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A B S T R A C T

This paper optimizes Bloom filter algorithms and hardware architectures for high-speed implementation on
FPGAs. A Bloom filter is a data structure that is used to check whether input search data are present in a
table of stored data. Bloom filters are extensively used for monitoring network traffic. Improving the speed
of Bloom filters can therefore have a significant impact on the speed of many network applications. The
most important components determining the speed of Bloom filters are hash functions. While hash functions
in Bloom filters do not require strong cryptographic properties, they do need a minimized computational
delay. In this work, we evaluate and compare the performance and resource utilization of different Bloom
filter algorithms and architectures as well as non-cryptographic hash functions on an FPGA. We also propose a
new non-cryptographic hash function, called Xoodoo-NC, derived from the cryptographic permutation Xoodoo.
Xoodoo-NC is a reduced-round, reduced-state version of Xoodoo, inheriting Xoodoo’s desired avalanche
properties and low logical depth, resulting in an ultra-low-latency non-cryptographic hash function. We
evaluate the performance of Bloom filter architectures based on Xoodoo-NC on a Xilinx UltraScale+ FPGA
and we compare the performance and resource occupation to existing Bloom filter implementations. We
additionally compare our results to memories that use the built-in CAM cores in Xilinx UltraScale+ FPGAs.
Our proposed algorithmic and architectural advances lead to Bloom filters that, to the best of our knowledge,
outperform all other FPGA-based solutions.
. Introduction

Network applications require efficient lookup algorithms for, e.g.,
acket forwarding, traffic flow monitoring and security, and deep
acket inspection. The most popular data structures for high-speed
ookups are Content-addressable Memories (CAMs) and Bloom filters.

hereas a CAM searches for a match between input data and stored
ata, and returns the address of the matching data, a Bloom filter can
nly detect a match without returning the address. Another difference
s that false positives are possible in a Bloom filter, while a CAM has no
alse positives nor false negatives. Nevertheless, CAMs perform worse
han Bloom filters when it comes to chip area, energy consumption and
perating speed, as presented by George Varghese in [1]. Since these
re critical implementation properties for network routers [2], Bloom
ilters are the preferred lookup mechanism when a match address
s not needed, and when (a limited number of) false positives are
cceptable. This is the case in various network (security) applications,
uch as deep packet inspection [3], network intrusion detection [4],
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distributed caching, resource routing, and network measurement in-
frastructures [5,6]. Additionally, Bloom filters also provide the benefit
of constant-time queries, access refinement, and content anonymiza-
tion [6]. Applications like flow measurement or traffic mapping [7–9]
check whether or not the identifier (ID) of a network flow has been
recorded earlier. The ID could, for example, be a combination of the
host and destination addresses and ports.

In order to adhere to the strong bandwidth and energy requirements
in Terabit networks (which are defined as networks with a band-
width higher than 100 Gbps), hardware implementation platforms,
such as FPGAs, are increasingly used in network applications [10]. This
motivates our work which studies the design and implementation of
high-speed Bloom filters on FPGA. Since the speed of a Bloom filter
heavily depends on the speed of the hash functions that process the
incoming data, we first concentrate on the design and implementation
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141-9331/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.micpro.2022.104619
eceived 14 January 2021; Received in revised form 21 December 2021; Accepted
 15 April 2022

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:arish.sateesan@kuleuven.be
mailto:jo.vliegen@esat.kuleuven.be
mailto:joan@cs.ru.nl
mailto:nele.mentens@kuleuven.be
https://doi.org/10.1016/j.micpro.2022.104619
https://doi.org/10.1016/j.micpro.2022.104619
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2022.104619&domain=pdf


Microprocessors and Microsystems 93 (2022) 104619A. Sateesan et al.

f

e
b
f
F
e

c
u
v
A
T
h
t
r

𝑓

m
t
m

2

n
e
1
e

T
w
l
s
a
a
r

s
d
o
t
i
t
v
o

f
r
p
t

𝑓

of a high-speed, hardware-friendly hash function. The desired prop-
erties of the non-cryptographic hash functions in Bloom filters are
more relaxed than the properties of cryptographic hash functions. Both
cryptographic and non-cryptographic hash functions map an input of
arbitrary length to an output of fixed length. Good hash functions,
cryptographic as well as non-cryptographic: (1) map the inputs as
uniformly as possible over the entire set of outputs, (2) are easy to
compute, and (3) exhibit the avalanche effect, which says that many
output bits change, even when there is only a small change in the input.
Cryptographic hash functions additionally require preimage resistance,
second-preimage resistance and collision resistance [11]. We propose
to start from a cryptographic hash function that possesses all the
aforementioned properties, and to simplify it such that the computa-
tional delay is minimized, while the non-cryptographic properties are
maintained. This leads to the Xoodoo-NC (Xoodoo-non-cryptographic)
algorithm, derived from the cryptographic permutation Xoodoo [12].
We use Xoodoo-NC in the Bloom-1 architecture, proposed by Qiao
et al. in [13], and the Parallel Bloom Filter architecture, proposed
by Dharmapurikar et al. in [4]. We show that our Bloom filter im-
plementations based on Xoodoo-NC are more efficient with respect to
occupied FPGA resources and computational delay in comparison to
Bloom filters based on the previously proposed hash function FNV-
1a [14], and CAM-based lookup architectures. This paper extends our
previous work presented in [15] by giving more details on the hardware
architectures of the implemented hash functions and by adding Parallel
Bloom Filters to the comparison.

This paper is organized as follows: Section 2 consists of background
information on lookup algorithms and architectures in network ap-
plications and explains the Bloom filter architectures that we use.
Section 3 gives an overview of related work. Section 4 presents our
novel algorithms and architectures as well as the CAM architectures
that we compare with. The hardware architectures of the implemented
Bloom filters and hash functions are presented in Section 5. The results
are discussed in Section 6. Finally, conclusions are drawn in Section 7.

2. Lookup algorithms and architectures

2.1. Content-addressable memory

Content-addressable memory (CAM) compares input data with data
that are stored in the memory. If the same data are present in the
memory, the CAM returns the address of the matching data. In a
conventional memory, such as a Random-Access Memory (RAM), the
address is used as an input and the data that are stored at that
address are returned by the RAM. CAMs are, for example, used in
network switches, which do a lookup of the destination MAC address
of incoming network traffic to determine the port on which the traffic
needs to be sent out. A CAM stores each bit explicitly in a memory cell,
just like a RAM does. CAMs contain additional hardware circuits that
facilitate the look-up. In recent FPGAs, IP cores are available to build
fast and resource-efficient CAM structures based on the embedded RAM
in the FPGA [16].

