN modules that
form a combinational network architecture without requiring any memory storage.
(2) �e arithmetic operations of HD computing with dense binary code exhibit their simplest

form by performing local and bitwise operations on binary components. �is however does not
hold for the majority gate when it is applied to bundle a series of hypervectors over time, i.e.,
among different training examples. Implementation of the majority gate requires to maintain
intermediate (i.e., partially bundled) hypervector representation using a set of D multibit counters—
every counter counts the number of 1s in a specific dimension. We rather reuse the generic MAN
module that replaces the multibit hypervector components with binarized hypervector components
by incrementally applying an approximate majority gate for every training example. Such a

1�e library is open-source and available at: github.com/eardbi/hd-vhdl-library

2

binarized back-to-back bundling enables the representational system to continuously stay in the
binary space that is essential for efficient on-chip learning during the course of online learning.
(3) �e common denominator of all architectures of HD computing is the extensive use of

distance computation in the associative memory that typically takes O(D) cycles per every event
of classification. We propose associative memories to significantly reduce the classification latency
to single cycle.
(4) We perform a design space exploration of our library modules for an application which

recognizes hand gestures from four EMG senors (Section 5). It shows that functionally equivalent
HD architectures can be composed achieving up to 2.39× area saving, or 2337× throughput improve-
ment. �e Pareto optimal HD architecture is fully synthesized on only 18340 CLBs of the Xilinx®

UltraScale™ FPGAs, and shows simultaneous 2.39× area and 986× throughput improvements
compared to a baseline HD architecture.

2 BACKGROUND

HD computing is rooted in the observation that key aspects of human memory, perception and
cognition can be explained by the mathematical properties of hyperdimensional spaces, and that
a powerful system of computing can be built on the rich algebra of hypervectors [13]. A further
motivation is the fact that brains compute with pa�erns of neural activity that are not readily
associated with numbers. In fact, recognizing the very size of the brain’s circuits, we can model
neural activity pa�erns with points in a hyperdimensional space. Computing in hyperdimensional
space is understood partly in terms of the linear algebra and probability of artificial neural nets,
and partly in terms of the abstract algebra and geometry of hyperdimensional spaces. Groups,
rings, and fields over hypervectors become the underlying computing structure, with permutations,
mappings, and inverses as primitive computing operations, and with randomness as a way to label
new objects and entities.
Hypervectors are D-dimensional, holographic, and (pseudo)random with i.i.d. components. It

means that the contained information in a hypervector is distributed equally over allD components:
neither a component nor a subset of them have a specific meaning, hence the information degrades
in relation to the number of failing components irrespective of their position. �e high dimensionality
yields a huge number of different, nearly orthogonal hypervectors in such space [11]. �ey can
be mathematically manipulated for solving cognitive tasks, e.g., Raven’s progressive matrices [4],
analogical reasoning [14], and practical learning and classification tasks [7, 8, 10, 18–24, 28, 29,
31–36, 40]. Examples of such computing include Holographic Reduced Representation [25, 26],
Binary Spa�er Code [12], Multiply-Add-Permute architecture [5], Random Indexing [16], and
Semantic Pointer Architecture Unified Network [3], collectively referred to as Vector Symbolic
Architecture [6]. �ey differ in the type of components, and the types of operations, however, the
key properties are shared by hypervectors of many kinds, all of which can serve as the computational
infrastructure. To ease the hardware realization, we focus on Binary Spa�er Code (BSC), where the
components of hypervectors are binary and dense, meaning the probability of having a 1 or a 0 is
equal (p = 1/2) [12].

2.1 Measure of Similarity

Using BSC, {0, 1}D , the similarity between two hypervectors is given by the number of components
at which they differ, the so-called Hamming distance. We use the normalized version of this metric
by dividing by D denoted as: d(X ,Y) : {0, 1}D × {0, 1}D → [0, 1] to express the distance on a real
scale of 0 to 1. Figure 1 shows the normalized Hamming distance distribution of hypervectors in
D-dimensional spaces where D ∈ {100, 1000, 10000}. As we go to higher dimensions from D = 100

3

to D = 10, 000, we observe an outstanding property: most points are D/2 bits apart from each other,
which yields a normalized Hamming distance of d ≈ 0.5, and stands for two nearly orthogonal
hypervectors. �is stems from the binomial distribution for p = 1/2 and n = D, where D/2 is the
mean. Correlated hypervectors yield d ≈ 0 whereas d ≈ 1 implies anti-correlation [13].

Orthogonality Condition. When approximating the discrete binomial distribution with the con-

tinuous normal distribution, its standard deviation is
√
D/2. According to the normal distribution,

≈ 68.2% of the space lies within one standard deviation from the mean or within
√
D ± 1 standard

deviations from a point in the hyperdimensional space [11]. If we increase the range to 6 standard
deviations, already ≈ 99.9999998% of the space lies within that range. �is marks our orthogonality

threshold as dor thoдonality =
√
D ·(

√
D±6)

2·D which states that with a chance of ≈ 99.9999998% two
random hypervectors exhibit a normalized Hamming distance in the aforementioned range. For
D = 10, 000 this yields a range between 0.47 and 0.53 [11]. In other words, almost all the space lies
at approximately the mean distance of [0.47,0.53] from a chosen random point; this implies that for
any significant deviation from distance 0.5, the distribution quickly becomes very sparse.

2.2 HD Arithmetic Operations

�e HD algorithm starts by choosing a set of seed hypervectors as initial items. �ey are stored in
a so-called item memory (IM) as a symbol table or dictionary of all the hypervectors defined in the
system. �ey stay fixed throughout the computation, and they serve as seeds from which further
representations are made. HD computing builds upon a well-defined set of operations with the
seed hypervectors [13]. �ese arithmetic operations are used for encoding and decoding pa�erns.
�e power and versatility of arithmetic derives from the fact that addition and multiplication form
an algebraic field, and permutation of hypervector components takes it beyond both arithmetic
and linear algebra.

Addition (Bundling). �e sum of binary hypervectors is defined as the componentwise majority
function (also called the median operator) with ties broken at random. �is means, when adding
an even number of hypervectors, in case of disagreement for a component (equal number of 1s

0 0.2 0.4 0.6 0.8 1

Normalized Hamming Distance

0

20

40

60

80

P
ro

b
a
b
ili

ty

Distance Distribution of Hypervectors (PDF)

D=10

D=1000

D=10000

Fig. 1. Normalized Hamming distance distribution of hypervectors in D-dimensional spaces. As the dimen-

sionality increases, the standard deviation (1/(2
√
D)) of the normalized distance distribution between two

random hypervectors decreases. This implies that the probabilty of two random hypervectors lying about
d ≈ 0.5 apart from each other increases with the dimension D.

4

and 0s), the majority is randomly chosen. It is denoted as A ⊕ B. �e sum of two hypervectors
stores information from both hypervectors, due to the mathematical properties of vector addition,
therefore the operation is also called bundling. Bundling two hypervectors yields a hypervector
which is similar to both of them, hence it is well-suited for representing sets or multisets. However,
when breaking ties at random, the bundling operation becomes non-causal. Furthermore, the
bundling is commutative but not associative and is only approximately invertible.

Multiplication (Binding). �eproduct of two binary hypervectors is defined as the componentwise
XOR or “addition modulo 2”, and is denoted as A ⊗ B. �e resulting hypervector is dissimilar
(orthogonal) to both its constituent hypervectors, which is why multiplication is well-suited for
binding two hypervectors. Binding is commutative, associative and distributes over bundling. �e
operation can be inverted and also preserves distances between hypervectors, meaning two similar
hypervectors (a�er binding) are mapped to equally similar ones.

