Hardwar e Performance
Monitoring
In Multipr ocessors

by

Guy G. F Lemieux

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright© 1996 by Guy G. A_emieux

Hardwar e Performance Monitoring
in Multipr ocessors

Guy G. F Lemieux
Master of Applied Science, 1996

Department of Electrical and Computer Engineering
University of Toronto

Abstract

Multiprocessors are often quoted as being capable of a ‘peak performance,’
but in practise it is difcult to utilize this potential. Consequentyoftware

applications must be well tuned to rufi@éntly.

In this thesis, factors fafcting performance in cache-coherent
multiprocessors, particularly those which use a sequentially-consistent
memory model, are analyzed. Codeefive hardware features are
suggested to measure these factors without intruding on software
performance. Many of the proposed features can be readily incorporated
into future processor designs, and others are easy to implement in external
hardware. The measurements can be used to help tune a psogram’
performance as well as other purposes such as simulation verification,

workload characterization, or runtime performance decision support.

To demonstrate cost feasibility and other implementation concerns, the
processor card hardware performance monitor developed for the

NUMAchine multiprocessor is also described.

Acknowledgements

| am indebted to the many people who have helped me along in the
course of developing this thesis. In particulaiwish to thank
Stephen Brown and Zvonkardhesic for the opportunity and their

support and encouragement.

Next, | am very grateful for the sacrifices of my Grandmotivap
worked hard to help support me throughout my university educa-

tion. My love is with her always.

Of course, my friends have contributed to maintaining my sanity
and providing distractions. Thanks, Kelvin, for the many great
squash games! | have also enjoyed the company of Steve, Zeljko,
Derek, Dan, Alex, Robin, Rob, Mitch, Dean, Ben, GordoimgA/

Chi, and manymany others. Most importanglywill always cher-

ish Marthas love, support and companionship.

The helpfulness of discussions and criticisms with Naraig, Orran,

Todd, and Keith is appreciated.

Financial support from OGS, ITRC, Uofdand Hewlett-Packard is

gratefully acknowledged.

Table of Contents

ADSITACT ...t [T
AcknowledgementS..... ..o Ll......
Table Of CONENLS.........ciii el V.......
LISt Of FIQUIES....oee e IX......
LISt Of TABIES ... e Xl......
Chapter LINtroduCtioncooeuuiiiiiie e 1.
I 1Y/ 0 1 1VZ= 11 o o PP 1.
1.2 ODJECHIVES ..ot 2.,
1.3 CONIDULIONScciiiie e et e e e e e e b e e eeeenes 3o
R @)T V1Y IR
Chapter 2Background............ccoeuuiiiiiiiiiiiiii e 5.
2.1 MONItoriNg iN SOMWAIE.......uuueiiiie e eeeeeee 5.
2.0 GPFOF e 5.
20 T /1 o To | PSRRI B
N G T - T = (o 1Y/ o Y USRS
2.1.4 QPT and CPraf......coo i 2 S
N T |V =T 4 S oY/ fo R
2.0.6 SUMIMAIY. .. ciiiittite e ettt e e et e e e e e et s e e e e e et s s e e e eae b s e et eestaaeeeeeeasbanneeeaeernes LS FE
2.2 Hardware Monitoring iN PrOCESSOIS........uuuuriiiiiiieeeeeeeeeeeeeeeeeissnnnnn! 9....
2.2.1 Intel Pentium and Pentium Pro.............coooiiiiiiiieer e 10....
2.2.2 DEC AIPNA 21064........coeiieerieeieeeeeeieeeeeeeeee ettt 10......
2.2.3 MIPS R4400 and R100QQ............cciiiurreireireeeee e e e e sessnireeeeeeeeeee e s e s snnnnreneees 10.....
2.2.4 Hewlett-PackardR-RISC...........uuuiiiiiiiiii e 13....
2.2.5 SUN SRRCoouiieiiecieeeee ettt ettt ettt 13.......
2.2.6 IBM/Motorola/Apple POWEIPC B04..........uuviiieeeeeiieiiiiiieeee e e 14...
2.2.7 IBM POWERZ........ooviteeeeeeteeee ettt 14......
2.2.8 ProCeSSOr SUMIMALY......uuumiiiiiieeeiiiiiiiiirie ettt e e e s s re e e s 15......
2.3 Hardware Monitoring in SYSIEMS.........uuuiiiiiiiieeiee e 16...
2.3.1 University Of TOoronto HECIOL..........eeviiiiiiiiieiiieiee e 16....
2.3.2 Stanford DASH........oieic e ———————————— 18......
2.3.3 MIT M-MACQNINE........ccoi it e e e e e e e e e e e e e e e aeaeenraee 20......
2.3.4 Cray ReSEAICH INCu...ciiiiiiiiiiiiiiie e 20......
2.3.5 Convex Computer COrporation..........uueeeeerieieeciriieeereeeeeeeesssssnernnneerreeeeeeeen 21....
2.3.6 Kendall Square RESEAICH............uueiiiiiiiiiiii e 23.....
2.4 SUMMAIY. ..ttt e et e e e et e e e et e e et e e e e aa e e e eanneaeees 24.......
Chapter 3 Multiprocessor Hardware Performance Monitoring.......... 27
3.1 Performance Losses: SoftwareW..............ccveeeeeeiiiiiiiie e, 27..

3.1.1 Inefficient AIQOMthMS...........cooii i 21.....

3.1.2 Extra Parallel MIFK.........coooiiiiiiiieeeee et 28.....
G0 I I Y (o] {0 1 4= 1 [PR 28.....
3.1.4 Load IMDAIANCE........uiiiiiiiieiie e 28.....
3.1.5 Inefficient System and Library Calls...........cccccoviiiiiiiiiii e 28..
3.1.6 AMAANIS LAW.....eeiiieiiiiiiie ittt s 20......
I J0 A S TU [111 1= 1Y 2 SO UPPPPRTR 29.......
3.2 Performance Losses: Hardwar@W..............ccooooviiiiiiiiiiiiiiiiieicceccceeenn 30..
3.2.1 INSIIUCHIONS ..ceeiiiee ettt e e e e e e e e e e e ennneneee s 30......
3.2.2 Instruction Scheduling and CPL............cccoiiiiiiiiiiii e 30...
3.2.3 MEMOIY StallS......cceeeiiiiiiiece e ————————— 31......
3.2.4 Other StallS......cooi oo 31......
3.2.5 EXCeptions and INTEITUPLS.ciiurriieiiiiiiiee ittt 32....
3.2.6 Branch MisprediCtions..........ccoieieciiiiiiiiee e e e e e e e e e 32....
3.2.7 SPECIAI CABSES.....ceeiiiiiiiiitte ettt e e 33......
3.2.8 SUMIMABIY....uttiiiiiiiiiei ittt e et e e e e e e s s e 33......
3.3 Processor w of Memory Stalls............ooooviiiiiiiiiiiieis 34...
3.3.1 Counting Cache MISSES......ccciiuiiiiiiiiiiiiee ettt 35....
3.3.2 Classifying Cache MiISSES........uuuiiiiieeiiiiiiiiiiieiiieet e e e essee e e e e e e e e s annnees 37....
3.3.3 Measuring Cache MiSS LateNCY........cceeeieieiiiiiiee e 42...
3.3.4 Summary: Processoriév of Memory StallS..........ccoooveiiiiiiiiiiiiie e 48.
3.4 Hardware Support for Softwar@als...........ccceeevieeiieiiiiiiiieeeeiin 49..
o R I 0 1 L= YU o] o Jo] A PP PP PP O PPPPPPP 49......
3.4.2 BasiC BIOCK Profiling..........coocuviiiiiiiiiee e 49.....
3.4.3 Pointing Losses Back to Code and Data..............cccoovvevvvevviviiiiiiiiiccneeee e, 52..
3.4.4 Summary: Hardware Support for SoftwaiIB.............ccceeeeeiieeiniiiiiiiiiiee, 52
3.5 SUMMAIY....cceii e et e e e e et e e e e eeenaanns 52......
Chapter 4 Hardware Implementation...........cccooovvvviviiiieeeceiiiine e 55.
4.1 Introduction t0 NUMACKHING.........uiiiiiiiiiiiiiiiiiieee e 55....
4.2 Processor Card @aniZatioN.............eeeieiiiiiiiiieeeeeeeeee e 58...
4.3 MONItOr OIJANIZATIONuueeieiiiiee e e e e e e e ettt e e e e e e e e e e e eeeeeeeeneees 59.....
4.3.1 LoCal BUS CONIOIBE.uueiiiiiieeieiiieiieeee e 59.....
4.3.2 PIPEIINE STAtUS......euriiiieiiiiie e e e e e e e e e e s s e ee e e e s 61......
4.3.3 CouNters & INEITUPLS......coiiiiiiiiiiieieie et e e e e e e e e e e e e e e e e eeeeeeeeeees 62....
4.3.4 SRAM MEIMOIY....cciiiiiiiiitiiiiieie ettt 64.....
4.3.5 CoUNt & INCIEMENL.....ciiiiiiiiiiiiitee ettt a e e e 64.....
G I G I (=1 o Uox YA T = oSSR 64......
4.3.7 Configuration CONTIOIL..........cuuiiiiiiiiiie e 65....
4.4 Programmable ConfiguratiQn............oooooiiiiiiiiiiiiiiiii e 65...
4.4.1 PhaselD Register and PhaselBt@h................ccueeeiiiiiiiiiiieeee, 65..
4.4.2 Command Vitch and Command Filter...........cccooviiiieiiiiiiieee e 61..
4.4.3 Address Vdtch and Address Filter.........ooiiiiiii e 61...
4.4.4 General-Purpose Counter MOAES..........cccoiuiiiiiiiiiiiiieniiiee e 68...
4.45 SRAM Counter MOE..........coeiiiiiiiieiiiiiiieeiiiiieee e siiieeeessieeeeesseveeeeessneeeee L L
4.4.6 Master Counter ENabIS..........uuuiiiiiiiiiiii e 75....

Vi

A5 SUMIMABIY....cciiiiiiieeeeiee e e e et e ettt e et r e a e e e e e e e eeeeeeeeesnsnnnnnns 75.......

Chapter 5CoNCIUSIONS........coiiiiiiiiie e 79...
5.1 CoNtribBULIONS ..o e e e eeeeee d Qe
5.2 FULUIE VIK ...ttt e e e e e e e e e e e e 8l......

Appendix A Memory Card Monitoring..........cceueeevieiinieeiiiieeeeiiceeeees 83.

BIDIOGraphyoo i 85.....

vii

viii

List of Figures

FIGURE 2.1. SUPERMON block diagram...............eeeeeiiiiiiieeeiinniiiiiiiieeeeee 17...
FIGURE 2.2. DASH performance-monitoring hardware.............ccccoeeeeeeevieeeeininnns 19.
FIGURE 3.1. An example of Amdah$ Law limitations on speedup...................... 29

FIGURE 3.2. Time-based basic block profiling without special hardware supportl
FIGURE 3.3. Time-based basic block profiling with special hardware support....51

FIGURE 4.1. The NUMACHINE StatiON..........uuuuuiiiiiiiiiiiiiiiiiieeeee e 56....
FIGURE 4.2. The NUMAChINE hierarChy............ooooiiiiiiiiiiiiiiiiiieieeeeeeeeeee e 56...
FIGURE 4.3. Memory consistency state transition diagrams................ccceeevvvennnnns YA
FIGURE 4.4. NUMAchine processor card datapatigamization.............................. 58
FIGURE 4.5. Processor card performance-monitoring subsystem...................... 60
FIGURE 4.6. Counters & Interrupts datapath, with write path highlighted............ 63
FIGURE 4.7. MCC registers with one Count-Enable Circuit.................cooovvvvvvnnnnn. 69
FIGURE 4.8. State machines to detect invalidation hits and misses.................... 71
FIGURE 4.9. SRAM address generation. The outlined portion is inside the MCC73
FIGURE A.1. Memory card QaniZation...............uuuueiiiiieieeeeeeeeeeeeeeeeeeessnane e 83...

List of Tables

TABLE 2.1.
TABLE 2.2.
TABLE 2.3.
TABLE 2.4.
TABLE 2.5.
TABLE 2.6.
TABLE 2.7.
TABLE 2.8.
TABLE 2.9.
TABLE 4.1.
TABLE 4.2.
TABLE 4.3.
TABLE 4.4.
TABLE 4.5.
TABLE 4.6.
TABLE 4.7.
TABLE 4.8.
TABLE 4.9.

TABLE 4.10.
TABLE 4.11.

TABLE A.1.