2.2. Bloom filters

In 1970, Howard Bloom presented space/time trade-offs for lookup
algorithms in data structures based on hash coding with allowable er-
rors [2]. The author’s name has been linked to the presented algorithms
ever since. The Bloom filter is an approximate membership query data
structure that is used to assist in determining whether an element is in
a set of elements. The filter has two possible outcomes: (1) the element
might be in the set, or (2) the element is not in the set. Although the
first option can trigger false positives, the second option rules out false
negatives.

A standard Bloom filter (SBF) that looks for an input 𝑥 in a set 𝑆,
consists of a bit vector of length 𝑚, which is a compacted representation
2

of the elements that are present in 𝑆, and 𝑘 hash functions, which are
used to map 𝑛 inputs to the bit vector. An example is shown in Fig. 1,
where 𝑚 is 14 and 𝑘 is 3. Before the SBF can be used, the bit vector is
irst loaded with zeroes. Then, all 𝑘 hash functions are applied to each

element 𝑠 in the set 𝑆, i.e. 𝐻𝑘𝑖 (𝑠) is calculated, with 𝑖 ∈ 1,… , 𝑘. For
ach hash function, the resulting hash value is used as an index in the
it vector and the corresponding bit is set to 1. This process is repeated
or each hash function, and subsequently for each possible 𝑠 ∈ 𝑆. In
ig. 1, this means that 3 bits out of 14 are set to 1 for each loaded
lement 𝑠. In the figure, this process is illustrated for two elements 𝑠1

and 𝑠2. After these steps, the set 𝑆 has been successfully loaded into
the Bloom filter.

To query the SBF using input 𝑥, all hash digests 𝐻𝑘𝑖 (𝑥) on 𝑥 are
alculated. Analogous to the initialization phase, the hash values are
sed as indices in the bit vector. If all the corresponding bits in the bit
ector are set to 1, the SBF returns 𝑥 ∈ 𝑆. Otherwise, 𝑥 ∉ 𝑆 is returned.
s stated above, a membership query can have a false positive result.
his happens when, during the initialization of the Bloom filter, the
ash values of different elements in the set lead to a 1 being written
o the same position in the bit vector. The probability of false positive
ate of a standard bloom filter is approximated as in Eq. (1).

𝑝𝑟 = (1 − 𝑒−𝑘𝑛∕𝑚)𝑘 (1)

Unlike CAMs, Bloom filters do not explicitly store each element in a
emory cell, but rather store the bit vector that represents all elements

hat are present in the data structure. This leads to more economical
emory resource utilization.

.2.1. Bloom-1 architecture
When the SBF structure in Fig. 1 is used, 𝑘 locations in the bit vector

eed to be read out. In order to reduce the number of read-outs, a more
fficient structure is proposed by Qiao et al. [13]. They propose Bloom-
, a fast Bloom filter architecture that only requires one read-out for
ach query. Bloom-1 uses hash functions to map an input element 𝑠 to
𝑙𝑜𝑔2(𝑙) + 𝑘× 𝑙𝑜𝑔2(𝑤) bits. The first 𝑙𝑜𝑔2(𝑙) bits are the output of the hash
function 𝐻𝑙(𝑠) and are used as an address in a data structure that has
𝑙 memory locations, as shown in Fig. 2. We call each word in the data
structure a membership word. The next 𝑘 values (which are 𝑙𝑜𝑔2(𝑤)
bits each) are the outputs of the hash functions 𝐻𝑘𝑖 (𝑠), with 𝑖 ∈ 1,… , 𝑘.

hey are used as addresses that point to bit locations in the membership
ord. The size of a membership word is 𝑤 and a 1 is written at the bit

ocations that correspond to the addresses 𝐻𝑘𝑖 (𝑠). To query an input 𝑥, a
imilar procedure is followed to read out 𝑘 bits (of which the locations
re determined by 𝐻𝑘𝑖 (𝑥), with 𝑖 ∈ 1,… , 𝑘) from the membership word
t the address determined by 𝐻𝑙(𝑥). If all 𝑘 bits are 1, the Bloom-1 filter
eturns 𝑥 ∈ 𝑆. Otherwise, 𝑥 ∉ 𝑆 is returned.

Typically, 𝑤 corresponds to the data bus width in a computer
ystem, i.e., 𝑤 = 32 or 64. The size of the entire Bloom-1 filter is
enoted as 𝑚 = 𝑙 × 𝑤. The advantage of Bloom-1 is that the number
f required hash bits is significantly lower when 𝑘 is large, compared
o other Bloom filters [13]. The total number of hash bits for Bloom-1
s 𝑙𝑜𝑔2(𝑙) + 𝑘 × 𝑙𝑜𝑔2(𝑤), compared to 𝑘 × 𝑙𝑜𝑔2(𝑚) for SBF. Additionally,
he 𝑤-bit membership word can be read out at once, while the 𝑘 1-bit
alues in SBF require 𝑘 read-outs. This significantly increases the speed
f Bloom-1 compared to SBF.

Qiao et al. give an approximation of the false positive rate (𝑓𝑝𝑟)
or Bloom-1 in [13]. A comment published by Reviriego et al. in [17]
efines the approximation, resulting in Eq. (2). Besides the Bloom-1
arameters, 𝑙, 𝑤 and 𝑘, the number of entries, 𝑛, has an influence on
he false positive rate.

𝑝𝑟 =
𝑛
∑

𝑥=0

(

(

𝑛
𝑘

)

.
( 1
𝑙

)𝑥
.
(

1 − 1
𝑙

)𝑛−𝑥

.
(

𝑤!
𝑘(𝑥+1)

𝑤
∑

𝑖
∑

(−1)𝑖−𝑗
𝑗𝑘𝑥𝑖𝑘

(𝑤 − 𝑖)!𝑗!(𝑖 − 𝑗)!

)

)

(2)

𝑤 𝑖=1 𝑗=1
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Fig. 1. Standard Bloom filter (SBF) representation.
Fig. 2. Bloom-1 representation.
2.2.2. Parallel Bloom Filter (PBF) architecture
We propose a modified architecture named as Parallel Bloom Filter

to keep the overall latency of Bloom filter to a single cycle. The parallel
bloom filter (PBF) implementation approach is inspired from the work
by Dharmapurikar [4]. Our approach follows the Standard Bloom
Filter (SBF) model, but uses multiple smaller memory blocks to form
SBFs in parallel to increase the lookup speed. When the number of hash
functions 𝑘 is set to 2 for each SBF, a Bi-SBF is formed, which requires
two memory accesses per update/query. The Bi-SBF is termed as mini-
bloom filter in the original literature and the authors of [4] suggest that
a dual-port BRAM can be employed to perform 2 read/write operations
at once, hence keeping the latency at one cycle. Moreover, to avoid
write conflicts, it is better to assign one port for reading and the other
port for writing, especially if the memory is being shared.