Permutation. �e third operation, denoted ρ(A), is the permutation operation, which shuffles
a hypervector’s components by rotating it in space. It is implemented as a cyclic shi� by one
position. Permuting a hypervector produces a dissimilar, pseudo-orthogonal hypervector, which
can be exploited to bypass the commutativity of the other operations. �is is crucial when storing
sequences, where e.g., a-b-c should be distinguishable from b-c-a. Permutation is invertible and
preserves distances. It distributes over both bundling and binding.
�ese three operations can be combined to encode structures such as variable/value records,

sequences, and lists—essentially any data structure. For example, let us consider three variables x , y,
z and their values a, b, c . Each of them is mapped to a (random) hypervector X , Y , A, B etc., which
are stored in the IM. �en, the entire of a record is encoded to a single hypervector by binding each
value to its variable and bundle them to form the holistic record: R = (X ⊗ A) ⊕ (Y ⊗ B) ⊕ (Z ⊗ C).
To find the value of x , we unbind the record with the inverse of X (which is X itself), Ã = X ⊗ R

which gives us a hypervector Ã as noisy version of A. A�er comparing it with the hypervectors
that are stored in the AM, we find A to be the most similar one (i.e., the lowest Hamming distance),
and thus the sought value.

3 LEARNING AND CLASSIFYING MULTICHANNEL BIOSIGNALS WITH HD

COMPUTING

In this section, we describe how to use HD computing for learning and classification tasks. We
focus on wearable biosignal processing applications with multichannel noisy sensors for which HD
computing achieves faster training and lower energy consumption and memory than SVMs [1, 22].
One application example includes recognizing hand gestures from a stream of EMG sensors to
control a prosthetic device [22, 28]. �e performance of HD computing however depends on good
design of a network architecture that demands a reconfigurable (FPGA) fabric to efficiently arrange
the HD primitive operations based on the given task. We present a generic architecture to project
multichannel sensory inputs from original representation to hyperdimensional space, where the
arithmetic operations are combined to learn and classify examples. While this paper focuses on
EMG signals, other streaming multichannel sensor data such as ECoG [1], EEG [31, 33], ExG [30],
speech [8, 34], smell [7] can be equally applicable.

�e dataset [28] used in this paper is based on a four-channel EMG data acquisition, among five
subjects, for the most common hand gestures in daily life. �e selected gestures are: closed hand,
open hand, 2-finger pinch, point index, and the rest position. �e recording is composed of 10 trials
of every gestures three seconds each. We use 25% of this dataset for training that can be performed

5

⊕
Mapping and Spatial encoder

ρ

N-gram[t]

ρ(R[t-1])
ρ ρ ρN-1(R[t-N+1])R[t]

Temporal encoder

…

…

Signal

Train / Test

Label

Sv[t]

‘Channel1’

⊗
C1

Quantization:

q = 21 levels
CIM

IM

Sv[t]

‘Channel2’

⊗
C2

Quantization:

q = 21 levels
CIM

IM

Signal ⊗ Associative

Memory

(AM)

Fig. 2. Example of an HD architecture for hand gestures learning and classification from EMG biosignals.

online. �e gestures are sampled at 500Hz, followed by a low pass filter, and an envelope signal
extraction; [28] provides further details about the setup.

3.1 HD Architecture

As shown in Figure 2, an HD architecture consists of three main modules: mapping and spatial
encoder, temporal encoder, and associative memory. �e mapping and encoding modules intend
to capture information that can be extracted from the inputs (i.e., the enveloped EMG signals),
into a hypervector representing a gesture. Gesture hypervectors, extracted from various trials, are
bundled to form a prototype hypervector representing a class of gestures. �e associative memory
(AM) stores a prototype hypervector for every class, which contains the encoded information of all
labelled inputs during the training phase. During inference, classifying input data is carried out
by comparing the unlabelled encoded hypervectors with all stored prototype hypervectors, and
returning the label of the most similar one.

3.2 Mapping and Spatial Encoder

First, the analog EMG signals have to be quantized to q discrete levels, where q indicates the
resolution of the signal. In analogy to the record example in the previous section, the different
EMG channels represent the variables or fields, and the discretized signals represent the values of
the variables. All channels are treated as separate and independent, therefore we allocate each one
a random and thus orthogonal hypervector, which are fixed throughout the computation in the IM:
C1 ⊥ C2 ⊥ C3... ⊥ Cn . Figure 3a shows the IM with four channels.

Each of the channel variables has a corresponding value, i.e., the discretized signals. When
mapping quantities from the discrete number space to the hypervector space, we want to retain
their similarity: e.g., with a resolution of q = 21 levels, a value of 5 is only slightly larger than a value
of 4, hence their allocated hypervectors shall not be orthogonal [28]. For mapping such quantized
or even continuous values into hypervectors various techniques can be used including thermometer
codes, locality-sensitive hashing, or generally, random projection [27]. We use the following simple
method to map the values to a continuous vector space. A random seed hypervector is taken
for the smallest value and the hypervectors for the other levels are generated such that they are
gradually further away from the seed up to the largest value, whose hypervector is orthogonal
to the seed. We can accomplish this by randomly choosing D/2 components of the seed and split
them into q− 1 groups which equally contain (D/2)/(q− 1) components. �e hypervectors are then
generated from the seed by taking one group a�er the other and flipping their components. For
the last hypervector, exactly D/2 components are flipped, making it orthogonal to the seed. �ese

6

generated signal hypervectors are denoted by Sv wherev ∈ [0,q−1], that are stored in the so-called
continuous item memory (CIM). Figure 3b illustrates a CIM with q = 21: d(Sn , Sn+i) = 0.5 · i

q−1
hence d(S0, Sq−1) = 0.5 .

As mentioned in Section 2.2, we aim to bind the values to their variables and bundle them to form
a holistic record (R) to capture spatial information between all channels. �e signal hypervector of
a channel at time t , is denoted by Sv [t]wherev ∈ [0,q− 1]. Hence, a record is computed for a given
time-aligned sample of all channels: R[t] = (C1⊗Sv [t])⊕(C2⊗Sv [t])⊕(C3⊗Sv [t])⊕(C4⊗Sv [t]). As
shown in Figure 2, this record contains the signal information of all channels, while distinguishing
the source of the signals (i.e., the channels).

3.3 Temporal Encoder

We can encode sequences by using the permutation operation ρ. Hence, we can capture not only
the spatial correlation across the channels, but also the temporal correlation between subsequent
samples. We call a sequence of N record hypervectors as an N -gram hypervector.
As already mentioned, a sequence of hypervectors can be encoded uniquely by permuting the

hypervectors before binding them. �e sequence is encoded by rotating the first spatial record
N −1 times, the second N −2 times, and the (N −1)th only once. �e N th hypervector is untouched
(not permuted). �ese new hypervectors are finally bound to an N -gram (see Figure 2). For large N -

grams, this becomes: N -gram[t] =∏N−1
i=0 ρi (R[t − i]). An N -gram contains the spatial information

of N subsequent samples with different timestamps, making it a spatiotemporal hypervector.

3.4 Learning and Classification in Associative Memory

In a typical training se�ing, a set of labelled examples is provided per every class. By encoding
the sensory data, a current gesture example is represented by an N -gram[t] hypervector. �e HD
architecture learns from these N -gram hypervectors that are produced over time. A number of
N -gram hypervector examples (e.g., k) with the same label are bundled to produce a prototype
hypervector representing the class of interest: PLabeli = N -gramLabeli

[t] ⊕ ... ⊕ N -gramLabeli
[t + k].

Once training is done, the binarized prototype hypervectors are stored in the AM as learned pa�erns.
�is temporal bundling of N -grams over the course of training requiresD counters and thresholders
to implement the majority function.

CH1 CH2 CH3 CH4

Item Memory

CH4

CH3

CH2

CH1

It
e
m

 M
e
m

o
ry

Normalised Hamming Distance

0

0.1

0.2

0.3

0.4

0.5

(a) The IM with four channels

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

Continuous Item Memory

21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

C
o
n
ti
n
u
o
u
s
 I

te
m

 M
e
m

o
ry

Normalised Hamming Distance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) The CIM with q = 21 levels

Fig. 3. Similarity, depicted as a heatmap, between hypervectors of the IM (a) and the CIM (b).