Intel Pentium performance-monitoring counter inputs..................... 11
DEC Alpha 21064 performance-monitoring counters and inputs....12
MIPS R4400 externally observable events.............ccccovvvvvviiiinnnnn. 12.
MIPS R10000 performance-monitoring counters and inputs.......... 13
PowerPC 604 performance-monitoring counters and inputs........... 15
Overview of performance-monitoring features on current processat§
CRAY Y-MP C90 performance-monitoring CoOUunters........................ 22
Convex Exemplar SPP-1200 performance-monitoring counter inpl23
KSR performance-monitoring COUNLELS.........uuiveeieeeeeeeeeeeeeeeeeeiieianns 24.
Breakdown of 64-bit address space in NUMAchine........................ 60
Pipeline Status bits PS[6..5] specify one of three operating modes62
Pipeline Status bits PS[4..0] select which events to monitar........... 62
Master Configuration Controller user configuration registers.......... 66
General-purpose CoOUNter EVENTS.........covvvivvuuruiiiieeeee e e eeeeeeeeeeeeiieaens 70...
SRAM COUNTET BVENTSceviiiiiiieeii ettt e e e 12....
SRAM COUNEEI MOUES.....cceeveiiiiiiiiiaee e e e e e e e e e e e e e e e e e aeees 12....
Miss types encoded in the MiSgpPE RegiSter..........cceeiiieiieeeeeieeieee. 74
Response State Register encoding.........ccooeeeeeeeeiiieeeeeeiiiiiceeeeeenn 74..
Comparison of recommended versus implemented features.......... 76
Approximate cost of monitoring ComponNentS..........cooeeeeeeeeveeeeeninnns 17

Memory state hit table..........cccooeiiiiiiiiiii e 84....

Xi

Xii

Chapter 1
Intr oduction

Measuring performance is important for tuning and understanding program behaviour
This thesis concentrates on the development of performance monitoring hardware in
cache-coherent multiprocessors, what it should measure, and its uses. Addiacihely

ible implementation of the performance monitor for NUMAchinerapésic95] is
described.

1.1 Motivation

Microprocessors have improved in speed at a tremendous rate in the last decade. The
improvement has come from the combination of advances in silicon processing technol-
ogy and architectural progress. Howevke performance gap between main memory and
microprocessors has widened, and it is apparent that this trend will continue. This speed
discrepancy necessitates usage of cache me@ache memory is fefctive because pro-

grams often exhibit locality of referenceet¥some programs do not exhibit localijpd

others that do have locality can fail to have requisite data in cache due to caching policies.
Such programs exhibit significant performance loss, and hence cache behaviour is a prime
candidate for performance tuning.

The problem of poor cache performance is worsened in shared-memory multiproces-
sors. Memory access times in multiprocessors are typically much longer than in unipro-
cessors due to longer paths through the communication network, additional arbitration
logic, and network or memory contention. Cachfeativeness is further decreased with
cache coherence, because a processor that modifies data must first remove any shared cop-
ies from the caches of other processors. Despite these performance problems, cache-
coherent multiprocessors are attractive parallel systems because they provide a simple
programming model.

Poor cache behaviour makes parallel applicatiorfculif to scale and speedups are
poor — even when other sources of performance loss, such as load imbalance, are mini-
mized. © improve performance the programmer needs insight into the pregoaimayv-
iour and the sources of performance loss. For example, knowing the number of references
that miss in the cache gives the programmer a specijiet tiar minimize. A more detailed
breakdown, such as knowing which code segmentsredfmost of the misses, would be
even more helpful.

To assist with performance tuning, a variety of previously developed tools can be used.
Software such as gprof [Graham82] measures execution time spent in each procedure of a
program being monitored, but its results can be misleading since it is not clear whether a
procedure is simply in&€ient or if caching problems occuknother tool, Mtool [Gold-
beig93], provides more detail by breaking up procedure execution time into compute time,

memory overhead, and synchronization overhead, but it is still at the procedure level. Both
gprof and Mtool are intrusive and can introduce a signifipaoibe effect Other tools,

such as CProf [Lebeck94] and MemSpy [Martonosi95], go into greater detail by perform-
ing cache-level simulations to identify exactly where cache misses botuhey exhibit
enormous runtime overhead; MemSpy slows parallel execution by a factor of about 200
[Martonosi95]. These tools are helpful, but they can be too abstract, intrusive, or very
slow.

In contrast to performance tuning software, dedicated hardware can be used to allevi-
ate most of the problems. Performance monitoring hardware can benoad&usive
and, consequenthallow applications to run at full speed. Also, collected data can be as
fine-grained as required to assist tuning. Additionadlyents that are unobservable or
inconvenient to measure in software, such as peak memory contention or response time to
invoke an interrupt handlecan be done fctively in hardware. Consequenthardware
can expand the variety and detail of measurements available with no impact on application
performance, providing a ‘best of both worlds’ option that is not available with software-
based approaches.

Although motivated by tuning, a hardware performance monitor has additional uses.
For example, it can help programs adapt to their run-time situation by dynamically choos-
ing whether prefetching will improve performance [Horowitz95]. Also, it can assist com-
puter architects by collecting data normally obtained from slow system simulations.
Similarly, collected data can be used to help verify mathematically-abstract system mod-
els, characterize workloads for the models, and even generate benchmark suites. For
example, one supercomputer site is creating such a suite based on one year of data from a
Cray Y-MP [Ga095].

1.2 Objectives

Although a hardware performance monitor adds to the cost of designing and constructing
a multiprocessorits use can add significant value. In this thesis, factors which influence
multiprocessor performance are identified and, where possible, hardware features to mea-
sure these factors are proposed. The primary objectives of the hardware features are to
identify the causes of software performance loss and aid multiprocessor research while
maintaining low cost and remaining nonintrusive. There are many measurements which
can be made, so prudence is required. When selecting what features are important to mea-
sure in hardware, the primary objectives are carefully considevedknionstrate the low

cost and feasibility of the hardware features, a portion of the hardware performance moni-
tor implemented for NUMAchine, a cache-coherent shared-memory multiprqcesssor
presented.

To aid in multiprocessor research the hardware monitor should collect enough data to
obviate the need for some detailed architectural simulations, which often run too slowly to
collect statistically reliable data. Additionallthe monitor should assist machine and
workload characterization for higher level simulation models; typical characteristics are
the latency of memory read operations under various conditions or the probability of a

read versus a write. These characteristics can be used to form powerful abstractions
because they permit rapid testing of ideas using fasiggn-level simulations. Also, the
measurements are useful to verify the results from such simulations.

A hardware performance monitor has a special appeal to software developers who
wish to do software tuning. In this application, the goal of the hardware is not to replace
software tuning tools, but to improve their instrumentation so that data collection is done
nonintrusively and in real time. Additionallthe collected data should be fine-grained
enough to identifyas best as possible, the true bottleneck to be optimized.

In the development of performance-monitoring hardware, a secondary objective is to
make performance data accessible to a running program. By doing this, it is hoped that
new research into software that can make runtime decisions to improve performance will
be made possibleoTachieve this goal, it is important to move the monitoring features as
close to the processor as possible so that performance data queries can be satisfied quickly

1.3 Contributions

The contributions made by this work can be summarized as follows:

» comprehensive list of 23 performance measurements for multiprocessors,

» extending informing memory operations to include an ext&rREBGGER pin,

* using numerous counters selected Bhasel D register to partition performance data,

* returning the memory state with memory responses to estimate coherence overhead,
» definition, detection, and measurement of invalidation and ownership misses, and

» cache conflict measurements, fine-grained timing hardware, and quantifying latency-
hiding mechanisms on performance comprise other minor contributions.

Although the contributions are made in the context of multiprocessors, many of the mea-
surements and hardware mechanisms can be applied to uniprocessors as weferfhe dif
ence is that coherence misses are eliminated and miss latency is more reguihe (
effects of contention and maintaining coherence are reduced or eliminated) in uniproces-
sors.

1.4Overview

This thesis is granized as follows. Chapter 2 describes previous work in both software
and hardware monitoring systems. Chapter 3 proposes a number of measurements that can
be made, including both new ideas and those borrowed from previous research, which are
consistent with the main objectives. As an implementation example, a portion of the
NUMAchine performance monitor is shown in Chapter 4. Finalbynclusions are given

in Chapter 5.

Chapter 2
Background

This chapter describes some performance-monitoring systems that have been constructed
recently concentrating on those for shared-memory multiprocessors. Both software and
hardware systems are discussed, with the latter covering both research and commercial
systems.

2.1 Monitoring in Softwar e

Software approaches to performance monitoring can be broadly divided into intrusive pro-
filing tools, such as gprof, Mtool and Paradyn, and simulation tools such as CProf and
MemSpy The operation of these tools is described below

2.1.1 gpof

Although not intended for parallel programs, gprof [Graham82][Graham83] is described
here because it is a widely used tool for performance analysis. A compiler with gprof sup-
port can automatically annotate object code to count the number of times a subroutine is
called by each caller by storing counters in a sparse hash table. Additiaddkyl code
samples the program counter at a regular rate during execution, typically 60 or 100 Hz,
and a histogram is formed. At exit, this data is dumped to a file. The gprof program exam-
ines this file and the executable image (with the symbol table) to correlate program
counter values with subroutine names. The resulting histogram shows the statistical pro-
portion of time a program spent in each subroutine, but this does not include time spent
waiting for subroutines it invoked.

Under the assumption that a subroutine always takes the same length of time, the sub-
routine counts are used to divide its running time among its callers. This information is
presented to the user in two ways: first, subroutines are ranked by execution time, and sec-
ond, by the call-tree hierarchyhe execution time ranking is useful for identifying slow
routines, while the call-tree format shows which parent routine calls a subroutine most
often. In this waya programmer can optimize a routine to run faster and also improve the
parent routine so that fewer subroutine calls are made. As a performance tuning tool, gprof
is good for general code and algorithm development, especially when the time complexity
of a routine is not known beforehand.

A disadvantage of gprof is that the general nature of the execution profile provides lit-
tle insight into sources of performance loss. For example, if a floating-point matrix multi-
ply routine was labeled as being very sldwvould be unclear whether the floating-point
operations were slow or if poor cache behaviour was encountered. Additidhally
inserted bookkeeping code overhead can be intrusive; we have observed code in which the
bookkeeping routine accounts for 30% of the run time. This amount of intrusion can cause

gprof data to be misleading. For example, consider that cache interference froim gprof
inserted code can inflate the execution time of a procedure beyond any other and then mis-
report it as being the bottleneck. AdditionaMarley reports that when a routine is called

by more than one parent, gprof can incorrectly attribute the running time among its callers
because of the invalid assumption made abowael¢y93]. Moreoversince sampling is

done at a relatively slow rate, the program must run long enough to capture statistically
reliable data. Consequentlglthough gprof is useful for general code and algorithm
improvement, it does not provide enough insight into the source of performance loss and
may occasionally report incorrect or misleading results.

A hardware performance monitor should strive to reduce the perturbation imposed by
a profiler such as gprof, and at the same time ensure that execution time is attributed to
subroutines and callers accuratélne possible way is to time routines with high-resolu-
tion hardware timers instead of program counter sampling.

2.1.2 Mtool

Similar to gprof, Mtool [Goldbey93] automatically instruments a program at the object-
code level by timing the execution of important routines and adding countbesito
blocks a term that describes small segments of straight-line code which have only one
entry point and only one exit. In addition, it supports parallel programs by measuring syn-
chronization overhead and extra parallel work not present in sequential code. Mtool fur-
ther breaks up runtime by classifying execution time as either compute time or memory
overhead. This taxonomy aids the programmer during code tuning.

Basic block counting allows Mtool to predict an ideal compute time. It does this by
modelling the processor pipeline and assuming that memory references always hit in the
cache. The diérence between the ideal and actual running time is approximately equal to
the amount of memory overheaditi\the help of timing information, the memory over-
head can be divided among the proper routines.

To reduce the intrusiveness of counting every basic block, Mtool uses powerful con-
trol-flow and loop induction analysis to identify where counters should be placed. As a
result, counters are added to only a few basic blocks and other counts can be derived from
these. For example, in a loop containing an if-else statement, only the loop iteration count
and the else-path count are needed to derive the number of if-paths foll@fedh&r
reduce overhead, loops do not always need to increment a counter after every iteration
because the initial or final value of the loop index can often be used. Additidvitdtyl
uses feedback from an initial profile to find and instrument the less frequently taken con-
trol paths. These techniques reduce basic block counting overhead to between 1% and 5%
on the SPEC and Stanford SPLASH benchmarks.

Mtool times loops and procedures via program counter sampling (in a manner similar
to gprof), high-resolution hardware timers, or both. By using both, it tries to balance the
drawbacks of sampling with the overhead of inserting timer probes. Using an initial basic
block count profile, Mtool automatically selects memory-intensive loops and procedures
that should be instrumented with timers. It also measures synchronization procedure calls

with timers, but only if they are available on-processor or if it is requested by the user
Otherwise, Mtool uses program counter sampling. Despite the variety of timing methods
supported, the authors of Mtool encourage that high-resolution timers be made available
on-processor with access latencies of 1-2 cycles because they are the preferred way to
instrument code.

The aggregate timing information collected is separated into performance loss from
synchpnization ovenead load imbalance andextra parallel work. It is also used in
conjunction with the ideal compute time to estimate memory overhead in loops and proce-
dures. After optimizing where to place instrumentation code, the overhead of collecting
the timing and basic block counts together is less than 10%.

As a performance tool, Mtool imposes little intrusion and helpfully categorizes perfor-
mance loss for routines into compute time, memory overhead, synchronization overhead,
and extra parallel work. Howevehe low intrusion is based upon establishing an initial
basic block profile and performing complex control-flow analysis. Also, it is unclear if
Mtool suffers from the multiple-caller problem experienced by gprof. Additionkitpol
gives no insight into the sources of memory overhead; for example, was it caused by many
cache misses? long memory latency? or false sharing? Both CProf and MemSpy
described shortlyapply insight into the memory overhead, but only at a significant perfor-
mance loss. Before describing them, howetrer Paradyn code-instrumenting tool will be
outlined.