The Bi-SBFs can be arranged in parallel for two reasons, either to
reduce the false positive rate, or to increase the string storage capacity.
In order to reduce the false positive rate, the value of 𝑘 and 𝑚 has
to be increased keeping the value of 𝑛 constant, which is achieved by
stacking the Bi-SBF blocks in parallel. Such Bi-SBFs stacked together
in parallel form a parallel Bloom filter (PBF), as shown in Fig. 3(a).
To form a parallel Bloom filter with 𝑘 hash functions, 𝑘∕2 SBFs are
stacked together. The authors of [4] indicate that the false positive
rate of a Bi-SBF is ( 12 )

2, considering a constant 𝑛∕𝑚 ratio of 1419∕4096,
based on Eq. (1). The overall false positive rate of the PBF is then
(fpr(Bi-SBF))𝑘∕2.

In order to increase the storage capacity, Dharmapurikar et al. [4]
suggest to stack the PBFs together to form a Large Bloom Filter (LBF)
to achieve the required storage capacity. The storage capacity of a LBF
formed by arranging 𝑝 PBFs together is 𝑛 × 𝑝 while keeping the same
false positive rate, where 𝑛 is the string storage capacity of a single PBF.
If the overall memory size of a PBF is 𝑚, then 𝑝 such filters in parallel
constitute a Bloom filter of memory size 𝑝×𝑚. An element will be stored
in any one of the PBFs and one of the PBFs will be selected using a hash
value. However, this architecture requires additional operational logic
and adversely affects the resource requirements as well as speed.

Hence we prefer to change the memory size of the Bi-SBFs ac-
cordingly for the required false positive rate and storage capacity. To
increase the storage capacity, 𝑚 is increased while keeping the same
3

number of SBFs in parallel. The query/configure operations are similar
to standard Bloom filters, with every block operating in parallel. An
element 𝑒 is said to be present in the set only if all the parallel filters
show a match. In our implementation, the false positive rate of the Bi-
SBF is determined by Eq. (1) and the 𝑛∕𝑚 ratio changes depending on
the false positive rate or string storage requirements. The false positive
rate of a Bi-SBF is (1 − 𝑒−2𝑛∕𝑚)2 and the equation (fpr(Bi-SBF))𝑘∕2 still
holds for the false positive rate of PBF. The total memory size of each
Bi-SBF is 2×𝑚∕𝑘, where 𝑚 is the total memory size of the Bloom filter.

To make the PBFs faster, the number of hash functions for each SBF
can be set to 1, resulting in a Uni-SBF. The memory size of each Uni-SBF
is 𝑚∕𝑘. The false positive rate of each such Uni-SBF adheres to Eq. (1)
and is (1 − 𝑒−𝑛∕𝑚). The overall false positive rate of the PBF is given
by (fpr(Uni-SBF))𝑘. The PBF based on the Uni-SBF architecture shown
in Fig. 3(b) has the same false positive rate as PBF using Bi-SBF, but
requires less hash bits. The PBF based on Uni-SBF can employ a dual
port BRAM with dedicated ports for read and write operations, which
can reduce the look up latency to only one cycle with all SBFs operating
in parallel.

3. Related work

A wide range of related work is available, elaborating on the design
and optimization of Bloom filters for different applications. Various
aspects are to be considered when designing hardware architectures of
Bloom filters, such as the lookup delay, the false positive rate and the
operating frequency.

One of the main factors affecting the lookup delay of a Bloom
filter is the execution delay of the hash functions. Cryptographic hash
functions would have been the best choice if speed is not a prime
concern. A number of fast non-cryptographic hash functions with good
avalanche properties have been proposed, such as Murmur3 and FNV-
1a. Murmur3 is the result of a general study of non-cryptographic
hash functions by Estebanez et al. [18]. FNV-1a was taken from an
idea sent as reviewer comments to the IEEE POSIX P1003.2 committee
by Fowler and Vo and later improved by Landon Curt Noll [14].
It is considered to have the smallest computational delay. However,
on a high-speed hardware perspective, FNV-1a and Murmur3 are not
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Fig. 3. Parallel Bloom filter logic (a) using Bi-SBF and (b) using Uni-SBF.
very efficient. In this work, we propose Xoodoo-NC, a fast hardware-
oriented non-cryptographic hash function with good avalanche proper-
ties, which outperforms all other solutions in terms of execution delay
in hardware. Xoodoo-NC is derived from the cryptographic permutation
Xoodoo [12]. It uses a reduced number of rounds and a reduced
size of the internal state, which leads to a lower logical depth than
cryptographic hash functions based on Xoodoo, while maintaining the
desired avalanche properties.

Besides optimizing the hash functions, there are other methods that
contribute to the fast generation of the lookup addresses in Bloom
filters. Examples are the one-hashing Bloom filter (OHBF) [19], the
less hashing Bloom filter (LHBF) [20], and the ultra-fast Bloom filter
(UFBF) [21]. OHBF and UHBF follow similar techniques, where a single
base hash function is used, and 𝑘 modulo operations are performed
to obtain 𝑘 addresses. LHBF employs two base hash functions, and a
linear equation to generate additional addresses from the base hash
functions. Although these techniques can reduce the generation delay
of the lookup addresses, the overall delay of a query will still be
dominated by the delay of the memory accesses when a standard Bloom
filter (SBF) array [2] is used as depicted in Fig. 1. This is because each
read/write operation will require one clock cycle when the embedded
RAM in an FPGA is used for the storage of the Bloom filter. Hence,
it is important to not only reduce the delay for the generation of the
lookup addresses, but to also consider Bloom filter architectures that
reduce the number of memory accesses.

In an SBF, the number of memory accesses is directly proportional
to the number of hash values (𝑘). In order to reduce the false positive
rate, the number of hash functions and the size of the data structure
(𝑚) must be increased, but this has a negative effect on the execution
speed. Parallel Bloom filters, as proposed by Dharmapurikar et al. [3],
are a classical solution to overcome this issue. There are other ap-
proaches like multi-partitioning counting Bloom filters (MPCBF) [22],
OMASS [23] and One-memory-access Bloom filters (Bloom-1) [13],
where it takes only one memory access per query. MPCBF, OMASS
and Bloom-1 employ similar approaches based on the partitioning of
memory blocks to limit the number of memory accesses to one, as
explained for Bloom-1 in Section 2. In this work, we do not focus on
counting Bloom filters which store a count value for each memory
cell in order to enable the deletion of elements. That is why MPCBF
is not considered for our implementation. In OMASS, each element
is represented in multiple sets with different hash mappings, which
decreases the false positive rate but at the cost of extra memory. In this
work, we concentrate on Bloom-1 [13], because it requires less memory
storage than OMASS. For applications in which the false positive rate of
Bloom-1 is not sufficiently low, the possibility of moving to an OMASS
architecture can be considered.
4

A number of works are available on the implementation of Bloom
filters in hardware. Dharmapurikar et al. [4] present an implemen-
tation of parallel Bloom filters on FPGA for string matching. The
implementation is fast in terms of number of memory accesses with
acceptable resource utilization, but has a very low operating frequency
of 73.5 MHz, which is not suitable for high speed networks. However,
an improved version of PBF is implemented in this work. In [24],
a rolling hash function based Bloom filter is presented and imple-
mented on a high-end FPGA for fast streaming data. However, the
architecture assumes a byte-based interface which is only suitable for
Gigabit Ethernet networks. When moving towards Terabit Ethernet,
the incoming data need to be processed in larger parallel blocks.
The work of Kaya et al. [25] and of Lyons et al. [26] focus mainly
on the power reduction of Bloom filter implementations. A counting
Bloom filter implementation proposed by [27] for network intrusion
detection seems to provide operating frequencies above 200 MHz for
an input data size up to 8 bytes. Although all these publications present
very good implementations, an even higher parallelization level and/or
operating frequency is needed in Terabit Ethernet networks.