7

As soon as the AM is trained for each class, it can identify the corresponding class of an unlabelled
N -gram, which is called a query hypervector. More specifically, the AM computes the Hamming
distance between the query hypervector and each of its prototype hypervector. It then selects the
highest similarity and returns its associated label. As shown in Figure 2, the same construct is
reused during inference, the only difference is that during training the prototypes are wri�en into
the AM while during inference they are read and compared with the query.

4 HARDWARE OPTIMIZATIONS OF DENSE BINARY HD COMPUTING

In this section, we present the main contributions of the paper. We present our techniques to
optimize hardware realization of HD computing suitable for CMOS fabrics. HD computing demands
a large amount of bits to be stored for each data item that further poses a memory bandwidth issue,
for instance the IP RAMs of FPGAs are optimized for usually no more than 72 bits in parallel [41].
Storing or loading one hypervector in this fashion would require hundreds of cycles. Accordingly,
optimizing the architecture of HD computing should focus on minimizing the number of stored
hypervectors. Furthermore, the bitwise operations need to be kept as simple as possible, since
they are replicated over the whole dimension of a hypervector. Most architectural constructs are
shared among various HD classifiers and thus the optimizations virtually concern all HD computing
applications.
As a result of various hardware optimizations, we introduce a synthesizable VHDL library of

fully configurable modules which comprises different implementations. �e VHDL library consists
of interchangeable modules including three types of spatial encoder, two types of temporal encoder,
and three types of AM, that are listed in Table 1. A functioning HD architecture can be configured
by connecting one type of each of the modules in series. �e modules operate independently and
pass hypervectors a�er synchronizing via handshake signals. �ey all differ greatly in area and
throughput, where the number of cycles needed to process a data item (CPDI) has the biggest
influence on throughput. Table 1 shows the CPDI for the different modules.

4.1 Mapping Multichannel Sensory Inputs

Mapping the input data of more than one channel to the hyperdimensional space can be done in a
parallel fashion as shown in Figure 2. �e required memory for the IM and the CIM is nc × q × D

where nc is the number of channels, q is the quantization of input signal, and D the hypervector
dimension. For the EMG task (see Figure 2) this would be equal to 840 kbits to only store the seed
hypervectors. �is poses limitations when a large number of channels [21] or input quantization is
used. A first step is to trade the high throughput against a smaller memory footprint by sharing
the resources.

Table 1. Cycles per data item (CPDI) orders of the different library modules.

(a) Spatial encoder modules.

Module CPDI

LUT O(1)
CA O(nchannels)
MAN O(nchannels)

(b) Temporal encoder modules.

Module CPDI

BC O(1)a
B2B O(1)

a�is holds only for inference. During

training, the order is of the number of

training samples.

(c) Associative memory modules.

Module CPDI

BS O(D)
CMB O(1)
VS O(nclasses)

8

Fig. 4. The hypervector manipulator (MAN) module and its symbol representation. The connectivity matrix
serves as an example. The other symbols used throughout this paper can be found in Figure 5.

Combinational

Black Box

Sequential

Black Box

Register
Binding (XOR) Bundling (Majority Gate)

1-Bit Signal

Multi-Bit Signal

Hypervector

Fig. 5. The symbols used for schematic drawings throughout this paper.

4.1.1 Rematerialization: Replacing CIM with MAN. A single CIM implemented as a lookup table
requires q × D bits of storage. To reduce this memory footprint we can exploit the holographic
nature of HD representation: the individual bits in a hypervector do not represent anything. What
is important is the relation or similarity between two hypervectors. A hypervector can be altered
or “manipulated” to a different hypervector by switching certain bits as a function of the similarity
that we want to establish. For example, to obtain an orthogonal hypervector, we have to switch half
of its bits (which ones does not ma�er), whereas to obtain a similar hypervector, we only switch a
(small) portion of the bits (see Section 2.1).

Manipulating hypervectors in a controlled manner can replace complex constructs throughout
the whole architecture. For this purpose, a generic hypervector manipulator (MAN) module is
designed (Figure 4), which can be configured in depth and width, and is fixed by a connectivity
matrix, which determines the connections between wires. An example connectivity matrix used
for mapping is shown in Figure 7.

Every cell of the connectivity matrix affects, whether a certain bit of the input hypervector can
be switched by a bit (or even several bits) of the input manipulator. �eMAN module is a simple
combination of OR and XOR gates. If a cell (m,n) of the connectivity matrix is set to 1, them-th bit
of the input manipulator can affect the n-th bit of the input hypervector: when them-th bit of the
input manipulator is logically high it toggles the n-th bit of the input hypervector. �e number of
1s in a row of connectivity matrix also represents how dissimilar the output hypervector will be to

9

the input hypervector when the input manipulator bit of that row is logical high: the fewer the
number, the more similar.
As described in Section 3.2, “close” input values are mapped to similar hypervectors using a

CIM. �is CIM can be replaced by a MAN module that produces similar hypervectors according to
the input value. First, the quantized input value in binary representation is mapped to an s-hot

representation (by e.g., a small lookup table), where s is the input/signal value (see Figure 6).
�is s-hot code serves as the input manipulator, and gradually switches more and more bits of
a seed input hypervector as the input value goes higher, and eventually produces an orthogonal
hypervector when all q bits are hot (q is the quantization). �is allows to rematerialize desired
hypervectors from a seed by keeping track of the input value.
Which bits are switched is chosen randomly (without the possibility to choose a bit twice),

only the number of bits per “input quantum”—represented by a row in the connectivity matrix—is
determined. It is equal to D/2/(q − 1). Moreover, every input hypervector bit can only be switched
by one input manipulator bit. �is results in a MAN module containing only XOR gates. �e input
hypervector that is manipulated is a constant seed hypervector (S0) which represents the lowest
input value, or 0-hot. �is seed hypervector is simply hardwired connections to source and ground.
Summing up, the whole continuous item memory, or CIM, is replaced with a rather small s-hot
lookup table memory of size q × q, some wires, and D/2 XOR gates.

4.1.2 Reproducing IM with Cellular Automata. As mentioned in Section 3.2, we account for the
spatial multichannel information to determine which channel the data originated from. �is is done
by binding a channel hypervector, that is unique for every channel, with the signal hypervector.
�e channel hypervectors are typically stored in the IM with a memory of size nc × D. When
mapping the input data in the parallel fashion, the IM can be replaced by hard wires tied to source
and ground since the channel hypervectors are constant. However, with the serial mapping, they
need to be stored in the IM.
One way to replace the IM is by using a one-dimensional cellular automaton (CA) with a

neighborhood of 3, applying rule 30 [38]. �is rule exhibits chaotic behaviour that is well-matched
to produce a sequence of (quasi-)random hypervectors. When using a CA with D cells and a
random hypervector as initial state, it generates (quasi-)random and orthogonal hypervectors every
cycle (see Figure 8). By rese�ing the CA registers, the same sequence can be reproduced (i.e.,

s-hot

LUT

Ss: Mapped

Signal Hypervector

s: Signal Value

S0: Signal Hypervector

(Hardwired Seed)

q

Fig. 6. Data dependency graph of the MAN module to replace a CIM.

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

1

2

3

4

5

6

7

Fig. 7. Example of a connectivity matrix to map an input with q = 8 to a hypervector of dimension D = 64.

10

rematerialized) over and over. �is allows us to replace the IM (see Figure 9) by only defining
the initial state of the CA as a seed hypervector and le�ing it generate the other orthogonal
hypervectors2 for the rest of the channels. �anks to the chaotic behaviour of the CA, this approach
works for virtually any number of channels: clocking the CA for 500 cycles produces the channel
hypervectors for 500 channels only from the initial state hypervector (see Figure 8).

Although the gate logic required for each cell in CA is quite simple—only consisting of 3 inverters,
4 two-input AND gates and 2 two-input OR gates—it is still replicated D times. When looking for a
solution to generate orthogonal hypervectors at relatively low costs, CA are an excellent choice,
whereas when looking for an optimal solution for spatial encoding, further improvement can be
done as described in the following section.