2.1.3 Paradyn

Paradyn [Miller95] is a performance tool for parallel applications similar to Mtool. It
focuses ordynamic instrumentatiofHollingsworth94] of code, where a program is aug-
mented at key points with short instrumentation subroutines, ¢ekltrampolinesThe
contents of the trampoline are changed dynamically at run time by a daemon process
under the control of a master Paradyn process. The contvatieh may be running on a
different computercollects data from the daemon and decides which base trampolines
require more instrumentation. It tells the daemon to modify the base trampolines to call
mini-trampolineswvhich do conditional checking and counting.

The power of Paradyn is that it inspects free-running programs. In this regard, it can
measure the performance of certain routines over timdoThis, the overhead of the base
trampolines is kept small (less than 10%). This allows the Paradyn controller to adapt to
program behaviour and perform more instrumentation at the points in the program that are
consuming most of the processor cycles. This instrumentation methodology forms a part
of theW? search model [Hollingsworth93] used by the authors to detemviiee, when
andwhy a program is performing poorI)These\/\/3 guestions shall be considered again
later as hardware performance-monitoring features are developed.

1. These terms will be defined more clearly in Chapter 3.

2.1.4 QPT and CPof

As parts of the University of W&consin VARTS tool set, QPT [Ball94][Larus93] and
CProf [Lebeck94] work together to give insight into cache performance on uniprocessors.
QPT provides basic block counting in much the same way that Mtool does; it can even
calculate the execution cost of proceduada gprof. HoweverQPT can also generate a
highly compressed trace file of memory references. The trace is used by CProf to perform
detailed simulations of cache activity and accredit the misses back to the source code and
data structures in which they occurred. If CProf is given the costs of a cache hit and a
miss, it estimates the performance of a routine or the whole program.

In CProf, cache misses are classified by the widely-accepted taxofimnyntro-
duced in [HillI88], as eithecompulsorycapacityor conflict misses. Compulsory misses
are caused by the very first reference and can be reduced only by reducing the total size of
data used. Capacity misses occur because the cache is too small, but they can be prevented
by decreasing the length of time data is required to stay in the cache by using blocking or
loop fusion, for example. Finallgonflict misses occur because there are too few locations
within the cache for placing particular data. Conflicts can often be reduced by placing the
conflicting data close together; rgerg two vectors by interleaving the elements is a good
example. By classifying the causes of misses and relating them back to the source code
and data structures, CProf provides the programmer wifftisaf insight to tune an
application. In fact, the SPEC benchmarks tuned in [Lebeck94] were made between 1.03
(for eqgntott) and 3.46 (for vpenta, a benchmark kernel) times ,[fagithr an average
improvement of 1.69.

Although CProf provides very useful information, the cache simulation is admitted to
be very slow (no performance numbers were given for CProf, but QPT trace generation
alone increases runtime by a factor of 5). Despite this, the key observation to make about
CProf is that classifying misses and attributing them to the correct parts of the code and
data structures is very useful to the programierformance monitoring hardware should
strive to make comparable measurements and allow the application to run at full speed.

For convenience, the combination of QPT and CProf shall be referred to as just CProf
in the remainder of this thesis.

2.1.5 MemSpy

MemSpy [Martonosi95] produces information similar to CProf and also runs slowtli
supports parallel applications and the approach to instrumentation is Yergrdifin par-

ticular, MemSpy collects data at the procedure (rather than basic block) level and tech-
nigues such akit bypassingandtrace samplingdescribed in [Martonosi95], are used to
speed up simulation. Despite these techniques, simulation of parallel programs is roughly
200 times slower after accounting for the loss due to the sequential simulation of parallel
code.

MemSpy is driven by a separate program that traces memory references, procedure
calls and returns, memory allocations, and synchronizations. Performance data is collected

at a procedural granularity and attributed to the proper code and data structures. Cache
misses are categorized as compulsmylacement (combining both capacity and conflict
misses), and invalidation by simulating the activity of the caches. The invalidation misses,
which are not measured in CProf, are a result of data sharing in a parallel program,

when a processor changes a shared datum, stale copies that are present in other processors’
caches must be invalidated. If those processors re-reference that datum, a cache miss due
to invalidation occurs.

MemSpy assumes cache misses take a constant amount of processor time, irrespective
of whether invalidations were necessary to satisfy the miss or whether any memory or net-
work contention exists. This assumption is false, because many current multiprocessors
have non-uniform memory access (NUMA) times and some programs do create hotspots.
Unfortunately NUMA, contention, and invalidation overhead are important performance
factors that make it ditult to design an &tient multiprocessor

MemSpy is an important tool because it gives greater insight into why a program is
slow than does Mtool, for instance. Howeveis very slow and it uses an unrealistic sim-
ulation of memory performance.

2.1.6 Summary

As shown, software techniques for performance monitoring range from slightly intrusive
to very slow; the finer the granulatithe slower the execution speed. In all of the tools
described, the software does not account for operating system activity or system call
effects. Howeverthese décts can be significant because even a single system call can
eject a significant amount of data from the cache. In contrast, the system call and subse-
guent cache misses would be visible to performance-monitoring hardware.

Software tuning benefits from basic block profiles, program counter sampling or pro-
cedure timing, and cache miss measurements. Additipntaiyvery helpful to attribute
cache misses to the proper data structures and code fragments and to classify the cause of
the cache miss as precisely as possible. Fine-resolution clocks can be used for precise pro-
cedure timing to measure synchronization overhead, for example. Also, basic block profil-
ing makes it possible to predict ideal compute time and, consequesitipgate memory
overhead.

2.2 Hardwar e Monitoring in Processors

As system integration increases, monitoring hardware is able to observe less and less of
the system. For example, SUPERMON [Bacque91] was able to trace every instruction ref-
erence because the instruction cache was on a separate chip, but all current microproces-
sors integrate this cache into the procedsofact, current systems are even putting the
second level cache in the same chip (the AlpH®2Dr Pentium Pro, for example). For-
tunately microprocessor designers also see the need for performance observation and

10

include dedicated measurement hardware in the latest designs. This section describes the
measurement facilities present in recent processors.

2.2.1 Intel Pentium and Pentium Po

Work by Mathisen [Mathisen94], which was later updated by Lédlafdloff94] and

Collins [Collins95], reverse enginee?a;bme of the Pentium instruction set and revealed
that there are two 40-bit registers dedicated for performance measurement. Each of these
registers is capable of counting one of the 42 possible events listabl@2 1. Addition-

ally, the counters can be arranged to count events or the number of CPU cycles spent per-
forming the events. Unfortunately program must be in supervisor mode to access them,
meaning a (costly) system call is usually required.

In addition to the performance counters, the Pentium processor also includes a times-
tamp counter and two performance monitormgput pins. The timestamp counter is
accessible by a user instruction and can be used for accurate timing of routines. The output
pins can be configured to toggle after any performance event or a counter ov@yflow
wiring one of these pins to an interrupt pin, software can be made reactive to performance
data.

The Pentium Pro processor enhances the Pentium counter feature set and has even
added a usdevel instruction to read the performance counters. Furithesn internally
generate an interrupt when a counter toggles or overflows, thus obviating one of the uses
of the Pentium output pins.

2.2.2 DEC Alpha 21064

The DEC Alpha 21064 processor [Digital92] includes two 32-bit counters that can count a
total of 17 diferent events. Interestingliwo of the events are for counting the number of
cycles a dedicated pin is asserted. This allows external events to be counted with high-
speed on-chip registers, and is ideal for giving software low-latency access to performance
data. Unfortunate|ythe counters are only available in supervisor mode.

A summary of the countable events is givenabl€2.2. In addition to these counters,
the 21064 includes a dedicated 32-bit timestamp counter which can be used for precision
timing.

2.2.3 MIPS R4400 and R10000

Rather than provide on-chip counters, the MIPS R4400 [Heinrich94] brings pipeline status
information to externally observable pins. Although it requires some hardware design
effort, off-chip counters can be built to keep track of the 1fedkht pipeline events listed

in Table2.3. This feature is convenient because system designers can build 15 dedicated

2. This information is contained within Inteinfamous Appendix H of the Pentium Usdvlanual which is
not publicly available. Consequentthie counter functions described here may be inaccurate.

11

Index Event Index Event

0 data read 15 pipeline flushes

1 data write 16 instructions executed in both pipes

2 data TLB miss 17 instructions executed in the v-pipe

3 data read miss 18 bus utilization (clocks)

4 data write miss 19 pipeline stalled by write btdr overflow

5 write (hit) to modified or exclusive 1A pipeline stalled by data memory read
state lines

6 data cache lines written back 1B pipeline stalled by write to modified or

exclusive line

7 data cache snoops 1C locked bus cycle

8 data cache snoop hits 1D /O read or write cycle

9 memory accesses in both pipes 1E noncacheable memory reference

A bank conflicts 1F AGI (address generation interlock)

B misaligned data memory references 20 unknown, but counts

C code read 21 unknown, but counts

D code TLB miss 22 floating-point operation

E code cache miss 23 breakpoint 0 match

F any segment register load 24 breakpoint 1 match

10 segment descriptor cache accesses 25 breakpoint 2 match

1 segment descriptor cache hits 26 breakpoint 3 match

12 branches 27 hardware interrupt

13 branch taget bufer (BTB) hits 28 data read or data write

14 taken branch or BTB hit 29 dataread miss or data write miss

TABLE 2.1. Intel Pentium performance-monitoring counter inputs.

hardware counters and capture all information about a program in one pass, compared to
most other microprocessors which only provide two counters. The R4400 also provides a
32-bit cycle counter for high-precision timing. An interrupt can be raised when the cycle
counter reaches the value stored in a compare register — this is very useful for high-reso-
lution program counter sampling, for example.

Interestingly the next-generation MIPS processthie MIPS R10000 [MIPS95],
removes the pipeline status pins and provides two dedicated on-chip 32-bit counters
instead. The events these counters marsteown in &ble2.4, are similar to the R4400
events except for a few additions. First, dedénce is drawn between issued instructions
and graduated instructions. This distinction is important because not all instructions that
are issued will graduate due to speculative execution. These measurements give feedback
to the processor and compiler designers on tfextefeness of the dynamic and static
scheduling of instructions. A second addition to the event table vgatheedictionentry
The secondary cache is two-way set-associative, with the two ‘way’ tag comparisons done

Performance Counter O Performance Counter 1

Index Event Index Event
0,1 total instruction issues / 2 0 data cache miss
2,3 pipeline dry (no instructions ready for 1 instruction cache miss

issue, caused by cache miss, mispre-
diction, exception, delay slot)

4,5 load instructions 2 dual issues
6,7 pipeline frozen (no instructions 3 branch mispredictions
issued due to resource conflict)
8,9 branch instructions 4 floating-point instructions
total cycles 5 integer operations
B PALmode cycles 6 store instructions
C,D total non-issues /2 7 external input pin

E,F external input pin

TABLE 2.2. DEC Alpha 21064 performance-monitoring counters and inputs.

Index Event Index Event
0 other integer instruction 8 other stall — write bdér full?
1 load instruction 9 primary instruction cache stall
2 untaken conditional branch A primary data cache stall
3 taken conditional branch B secondary cache stall
4 store instruction C other floating-point instruction
5 reserved D branch delay instruction killed
6 multiprocessor stall E instruction killed by exception
7 integer instruction killed by slip F floating-point instruction killed by slip

TABLE 2.3. MIPS R4400 externally observable events.

sequentially in time (in other products, they are done in parallel). This event measures the
effectiveness of thevay pediction tableto predict which way to check first. The third
addition is the inclusion of cache state events, such as counting external intervention or
invalidate hits. These events may indicate performance loss due to multiprocessor data
sharing conflicts and can be useful for tuning parallel progfr.ams

The MIPS processors allow the operating system to grantawsdraccess to the per-
formance counters and timer on a-pevcess level.

3. It will be shown in the Invalidation Misses portion of Subsection 3.3.2 that counting these is not as useful
as it may seem.

13

Performance Counter O Performance Counter 1

Index Event Index Event
0 cycles 0 cycles
1 issued instructions 1 graduated instructions
2 issued load/prefetch/sync/cacheop 2 graduated load/prefetch/synch/cacheop
3 issued stores 3 graduated stores
4 issued store conditionals 4 graduated store conditionals
5 failed store conditionals 5 graduated floating-point instructions
6 decoded branches 6 guadwords written back from primary data
7 gquadwords written back from secondary cache 7 TLB refill exceptions
8 correctable ECC errors in secondary cache 8 mispredicted branches
9 instruction cache misses 9 data cache misses
A secondary cache misses (instructions) A secondary cache misses (data)
B secondary cache misprediction from way pre- B secondary cache misprediction from way
diction table (instructions) prediction table (data)
external intervention requests C external intervention hits
D external invalidate requests D external invalidate hits
E virtual coherency condition E stores or prefetches with store hint to
CleanExclusive secondary cache blocks
F instructions graduated F stores or prefetches with store hint to shared

secondary cache blocks

TABLE 2.4. MIPS R10000 performance-monitoring counters and inputs.
2.2.4 Hewlett-Packard A-RISC

Hewlett-Packard has deemed performance monitoring hardware important enough to
reserve room in theAPRISC instruction set architecture (ISA) [HP94] and to define a per-
formance monitor coprocessor and interrupttoTspecific instructions are currently
defined,PMDI S andPMENB, to disable and enable data collection respectivigig per-
formance monitor coprocessor is left as an implementation-defined unit, but additional
room is left in the ISA for future standardized extensions. Further details about the HP
performance monitors are kept confidential, but some insight may be gained by looking at
the Convex SPP systems described in Setidrb.