In this work, we propose to use the existing Bloom-1 architecture
and the modified parallel Bloom filter architecture, both of which
requires only one memory access per query. We also propose Xoodoo-
NC, an extremely fast non-cryptographic hash function that outputs a
hash value large enough to be split into chunks that can directly be
used in the Bloom filter architecture. We implement speed-optimized
hardware architectures that outperforms all other FPGA-based Bloom
filter implementations as well as architectures based on the CAM IP
cores in Xilinx FPGAs.

4. Novel algorithms and architectures

4.1. Experimental setting and basis of comparison

We concentrate on Terabit Ethernet (defined as Ethernet with
speeds above 100 Gbps). An example of an FPGA platform that supports
Terabit Ethernet is the 200 Gbps NFB-200G2QL board [28], which
processes network packets at a line rate of 512 bits per clock cycle.
It is clear that implementing network security applications on Terabit
Ethernet FPGA platforms requires the processing of many data bits in
parallel. Parallelization is also suggested by the authors of the large
flow detection algorithm EARDET [7]. An example of a network en-
cryption implementation that adheres to the strong operating frequency
and parallel processing requirements of Terabit FPGA platforms is given
in [29].

Typically in network applications, flow identifiers need to be queried
in a data structure. Examples of such applications are given in Sec-
tion 1. The considered flow ID in this work contains the source IP
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Fig. 4. Operating frequency and resource utilization of the CAM directly implemented with the Xilinx tools (referred to as Xilinx CAM IP) and the speed-optimized CAM architecture
(Custom Modified CAM IP).
address, destination IP address, and both the source and the destination
ports. The size of the flow ID is 96 bits, which is the case in an
IPv4 network. To adhere to the requirements of Terabit Ethernet FPGA
platforms, these 96 bits need to be processed in parallel at an operating
frequency of at least 200 MHz. We compare six different lookup data
structures in terms of cycle count, clock frequency, occupied FPGA
resources and false positive rate:

1. CAM block generated by the design tools of Xilinx,
2. speed-optimized custom CAM consisting of manually combined

smaller CAM blocks,
3. Bloom filter based on the PBF architecture and the FNV-1a hash

function,
4. Bloom filter based on the PBF architecture and the newly pro-

posed Xoodoo-NC hash function.
5. Bloom filter based on the Bloom-1 architecture and the FNV-1a

hash function,
6. Bloom filter based on the Bloom-1 architecture and the newly

proposed Xoodoo-NC hash function.

All six architectures store 1024 data words of 96 bits each. For the
first two architectures, which are CAM-based, this means that exactly
1024 × 96 memory cells are occupied. For the last four architectures,
which are based on Bloom filters, we explore different options for the
size of the Bloom filter, false positive rate, and the number and output
size of the hash functions. The number of stored entries in the Bloom
filters is equal to 1024 to make a fair comparison with the CAM-based
implementations.

The first CAM architecture is directly generated by the design tools
of Xilinx, resulting in the utilization of embedded RAM (Block RAM or
BRAM) with size 1024 × 96 bits, in combination with a limited amount
of logic in the form of FPGA LUTs (lookup tables) and FFs (flip-flops). A
lookup in the directly generated CAM takes 2 clock cycles. The second
CAM architecture consists of 128 CAM blocks of size 24 × 32 bits. These
smaller CAM blocks are again generated by the Xilinx design tools, and
the LUTs and FFs for combining and addressing these blocks are added
manually. This leads to an architecture with a higher operating fre-
quency, but with a larger resource occupation compared to the directly
generated CAM architecture. A lookup in the manually modified CAM
takes 3 clock cycles. The operating frequency and resource utilization
of the CAM-based architectures that are implemented as a reference
for comparison, are given in Fig. 4. The third, fourth, fifth and sixth
architectures that we evaluate are Bloom filters, which differ in the
utilized hash function. We compare FNV-1a, the fastest hash function
in hardware according to our knowledge, to Xoodoo-NC, the proposed
hash function in this paper.

For all experiments, the Vivado 2017.4 design tool of Xilinx is used
and the UltraScale+ XCVU7P-FLVC2104-1-E FPGA is targeted. Only for
5

the generation of the CAM blocks, the ISE 14.7 design tool of Xilinx is
used, because CAM generation is no longer supported in Vivado. The
resulting code is imported in Vivado to be used in the UltraScale+ FPGA
(which is not supported in ISE 14.7).

4.2. Design of a high-speed non-cryptographic hash function

The optimization goals in the design of a non-cryptographic hash
function for Bloom filters are low logical depth or critical path (i.e., high
operating frequency), low cycle count, high avalanche score and ac-
ceptable resource utilization. FNV-1a [14] and Murmur3 [18] are
non-cryptographic hash functions with excellent avalanche properties.
However, both of these algorithms use multiplication operations in
which the width of the multiplier is proportional to the output hash
size. FNV-1a and Murmur3 process 8 bits and 32 bits per cycle,
respectively, which means the execution time is proportional to the
number of 8-bit or 32-bit input blocks. That is why FNV-1a and
Murmur3 perform very well on an 8-bit or 32-bit microprocessor. When
implemented in hardware, however, the high number of flip-flops to
store the intermediate values and the large multipliers have a negative
effect on the resource utilization, the operating frequency and the
execution delay, especially when the required output hash size is large.

In our effort to find a non-cryptographic hash function that has
a low logical depth and a low resource utilization in hardware, we
start from the hardware-friendly cryptographic permutation Xoodoo,
presented by Daemen et al. in [12]. A Xoodoo round employs only
shift, AND and XOR operations, and does not need flip-flops inside the
round. While Xoodoo uses a 384-bit state, Xoodoo-NC operates on a
96-bit state, which perfectly fits our needs to process incoming network
flow IDs of 96 bits. Output values can be taken as multiples of 96-bits.
A more detailed explanation of Xoodoo-NC is given in the following
paragraphs.