4.1.3 Replacing Both IM and CIM with MAN. �e MAN module in Section 4.1.1 can also be
applied to replace the IM. Instead of storing the channel hypervectors, their pa�erns can be
incorporated in the connections of the MAN module. �e connectivity matrix in this case is
identical to an IM and has an average of D/2 1s per row as shown in Figure 10. Feeding signal
hypervector to the second MAN module and se�ing one bit of its input manipulator logical high at
a time yields the same outcome as binding the signal hypervector with a channel hypervector (see
Figure 13c).
�e secondMAN module (replacing the IM) requires more gates due to its dense connections

than the first one (replacing the CIM). �e chance that a channel hypervector switches a certain
bit is 0.5 (the probability of having a 1 in a component), hence this yields an average of nc/2
connections per column in the connectivity matrix (see Figure 10) which have to be OR-ed before

2In case the “randomness” of rule 30 is not enough, the neighbourhood can be extended to form a more complex CA as in

[37].

Fig. 8. A heatmap showing the orthogonality (normalizedHamming distance) between hypervectors produced
by the CA (rule 30) over 500 cycles. Each dot (x ,y) on the graph shows the Hamming distance between the
hypervector produced in cycle x and the one produced in cycle y. As shown in the minimum and maximum
values of the color scale on the right, the orthogonality condition from Section 2.1 is met.

11

Cellular

Automaton

Bound Hypervector

C1: Channel Hypervector

(Hardwired Seed)

Mapped

Signal Hypervector

Fig. 9. Data dependency graph of the spatial encoding architecture with the cellular automaton (CA).

going into the XOR gate. �is operator per hypervector bit is replicated D times to replace the
whole IM.

4.2 Spatial Encoding

�e hypervectors that contain information of the input signal values and the channels should be
bundled in the spatial encoder. In Section 2.2, the bundling operation is characterized as a method
to store the information of multiple hypervectors in a single hypervector, called a record, which is
similar to all of the input hypervectors. �e information of a hypervector is contained in another
as long as they do not violate the similarity condition (Section 2.1). Here, we investigate how well
this task is accomplished by the majority function, and how it can be implemented in hardware
and whether there are other approaches to achieve the same goal.

4.2.1 The Three Problems of the Majority Function.

�e Majority Function of an Even Number of Inputs. �e majority function (or vote) for binary
inputs is self-explanatory and only yields a clear result with an odd number of inputs. �is is
why the concept of braking ties at random is introduced [13], which makes the operation non-
causal for an even number of inputs and is identical to bundling an additional random (and thus
orthogonal) hypervector into the record. �erefore, two records, that are supposed to be equal,
become (slightly) dissimilar. Instead of “wasting” said similarity, an additional hypervector can be
introduced, that contains useful information, to break the ties. In the case of bundling hypervectors
from multichannel, useful information could come from an additional channel. If this is not an
option, we can synthetically create that information. It should be “useful” in the sense, that it
is unique for the given input and also causal. Binding a constant hypervector would lead to all
output hypervectors being slightly similar to each other even if they are supposed to be orthogonal.
Instead, by simply binding any two of the input hypervectors (see Figure 11), we can create an
additional feature, which represents the input data and is useful as stated before.

Unfairness of the Majority Function. Bundling hypervectors with the majority vote does not yield
their mean hypervector but strongly tends to the majority of the hypervectors. �is means, if we
want to store the information of e.g., three hypervectors, where two of them are equal and the

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

1

2

3

4

5

6

7

8

9

10

Fig. 10. Example of a connectivity matrix to replace the IM for a hypervector dimension D = 64 bits and 10
input channels.

12

B
o
u
n
d
 H

y
p
e
rv

e
c
to

rs
Additional Feature

Bundled (Record)

Hypervector

Fig. 11. Data dependency graph of the bundling with even inputs using an additional feature.

other is orthogonal, the information of the la�er is lost entirely (see Figure 12b). �e same situation
occurs when bundling two sets of hypervectors to one record, where the sets are dissimilar to
each other, but similar within. �e smaller set will not be recalled at all. In Section 4.5.1, another
bundling approach will be presented, which is completely fair in this case.
When bundling only orthogonal hypervectors, this problem does not occur and the majority

function is fair (Figure 12a). �is rises the question of the “capacity” of the bundling operations
(see Section 4.5.2).

Lack of Associativity. When a�empting to implement the bundling operation, one quickly comes
across a mathematical property that is necessary to conduct an operation in an iterative manner:
associativity. �e majority function lacks this property, meaning a set of hypervectors can only
be bundled altogether, but not step by step: a ⊕ b ⊕ c , (a ⊕ b) ⊕ c . Fortunately, one is not tied to
mathematical properties, when it comes to the algorithmic and architectural implementation of an
operation. �e workaround lies in storing the current vote over an iteration.

4.2.2 Bidirectional Saturating Counters as a Hardware Implementation of the Majority Function.

A naive approach to store the current majority vote would be to count the vote for 1s and 0s with
two separate counters and compare their values to get the majority. �is would require a memory
of 2 ·D ×

⌈

log2(nc + 1)
⌉

which, for only nc = 4 input channels in our EMG task would already yield
60, 000 bits.

�e two counters can be combined to a single one that counts up or down depending on the value
of the current bit to reduce the memory to D × (

⌈

log2(nc + 1)
⌉

+ 1).�e next big improvement is
made by exploiting the random nature of orthogonal hypervectors. Observing a single component
of the input vectors, the probability of a long sequence of either 1s or 0s is small, implying the

a b c

Bundled

a

b

c

Bundled

Normalised Hamming Distance

0.00

0.50

0.49

0.25

0.50

0.00

0.50

0.26

0.49

0.50

0.00

0.25

0.25

0.26

0.25

0.00

0

0.1

0.2

0.3

0.4

0.5

(a) a ⊥ b ⊥ c

a b c

Bundled

a

b

c

Bundled

Normalised Hamming Distance

0.00

0.00

0.49

0.00

0.00

0.00

0.49

0.00

0.49

0.49

0.00

0.49

0.00

0.00

0.49

0.00

0

0.1

0.2

0.3

0.4

0.5

(b) a = b ⊥ c

Fig. 12. Similarity between three hypervectors and the bundled hypervector a ⊕ b ⊕ c using majority vote.

13

counter usually does not have to count all the way up to the maximum possible vote, but stays
within a certain range. Taking a counter with a fixed width and forcing it to saturate whenever it
would traverse that range, assures that the vote is not passed to the other extreme, which occurs
when le�ing it wrap around.

With this approach, the maximum accuracy of the majority function can be reached with a
certain width of the counter. For a hypervector dimension D = 10, 000 the maximum width is 5 bits
resulting in a memory of 50, 000 bits which is independent from the number of hypervectors to be
bundled, and is maximally memory-saving for a large number of input channels. �e downside is
the complexity of a saturating counter. Due to the orthogonality of the hypervectors for bundling
inside the spatial encoder, the saturating counter method is the preferred approach because of its
large capacity and moderate complexity.

4.3 Library: Spatial Encoder Modules

�e following library modules emerged from the optimizations in Section 4.1 and 4.2:

• LUT. A purely combinational, LUT-based spatial encoder architecture. �is is the starting
point for optimizations and was described in [28]. See Figure 13a.

• CA. A sequential spatial encoder architecture, where the IM is reproduced by a cellular
automaton (CA) as described in Section 4.1.2. �e bound hypervectors are bundled by a
block of bidirectional saturating counters as described in Section 4.2.2. See Figure 13b.

• MAN. A sequential spatial encoder architecture, where the IM is “hardwired” in a manipu-
lator’s connectivity matrix as described in 4.1.3. �e same bundling method as in the CA
module is used. See Figure 13c.

A summary of the CPDI of all library modules can be found in Table 1.

4.4 Temporal Encoding

As mentioned in Section 3.3, the temporal encoder considers consecutive samples over time. �is
is done by rotating and binding the record hypervectors to an N-gram hypervector: N -gram[t] =
R[t] ⊗ ρ(R[t − 1]) ⊗ ρ2(R[t − 2]) ⊗ · · · ⊗ ρN−1(R[t − (N − 1)]) .