2.2.5 Sun SRRC

The first SRRC implementation to contain performance monitoring functions is the
SuperSRRC Il [Sun95]. This implementation includes a high-precision cycle counter and
an instruction counteFrom [Sun95], it is unknown whether these can only be accessed at
the supervisor level. The more recent UltrABE | design claims to contain ‘perfor-
mance instrumentation’, but it is not clear whether it provides any additional features.

14

Like the R4400, the SuperSRC | and Il contain special-purpose pins that permit
observation of pipeline events. A total of 10 signal pins are defined in SARTIRANd
this is extended into 48 signals, divided into 4 groups and multiplexed onto 12 pins, in
SuperSRRC II. Despite the layer number of signals, the functionality of these pins is
roughly similar to the MIPS R4400 outputs.

2.2.6 IBM/Motorola/Apple PowerPC 604

The latest PowerPC chips, the 604 [Motorola94a][Motorola94b] and the forth-coming
620, contain two performance monitoring counters, a dedicated cycle canue spe-

cial address sampling registers. The counter inputs for the 604 are describbbk 5T

The sampling registers are useful for applications like gprof which periodically sample the
program counteibut the idea is extended to cover the most recently accessed data address
as well.

The PowerPC 604 has two other interesting features. First, a performance monitoring
interrupt (PMI) can be caused by the counters overflowing (defined as becoming negative)
or by a threshold event, which is defined as a primary cache miss which is not serviced
within thresholdcycles, a programmable value between 0 and 63. When a PMI occurs, the
sampling registers point to the instruction and most recently accessed data address. Sec-
ond, there are four special counter events (9, A, 17, 18) to measure misses that took too
long to be satisfied. The thfence between counters 9 and 17, for example, is that event 9
is counted if the pin L2_INT is asserted, otherwise event 17 is counted. The pin is
intended to signal that another L2 cache controller on a snoopy multiprocessor bus is
sending the response, but it nee¢dr@ used that wayAnother use for it would be to indi-
cate that the memory was in contention or that the network was busy

Unfortunately these performance monitoring facilities are not defined in the PowerPC
architecture, so it is not guaranteed whether they will be present in the future. Conse-
guently all performance counters are restricted to superaislyraccess.

2.2.7 1BM POWER2

Of all current processors, IBBIPOWER2 contains the most performance monitoring fea-
tures [V\elbon94]. A total of 22 counters are available: one cycle cquorier‘correctable
memory errorcounter (which relates more to reliability-performance), and five counters

in each of four functional units. The 20 functional unit counters can each observe one of
16 different items, for a total of 320 observable events. In addition, a special mode exists
where 21 counters (all except the cycle counter) are dedicated to memory performance
metrics of the storage control unit (SCU).

From [Welbon94], it is not known whether a udevel process has access to these
counters, and precise details about thiedkht counter events are not available.

Performance Counter O

Index
0

© 00 N o o b~ W N

18

Event
do nothing, hold value in counter 0

processor cycles
instructions completed per cycle
real-time counter extension

instructions dispatched

1
2
3
4
instruction cache misses 5
data TLB misses 6
branches mispredicted 7
reservations requested 8

9

load data cache misses which took more
thanthresholdcycles and were satisfied
by another L2 cache

store data cache misses which took more A
thanthresholdcycles and were satisfied
by another L2 cache

mtspr instructions B
sync instructions C
eieio instructions D
integer instructions E
floating-point instructions F

LSU produced result without exception 10

SCIU1 produced results 11
FPU produced results 12
instructions dispatched to LSU 13
instructions dispatched to SCIU1 14

instructions dispatched to FPU
snoop requests received

marked load data cache misses which
took more tharthresholdcycles and
werenot satisfied by another L2 cache

marked store data cache misses which
took more tharhresholdcycles and
werenot satisfied by another L2 cache

15

Performance Counter 1
Index

Event
do nothing, hold value in counter

processor cycles
instructions completed
real-time counter extension
instructions dispatched
load miss cycles

data cache misses
instruction TLB misses
branches completed

reservations obtained

mfspr instructions dispatched

icbi instructions

pipe-flush operations

branch unit produced results

SCIUO produced results

MCIU produced results

instructions dispatched to branch unit
instructions dispatched to SCIUO
loads completed

instructions dispatched to MCIU

snoop hits

TABLE 2.5. PowerPC 604 performance-monitoring counters and inputs.

2.2.8 Pocessor Summary

A summary of the performance-monitoring features found in current processors is pre-
sented in @ble2.6. Where information about a processor is not known, the entry is shown

16

as a question mark. As seen from the table, two performance-event counters and a times-
tamp counter are common. Unique features among processors include the Banttum’

put pins, Alphas input pins, PowerP€’sampling registers and threshold conditions, and
POWER2S reliability counterPositive trends are providing udevel access to counters

and, as a result, instruction set architecture definitions for accessing them.

Pentium Alpha R4400 R10000 PA-RISC Super PowerPC POWER2

SPARC
Il

No. counters 2 2 0 2 ? 1 2 21
Total No. 42 17 0 32 ? 1 41 321+21
Events
Events per 42 9/8 0 16/16 ? 1 24/20 16+1
Counter
Counts n y n n ? n n n
External
Events?
Timestamp
Counter? y y y y y y y y
Userlevel timer n y y start/stop ? timer ?
Access? only only only
Performance y y y y y ? y y
Interrupt or (wiring (timer (timer
Exception? required) only) only)
Externally n n y n ? y n n
Observable
Events?
ISA n n ? n n
Definition? Y y Y

TABLE 2.6. Overview of performance-monitoring featules on curent processors.

2.3Hardwar e Monitoring in Systems

This section describes hardware performance monitoring features that have been included
in recent parallel computing systems. First, the He®&SH and M-Machine research
systems are described. These are followed by commercial systems fror@@regx and

KSR.

2.3.1 University of Toronto Hector

Hector [anesic91][Stumm93] is a shared-memory multiprocessor with a hierarchical
organization. At the lowest level, a proces3t®, and globally-addressable memory are
coupled togetheThese processonemory modules are connected by a bus to fosta-a

tion, and stations are connected via a hierarchy of bit-parallel unidirectional rings obeying
a slotted-ring protocol. The processors, 20 MHz Motorola 88)0@aich have 16KB of
instruction and data cache memdwyt no cache coherence is provided in hardware. Per-

17

formance monitoring is done with a plug-in card that connects to either the instruction or
data cache/memory management unit (CMMU) sockets.

Hector Hardware Monitoring: SUPERMON

By plugging into the CMMU socket, SUPERMON [Bacque91] is able to snoop on all pro-
cessoito-memory trdfic. In particulay all cache activity is observable, including instruc-
tion fetches. This provides SUPERMON with the ability to perform exact program
counter sampling, for example.

A block diagram of SUPERMON is shown in Fig@rd. SUPERMON data collection
is based upon two banks of 32K deep by 48-bit wide SRAM to be used as counters or for
trace data storage. In trace mode, the memory is triggered by a programmable state
machine which takes inputs from control signals and the virtual address. The trace data
contains either the 30-bit address and a 16-bit timestamp or 8-bits afefised state
data and a 40-bit timestamp. The state data is a function of address and control signals.
The logic to control the state machine, control signals, and address trigger is all performed
with additional cascaded SRAMs. Performance of the cascaded SRAM is maintained by
inserting registers between them and pipelining the design. This approach was chosen
over using RLs because SRAM provides good logic capaginedictable performance
and is easier to reprogram.

o Trace/Histogram
& SRAMand
S Increment
Control = Logic
control - : 4
¢ +’ Signal Timer/Trace
signals 30 Engoder Counter addr _ data
Address State \|
™ Encoder Machine 15 J
address ==l 15
- Arithmetic Barrel
Unit 30 Shifter
trace data ,
“30

FIGURE 2.1. SUPERMON block diagram.

In histogram mode, the SRAM-based counter banks are interleaved because of speed;
reading, incrementing, and writing a counter takes 2 cycles. The histogram counters are
effective for counting:

* how much time is spent in a certain udefined state (there are 32K possible
states),

18

* histogram latency; how often an operation takes 1 cycle, 2 cycles, ..., up to 32K
cycles, or

* histogram absolute addresses, addresses relative to a fsetd @f sequential
address dferences.

By building a histogram of addresses relative to a fixdésenfit is easier to monitor
accesses to data structures like an array which can have an arbitrary starting address.
Additionally, an interesting feature is provided while histogram data on addresses is col-
lected: the bucket size can be constant, by shifting the address through a barrebstifter

can be variable by re-encoding the address into a floating-point representation. This
encoding extends the dynamic range of the histogram to cover the entire memory space
while still providing fine-sized buckets in a region of interest (denoted by the fitsed) of

Using SUPERMON

SUPERMON is controlled by a 68000-based microcomputer board, called Gizmo; both
the data-collection SRAM and the “programmable-logic” control SRAM are read or writ-
ten in this manneifo program SUPERMON, a C program is compiled and run to generate
the appropriate data that is loaded into the control SRAM via the Gizmo. Sinpkenfigr-

mance data is only available to the Gizmo compiRertunately Gizmo has an Ethernet
interface, so the performance data can be transferred to a workstation. This arrangement,
however effectively prevents a program running on Hector from examining its own per-
formance data. This precludes the use of adaptive programs on,ldedfue data is only
useful for of-line performance tuning of an application. A benefit of this architecture,
though, is the ability of a single workstation to nonintrusively and continuously collect
data from multiple SUPERMON nodes via the Ethernet. This can be useful to characterize
the machine workload or to check the maclamperformance over time.

2.3.2 Stanford DASH

DASH [Lenoski92] is a cache-coherent shared-memory machine. The lowest-level node
consists of four 33 MHz R3000 processors connected to memory and an interconnection
network interface over a 16 MHz bus. Each processor contains 64 KB of instruction and
64 KB of write-through data cache backed by a 256 KB write-back second level cache.
The network interface holds cache directory information and uses a two-dimensional
mesh interconnect. The DASH performance monitor is placed on the directory cantroller
one of the two network interface boards on the bus. The monitor consists of two banks of
SRAM-based counters, a DRAM-based tracefdsufand a programmable controller
Unlike SUPERMON, the DASH monitor is ganized to permit every processor in the
machine read access to the collected data. A block diagram of the monitor is illustrated in
Figure2.2.

The SRAM-based counters take two cycles to operate: one to fetch and one to incre-
ment and write back. The two banks can be interleaved to count an event that may change
every cycle, or they can be used independently to count less frequent events. Each bank is
16K deep and 32 bits wide, providing approximately four and a half minutes of continuous

19

address[31..0] data[47..32]

bus, directory events (~80)

Xilinx Event Processing/

Selection Chip "
riggers

SRAM DRAM
Control Control
ram_address[17..0]

Trace Bufer

Counter
addr Trace Bufer
2M x 36 DRAM
\Y% \Y%
*52..32] #[63..60,31..0}
data[63..0]

FIGURE 2.2. DASH performance-monitoring hardware.

operation before overflowing. The counters can be used to count events, where the address
is formed by concatenating téfent event bits, or as a histogram array where the address
comes from a counter in the programmable conttoller

In addition to the counters, a trace fieufprovides a detailed history of bus activity
The trace bdér DRAM, omganized as 2M by 36 bits, is deep enough to capture informa-
tion for over one-half a second; if longer traces are desired, the operating system must sus-
pend all process activitgump the bdér to disk, and resume the processes. A common
use of the trace bidr is to capture read and write requests, including the address and pro-
cessor numberAnother use adds the directory controBePROM address and the time
since the last request to each trace ettins halving the &ctive bufer size.

The programmable controller is an SRAM-based FPGA, the Xilinx XC3080. T
change the monitoring mode or triggering conditions, the FPGA is reconfigured with a dif-
ferent circuit. For example, the SRAM can count 14 independent events by directly form-
ing the address with the 14 signals. AlternativBRAM can be used as a histogram array
by implementing counters in the FPGA and using them to form the address. Although this

20

is a flexible approach, there are two drawbacks. First, reconfiguration time is on the order
of 100 ms, so a program cannot frequently change the monitoring mode. Second, a soft-
ware programmer must design a new hardware circuit if one dadsady exist.