The original Xoodoo permutation is parameterized by the number of
rounds 𝑛𝑟, and it iteratively applies the round function 𝑅𝑖 to the state 𝐴.
The state 𝐴 is depicted in Fig. 5 and has a size of 48 bytes, divided into
three 2-dimensional planes, which are indexed by 𝑦. Each plane has
four 1-dimensional lanes which are indexed by 𝑥. Each lane consists
of 32 bits in size, indexed by 𝑧. A collection of three parallel stacked
lanes in 𝐴 is called a sheet, and any three parallel stacked bits in 𝐴 are
called a column. Each byte in the state can thus be referred to with the
coordinates (𝑥, 𝑦, 𝑧).

The round function 𝑅𝑖 of Xoodoo consists of 5 sequential steps: a
mixing step 𝜃, a plane shifting step 𝜌𝑤𝑒𝑠𝑡, a step for the addition of round
constants 𝜄, a non-linear layer 𝜒 , and a second plane shifting step 𝜌𝑒𝑎𝑠𝑡.
For more in-depth details on these steps and the round constants, we
refer to [12].

In this work, we require a hash function with an input size of
96 bits or 12 bytes. Therefore, we reduce the state 𝐴 of the Xoodoo
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Fig. 5. Graphical representation of the Xoodoo state.
permutation to 12 bytes, corresponding to one sheet. This fixes the 𝑥
coordinate and allows the 𝑦 coordinate to vary from 0 to 2 and the 𝑧
coordinate from 0 to 31. The original definitions of lanes and columns
still hold. Because of the reduction of the size of the state, the Xoodoo
round function is slightly adapted. The cyclic shift operations involving
the 𝑥 and 𝑧 coordinates are replaced by operations involving only 𝑧. The
other operations and the round constant 𝐶𝑖 remain the same as in the
original algorithm. The resulting Xoodoo-NC permutation is specified
in Alg. 1, and the notational conventions of Xoodoo-NC is specified in
Table 1.

Algorithm 1: Xoodoo-NC[𝑛𝑟]

1 Parameters: Number of rounds 𝑛𝑟
2 for Round index 𝑖 from 1 − 𝑛𝑟 to 0 do
3 𝐴 = 𝑅𝑖(𝐴) ; // 𝐴 is 96-bit input state (1 sheet)
4 end
5 Round 𝑅𝑖:
6 𝜃:
7 𝑃 ← 𝐴0

⨁

𝐴1
⨁

𝐴2
8 𝐸 ← 𝑃 ⋘ 5

⨁

𝑃 ⋘ 14
9 𝐴𝑦 ← 𝐴𝑦

⨁

𝐸 for 𝑦 ∈ {0, 1, 2}
10 𝜌𝑤𝑒𝑠𝑡:
11 𝐴2 ← 𝐴2 ⋘ 11
12 𝜄:
13 𝐴0 ← 𝐴0

⨁

𝐶𝑖
14 𝜒 :
15 𝐵0 ← 𝐴1.𝐴2

16 𝐵1 ← 𝐴2.𝐴0

17 𝐵2 ← 𝐴0.𝐴1
18 𝐴𝑦 ← 𝐴𝑦

⨁

𝐵𝑦 for 𝑦 ∈ {0, 1, 2}
19 𝜌𝑒𝑎𝑠𝑡:
20 𝐴1 ← 𝐴1 ⋘ 1
21 𝐴2 ← 𝐴2 ⋘ 8

For the Xoodoo permutation, Table 8 in [12] summarizes the
avalanche properties. The avalanche metrics mentioned in [12] are
used here also to determine the avalanche behavior of Xoodoo-Nc. The
metrics, namely avalanche dependence (𝐷𝑎𝑣), avalanche weight (𝑤𝑎𝑣),
and avalanche entropy (𝐻𝑎𝑣), are calculated as in [12] for single-bit
differences at the input. Only the worst-case values are reported, which
are the minimum values taken over all individual input differences of
a given type. The results are presented in Table 2. Xoodoo-NC provides
full bit-dependence and quasi-strict avalanche weight after 2.5 rounds,
and ≈ 90% dependence after round 2. We assume that it is sufficient for
our intended application and generate a 96-bit Xoodoo-NC hash output
after 2.5 rounds. To obtain an output of 192 bits, one additional round
is executed and the output of the next round is concatenated with the
output of the previous round. In a similar way, an output size of any
multiple of 96 bits can be obtained by increasing the number of rounds
and concatenating the results.

Xoodoo-NC proves to be a better compared to FNV-1a and Murmur3
when it comes to high-speed applications and if the required output
bits are high. Table 3 summarizes the hardware implementation results
of FNV-1a, Murmur3 and Xoodoo-NC on a Xilinx Virtex Ultrascale+
FPGA (XCVU7P-FLVB2104-2-i). The throughput is calculated using the
6

Table 1
Notational conventions of Xoodoo-NC.
𝐴𝑦 Lane 𝑦 of state 𝐴. In Xoodoo-NC, 𝐴 is one sheet.
𝐴𝑦 ⋘ 𝑣 Cyclic shift of 𝐴𝑦 moving bit in 𝑧 to position (𝑧 + 𝑣)
𝐴𝑦

⨁

𝐵𝑦 Bitwise sum (XOR) of planes 𝐴𝑦 and 𝐵𝑦
𝐴𝑦 .𝐵𝑦 Bitwise product (AND) of planes 𝐴𝑦 and 𝐵𝑦

𝐴𝑦 Bitwise complement of lane 𝐴𝑦

Table 2
Avalanche Scores for Xoodoo-NC.
Rounds 𝐷𝑎𝑣 𝑤𝑎𝑣 𝐻𝑎𝑣

2 84 35.408 80.332
2.5 96 47.324 95.864
3 96 47.309 95.867
3.5 96 47.922 95.996

equation 𝐼𝑛𝑝𝑢𝑡 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑖𝑛 𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑓𝑚𝑎𝑥, where 𝑓𝑚𝑎𝑥 is the maximum operat-

ing frequency. As seen from the table, Xoodoo-NC has improved the
frequency of operation and latency significantly compared to both
Murmur3 and FNV-1a despite having a higher output block size. A work
by Sateesan et al. [30] on the CM sketch implementation on FPGA
has shown the effectiveness of Xoodoo-NC on hardware. Following
the design technique of Xoodoo-NC, Claesen et al. [31] constructed
fast non-cryptographic hash functions from lightweight cryptographic
block ciphers chosen from NIST lightweight competition. These non-
cryptographic hashes derived from lightweight block ciphers signifi-
cantly outperforms any other non-cryptographic hashes and Xoodoo-NC
exhibits the best performance in terms of throughput per area.