In order to deliver a new N -gram every cycle, the records of the last N − 1 cycles have to be kept
in memory. For this, the first record is rotated and stored. In the next cycle it is again rotated and
stored, while the new record is rotated and stored where the last record was stored, and so on. In
parallel, the current record is bound with all stored records and a valid N -gram is produced every
cycle (see Figure 14).

4.5 Bundling N -gram Hypervectors

All the modules that are described so far in this section form an HD projection along with a
spatiotemporal encoder. �is also constitutes a shared construct between learning and inference
because the hypervectors that are produced at the output of spatiotemporal encoder (i.e., the
N -gram hypervectors) contain all the information about the event of interest (e.g., a gesture) for
training or classification. �e AM is another part of the shared construct; however, the output
of encoder queries the AM during classification while updates it during training. For training a
certain class, its N -gram hypervectors need to be bundled before writing into the AM. Different
examples of a gesture are usually encoded to similar N -gram hypervectors, since they belong to
the same class. �is calls for a bundling method that does not require the capacity of an accurate
majority function implemented with the complex saturating counters.

14

Signal Value

b
itw

is
e
 m

a
jo

rity

LUT-

based

CIM

LUT-

based

CIM

LUT-

based

CIM

LUT-

based

CIM

Output (Record)

Hypervector

Signal Value

Signal Value

Signal Value

C1: Channel Hypervector

(Hardwired Seed)

C2: Channel Hypervector

(Hardwired Seed)

C3: Channel Hypervector

(Hardwired Seed)

C4: Channel Hypervector

(Hardwired Seed)

(a) Lookup table (LUT): Parallel encoder with LUT-based CIMs and no IMs.

s-hot

LUT

Cellular

Automaton

S
ig

n
a
l
V

a
lu

e
s

Output (Record)

Hypervector

Block of

Saturating

Bidirectional

Counters

Channel Hypervectors

reproduced by

Cellular Automaton

S0: Signal Hypervector

(Hardwired Seed)

C1: Channel Hypervector

(Hardwired Seed)

(b) Cellular automaton (CA): Sequential encoder with CA (replacing IM), and MAN module (replacing CIM).

1-Hot

Shift Register

s-hot

LUT

S
ig

n
a
l
V

a
lu

e
s

Output (Record)

Hypervector

Block of

Saturating

Bidirectional

Counters

Channel Hypervectors

"hardwired" in

Connectivity Matrix

S0: Signal Hypervector

(Hardwired Seed)

(c) MAN: Sequential encoder replacing both CIM and IM with two cascaded MAN modules.

Fig. 13. The spatial encoder architectures available in the library.

15

rol

N-gram Hypervector

time

N
-g

ra
m

[t
-9

]

rol

N
-g

ra
m

[t
-8

]

N
-g

ra
m

[t
-7

]

N
-g

ra
m

[t
-6

]

N
-g

ra
m

[t
-5

]

N
-g

ra
m

[t
-4

]

N
-g

ra
m

[t
-3

]

N
-g

ra
m

[t
-2

]

N
-g

ra
m

[t
-1

]

N
-g

ra
m

[t
]

Record Hypervector

Record Hypervectors

Fig. 14. Top: Data dependency graph of the window-shi�ing N -gram encoder. Bo�om: Depiction of the
timeline of generated N -grams.

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

1
2
3
4
5
6
7
8
9

10

Fig. 15. Example of a connectivity matrix to bundle 10 hypervectors of dimension D = 64 iteratively.

4.5.1 Binarized Back-to-back Bundling as a Hardware-Friendly Approach for Approximate Bundling.

We propose a binarized implementation of an approximate bundling operation by reusing theMAN
module. It continuously stays in the binary space during the execution of the bundling operation,
hence it enables efficient online and incremental updates to the prototypes of the AM. �e first
step is to avoid trying to store the current majority vote and instead bundling the hypervectors
iteratively, giving every vote a certain “weight.” �is is achieved by assigning them a certain chance
to be capable of turning the majority around. However, the vote is only turned around if the current
one is different.
�e first vote has a probability of P = 1, the second P = 1/2 and so on. Generally the i-th vote

has a probability of Pi = 1/i to be able to turn the majority around. Considering all dimensions of
the hypervector, this probability turns into a weight. In an abstract sense, these probabilities can
be hardwired into the architecture with a connectivity matrix. For large dimensions, them-th row
shows ≈ D/m connections, which determine whether the vote at that position can turn around
the majority. �e maximum number of hypervectors in the bundling record (i.e., the rows in the
connectivity matrix) should be predetermined. Figure 15 shows an example of connectivity matrix
to bundle 10 hypervectors with dimensionality D = 64.

We refer to the example of bundling three hypervectors, where two are equal and one is orthog-
onal. When bundling with the proposed approach, the orthogonal hypervector is not lost, but is
similar to the record as shown in Figure 16 (c.f. Figure 12). Furthermore, when interchanging this
approximate method with the ordinary majority vote, the classification accuracy does not change.
As suggested, these characteristics can be implemented using theMAN module to generate a

hypervector which is similar to the current bundled hypervector, where the Hamming distance (i.e.,

16

a b c

Bundled

a

b

c

Bundled

Normalised Hamming Distance

0.00

0.50

0.49

0.33

0.50

0.00

0.50

0.34

0.49

0.50

0.00

0.33

0.33

0.34

0.33

0.00

0

0.1

0.2

0.3

0.4

0.5

(a) a ⊥ b ⊥ c

a b c

Bundled

a

b

c

Bundled

Normalised Hamming Distance

0.00

0.00

0.49

0.17

0.00

0.00

0.49

0.17

0.49

0.49

0.00

0.33

0.17

0.17

0.33

0.00

0

0.1

0.2

0.3

0.4

0.5

(b) a = b ⊥ c

Fig. 16. Similarity between three hypervectors and the bundled hypervector a ⊕ b ⊕ c using binarized
back-to-back bundling.

N-gram Hypervector

Manipulating

Signal

Bundled Hypervector

Fig. 17. Data dependency graphs of the binarized back-to-back bundling to approximate temporal majority
gate.

the degree of similarity) is determined by the connectivity matrix. �en, the majority vote of three
hypervectors is calculated from the input N -gram hypervector, the current bundled hypervector,
and it’s derived similar (manipulated) hypervector as depicted in Figure 17. �e similar hypervector
gives the input N -gram hypervector a weight of 1/i and the current bundled hypervector a weight
of 1 − 1/i . Compared to the bundling with saturating counters, this approach is far more efficient
since it only requires a memory of D bits (fully binarized) without adders and saturation logic.

4.5.2 Hypervector Capacity of different Bundling Approaches. �eproposed approximate bundling
method slightly decreases the capacity of hypervectors. Although for similar hypervectors, as it is
the case for N -gram hypervectors among a class (opposed to the bound hypervectors in the spatial
encoder), a large capacity is not a requirement. Nevertheless, it is necessary to evaluate how much
information a hypervector can store, or how many hypervectors can be bundled into a hypervector
(i.e., the capacity of a bundling method).

�e capacity can be measured by bundling an increasing number of orthogonal hypervectors and
trying to recall the information bymeasuring the similarity between the bundled hypervector and all
compound hypervectors. As long as none of the compound hypervectors crosses the orthogonality
threshold (see Section 2.1), their information is still contained in the bundled hypervector. As soon
as one of the compound hypervectors becomes orthogonal to the bundled, the bundling method
has failed to capture all the information.
For comparison, the ordinary majority vote (see Section 2.2) is used as the reference bundling

method. �is approach is referred to as the golden method. �e two other approaches are the

17

0 20 40 60 80 100

Number of Bundled Orthogonal Hypervectors

0

0.1

0.2

0.3

0.4

0.5

N
o
rm

a
lis

e
d
 H

a
m

m
in

g
 D

is
ta

n
c
e

Bundling Capacity of the Bundle Counter

Orthogonality Threshold

Golden Bundling

Counter Width = 2

Counter Width = 3

Counter Width = 4

Counter Width = 5

(a) Capacity of the bundle counter (BC) with dif-
ferent widths.