2.3.3 MIT M-Machine

M-Machine [Dally94] is a multiprocessor currently being designed at MIT to support
massive parallelism. Up to 64K compute nodes are connected in a three-dimensional
mesh. Each compute node consists of a custom procassaiti-ALU processor aviAP,

and 8 MB of memoryThe MAP consists of four executi@tustersand a switch matrix
connecting them to four cache banks. Each cluster contains an ,imegeory and float-
ing-point unit as well as integer and floating-point register filaghikVeach clusteran
instruction can dispatch up to three operations. Also, each cluster can quickly switch
between four user threads, an exception handling thread, and a system thread. The
machine dectively supports a message-passing model, but it can also simulate a cache-
coherent shared-memory model by using a small amount of support hardware along with
the fast exception support and special system software.

The MAP also contains counters for performance evaluation. System software must be
called to write or configure the counters, but teeel software can quickly read them.
There are two 64-bit counters: a processmle counter and an event countgsing
numerous mask fields, the event counter can be configured to count one or a combination
of events. The mask fields select:

1. which operation unit and which thread slot (cowgsration$
2. which thread slot (countastructiong

3. which cache bank and which access type (counts cactesses,eads,
writes, hits, and/or missgs

4. which network event type (message send, flit send, message receive, flit
receive, buer allocates, event queue entries, overflows), which network pri-
ority level, and which thread slot (coumstwork evenjs

5. local TLB or global TLB hits (count3LB hits— misses are counted by
software)

2.3.4 Cray Reseath Inc.

Cray Research produces two types of parallel computers: parallel vector machines and
parallel scalar machines. The parallel scalar machines, the Cray T3D and T3E, use the
DEC Alpha microprocessors and do not have any hardware monitoring features (even the
Alpha’s internal counters are unused) so all performance debugging is done with software
tools. The vector machines contain custom features and are described below

The classic line of Cray supercomputers, from the €RAMP up to the CRX
Y-MP C90, have all had performance monitoring capabilities [Cray92]. These computers
are shared-memory vector processors. Rather than cache mémgrizave instruction

21

buffers and vector registers; no coherence is maintained. The main memory is highly
interleaved and tuned to deliverdarblocks of data at very high bandwidths to quickly fill

the instruction bdér and vector registers. Instructions are obtained from the instruction
buffer and can operate either on normal scalar data or on vectors up to 64 eleménts long
If an instruction demands use of a particular vector register or functional unit, for instance,
it is delayed until the resources are free; this is caltdding issugand is typical because
vector operations can take many cycles to complete.

The performance-monitoring counters are 48-bits wide. Initi@lhay divided up the
counters into four groups of eight, and only one group could be counted at a time. The
CRAY Y-MP C90 removes this restriction and provides 32 dedicated counters, shown in
Table2.7. Although the grouping of the events has changed from machine to machine,
there has been little change to the event list itself.

2.3.5 Convex Computer Corporation

The Exemplar Scalable Parallel Processing (SPP) systems by Convex [Convex94] are dis-
tributed shared-memory cache-coherent machines. At the lowest level, up to eight proces-
sors and caches are connected to memory using a high-speed 5 x 5 crossbar forming a
hypernode Currently there are two types of hypernodes available which can be freely
mixed in a system, but they fiif in the processor used and performance monitoring capa-
bilities. Up to 16 hypernodes can be tightly coupled using four SCI rings to provide a sin-
gle shared-memory system.

The performance monitoring features of the two Exemplar hypernodes are described
in [Convex95]. For timing, both systems contain a high-precisiopq&essor timer and
a separate pdrypernode timerAdditional performance-monitoring capabilities are spe-
cific to each system, so they are described separately.below

Exemplar SPP-1000

The SPP-1000 hypernode, based on the Hewlett-Packard® processphas two per-
formance-monitoring registers. One register may count cache misses, including any com-
bination of local (same hypernode), remote (other hypernode), read or write misses.
Alternatively it can also count the number of hardware messages sent or the number of
coherence requests sent and/or received. The other register can measure total cache miss
latency but only when the first is counting cache misses.

Exemplar SPP-1200

The SPP-1200 hypernode uses the more recent Hewlett-PagkZ&D® processors and

has more performance monitoring features. A total of four registers can count from a vari-

ety of events. One of these registers counts any combination of local, remote, read, and
write cache misses (this is similar to one of the Exemplar counters). The other three

4. The Cray YMP C90 can operate on vectors containing up to 128 elements.

22

Counter Group Counter Event
number of: 0 clock cycles

1 instructions issued
2 clock cycles holding issue
3 instruction bufer fetches
4 CPU port memory references
5 CPU port memory conflicts
6 I/O port memory references
7 I/O port memory conflicts

number of cycles holding 8 A registers

Issue for. 9 S registers
A V registers
B B/T registers
C functional units
D shared registers
E memory ports
F miscellaneous
number of instructions: 10 000-004 (special)
11 branches
12 A-register instructions
13 B/T memory instructions
14 S-register instructions
15 scalar integer instructions
16 scalar floating-point instructions
17 S/A register memory instructions
number of operations: 18 vector logical

19 vector shift/pop/LZ
1A vector integer adds
1B vector floating multiplies
1C vector floating adds
1D vector floating reciprocals
1E vector memory reads
1F vector memory writes

TABLE 2.7. CRAY Y-MP C90 performance-monitoring counters.

23

counters select from the seven eventsahl@2.8. Additionally one of these three regis-
ters can also count instruction or data cache miss latencies.

Index Event
0 data cache accesses

data cache misses

instruction cache misses

1
2
3 data TLB misses
4 instruction TLB misses
5

pipeline advances (slightly overcounts instructions
issued — it likely includes pipeline slips)

6 processor cycles

TABLE 2.8. Convex Exemplar SPP-1200 performance-monitoring counter inputs.

2.3.6 Kendall Squae Reseath

The KSR1 [KSR92a] and KSR2 machines by Kendall Square Research are interesting
multiprocessors because they implement a cache-only memory architecC@aviér To

support COMA, KSR designed a custom proces§be processors are connected in a
hierarchical ring structure: up to 32 processors are connected together on the first-level
ring and up to 34 rings can be connected by a second-level ring. Before describing the per-
formance monitoring features on the machine, it is first necessary to describe how COMA
works.

Thelocal cachecoupled to each processakin to main memorys 32 MB of DRAM.
This should not be confused with the processdata subcachewhich is essentially a
normal data cache. When a processor accesses memory and it misses in the local cache, a
page-sized chunk of 1B is allocated in the local cache. Cache-coherence hardware
searches for the address throughout the system, first on the local ring and then on remote
rings. If found, a copy of the 128 bydabpagesimilar to a cache line, is copied or moved
to the local cache. For details concerning actions taken when the address is not found, or
what is done to the displaced page, the reader is referred to [KSR92a].

Performance Monitoring

The KSR processpwhich is identical in KSR1 and KSR2 except for clock speed, is rich

in performance-monitoring counters [KSR92b]. Fourteen 64-bit counters are implemented
in hardware and four measurements are taken in software for every thread. The hardware
counters are described iafile2.9. Additionally the operating system counts the number

of page faults and processor migrations experienced by every thread. Also, the number of
page hits is computed in software by adding subpage hits and subpage missestHénally
compiler inserts code to measure the number of instructions executed, but this information
is not normally accessible and must be extracted by inserting special assembly code [Man-
jikian95].

24

Index Event
1 user clock cycles / 8

wall clock cycles / 8

stalled cycles due to instruction fetch miss

cycles lost to instructions ‘inserted’ for 1/0 and timer interrupt processing
cycles lost to instructions ‘inserted’ for cache coherence processing
subpage hits

page misses

subpage misses

subpage miss time

data subcache subblock migg.(data cache misses)

subpage misses which are satisfied through the second-level ring

issued prefetches

M m O O W™ >» © o o o N

issued prefetches that miss in the local cache & potentially useful prefetch)

[N
o

issued prefetches to an address that are currently outstanelingséless prefetches)

TABLE 2.9. KSR performance-monitoring counters.

2.4Summary

A number of software and hardware performance tools have been described in this chap-
ter. On the software side, a program may be profiled by counting basic blocks and using
program sampling or high-resolution timers with an overhead within 10%, but detailed
information about cache activity and multiprocessor data sharing is not available. The
more detailed software tools are extremely useful for this because they can correlate cache
misses to exactlwhere the misses are in the program code and data, and also ivdigate

the cache misses occtifowever their main drawback is that they are roughly two orders

of magnitude slowerAdditionally, software techniques often ignore details such as net-
work or memory contention and the highly-variable memory latency of a cache-coherent
NUMA multiprocessarAdding these features would likely reduce speed by another order
of magnitude. The extremely slow nature of these tools hinders their usability

With respect to processors, performance monitoring features are becoming quite com-
mon. The latest processors include performance counters as well as a high-resolution
timestamp counteHowever some designs have hindered the usability of these counters
by requiring privileged access to them. Furthermore, the majority of processors contain
only two counters. Also, most counters are set up to have asymmetrical sets of input
events so they cannot measure an arbitrary pair of performance events. Since obtaining
good utilization of resources is key to performance, more area should be devoted to per-
formance-observing hardware. A greater number of counters and improved performance-
monitoring features would make it much easier to tune a program. If the monitoring fea-
tures are not easy to use, many programs will never be tuned.

25

Multiprocessor systems also include performance monitoring features. Research sys-
tems have included tracing ability along with SRAM counters and histograms, but com-
mercial systems focus specifically on counting the type of instructions issued and cache
misses. Howeverfew systems measure network or memory contention; the closest mea-
surements are Cray memory conflicts and the KSR or Convex miss latencies.

26

Chapter 3

Multipr ocessor Hardwake
Performance Monitoring

In the previous chaptea number of software- and hardware-based performance tuning
tools were presented. This chapter builds upon these tools by taking many key ideas and
meiging them togetheihe result is a description of hardware support that would be most
useful for performance monitoring in cache-coherent, shared-memory multiprocessors;
many of these features can easily be placed directly on a processor

First, the diferent sources of performance loss from the software and hardware view-
points are analyzed. This is followed by a comprehensive description of memory stalls.
Then, hardware features that can assist performance-tuning software tools are described.
At the end of each of these sections, a summary states the recommended features that
should be included in a hardware-based performance mdv@ory of these features will
be implemented in the NUMAchine performance monitor to be described in the next
chapter

3.1 Performance Losses: Softwar View

This section focuses on performance losses from a software perspective. This strict soft-
ware view disregards the operation of the hardware and explains performance loss in
terms of ineficient algorithms, extra parallel work, synchronization, load imbalance, inef-
ficient system calls, and AmdahLaw In this section, a brief description of these compo-
nents is presentedogetheythey share the common quality that they can all be measured
by instrumenting a program with timers. This simple instrumentation provides insight into
whele software performance is being hindered, but details about the hardware are often
required to fully understand the performance loss.

3.1.1 Inefficient Algorithms

It is well known that choosing the right algorithms and data structures is imperative for
fast programs. For example, using a hash table can reduce lookup times from O(n) to O(1).
However hash tables can have poor spatial logadibyeven a hash table may exhibit poor
performance. Obviouslytthe choice of algorithm can greatly influence performance and
the programmer should be sensitive to this. In this thesis, it shall be assumed that a reason-
able algorithm has already been developed and coarsely tuned using standard analytical
techniques such as time-complexity analysis and software profiling.

In addition to the standard algorithms used to improve performance, the programmer
should be aware of many software transformations that can accelerate performance in

27

28

cached-memory systemsechniques such as loop interchanging, loop fusion, strip min-
ing, blocking, meaging arrays, and packing or padding structures all can improve locality
and accelerate performance [Bacon94]. Howewgaining insight into whether these
options are useful requires insight into the hardware operation.

3.1.2 Extra Parallel Work

By its nature, a parallel program must do more work than a sequential program to manage
its activity For example, threads must be spawned, locks must be acquired and released,
and the task needs to be divided among the threads. Because it is unnecessary in a sequen-
tial program, this activity constitutes overhead which reduces performance of a parallel
program.

3.1.3 Synchonization

The time spent by one processor waiting for another to complete a task is time wasted due
to synchronization. Although time used to acquire a lock is considered to be extra parallel
work, the time spinning while the lock is busy is lost to synchronization. Also, waiting for

a semaphore to be signaled is considered to be synchronization overhead.

3.1.4 Load Imbalance

A parallel program often divides a problem into many parts that are run in parallel.,1deally
the work is divided such that each processor takes exactly the same length of time to com-
plete. In realityhoweveythere exists indeterminism that causes the work to be divided in
an unequal manneso that some processors complete before others and end up waiting
idle. The indeterminism can be caused by software, where it is unknown whether some
portions of code will be executed due to conditional statements, or by the hardware,
where, for example, caches can cause unpredictable memory access times.

The time spent idle waiting for other processors to complete their portion of work is
referred to as load imbalance. Although it is sometimes considered to be a part of synchro-
nization overhead, load imbalance is usually more coarse-grained. Specifioallgpent
waiting at a barrier is typically due to load imbalance.

3.1.5 Inefficient System and Library Calls

Because their operation is usually hidden from the ggstem calls and library calls are a
source of unknown behaviour and can impact performance. First, these routines are often
general in nature and may not be optimized for the required use. Second, these routines
may have side &dcts, such as explicitly flushing the data cache or replacing critical por-
tions of the instruction cache. Third, routines that involve input or output can cause perfor-
mance loss. Finallyperformance tuning tools usually cannot profile operating system
activity, so it can be diicult to tune this aspect of a program. As a result, system and
library calls may cause significant performance degradation.