5. Hardware implementation

We discuss the hardware implementation of the Bloom-1 archi-
tectures that are evaluated in this work. We employ a single non-
cryptographic hash function of which the output is split into 𝑘+1 parts,
i.e., one part of size 𝑙𝑜𝑔2(𝑙) and 𝑘 parts of size 𝑙𝑜𝑔2(𝑤), as explained
in Section 2.2.1. Two non-cryptographic hash functions with an input
size of 96 bits are evaluated, namely FNV-1a and Xoodoo-NC. In the
following paragraphs, we elaborate on the FNV-1a implementation, the
Xoodoo-NC implementation and the Bloom-1 implementation that uses
one of these hash functions.

5.1. Hash functions

5.1.1. FNV-1a
FNV-1a can provide output hash sizes ranging from 32 to 1024 bits.

It uses only two parameters — a non-zero FNV Offset basis, and an
FNV Prime. Both parameters depend on the hash output size. FNV-1a
processes one byte at a time, and the algorithm consists of iterations of
two sequential operations — XOR and multiplication.

The hardware block diagram of FNV-1a is shown in Fig. 6. The input
can be of any size, but only 8 bits are processed per cycle. The received
input is stored in an octet shift register, which shifts a single byte per
cycle and has a total size equal to the size of the incoming message,
namely 𝑞 bytes. In this work, the size of the flow ID is taken as 96 bits,
which corresponds to 𝑞 = 12. Every clock cycle, a byte is passed to
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Table 3
Comparison of hash implementations on a Xilinx Virtex Ultrascale+.
Function Block size LUT FF BRAM DSP Frequency Latency Throughput

(In/Out bits) (ns) (Gbps)

FNV-1a 96/32 38 70 0 2 211.01 MHz 61.6 1.56
96/64 76 161 0 7 160.23 MHz 81.1 1.18

Murmur3 96/32 574 277 0 24 153.87 MHz 65.0 1.48
96/64 566 341 0 38 120.58 MHz 82.9 1.16

Xoodoo-NC (2.5 rounds) 96/96 256 194 0 0 666.67 MHz 1.5 64
96/192 323 290 0 0 416.67 MHz 2.4 40
Fig. 6. FNV-1a — serialized hardware architecture block diagram.
the processing element (PE), which performs the XOR operation with
the intermediate hash value, or with the FNV Offset basis for the first
byte. Subsequently, a multiplication with the FNV Prime is calculated.
The hash_temp register stores the intermediate hash value. The output
is obtained after processing the final byte of the input. Before the hash
value is valid, zeroes are sent to the output.

The drawback of a straightforward FNV-1a architecture is that it
processes only one byte per clock cycle. The input needs to be buffered
until the processing is completed. This is a major concern for high-
speed networks like Terabit Ethernet networks, in which multiple bytes
need to be processed in each clock cycle. For the applications that
we consider in this paper, 12 bytes need to be processed every clock
cycle, but the FNV-1a architecture requires 12 clock cycles to process
12 bytes. Another concern regarding the hardware implementation is
that one of the core operations in the PE is a multiplication. If we
want to increase the input size and the output hash size, the multiplier
width also needs to be increased, which further increases the hardware
complexity and the critical path. Pipelining somewhat helps to mitigate
this issue and to improve the overall throughput (after an initial delay
equal to 𝑞 clock cycles. The hardware architecture of the pipelined
version is shown in Fig. 7.

The core of the design is a free-running FSM, which processes 𝑞
bytes in each clock cycle. The input buffers store the incoming 𝑞-
byte inputs. In total, 𝑞 input buffers are implemented that each store
a 𝑞-bit input word. In each clock cycle, the bytes from the input
buffers (starting from register 0) are shifted to the octet register of size 𝑞
bytes. The octet register is an array of 8-bit registers. For every input,
the first byte is stored in the 0th register, the second byte in the 1st
register and so on. Each PE takes two inputs, one byte from the octet
register and the output from the previous PE (except for PE0). PE0 takes
the FNV Offset basis and the 0th byte of the octet register as inputs.
The output of each PE is connected to an output buffer that stores the
intermediate hash value and is connected to the input of the next PE
in the sequence. The pipelined version of FNV-1a can process a 96-bit
input in every clock cycle and has an output latency of 12 clock cycles.
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5.1.2. Xoodoo-NC
The architectural features of Xoodoo-NC are depicted in Section 4.2.

The hardware block diagram of Xoodoo-NC is shown in Fig. 8. The
heart of the Xoodoo permutation is the round function, which consists
of the 5 steps shown in Alg. 1: 𝜃, 𝜌𝑤𝑒𝑠𝑡, 𝜄, 𝜒 , and 𝜌𝑒𝑎𝑠𝑡. In general, the
round steps are applied sequentially 𝑛𝑟 times on the input state function
𝐴. In Xoodoo-NC, the round is executed twice when a 96-bit hash
output is needed and once more to generate a second 96-bit output,
to be concatenated with the first output when a 192-bit hash output
is needed. This way, the output of Xoodoo-NC can be any multiple of
96 bits, but we stick to two different output sizes in our evaluation: 96
and 192 bits.

The rounds are implemented in a fully unrolled architecture without
registers in between the rounds, i.e., the 2 or 3 rounds of Xoodoo-NC are
completely implemented in combinational logic. The detailed hardware
block diagram of the round function is shown in Fig. 9. The 96-bit input
𝐴 consists of 3 lanes of size 32 bits, namely 𝐴0, 𝐴1, and 𝐴2 (cfr. Alg.
1). The round constant 𝐶𝑖 used in 𝜄 is a single 32-bit lane, indexed from
1−𝑛𝑟 to 0. The 3-lane output of the round goes to the input of the next
round.

5.2. Bloom-1

The hardware architecture of the Bloom-1 filter follows the concept
depicted in Section 2.2.1 and is shown in Fig. 10. Bloom-1 implemen-
tation employs only BRAMs for storage. The hash bits are generated
with a single hash function, Xoodoo-NC, of which the output is split
into 𝑘+ 1 parts. The first part, 𝐻𝑙, is used to determine the location of
the membership word in the BRAM. The 𝑘 remaining parts are used
to address the bits inside the membership word. Depending on the
𝑞𝑢𝑒𝑟𝑦∕𝑖𝑛𝑠𝑒𝑟𝑡 instruction, the memory is read and written. The execution
delay is determined by the BRAM read–write delay, which is 1 clock
cycle, and the delay of the hash generation. Xoodoo-NC is executed
in one clock cycle, while the non-pipelined (serialized) and pipelined
versions of FNV-1a take 14 and 2 clock cycles, respectively.
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Fig. 7. FNV-1a - Pipelined hardware architecture block diagram.
Fig. 8. Xoodoo-NC block diagram.