0 20 40 60 80 100

Number of Bundled Orthogonal Hypervectors

0

0.1

0.2

0.3

0.4

0.5

N
o
rm

a
lis

e
d
 H

a
m

m
in

g
 D

is
ta

n
c
e

Bundling Capacity of the Back-to-Back Bundler

Orthogonality Threshold

Golden Bundling

Back-to-Back Bundling

(b) Capacity of back-to-back (B2B) bundling.

Fig. 18. Capacity of different bundling approaches compared with the golden method for a dimensionality of
D = 10000. The graphs show the maximum normalized Hamming distance between the bundled hypervector
and its compound hypervectors.

binarized back-to-back (B2B)method from Section 4.5.1 and the bundle counter (BC)method (Section
4.2.2), which can be viewed as a very close approximation of the golden method.

�e capacity of the binarized back-to-back method in comparison with the golden method is
depicted in Figure 18b. �e golden method is capable of storing the information of about 60–70
orthogonal hypervectors for a dimensionality of D = 10000, whereas the back-to-back binary
method saturates between 10–15 hypervectors.
However, the capacity of the counter method is dependent on the number of bits (i.e., width)

used to represent the current vote. �e smaller the width, the fewer the resources required but the
smaller its capacity. �is can be seen in Figure 18a. We observe that a width of 5 bits is sufficient to
achieve the same capacity as the golden method. When bundling fewer hypervectors, the width
should be adjusted to ones needs to minimize the required resources.

4.6 Library: Temporal Encoder Modules

�e following library modules emerged from the optimizations in Section 4.4 and 4.5:

• BC. A temporal encoder architecture using counter-based bundling as described in Sec-
tion 4.4 and 4.2.2. See Figure 19a.

• B2B. A temporal encoder architecture usingmanipulator-based back-to-back binary bundling
as described in Section 4.4 and 4.5.1. See Figure 19b.

4.7 Associative Memory (AM)

�e associative memory (AM) is the part of the architecture that is the most challenging to opti-
mize. One reason is the memory required to store the “trained”, prototype, or rather the bundled
hypervectors that represent the classes. Another reason is the nature of the Hamming distance,
that has to be computed between the query hypervector—of which we want to find the class it
belongs to—and each trained hypervectors.
As described in Section 2.1, the Hamming distance measures the number of positions at which

two hypervectors differ. �is is equal to computing the population count of a hypervector binding

18

rol
Input (Record)

Hypervector
rol

Output (Trained / Query)

Hypervector

Block of

Saturating

Bidirectional

Counters

(a) Bundle counter (BC): Using saturating bidirectional counters to bundle N -gram hypervectors.

rol rol

1-Hot

Shift Register

Input (Record)

Hypervector

Output (Trained / Query)

Hypervector

(b) Binarized Back-to-back (B2B): Using the MAN module to approximate bundling of N -gram hypervectors.

Fig. 19. The temporal encoder architectures available in the library.

those two hypervectors. So far, digital methods for AMs count through all components resulting in
a classification latency in the order O(D) [8, 9, 29, 32]. We focus on reducing this latency by adding
up all hypervector components.

4.7.1 Deep Adder Trees. When trying to add up all bits of a hypervector, working with tree
structures is the most efficient way. In this manner, the AM takes only one clock cycle to compute
the Hamming distance, at a cost to long logic delay and gate counts. For a perfect binary tree, which
is the case for hypervectors of dimension D = 2n , the depth is log2(D) = n which is also the number
of adder stages. �e amount of adders in stage i is D/2i and the width of the adders in stage i
equals to i . In the simple case of using ripple-carry-adders, the logic delay of the adder tree is equal

to
∑n

i=1 i =
n(n+1)

2 delays of a 1-bit-adder. For a dimension D = 213 = 8192, this amounts to the
delay of 91 1-bit-adders, which will most likely result in the longest path in the architecture. �is
could be reduced with pipeline registers close to the root, i.e., the final result. �e total equivalent
of 1-bit-adders for the whole tree can be calculated as follows:

∑n
i=1

D ·i
2i

which, for a dimension

D = 213 yields 16369 1-bit-adders.
Although this number of adders seems very high, an FPGA can handle it easily with lookup

tables. Furthermore, using the counters as an alternative might seem resource friendlier at first,
but turns out an incompetent choice. �e reason is that each bit of the hypervector somehow has
to be directed to the counter. �is requires either huge multiplexers or shi� registers with input
multiplexers, which both leads to immense area overhead. While the overhead is considerable,
the cycles needed to compute the Hamming distance is of the order O(D). �is is a poor trade-off
compared to the high throughput and moderate overhead of adder tree architectures.
Using the adder trees to compute the Hamming distance between two hypervectors, two AM

variations emerge. A fully parallel architecture with replicated adders, leading to O(1) computation
cycles, and a vector-sequential architecture, which shares one adder tree to compute the Hamming
distance of all hypervectors one a�er the other, hence leading to O(nclasses) computation cycles.

19

Table 2. Parameter configuration for the case study.

Parameter Value

Hypervector Dimension (D) 8192
Channels 4
Classes 5
�antization 21
N -gram Size 3
Bundle Counter Width (MAN & CA) 3
Bundle Counter Width (BC) 5
Max. Bundle Cycles (B2B) 256

4.8 Library: Associative Memory Modules

�e following library modules emerged from the optimizations in Section 4.7:

• BS. A bit-sequential AM architecture. �is is the starting point for optimizations and was
described in [8, 9, 29, 32]. See Figure 20a.

• CMB. An AM architecture based on adder trees as described in Section 4.7.1. See Figure 20b.
• VS. A vector-sequential AM architecture based on adder trees as described in Section 4.7.1.
See Figure 20c.

5 DESIGN SPACE EXPLORATION AND EXPERIMENTAL RESULTS

In order to evaluate the library modules, they are configured for the EMG-based hand gesture
recognition task, and all possible combinations of HD architectures (i.e., our design space) are
synthesized for a Xilinx® Virtex UltraScale™ FPGA [41]. All the HD architectures are functionally
equivalent and exhibit iso-accuracy. �e parameters for the configured architectures are listed in
Table 2. �e library can be configured to conduct virtually any learning and classification task.

Each HD architecture is composed of three modules in series: a type of mapping and spatial
encoder followed by a type of temporal encoder, and finally a type of AM. To conduct the design
space exploration, each architecture’s throughput is plo�ed against its area efficiency (defined as
1/CLBs) in Figure 21. �e quality of an architecture increases when going from le� to right and/or
bo�om to top. �e color coding represents HD architectures with the same type of AM.

Our starting point is the LUT+BC+BS architecture as an improved version of [28] using bidirec-
tional saturating counters. What can be observed is that by replacing the LUT module with the
proposed MAN and CA modules, a significant area saving is achieved. �is area saving is consistent
with any combination of temporal encoder and AM. A similar area improvement can be observed
when replacing the BC module with the novel B2B module. Combining both optimization leads to
an area improvement of up to ×2.39. On the other hand, a massive throughput improvement of up
to ×2337 can be achieved by moving from an AM with the BS module to VS and finally CMB.
Different combinations of the modules produce architectures with varying area/throughput

improvements. Eventually, four architectures stand out as pareto optimal architectures (see Table 3).
�ese offer different trade-offs and can be selected depending on the user’s requirements. �e
throughput of these architectures is significantly higher than the classification constraint for real-
time EMG tasks [2, 17]. Note that different configurations may lead to different pareto optimal
architectures.

20

rol

rol

rol

Counter

Counter

C
o

m
p

a
ra

to
r

Label Output

Hamming Distance Output

Input (Trained / Query)

Hypervector

Trained

Hypervector

Memory

(a) Bit-sequential (BS): This AM has a latency of O(D).