29

3.1.6 Amdahls Law

The final source of parallel performance loss is a result of Ansdhahiv [Amdahl67],

which states that the speedup resulting from a specific performance optimization is limited
by the fraction of time in which the optimization applies. Although Amddtdw is not a

cause of lost performance peg; & explains why a parallel program does not track the
ideal linear speedup curve. For example, suppose a parallel program is run on two proces-
sors in five seconds, of which one second is spent in unparallelizable sequential code.
When run on 16 processors, one might expect the program to run eight times.éaster

run in 0.625 seconds, but Amdahlaw dictates that the best running time is 1.5 seconds.
To further illustrate this, the speedup curve for this example is shown in BiguriBy

timing the sequential and parallel portions of a program, the amount of speedup lost due to
the sequential portion of a program becomes obvious.

16— idea

speedup
12—
speedup 8|
Amdahl’s
6 Law
5.4
4— 45
3
1
I | I I
1 4 8 12 16
processors

FIGURE 3.1. An example of Amdahls Law limitations on speedup.

3.1.7 Summary

From a software perspective, parallel performanceféstad by the choice of algorithm,

the amount of extra parallel work, waiting for synchronization, improperly balanced
workloads, and inétient system software and libraries. Additionafharallel speedups

are governed by the fraction of parallel versus sequential work that exists in a problem.
The time to execute these components can easily be measured with software, but without
an in-depth knowledge of the hardware operation, it f&cdif to understandavhy it is

slow. The next section addresses this issue by providing a hardware-oriented view of per-
formance.

30

3.2Performance Losses: Hardwae View

In the previous section, the ifiefencies of a program are described from the viewpoint of

a programmerThat perspective helps addredsere the program is running slowliput it

does not readily explaiwhy the operations themselves are sldw understand this, it is
necessary to measure the performance of the underlying hardware. In this section, the
hardware-oriented factors which influence the speed of a program are presented. Note that
factors such as processor cycle time and instruction set architecture are considered to be
fixed characteristics which cannot be changed.

3.2.1 Instructions

The first natural source of performance loss relates to how many instructions are needed to
accomplish the task. Modern compilers perform a number of optimization steps, such as
common subexpression elimination, which directly minimize the number of instructions
required. In particularsince it is more important to minimize tdgnamic instruction

count or the number of executed instructions, than to minimize the static instruction
count, compilers spend mordat optimizing code inside loops.

Although it is not generally possible to predict the minimum number of instructions
possible, it is feasible to measure improvements in dynamic instruction count. Software
tools such as Mtool are quite good at accumulating dynamic basic block counts, hence,
instruction counts. Also, a number of processors and systems provide direct hardware sup-
port for counting instructions: Pentium, Alpha 21064, MIPS R10000, SupRIGHI,
PowerPC 604 and POWER2, MIT M-Machine, and Cray vector computers can all do this.
Furthermore, both hardware and software systems can break down the instruction counts
into groups of instructions, with software having the advantage of being able to form any
number of arbitrary groups. On the other hand, hardware has the advantage of being com-
pletely transparent to the us@&is is especially powerful in a machine like the Cray Y
MP C90, where each counter monitors only one event, because one can profile the
machine use for workload characterization and benchmark synthesis with no impact on
users [Gao95].

3.2.2 Instruction Scheduling and CPI

After instructions have been generated, compilers often rearrange their order to improve
performance while still preserving semantics. Additionadiyt-of-order execution tech-
nigues employed by processors such as the MIPS R10000 or Pentium Pro can further rear-
range the order of instruction execution. In these cases, the instructicthedeledo

meet the availability and speed of resources such as a floating-point division unit. The
average number of cycles required to execute an instruction is a common measurement of
efficiency calledCPlI, or cycles per instruction.

Performance is lost,e., CPI increases, when instructions are scheduled in a poor
order This can be observed in one of two ways: by the number of executed NOP instruc-
tions and by the number of pipeline slips (also known as interlocks or bubbles). Software

31

like Mtool can easily determine the number of NOPs from basic block profiles, but slips
are transparent.

During aslip, some portion of the instructions in progress are still executing while oth-
ers are halted. Slips occur because there is a dependency between an instruction currently
in execution and one that was just issued, namely they both access a common resource or
the second instruction uses the result of the first. Good instruction scheduling can reduce
CPI by putting more independent work between two dependent instructions. Of course,
there are limits to the amount of independent work that can be found and this has been
well documented in literature [Hennessy96]. As a result, it is desirable to reduce compute
cycles lost to interlocks as much as possible, so some means of measuring interlocked
cycles should exist.

Currently programmers rely upon processor pipeline simulators, suchixes
[Smith91], to measure these lost cycles. Howethease tools are primarily aimed at uni-
processor applications and haugrét been extended to handle parallel programs.

Surprisingly few systems are capable of counting interlocked cycles in hardware. In
particular only POWER2 and Cray systems can directly measure interlocks separately
from memory stalls. Also, the MIPS R4400 and Sup&F8P processors have observable
pins that indicate this type of pipeline actiyibut external counters must be constructed.
Processors should measure the performance lost due to interlocks to motivate and measure
improved scheduling algorithms.

3.2.3 Memory Stalls

Although loads and stores must be scheduled to reduce their likelihood of causing stalls, it
is useful to measure the f@ifent types of such stalls separatélge most significant type

of load or store stall is a cache miss stall. The performance impact of cache misses is sig-
nificant and complex, so Secti8r8 will be devoted fully to this issue.

3.2.4 Other Stalls

Stalls which are caused by loads and stores but do not involve cache misses are considered
in this subsection. These include stalls due to writéebuverflows or attempting to

access a busy cache. The cache may be busy satisfying a previous request by the proces-
sor, or it may be processing coherence events, such as snoops or invalidates, from outside

the processor

First, consider measuring these stalls in software. Because they are transparent to the
program, they can only be measured by simulation. The pixie simulatoexample,
measures write btdr overflows but it cannot model coherence events. Since coherence
events are relatively frequent and very sensitive to the order in which instructions on dif-
ferent processors are run, they are verfiadit to simulate. Consequently is best to
count them in hardware.

32

Existing processors count these events with varying usefulness. For example, the Pen-
tium counts pipeline write bfdr stalls, snoops and snoop hits. SimilakjPS R10000
and PowerPC can count snoops and snoop hits. AdditipttahSuperSARC outputs a
signal while the write bdér is full and the MIPS R4400 outputs a signal for coherence
‘multiprocessor stalls’ and another for ‘other stalls’, presumably due to wrifer lmvier-
flows and uncached-memory operations. The MIPS R4400 provides the most useful infor-
mation, but the counter hardware must be built exterribilg Pentium provides the next
most useful information by counting write berf stalls. Many of the processors count
cache snoops and snoop hits, but this information is not useful unless these events directly
affect performance by causing the cache to be busy when it is needed by the prAsessor
will be shown laterthese counts are also misleading when measuring performance loss
due to the memory system.

3.2.5 Exceptions and Interrupts

Because they temporarily usurp a currently running process, processor exceptions and
interrupts can significantly impact performance. Examples of common exceptions are
page faults, TLB misses (faults), or floating-point underflow

By their nature, most exceptions and interrupts must be serviced by a software routine
which can be instrumented to measure the amount of time executing outside of the
usurped process. Howeyéwo exception-related conditions cannot be measured by soft-
ware: hardware-serviced TLB misses and pipeline flushing. First, some processors contain
sophisticated TLB-fault handlers in hardware, so an exception is never raised on a miss.
The PowerPC is an example of such a processor and, fortyntatefyunters can monitor
TLB misses. Second, the pipeline must be flushed and restarted when an exception is
raised and completed, respectivelyne performance penalty for doing this is not easily
accounted for by software because the operations take a variable length of time. Conse-
guently hardware should measure the performance impact of pipeline flushes and restarts.

Limited hardware support for this is provided on the Pentium, Alpha and PowerPC,
where pipeline flushes can be counted, and on the MIPS R4400 where an output indicates
pipeline cycles killed for an exception. Howeveone of these processors can measure
the cost of restarting the pipeline; future processors should monitor this.

3.2.6 Branch Mispredictions

All new processors have some type of branch prediction scheme to indicate which way
conditional branches are likely to floWrediction schemes can be static, such as those
used by the KSR, or dynamic as in the Pentium. The dynamic branch prediction schemes
are generally more fefctive because they can handle cases where the branches alternate
between taken and not-taken, for example. A mispredicted branch can result in many lost
compute cycles, so it is important that branches are well predicted.

Interestingly all processors that emplaynamicbranch prediction can also count the
number of mispredictions with their monitoring hardware. Unfortunatelgy do not

33

account for the cost of mispredictions, which can vary depending upon instructions in-
issued and to-be-issued. The performance lost due to mispredictions should be measured
to motivate better prediction schemes and improvements in the recovery time of a mispre-
diction. Howeverthis is very dificult to measure in hardware because it implies a non-
causal view of program execution.

Even assuming that such measurements can be made, fiagltdib improve the
number of mispredictions or the associated penalty by improving a cantjoeever
the recent advocacy of conditional move instructions may allow new freedom for compil-
ers to exploit the trade4sfbetween using branches, which may mispredict, or using con-
ditional moves, which may be translated into NOR&Ig should be provided to explore
such trade-d§.

3.2.7 Special Cases

Due to architectural or implementationfdiences in processors, there will always be spe-

cial cases for a given processor which willeat performance. For example, the KSR
inserts instructions into the instruction stream to handle some types of coherence requests,
and the MIPS R10000 uses a novel prediction table to provide a two-way set-associative
second-level cache. In each of these special casesfaehtvehess of the special feature

can be measured with the performance-monitoring hardware designed in the processor

In addition, new processor implementations are including special features that, when
utilized correctly accelerate performance. Examples are data prefetching, fast context
switching, and more aggressive schemes for extracting instruction-level parallelism.
Given that these new developments continue, it is important to provide monitoring hard-
ware to evaluate their performance. In partigutas desirable to measure the amount of
use of a specific feature, the number of times it helped improve performance, and the
amount of performance that was lost if it involved some type of misprediction. These mea-
surements will help determine the value of these new concepts and allow them to be
adopted more quickly in the general marketplace.

3.2.8 Summary

As shown, there are many aspects of performance loss that are invisible to a programmer
of parallel applications. Software tools are powerful and can calculate or estimate some of
the sources of such loss, but hardware is generally better suited to the task. This section
has considered a number of measurements that can be made in hardware:

1. Count the number of dynamic instructions preferably with the ability to
organize instructions into groups.

2. Count the number of cycles lost due to NOPs and pipeline slips

3. Count the number of cycles lost due to stallStalls caused by the memory
subsystem should be reported separately and are detailed in the next section.
Stalls arising from write bigr overflows or busy caches should be mea-

34

sured. These stalls can sometimes be reduced by scheduling and also by
improving interprocessor coherence activityich will also be described in
the next section.

4. Processing opportunity lost due to exceptions should be measdr In
particular pipeline flushing and restarting cycles should be counted by hard-
ware since it is unobservable by software.

5. If TLB faults are serviced in hardware, they should be counted. Addition-
ally, the total service time is useful.

6. The number omispredicted branchesand, if possible, performance loss
due to branch misprediction should be quantified.

7. If a system includespecial hardware features it is important to measure
their efectiveness.

These measurements can be used to improve compiler development, characterize work-
loads, and tune the operating system behaviowaddition, they can point a programmer
towards selecting the proper compiler optimization flags or suggest code transformations
to improve performance.

3.3Processor \few of Memory Stalls

In the previous section, numerous sources of performance loss were discussed.,However
the single most significant source of performance loss is a processor stalled while waiting
for the memory system to resolve a cache miss. Consequeathe misses are a signifi-

cant source of performance degradation for parallel programs and often account for 50%
of performance loss [Hennessy96].

To regain this performance, it is necessary to understand the various types of misses
that occur and how they impact a prograperformance. This section describes the dif-
ferent types of missemnd the components of miss latenagditionally, it outlines hard-
ware to measure these losses and how to trace them back to the program. In this way
easy to deteavhenandwhele a program is stéring from performance loss. The focus is
primarily on a sequentially-consistent memory system with either an update or invalidate
coherence protocol, but some attention is given to weaker memory consistency models.

Tools such as CProf and MemSpy have shown how memory tuning iseativef
technique for gaining performance. Howevtrese tools are slow and cumbersome
because they are simulation-based. Additionétigy do not model contention and make
assumptions about uniform memory speeds that are unrealistic in a NUMA machine. The
hardware described in this section is intended to be more realistic about measurements,
cost-efective and significantly faster than these tools. It should also provide significantly
better insight into multiprocessor data sharing patterns.

This section is divided into three primary subsections. The first presents how cache
misses can be counted and correlated with the running program, the second suggests a tax-

35

onomy of misses and how to detect them, and the third illustratesfdrentiicomponents
of miss latency and how they can be measured.