5.3. Parallel Bloom filter

Parallel bloom filters (PBF) are constructed by stacking Bi-SBFs or
Uni-SBFs in parallel as depicted in Section 2.2.2 and the hardware
architecture of PFF using Bi-SBFs is shown in Fig. 11. Only on-chip
BRAMs are employed to implement the memory. Dual port BRAMs are
employed with dedicated ports for read and write operations. Xoodoo-
NC is used to generate the hash values. The SBFs are operated in
parallel such that the read/write latency is always equal to the latency
of a single SBF. Using Bi-SBF, the latency is 3 cycles whereas using
Uni-SBF, the latency is only 2 cycles. The memory sizes of Bi-SBF and
Uni-SBF are 2𝑚∕𝑘 and 𝑚∕𝑘, respectively, where 𝑚 is the overall size of
the Bloom filter and 𝑘 is the number of hash functions. Dividing the
memory block into multiple smaller blocks in PBF helps to minimize
the routing delays associated with larger BRAM blocks.

6. Results & analysis

In this section, we present the results of the experiments conducted
on a Xilinx Virtex Ultrascale+ FPGA (XCVU7P-FLVC2104-1-E) using the
Vivado 2017.4 design tool. For the Bloom filter implementations, we
employ FNV-1a with 64-bit and 128-bit hash outputs, and Xoodoo-NC
with 96-bit and 192-bit hash outputs. The input size is always 96 bits.
For FNV-1a, both the non-pipelined and the pipelined architectures are
evaluated. The Bloom-1 parameters 𝑙, 𝑤, and 𝑚 = 𝑙 ∗ 𝑚 are taken as
4096, 64 and 262144, respectively. For the PBF implementations, the
values of 𝑚 and 𝑘 are varied to match the 𝑓𝑝𝑟 of Bloom-1. The size of
the CAMs that we compare with is 1024 × 96.
8

6.1. Effect of hash functions on Bloom-1

The usage of FPGA logic and DSP units in the Bloom-1 architectures
while using different hash functions is depicted in Fig. 12. The Xoodoo-
NC based Bloom filters outperform the FNV-1a based implementations,
especially for larger values of 𝑘. The FNV-1a implementations make
use of the multipliers inside the DSP units, whereas no DSP units are
employed in Xoodoo-NC. The pipelined version of FNV-1a has a much
higher consumption of logic resources and DSP units in comparison to
the serial FNV-1a and the Xoodoo-NC based Bloom filters. The oper-
ating frequency and execution delay of the Bloom-1 architectures are
shown in Fig. 13. The Xoodoo-NC based architectures clearly feature
a much higher operating frequency and a much lower execution delay
than the FNV-1a based architectures.

The results of the Bloom filter implementations are listed in Table 4,
and in Figs. 12, and 13. Two versions of the Bloom-1 architectures
are considered in the table: those with 𝑘 = 2 and 𝑘 = 12. In order
to calculate the false positive rate (𝑓𝑝𝑟) using Eq. (2), the number
of entries in the Bloom filter is assumed to be 1024, such that a fair
comparison can be made with the CAMs whose depth is taken as 1024.
Going from 𝑘 = 2 to 𝑘 = 12, leads to a resource occupation that is
more than doubled for the Xoodoo-NC based implementation, and at
the same time decreases the false positive rate drastically. Nevertheless,
the resource occupation of the Xoodoo-NC based Bloom filter is much
lower than all other considered architectures, even when 𝑘 = 12.

6.2. Bloom filter versus CAM

Table 4 shows the comparison of the bloom filter variants with CAM
based lookup architectures. The number of entries to be stored is taken
as 1024. The Xilinx CAM blocks mentioned in [16,32] require 40x-50x
more BRAMs than the Bloom-1 architecture, and requires ≈20 times
more LUTs than the PBF architecture. The CAM block having a size
of 1024 × 96 generated by the Xilinx design tools has an operating
frequency of only 112.75 MHz. The search delay of CAM increases as
the number of entries to be stored increases, but the number of entries
to be stored barely affects the search delay of Bloom filters as the
number of locations to be searched remains a constant and is equal to
the number of hash functions. The custom modified CAM architecture
operates at a higher frequency of 225 MHz, but consumes more FPGA
resources as depicted in Fig. 4 and Table 4. Although the latency is
increased by 1 cycle to query the custom modified CAM, the total query
time is lower compared to the directly generated CAM. The lookup
delay of the Xoodoo-NC based architectures is significantly lower than
the lookup delay of all other implemented architectures. This is mainly
because of the high operating frequency, and thanks to the cycle count
of only 3 cycles.
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Fig. 9. Xoodoo-NC Round, which is implemented 2 or 3 times in combinational logic for a 96-bit or 192-bit hash output, respectively.
Fig. 10. Bloom-1 hardware architecture.
Table 4
Comparison of Bloom-1, PBF, and CAM implementations on a Xilinx Virtex Ultrascale+.

Bloom filter k fpr LUTs FFs BRAM LUTRAM DSP Max freq
[MHz]

No. of cycles
for lookup

Lookup
Delay [ns]

Bloom-1 (Xoodoo-NC) 2 0.0002976 263 34 7.5 0 0 490.92 2 4.074
Bloom-1 (FNV-1a) 2 0.0002976 261 228 7.5 0 3 173.52 16 92.21
Bloom-1 (FNV-1a) Pipelined 2 0.0002976 649 1507 7.5 6 36 151.52 4 24.76

Bloom-1 (Xoodoo-NC) 12 2.61x10−7 643 94 7.5 0 0 462.32 2 4.124
Bloom-1 (FNV-1a) 12 2.61x10−7 1366 339 7.5 0 15 121.18 16 132.03
Bloom-1 (FNV-1a Pipelined) 12 2.61x10−7 2706 1562 7.5 6 180 104.87 4 38.14
PBF (Uni-SBF,Xoodoo-NC) 12 0.14x10−7 338 220 6 0 0 434.21 2 4.606
PBF (Bi-SBF,Xoodoo-NC) 12 0.14x10−7 324 148 6 0 0 389.10 3 7.71

Direct CAM 0.0 6731 1145 320 1536 0 112.75 2 17.74
Custom Modified CAM 0.0 20’797 988 384 1536 0 225.07 3 13.33
9
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Table 5
Comparison with related work.