Adder

Tree

Adder

Tree

Adder

Tree

Trained

Hypervector

Memory

C
o

m
p

a
ra

to
r

Label Output

Hamming Distance Output

Input (Trained / Query)

Hypervector

(b) Combinational (CMB): This single-cycle AM has a latency of O(1).

Adder

Tree

C
o

m
p

a
ra

to
r

Trained

Hypervector Memory

Label Output

Hamming Distance Output

Input (Trained / Query)

Hypervector

(c) Vector-sequential (VS): This AM has a latency of O(nclasses).

Fig. 20. The associative memory architectures available in the library.

5.1 Scalability: Larger number of Channels and Classes

Here, we assess the scalability of our proposed methods when doubling the number of channels and
classes. �e spatial encoder with the CA module shows the best area efficiency for applications with
a larger number of channels, followed by the spatial encoder with the MAN module. �e memory

21

Fig. 21. Design space exploration of HD architectures using all possible combinations of the modules available
in the library. Colors indicate the architectures with the same type of AM. Pareto optimal architectures are
marked with a diamond _ and connected by a green line representing the Pareto frontier.

Table 3. Area and throughput results of the “starting point” and the Pareto optimal architectures.

Architecture
�roughput

[classifications/s]
�roughput

Improvement
Area [CLBs] Area

Improvement

LUT+BC+BS 4.69 · 103 ×1 43825 ×1
MAN+B2B+VS 4.62 · 106 ×986 18340 ×2.39
CA+B2B+CMB 5.33 · 106 ×1136 28788 ×1.52
LUT+B2B+CMB 8.94 · 106 ×1906 45961 ×0.95
LUT+BC+CMB 10.96 · 106 ×2337 47068 ×0.93

footprint of CA module is independent of the number of channels since only a seed hypervector to
initialize the CA state needs to be stored, hence the area will not increase (see Table 4a). However,
it requires almost twice clock cycles to produce the channel hypervectors for the doubled number
of channels. �e spatial encoder with the LUT shows opposite scalability: it maintains almost the
same throughput but increases the area by 2.41×. Focusing on the AM module, an application with
twice the number of classes will impose a larger area to the CMB and BS modules, whereas the VS’
area is mostly unaffected, apart from the storage for additional trained hypervectors (see Table 4b).

6 CONCLUSIONS

�is paper proposes hardware optimizations—in an open-source VHDL library—for dense binary
HD computing that enable efficient synthesis of acceleration engines handling both inference and
training tasks on an FPGA. �e Pareto optimal design is mapped on only 18340 CLBs of a Xilinx®

UltraScale™ FPGA achieving simultaneous 2.39× lower area and 986× higher throughput compared

22

Table 4. Scalability of the library modules.

(a) Throughput and area scaling of the spatial
encoder modules when doubling the number of
channels from 4 to 8.

Module
�roughput

Scaling

Area

Scaling

LUT ×0.94 ×2.41
CA ×0.45 ×0.99
MAN ×0.61 ×1.01

(b) Throughput and area scaling of the AM mod-
ules when doubling the number of classes from 6

to 12.

Module
�roughput

Scaling

Area

Scaling

BS ×0.49 ×1.89
CMB ×0.63 ×2.14
VS ×0.59 ×1.10

to the baseline. �is is accomplished by: (1) rematerializing hypervectors on the fly by substituting
the cheap logical operations for the expensive memory accesses to seed hypervectors; (2) online
and incremental learning from different gesture examples while staying in the binary space; (3)
combinational associative memories to steadily reduce the latency of classification. Our future
work will target an ASIC implementation of the library modules.

ACKNOWLEDGMENTS

Support was received from the ETH Zurich Postdoctoral Fellowship program, the Marie Curie
Actions for People COFUND Program, and the European Union’s Horizon 2020 Research and
Innovation Program through the project MNEMOSENE under Grant 780215.

REFERENCES

[1] Alessio Burrello, Kaspar Schindler, Luca Benini, and Abbas Rahimi. 2018. One-shot learning for iEEG seizure detection

using end-to-end binary operations: Local binary pa�erns with hyperdimensional computing. In Biomedical Circuits

and Systems Conference (BioCAS), 2018 IEEE.

[2] J. U. Chu, I. Moon, and M. S. Mun. 2006. A Real-Time EMG Pa�ern Recognition System Based on Linear-Nonlinear

Feature Projection for a Multifunction Myoelectric Hand. IEEE Transactions on Biomedical Engineering 53, 11 (Nov

2006), 2232–2239. h�ps://doi.org/10.1109/TBME.2006.883695

[3] Chris Eliasmith. 2013. How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford Series on Cognitive

Models and Architectures.

[4] B. Emruli, R. W. Gayler, and F. Sandin. 2013. Analogical mapping and inference with binary spa�er codes and

sparse distributed memory. In �e 2013 International Joint Conference on Neural Networks (IJCNN). 1–8. h�ps:

//doi.org/10.1109/IJCNN.2013.6706829

[5] Ross W. Gayler. 1998. Multiplicative Binding, Representation Operators & Analogy. In Gentner, D., Holyoak, K. J.,

Kokinov, B. N. (Eds.), Advances in analogy research: Integration of theory and data from the cognitive, computational, and

neural sciences. New Bulgarian University, Sofia, Bulgaria, 1–4. h�p://cogprints.org/502/

[6] Ross W. Gayler. 2003. Vector Symbolic Architectures Answer Jackendoff’s Challenges for Cognitive Neuroscience. In

Proceedings of the Joint International Conference on Cognitive Science. ICCS/ASCS. 133–138.

[7] P. C. Huang and J. M. Rabaey. 2017. A Bio-Inspired Analog Gas Sensing Front End. IEEE Transactions on Circuits and

Systems I: Regular Papers 64, 9 (Sept 2017), 2611–2623. h�ps://doi.org/10.1109/TCSI.2017.2697945

[8] M. Imani, D. Kong, A. Rahimi, and T. Rosing. 2017. VoiceHD: Hyperdimensional Computing for Efficient Speech

Recognition. In 2017 IEEE International Conference on Rebooting Computing (ICRC). 1–8. h�ps://doi.org/10.1109/ICRC.

2017.8123650

[9] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey. 2017. Exploring Hyperdimensional Associative Memory. In

2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). 445–456. h�ps://doi.org/10.

1109/HPCA.2017.28

[10] Aditya Joshi, Johan T. Halseth, and Pen�i Kanerva. 2017. Language Geometry Using Random Indexing. In�antum

Interaction: 10th International Conference, QI 2016, San Francisco, CA, USA, July 20-22, 2016, Revised Selected Papers,

Jose Acacio de Barros, Bob Coecke, and Emmanuel Pothos (Eds.). Springer International Publishing, Cham, 265–274.

h�ps://doi.org/10.1007/978-3-319-52289-0 21

23

[11] Pen�i Kanerva. 1988. Sparse Distributed Memory. MIT Press Cambridge.

[12] Pen�i Kanerva. 1996. Binary Spa�er-Coding of ordered k-tuples. In ICANN’96, Proceedings of the International

Conference on Artificial Neural Networks (Lecture Notes in Computer Science), (Ed.), Vol. 1112. Springer, 869–873.

[13] Pen�i Kanerva. 2009. Hyperdimensional Computing: An Introduction to Computing in Distributed Representation

with High-Dimensional Random Vectors. Cognitive Computation 1, 2 (2009), 139–159. h�ps://doi.org/10.1007/

s12559-009-9009-8

[14] Pen�i Kanerva. 2010. What We Mean When We Say “What’s the Dollar of Mexico?”: Prototypes and Mapping in

Concept Space. In AAAI Fall Symposium: �antum Informatics for Cognitive, Social, and Semantic Processes. 2–6.

[15] Pen�i Kanerva. 2014. Computing with 10,000-Bit Words. In Proc. 52nd Annual Allerton Conference on Communication,

Control, and Computing.