3.3.1 Counting Cache Misses

It is a trivial matter for hardware to count the number of cache misses, either directly on
the processor or with external hardware. Howetves more dificult to count misses sep-
arately for diferent regions of code or data or forfeient stages of a prograsrexecution

state. Wo methods capable of providing this distinction will be presented below

Counting Misses: Informing Memory Operations

A good way of counting cache misses incurred by each memory instruction is described in
[Horowitz95]. The authors recommend a mechanism to invoke a low-overhead miss han-
dler routine whenever a data miss occurs. They refer to this mechanism as an informing
memory operation. The miss handghehich is generated by the programmer or is part of a
library, can record the cache miss by incrementing a counter assigned to the particular
memory instruction that missed. Thus, every memory instruction has a record of the num-
ber of cache misses it caused. Because every instruction can be traced back to a particular
line of code or a certain data object, the programmer can use this information to locate
potential bottlenecks.

To be useful, the informing memory operation must be fast, especially in the common
case of a cache hit. Simulation results in [Horowitz95] indicate that a 10-cycle miss han-
dler increases run time by no more than 30% for most applications. This slowdown is what
motivates a fast mechanism for invoking the miss handler

In [Horowitz95], three fast implementation techniques for informing memory opera-
tions are suggested, but they all require existing processors to be modified. A fourth tech-
nigque, which they briefly hint at, sets up the memory system to return bad ECC data and
causes an ECC-based trap to masquerade as a miss trap. Ktveegeerhead of invok-
ing such a trap is prohibitively expensive. Although informing memory operations are
very attractive from a performance monitoring standpoint, they are fairly intrusive and
cannot be implemented with current processors.

Counting Misses: Informing Hardware

Informing memory operations rely on hardware to give feedback to software to detect a
cache miss. The opposite viewpoint would have software inform the hardware of the cur-
rent software state @hase This involves a program informing the performance-monitor-
ing hardware of details such as which line of source code, basic block, loop iteration, or
procedure is currently being executed.

A novel way to inform hardware of phase changes is to have software explicitly mod-
ify the contents of a special-purpose external hardware regiatexd aPhase Identifier
Registeror PhaselD The contents of the PhaselD are under software control, so a pro-

36

gram can indicate whether information should be collected at a fine or coarse granularity
or both. When PhaselD changes, dedént counter is selected to count cache misses. In

this way the cache misses for each phase are collected sepatdtetyurse, the use of
PhaselD need not be limited to counting cache misses; it can be used as a general mecha-
nism for dividing-up performance data.

Numerous counters which are individually selected based upon the contents of
PhaselD can be costfettively stored in SRAM. Connected to this, a single high-speed
loadable incrementer can do the actual measurement. The cost of SRAM is modest and
fast counters are simple to implement with inexpensiMesr CPLDs [Zilic95], so it is
reasonable to implement a 16-bit PhaselD with a 32-bit coiatezxample.

To change the contents of arf-pfocessor PhaselD, three fdiient implementation
methods can be used. In the first method, the data portion of an uncached-write is used to
update PhaselD. Later in this chaptérs store will be used for a dual purpose in which
the data portion will contain timing information. For this reason, the second method
encodes the new PhaselD value into the address component of the Wiitethird
method of changing PhaselD is via a read, where the new contents must be encoded into
the address and the response is discardedese diierent methods have éhfent
strengths and weaknesses, as discussed.below

Using a write to change the PhaselD has the least impact on performance, but some
caching policies allow reads to bypass writes (which are held inferbu@onsequently
read misses may be incorrectly counted in an earlier phase. The read method solves this
problem, except that it may have a greater impact on perforﬁﬁandémproper counting
of write-throughs or write-backs may occ@ther similar problems exist, especially for
recent superscalar out-of-order processors with multiple outstanding reads. These prob-
lems can be solved by serializing reads and writes, but imposing an order on these instruc-
tions imposes unreasonable performance loss.

To avoid the serialization penalty in future processors, it is best to add PhaselD hard-
ware directly to the processor; a ubmrel registeito-register move instruction can
change PhaselD in a sequentially-consistent fashion. Rather than add the expense of mov-
ing the numerous counters on-chip as well, the PhaselD contents could appear in the
address during every fgbrocessor memory access. This can appear as part of unimple-
mented upper address bits or during an extra cycle after the address is emitted.

Informing hardware of the current software state can be used in a complementary fash-
ion with informing memory operations. For example, software-controlled prefetching, an
application suggested by [Horowitz95], would benefit from the lower overhead of record-
ing discrete miss counts in the hardware.

1. There is an implicit assumption here that the hardware is memory-mapped and that tHeriemns suf
room in the address space. These assumptions are true in NUMAchine.

2. An interesting use of this read is to return the previous PhaselD or some performance-counter result, but
such options have not been explored in this thesis.

3. The read can be acknowledged immediasal\the performance impact is not togéar

37

3.3.2 Classifying Cache Misses

Once the number of cache misses is known, it is useful to further divide each group of
misses to help identify the causes. The common nomenclature of compotgmayity

and conflict misses describes all forms of conflicts in a uniprocéssmshared-memory
multiprocessqradditional misses occur because of the need to keep caches coherent. Such
misses are often overlooked and have been poorly defined in the literature; the discussion
below proposes definitions and less-ambiguous names for these misses.

Classifying Misses: CompulsoryCapacity, and Conflict Misses

Classifying cache misses as compulsagpacity or conflict is dicult for hardware to

do. First, to recognize compulsory misses it must know that the memory location was
never referenced before, so additional memory state must be kept. ge-adate multi-
processarthis represents a significant overhead of one bit per processor per memory
block. Second, to detect capacity or conflict misses the lasist recently used memory
blocks must be remembered and accessed each time the cache is consultedisthere
number of cache lines. This is equivalent to simulating a fully-associative cache in hard-
ware. Clearlya lage amount of state must be kept and complex processing must be per-
formed to detect these f#fent types of misses. While such processing is possible, it
would significantly slow down the system and cause intrusion. Instead, compulsory
misses will be ignored and a method to estimate conflict misses will be developed.

Compulsory misses are ignored because they are hard to measure. Htveesigr
nificance of compulsory misses can be mitigated by twanaents: they occur infre-
guently and they are hard to reduce. First, compulsory misses are constant regardless of
cache size because they occur when a memory block was never before referenced within
the lifetime of the process. For this reason, the number of compulsory misses is constant.
In a long-running program which touches memory many times afersai increasing
number of misses, compulsory misses become more and more infrequent. Second, com-
pulsory misses can be reduced by only a few methods: increasing the cache line size, com-
pacting data structures, and tradinfaifmputation for memory accesses (by replacing a
table lookup with a computation, for example). Unfortunatély programmer seldom has
the freedom to use these techniques because most machines have a fixed cache line size,
data structures are usually as compact as possible, and adding more computation does not
always work.

On the other hand, misses due to capacity or conflict are important but they are also
very difficult to distinguish. ® detect capacity misses, a fully-associative cache structure
with least-recently used (LRU) replacement must be emulated in hardware — obviously
this cannot be done economically at full speed otherwise the processor cache would
employ this scheme. Likewise, some conflict misses can be measured by simulating a
cache that is more associative cache than the protgdsor this is not feasible for the
same reason. Another way of detecting conflict misses is to remember the last few misses
and count every time a new miss maps to the same location. Unfortutiasetgchnique
can only capture a few of the conflict misses.

38

A different approach to detect conflict misses is to profile the cache a@péyifi-
cally, each cache line has a separate counter to tally its misses. By sampling this profile
over the life of a program, an interesting history of cache use results. A completely uni-
form profile primarily indicates capacity misses, but it can also indicate conflict misses
that cover the entire cachen @istinguish these, the cache profile may need to be sampled
more frequently or the programmer may have to guess. Hovaharp spikes in the pro-
file indicate excessive conflicts at a specific cache line address. A more restrictive tech-
nique than this is used with some success in t#&REBenter 2000 to identify conflict
misses [Singhal94]. In their implementation, two separate counts for misses to even and
odd cache lines are used to indicate potential conflict misses. By profiling every cache
line, howevermore conflicts can be determined and, more importahisyeasier to trace
the conflicts back to the program.

Conflicts can be traced back to specific code or data in the followingSeéyare
should be able to match the cache location containing excessive conflicts to all static
objects in a program and produce a candidate list of conflicting variallggngoint
dynamically allocated objects, a second run of the program with hardware watchpoints set
on the cache line in question can stop a program when and where the conflict occurs.
Unfortunately processors arenusually set up to have watchpoints on a cache line;
instead, the performance-monitoring hardware should have this ability and generate an
interrupt when a match is detected.

A variation of the watchpoint scheme can help identify conflicts in only one pass. Sup-
pose the hardware monitor creates a cache profile and, at the same time, records the aver-
age number of misses per cache line; this is easily done by counting all misses and shifting
the count bylog,(n) bits, wheren is the number of cache lines. While profiling, a watch-
dog inspects the ddrence between the average miss per line and the miss count of the
line that just missed. When this felifence exceeds some threshold, it can be assumed that
the miss was caused by excessive conflicts at that location. As before, an interrupt can be
generated to stop the program and pinpoint the source of the pf‘oblem

The hardware cache profiling described above does not distinguish comprdpaig
ity, or conflict misses directlfRather it helps show active regions of the cache which may
be sufering from excessive conflict misses. Although it is possible that invalidation or
ownership misses (described below) can also create active regions, they can be directly
detected by hardware so it is easy to exclude them from the profile. A drawback of this
approach is that conflict misses which uniformly cover the entire cache, such as those aris-
ing from some types of array operations, may be unobservable from the profile. In these
cases, software tools can be used instead.

Classifying Misses: Invalidation Misses

The first type of multiprocessor cache miss is presented here. When an invalidate-based
coherence protocol is employed, data in the cache is sometimes changed by another pro-

4. A simpler but less accurate, variation of this method generates an interrupt as soon as a cache line
exceeds a certain number of misses. This variation is implemented in NUMAchine.

39

cessorwhich also has a cached cpppd the stale copy needs to be eliminatedali-

dated These eliminations which originate from outside processors are eaflechal
invalidation hits If the data is invalidated but subsequently required by the procassor
miss is incurred; the data was removed because of the invalidation. In previous literature,
these misses have been called coherence misses [Jouppi90], but such terminology is mis-
leading because it is not clear whether another type of coherence miss, which will be
defined shortlyis included. In this thesis, the term used in [Martonosi@¥hlidation
missesis recommended, but it should be definetedzntly:

Definition Invalidation miss is a miss that is incurred because a reference to
data which otherwise would have been present in the cache was
previously invalidated in order to keep memory coherent. Invalida-
tion misses only occur in invalidation-based coherence protocols.

It is important to note that this definition does not double-count certain misses. Specifi-
cally, accessing data in a cache line that was marked invalid but then rdpémedeuse

is not considered an invalidation miss; it is a capacity or conflict miss. This distinction is
missing from the Martonosi definition.

There are always more external invalidation hits than invalidation misses. This follows
because cache lines marked invalid by an external invalidation hit may never be reused or
the invalid line may be replaced before it is reused. Thierdiice is important because
external invalidation hits dohcause memory stalls; only invalidation misses result in
memory stalls. Howevecurrent processors such as MIPS R10000 count the external hits
instead of the misses. Unfortunatetye number of invalidation hits will probably be mis-
taken by many as a measure of processor performanée)ross an estimate of invalida-
tion misses.

Measuring invalidation misses is easy to do in the progdssodificult to do exter-
nally. A processor simply counts the number of loads in which the tag comparison
matches but the line is marked invali@. Make this measurement-chip, external hard-
ware much capture the cache line state, tag address, and the read address sent to main
memory If the tag and read addresses match and the state was invalid, an invalidation
miss occurred.

If invalidation misses are being measured, it is important to perform cache flushes
properly When a line is to be flushed, it is possible for the processor to merely mark the
line invalid without changing the tag. Howey#ris will cause a subsequent miss to be
improperly counted as an invalidation miss even though no invalidate was receiVied. T
the problem, either an additional state must be used to indicate the line is completely
empty or the tag address must be cleared when flushing the line.

An alternative method of counting invalidation misses was used in [Singhal94], but it
involves running the application twice: once using an invalidate-based protocol and once

5. Recall that the overhead of processing the invalidate transaction may cause the processor to stall, but this
was already quantified in Secti8r2.4 on pag81 and is not considered here as a memory stall.

40

using an update-based protocol. Since there are no invalidation misses with an update pro-
tocol, the diference in the number of misses is used as an estimate. The obvious problems
with this method are that two runs are required and the number of misses can vary depend-
ing upon the exact sequencing of the processors.

Performance stdrs when many invalidation misses occlhiey indicate false sharing
of a memory block or that data is actively shared by multiple-readers and multiple-writers
(a.k.a.true sharing. False sharing can be reduced by placing independent variables in dif-
ferent memory blocks. Some types of true sharing can be made faster if an update-based
coherence protocol is used instead; alternate strategies include marking the data as
uncached or altering the way the program uses the data.

A caveat arises here when the external invalidation hits measured by a processor are
mistaken for invalidation misses. When there are many more hits than misses, the data is
likely to be migratory in nature. Howevex naive user could interpret thegamumber of
invalidation hits to mean that data is shared by multiple-readers and multiple-writers and
switch to an update-based protocol instead. Unfortunatedyratory data is best matched
with an invalidate-based protocol because it behaves as singlerrmadkr-writer data
when examined in smaller time quanta. Consequearilypdate-based protocol will likely
perform worse because of the numerous ownership misses, which shall be described
below

Classifying Misses: Ownership Misses

The second type of multiprocessor miss is unusual because it is only caused by a write; all
other misses presented thus far are caused by reads or writes. This particular write miss
occurs when the daia present in the cache, but the proper ownership has not yet been
established at the time of the write. In this case, it is said that the cache contents hit but the
ownership misses.