Design m k Input size LUTs FFs BRAMs Frequency fpr No. of memory
accesses

FPGA

PBF [4] 4096 10 10 byte 1495 1297 5 73.51 MHz 8.89x10−5 2 Virtex 2000E
[27](SBF) 16384 8 8 byte 1058 1058 4 200.6 MHz 5.74x10−4 4 Virtex-4
[27](CBF) 16384 8 8 byte 1188 1188 4 201.6 MHz 5.74x10−4 4 Virtex-4
Ours, PBF (Bi-SBF) 49152 12 12 byte 338 220 6 389.10 MHz 0.14x10−7 2 Virtex UltraScale+
Ours, PBF (Uni-SBF) 49152 12 12 byte 324 148 6 434.21 MHz 0.14x10−7 1 Virtex UltraScale+
Ours, Bloom-1(xoodoo-NC) 262144 12 12 byte 675 158 7.5 462.32 MHz 2.61x10−7 1 Virtex UltraScale+
Fig. 11. Parallel Bloom Filter hardware architecture.
Fig. 12. Resource utilization of Bloom-1: Logic resources and DSP units.
Fig. 13. Maximum operating frequency and delay of Bloom-1.
6.3. Analysis of Bloom filter variants

Analyzing the different bloom filter implementations, we can ob-
serve that there is always a trade-off between the false positive rate
and memory utilization. To analyze this, we consider the Bloom-1
architecture and the parallel Bloom filter architectures, as proposed in
Section 2.2.2. Table 6 shows the comparison between Bloom-1, parallel
Bloom filter (PBF), and standard Bloom filter (SBF). When comparing
Bloom-1 with PBF, it can be noticed from Tables 4 and 6 that PBF
can achieve a better false positive rate with less memory, but at the
cost of a higher number of hash bits. The Bloom-1 architecture with 12
hash functions requires only 84 hash bits, whereas PBF using Uni-SBF
requires 144 bits to achieve a better fpr. However, Bloom-1 requires ≈ 5
10
times more memory than PBF. Comparing standard Bloom filter (SBF)
and PBF, SBF requires more memory while keeping the number of hash
bits the same. PBF using Uni-SBF shows less hash bit requirements and
higher frequency compared to PBF using Bi-SBF. The number of cycles
for lookup given in Tables 4 and 6 includes the number of clock cycles
required for both hashing and memory accesses.

6.4. Power analysis

Power consumption is another important factor to be addressed. Our
implementation results from Vivado 2017.4 underline the statement
that CAM architectures are power hungry, when comparing with Bloom
filters. The static power consumption of the FPGA occupies the lion’s
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Table 6
Comparison of the properties of the Bloom filter architectures considered in this paper.
Bloom filter 𝑓𝑝𝑟 k n m Hash bits No. of cycles for lookup

Bloom-1 2.61x10−7 12 1024 262144 84 2

Keeping k constant while achieving similar fpr as Bloom-1

PBF (Bi-SBF) 0.14x10−7 12 1024 49152 156 3
PBF (Uni-SBF) 0.14x10−7 12 1024 49152 144 2
SBF 8.74x10−7 12 1024 32768 192 13

Keeping hash bits constant while achieving similar fpr as Bloom-1

PBF (Bi-SBF) 0.49x10−7 6 1024 98304 90 3
PBF (Uni-SBF) 0.49x10−7 6 1024 98304 84 2
SBF 0.82x10−7 5 1024 131072 85 6
Fig. 14. Dynamic power consumption of Bloom-1 (Using FNV & Xoodoo-NC), and CAM.
share of the total power consumption for all implementations. Static
power consumption is almost equal for all the Bloom-1 and CAM
implementations and there is only a maximum increase of 0.6% in static
power consumption for CAM compared to Bloom-1. The dynamic power
consumption of Bloom-1 is only less than 1% of the total power con-
sumption for FNV-1a and Xoodoo-NC based implementations. However,
dynamic power consumption of Bloom-1 employing the pipelined ver-
sion of FNV-1a can rise up to 12% of the total power consumption. The
dynamic power consumption of Bloom-1 based on FNV-1a and Xoodoo-
NC is negligibly small compared to CAMs as shown in Fig. 14. Although,
the dynamic power consumption of pipelined FNV-1a based Bloom-1
increases with increasing value of 𝑘, it is still significantly lower than
the power consumption of a CAM. As the CAM lookup operations are
performed in parallel, the dynamic power consumption of CAM having
a depth of 1024 is 33% of the total power consumption, which is
significantly larger when compared to <1% of Xoodoo-NC based Bloom-
1 implementation. Another noticeable thing to be mentioned is that our
modified CAM implementation consumes less power compared to the
Xilinx IP CAM.

6.5. Comparison with related work

A quantitative comparison with related work is shown in Table 5 for
𝑛=1024. It is clear that our Xoodoo-NC based Bloom-1 architecture with
a 96-bit input and 𝑚 = 4096 ∗ 64 significantly outperforms previously
proposed FPGA architectures that have a smaller input size, a smaller
𝑚 and a larger false positive rate. Our design drastically improves the
resource occupation and the speed. Although the total lookup delay is
not reported for the considered related architectures, the table shows
that the delay of the memory accesses only is longer than the delay
of one query in our Xoodoo-NC based implementation. Note, however,
that the considered related work uses older FPGAs with 4-input LUTs,
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while our FPGA has 6-input LUTs. Nevertheless, our reported number
of LUTs is only around half of the LUTs reported in related work and
the number of FFs is roughly one fifth to one tenth of the FFs reported
in related work. The difference in operating frequency can partially be
attributed to the difference in silicon technology nodes between older
and newer FPGAs. Nevertheless, the frequency of 462 MHz is extremely
high thanks to the low logical depth of the Xoodoo-NC hash function.

6.6. Future-proofing

The present work targeted IPv4 as network-layer protocol. However,
the presented architectures are also adaptable for IPv6. The Bloom filter
algorithm is based on the hashed fingerprint and the algorithm is not
affected by the size of the input (flow ID). The false positive rate of the
Bloom filter is only a function of the number of hash functions, number
of elements to be inserted and the total memory size. Therefor, it is not
affected by the size of the input or hash collisions, irrespective of the
network-layer protocol.

To handle IPv6 flows, the only change to be made is to adapt the
hash function to handle IPv6 flow ids, which can be done by increasing
the input size of Xoodoo-NC. The original Xoodoo permutation has a
384-bit input state and in Xoodoo-NC we used only 96-bit input state
as our requirement was only 96-bits. We can modify the Xoodoo-NC
hash to accept either 192-bit (2 sheets of the Xoodoo state) or 288-bit
(3 sheets) as input state, and then re-compute the number of rounds
required to meet the avalanche criteria. The latency can still be a single
clock cycle and the computational resources will be slightly higher
compared to Xoodoo-NC with a 96-bit input state. This would still be
more advantageous than any other existing non-cryptographic hashes
because as the input size becomes large, the latency and resource

utilization of hashes like FNV-1a and Murmurhash increase drastically.
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7. Conclusion

In this work, we targeted novel algorithms and architectures for
high-speed Bloom filters on FPGA, used for fast lookups in network
applications. We proposed a new high-speed hardware-oriented non-
cryptographic hash function called Xoodoo-NC. The hash function was
integrated into Bloom-1 and parallel Bloom filter architectures and
evaluated on a Virtex UltraScale+ FPGA of Xilinx. The resulting re-
source occupation, power consumption, operating frequency, lookup
delay and false positive rate were compared to previously reported
Bloom filter architectures and Content-addressable Memories on FPGA.
To our knowledge, our work significantly outperforms all other so-
lutions on all these comparison criteria. Finally, we discussed the
presented work that it can comply with another protocol stack.
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