[16] Pen�i Kanerva, Jan Kristoferson, and Anders Holst. 2000. Random Indexing of Text Samples for Latent Semantic

Analysis. In Proceedings of the 22nd Annual Conference of the Cognitive Science Society. Erlbaum, 1036. h�p://www.rni.

org/kanerva/cogsci2k-poster.txt

[17] Mahdi Khezri and Mehran Jahed. 2007. Real-time intelligent pa�ern recognition algorithm for surface EMG signals.

BioMedical Engineering OnLine 6, 1 (03 Dec 2007), 45. h�ps://doi.org/10.1186/1475-925X-6-45

[18] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey. 2018. Classification and Recall With Binary

Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping Characteristics. IEEE Transactions on

Neural Networks and Learning Systems (2018), 1–19. h�ps://doi.org/10.1109/TNNLS.2018.2814400

[19] Simon D. Levy, Suraj Bajracharya, and Ross W. Gayler. 2013. Learning Behavior Hierarchies via High-dimensional

Sensor Projection. In Proceedings of the 12th AAAI Conference on Learning Rich Representations from Low-Level Sensors

(AAAIWS’13-12). AAAI Press, 25–27. h�p://dl.acm.org/citation.cfm?id=2908225.2908230

[20] H. Li, T. F. Wu, A. Rahimi, K. S. Li, M. Rusch, C. H. Lin, J. L. Hsu, M. M. Sabry, S. B. Eryilmaz, J. Sohn, W. C. Chiu, M. C.

Chen, T. T.Wu, J. M. Shieh, W. K. Yeh, J. M. Rabaey, S. Mitra, and H. S. P.Wong. 2016. Hyperdimensional computing with

3DVRRAM in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition.

In 2016 IEEE International Electron Devices Meeting (IEDM). 16.1.1–16.1.4. h�ps://doi.org/10.1109/IEDM.2016.7838428

[21] A. Moin, A. Zhou, A. Rahimi, S. Bena�i, A. Menon, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini,

A. C. Arias, and J. M. Rabaey. 2018. An EMG Gesture Recognition System with Flexible High-Density Sensors and

Brain-Inspired High-Dimensional Classifier. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

1–5. h�ps://doi.org/10.1109/ISCAS.2018.8351613

[22] Fabio Montagna, Abbas Rahimi, Simone Bena�i, Davide Rossi, and Luca Benini. 2018. PULP-HD: Accelerating

Brain-inspired High-dimensional Computing on a Parallel Ultra-low Power Platform. In Proceedings of the 55th Annual

Design Automation Conference (DAC ’18). ACM, New York, NY, USA, Article 111, 6 pages. h�ps://doi.org/10.1145/

3195970.3196096

[23] Fateme Rasti Najafabadi, Abbas Rahimi, Pen�i Kanerva, and Jan M. Rabaey. 2016. Hyperdimensional Computing

for Text Classification. Design, Automation Test in Europe Conference Exhibition (DATE), University Booth (2016).

h�ps://www.date-conference.com/system/files/file/date16/ubooth/37923.pdf

[24] P. Neubert, S. Schubert, and P. Protzel. 2016. Learning Vector Symbolic Architectures for Reactive Robot Behaviours.

In Proc. of Intl. Conf. on Intelligent Robots and Systems (IROS) Workshop on Machine Learning Methods for High-Level

Cognitive Capabilities in Robotics.

[25] T.A. Plate. 1995. Holographic reduced representations. IEEE Transactions on Neural Networks 6, 3 (1995), 623–641.

[26] T.A. Plate. 2003. Holographic Reduced Representations. CLSI Publications. 300 pages.

[27] D. A. Rachkovskij. 2017. Binary Vectors for Fast Distance and Similarity Estimation. Cybernetics and Systems Analysis

53, 1 (01 Jan 2017), 138–156. h�ps://doi.org/10.1007/s10559-017-9914-x

[28] Abbas Rahimi, Simone Bena�i, Pen�i Kanerva, Luca Benini, and Jan M. Rabaey. 2016. Hyperdimensional Biosignal

Processing: A Case Study for EMG-based Hand Gesture Recognition. In IEEE International Conference on Rebooting

Computing.

[29] A. Rahimi, S. Da�a, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, and J. M. Rabaey. 2017. High-Dimensional

Computing as a Nanoscalable Paradigm. IEEE Transactions on Circuits and Systems I: Regular Papers 64, 9 (Sept 2017),

2508–2521. h�ps://doi.org/10.1109/TCSI.2017.2705051

[30] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey. 2018. Efficient Biosignal Processing Using Hyperdimensional

Computing: Network Templates for Combined Learning and Classification of ExG Signals. Proc. IEEE (2018), 1–21.

h�ps://doi.org/10.1109/JPROC.2018.2871163

[31] Abbas Rahimi, Pen�i Kanerva, José del R Millán, and Jan M. Rabaey. 2017. Hyperdimensional Computing for

Noninvasive Brain–Computer Interfaces: Blind and One-Shot Classification of EEG Error-Related Potentials. 10th

ACM/EAI International Conference on Bio-inspired Information and Communications Technologies (BICT) (2017).

[32] Abbas Rahimi, Pen�i Kanerva, and Jan M. Rabaey. 2016. A Robust and Energy Efficient Classifier Using Brain-Inspired

Hyperdimensional Computing. In Low Power Electronics and Design (ISLPED), 2016 IEEE/ACM International Symposium

24

on.

[33] Abbas Rahimi, Artiom Tchouprina, Pen�i Kanerva, José del R. Millán, and Jan M. Rabaey. 2017. Hyperdimensional

Computing for Blind and One-Shot Classification of EEG Error-Related Potentials. Mobile Networks and Applications

(03 Oct 2017). h�ps://doi.org/10.1007/s11036-017-0942-6

[34] O. Räsänen. 2015. Generating Hyperdimensional Distributed Representations from Continuous Valued Multivariate

Sensory Input. In Proceedings of the 37th Annual Meeting of the Cognitive Science Society. 1943–1948.

[35] O. Räsänen and S. Kakouros. 2014. Modeling Dependencies in Multiple Parallel Data Streams with Hyperdimensional

Computing. IEEE Signal Processing Le�ers 21, 7 (July 2014), 899–903. h�ps://doi.org/10.1109/LSP.2014.2320573

[36] O. Räsänen and J. Saarinen. 2015. Sequence Prediction With Sparse Distributed Hyperdimensional Coding Applied to

the Analysis of Mobile Phone Use Pa�erns. IEEE Transactions on Neural Networks and Learning Systems PP, 99 (2015),

1–12. h�ps://doi.org/10.1109/TNNLS.2015.2462721

[37] R. Santoro, S. Roy, and O. Sentieys. 2007. Search for Optimal Five-Neighbor FPGA-Based Cellular Automata Random

Number Generators. In 2007 International Symposium on Signals, Systems and Electronics. 343–346. h�ps://doi.org/10.

1109/ISSSE.2007.4294483

[38] Stephen Wolfram. 1986. Random sequence generation by cellular automata. Advances in Applied Mathematics 7, 2

(1986), 123 – 169. h�ps://doi.org/10.1016/0196-8858(86)90028-X

[39] T. F. Wu, H. Li, P. Huang, A. Rahimi, G. Hills, B. Hodson, W. Hwang, J. M. Rabaey, H. . P. Wong, M. M. Shulaker, and S.

Mitra. 2018. Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and�eir Monolithic 3D

Integration. IEEE Journal of Solid-State Circuits 53, 11 (Nov 2018), 3183–3196. h�ps://doi.org/10.1109/JSSC.2018.2870560

[40] T. F. Wu, H. Li, P. C. Huang, A. Rahimi, J. M. Rabaey, H. S. P. Wong, M. M. Shulaker, and S. Mitra. 2018. Brain-inspired

computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study. In 2018

IEEE International Solid - State Circuits Conference - (ISSCC). 492–494. h�ps://doi.org/10.1109/ISSCC.2018.8310399

[41] Xilinx. 2017. UltraScale Architecture and Product Data Sheet: Overview. h�ps://www.xilinx.com/support/

documentation/data sheets/ds890-ultrascale-overview.pdf DS890 (v3.1) November 15, 2017.

25