This type of miss appears to have been overlooked in literature despite its common
occurrence as a distinct event in parallel programs. The term coherence miss is sometimes
used in previous literature, but the definition given or implied is often inconsistent or
ambiguous. Other terms, such as upgrade miss or initial-write miss, are more specifically
oriented at invalidate-based coherence protocols &wolythis reason, it is proposed that
an ownership miss be given a separate distinction and defined as follows:

Definition Ownership miss is a write miss that occurs when data to be over-
written is present in the cache but proper ownership must be estab-
lished, such as obtaining exclusive access to the block, before the
write can proceed. Ownership misses can occur in update- or inval-
idate-based coherence protocols.

As mentioned in the definition, ownership misses apply to both invalidate- and update-
based coherence protocols. They occur in invalidate-based protocols when the data is ini-
tially in a shared state. Upon a write, an invalidate is broadcast to all potential sharers to
ensure the writer obtains an exclusive cdpya strongly-ordered memory consistency

41

model, the write is stalled until an acknowledgement is received to guarantee exclusivity
In comparison, update-based protocols have an ownershipméssry writdboecause the

data is always assumed to be shared; the home menabry processpis typically con-

sidered to be the ownerhe write-update transaction is broadcast to all potential sharers

to update their copyAgain, strong consistency models demand the write must stall until

an acknowledgement is received that all updates were successful. In both of these cases,
the latency of obtaining proper ownership permission involves considerable network com-
munication and is comparable to reading a cache line and other such transactions.

If an attempt to obtain proper ownership is not acknowledged, it is deemeddn-be
celledby a competing transaction. In the invalidation case, an external invalidate removes
the processos copy of the data and it must be re-read. In the update case, the processor
accepts an update from another processor then reissues its own update. These compound
transactions take longer to complete but are expected to be rare cases. Also, it is unclear
whether these compound transactions should be counted sepamipted once for each
of the component transactions, or counted by one component transaetidmecause of
the expected rarity of these events, it shouldvdtter how they are counted.

Like invalidation misses, ownership misses are more easily measured by the processor
than of-chip. External hardware must observe the cache line state, tag address, and own-
ership request address sent to main memuoasy as the invalidation-miss hardware does.

If the tag and request addresses match, and the state is originally valid and shared, an own-
ership miss is counted.

In some cases, a simpler way of measuring ownership misses exists. If the protocol is
strictly invalidate-based, the number of (successfully) issued invalidates equals the num-
ber of ownership misses. Similarly for an update protocol, the number of updates is the
same as the number of ownership misses. Additignsdigne processors already count
ownership misses: MIPS R10000, for example, can count writes to shared secondary
cache linesi.e., ownership misses, as well as writes to clean exclusive lines. This latter
measurement is useful because it helps quantify teetekness of loading the line in the
proper state beforehand, which is one of the many optimizations which will be discussed
below

The performance impact of ownership misses can be reduced in many ways. First,
switching to a weaker consistency model will eliminate the need to stall by providing an
immediate acknowledgement for most writes. (Interestjniglg total ownership miss
latency is a good estimate of the maximum performance advantage of a weak consistency
model.) Second, switching to an invalidate-based protocol will reduce some ownership
misses, but only at the expense of introducing invalidate misses; this tfadé-loé dis-
cussed belowThird, the eflect of the remaining ownership misses (in invalidate-based
protocols) can be reduced by providing hints to the memory system that a line is likely to
be modified and should be loaded in exclusive mode. For example, the KSR load instruc-
tion contains a hint whether a store is likely and the PowerPC and MIPS R10000 can try to
prefetch a line into exclusive state. Performance increases because these hints start the
invalidation process sooner than if the processor waited for the write to Bocuth, a
processor may delay the stall, potentially even avoiding it altogé&heontinuing execu-

42

tion until a second write occurs. At this point, sequential consistency disallows the second
write to pass the first and the processor may have to stall to avoid this. For example, this is
done by the Pentium processor and it is likely counted by the ‘pipeline stalled by write to
exclusive or modified line’ event [Glew95]. By applying these techniques, performance
loss from ownership misses can be reduced.

Finally, there is an implied relationship between ownership misses and invalidation
misses in an invalidate-based coherence protocol. An ownership miss in one processor
generates invalidates which are broadcast to the sharing processors. If these processors re-
reference that cache line after the invalidate, they wifesdfom an invalidation miss
(provided all the previously discussed conditions still hold). If subsequent writes are done
by the original processor before the data is shared again, there are no more ownership
misses incurred. Howeveaf an update-based strategy was being used the sharing proces-
sors would all receive the write update and keep a copy of the data in their cache. Subse-
guent writes will always incur an ownership miss and contention may increase, but the
sharers never defr from an invalidate miss.

Classifying Misses: Summary

It is hard to distinguish between compulsagpacityand conflict misses in hardware, so
simulation should be used when these details are needed. Hardware can construct a cache
miss profile for each line over time, and this can help identify conflict misses when they
are centralized about a particular memory address. Additipriaihalidation misses

should be counted in hardware because they directly impact performance and characterize
multiprocessor data sharing. External invalidation hits originate from outside the proces-
sor and do not directly reflect performance loss, but are useful to help identify migratory
data sharing patterns. Finalbwnership misses have not been properly identified in cache
literature, yet they can result in performance loss as well. They should also be measured
by performance-monitoring hardware.

It is worthwhile to point out that the PhaselD register defined in the previous subsec-
tion is a very useful concept that helps pinpoint misses to tfexiagfcode or data struc-
tures. Consequentlythe classified misses should be counted separately feredif
PhaselD values. In this wagvery phase in the program will have a separate count for
invalidation, ownership, and other (compulsagpacity and conflict) misses.

3.3.3 Measuring Cache Miss Latency

So fay cache misses have been described in terms of counting how many of what type
occurred where. This data is useful, but when contention exists or when memory access
time is nonuniform, some cache misses are much more significant because they take a
very long time to resolve. In a NUMA system, a cache miss has a highly variable service
latency Clearly it is equally important to measure miss latencies along with the number of
misses and the dérent types.

The basic service latency of a cache miss, defined on an unloaded system, is only a
portion of the actual service time experienced in a loaded system. Increased delays come

43

from memory and network contention and from additional coherendie trediuired to
maintain consistency

Miss Latency: Basic Service Latency

Basic service latency can normally be characterized in advance, so performance-monitor-
ing hardware need not measure . ilfustrate this, consider two cases: one, where the
basic service latency is constant and two, where the service latency is variable. Of course,
when measuring basic service latency the system must be completely idle except for the
single transaction in question.

In the absence of contention, most systems have a constant base communication time
so there is no need to explicitly measure this component of laterstgad, it can be
determined exactly by analyzing the hardware delays encountered while a miss is in tran-
sit. Howevey some part of the system may contain a certain degree of uncerdaidty
even a small amount of this can cause variable delays.

Examples of uncertainty in a system are DRAM busy due to refresh, mismatched
clocks or clocks without phase locking, and strict round-robin resource arbitration. If
small, the uncertainty can usually be ignored; for example, DRAM refresh is often over-
looked. But even when the uncertainty isg&arsystem designers can analytically or
empirically derive an estimate of the average basic service lafEhisystatistical esti-
mate is often sfitient because memory transactions are very frequent events, so the num-
ber of transactions is almost alwaysgkar Consequentlybasic service latency can be
characterized in advance, so it is not necessary to measure it with performance monitoring
hardware.

Miss Latency: Memory Contention

Memory contentioms a source of performance loss that i§ialift to observe using soft-

ware tools. It is typically non-existent in uniprocessors because there are so few masters
attempting to access memory; normally it is just the processor and one or two DMA
devices. But in shared-memory multiprocessors, every processor is a master which
demands access to the memory

The classic memory contention problem is when a program develops memory ‘hot
spots’ and all processors attempt to accessahee physical memory locatiahthe same
time. This can be quite common, especially just after synchronization points. Another con-
tention problem is best illustrated when there is only one memory module or resource.
Here, simultaneous accesseslifterent memory locationalso result in hotspots because
the single resource can only service one transaction at a time. In this case, performance is
clearly limited by the service rate of the memory module. These two types of hotspots
form the core of memory contention and tend to create long queues.

When the memory is busyequests must queue up and wait until they are served.
Thus, the performance of a memory resource can be measured by classical queueing the-
ory metrics: time-average queue length, maximum queue length, average/maximum/total

44

length of time in queue, and average/maximum/total service time. These metrics are easy
to measure in hardware when the queue is centralized, as in a single FérQOabdfthe

buffer is lage enough to avoid overflowf a hardware bdér does overflowthe data is

often refused and the ‘problem’ is pushed back to the network or the prodéssamom-

plicates some memory queue measurements such as maximum queue length, but the total
miss latency information is still retained.

For performance tuning, the proportion of cache miss latency that comes from mem-
ory contention should be explicitly measured.db this for a memory resource, it isfsuf
cient to add the number of transactions in the queue into an accumulator on every cycle.
The cumulative value represents cycles which were spent waiting for previous transac-
tions to complete.

Of course, it also helps to know what part of a program is causing the memory conten-
tion. The two mechanisms described earl@iorming memory operations and PhaselD,
are both applicable here, but some enhancements are neceéssgrinforming memory
operations are extended to be reactive to more than just cache misses. Spethcally
informing operation should test the status of a speRIGGER pin, which can be
asserted by éfchip hardware. This allows the program to respond to all cache misses
(when it is continuously asserted) or only to those misses that also satisfy some external
condition (such as ‘memory queue is full’). Second, the presence of PhaselD is extended
by tagging it to all memory transactions. Consequemtlynemory module always has
information about the current phase of the program from each prad@bsausly these
two techniques can be used to trace back memory contention events to particular regions
of a program.

To relieve memory contention in a program, both hardware and software techniques
can be used. If the hardware caficegntly broadcast or multicast data, it can be used as a
more eficient means to distribute data. It works because contention that is caused by mul-
tiple requesters pulling the same data is reduced to a single push with a broadcast. Hard-
ware can also provide more memory modules so that simultaneous requedtraatdif
memory locations can be serviced in parallel. This parallelism can be better exploited
when the software explicitly takes advantage of it by intelligently placing data across the
memory resources. Also, contention at memory modules holding shared data can be
reduced by converting some data to private or by replicating read-only portion$e®y ef
tively using hardware broadcast and multiple memory modules, software can be modified
to reduce contention at memory

Miss Latency: Network Contention

Analogous to memoryetwork contentiomrises from simultaneous requests for access to

the interconnect. The network itself can be considered to be a network of queues and
resources which must be acquired and released. For example, a processor that issues a bus
request and waits for a bus grant is considered to be waiting in a queue.

45

The same metrics and methods that are used to measure memory contention also apply
to the network. Also, the extensions of triggered informing memory operations and
PhaselD are useful for pinpointing losses.

To relieve network contention, tfaf which is waiting for a resource must be diverted.
If the network supports dynamic routing, it may reroute thdidrab that contention is
reduced. Howevetthere are also software-based methods of reducirfg triairst, the
techniques used to reduce memory contention may also cause a decrease in network
gueueing. This is true for two reasons: 1) multicastgenerultiple transactions, and 2)
some memory transactions may be spread out in space and fgentihetwork
resources. Second, data placement plays a critical role in network use. Private data should
always be placed adose as possible to the processor so it uses the fewest network
resources. In some architectures, this may not be directly compatible with reducing mem-
ory contention because it may recommend numerous processors contend for the same
memory over diierent network links. Nevertheless, such trads-afe common in opti-
mization. Although network contention can be reduced, it may be at the expense of some
other performance metric.

Since data placement is important, a hardware monitor should provide a way of mea-
suring its efiectiveness. This can be done by counting processor accesses to local and
remote memory separatedso, Appendix A describes work in progress that can be used
at the memory to measure locality

Miss Latency: Coheence Taffic

Often, a processor read request cannot be satisfied by memory immediately because the
block is not in the proper state. As a result, additional coherence transactions are generated
to bring about the desired consistenElyis can turn into a complex chain of events as the
state and memory block are traced throughout the system. This type of detail is too com-
plex for programmers to unravel, so a less-detailed summary of coherence transactions is
preferred.

The chain of events starts when a transaction reaches memory in a state that requires
coherence transactions. The contents of this state, caltetin@ry state indicatqiMSI),
should be returned to the processor along with the final response. In the pvagessor
can count the number of times it hit memory in an optimal state or in one which may have
required much coherence activity

To show how to reduce the miss latency using the coherence activity information, con-
sider the following example. Suppose an invalidate-based protocol is used and a processor
wishes to perform a write, but misses. An attempt is made to fetch the cache line from
memory but memory does not have a valid copy because it is dirty in another prtgeessor
cache. After some transactions, the requesting processor receives the data and an MSI that
indicates the memory block was invalid but dirty elsewhere. A programmer may notice
that the program stérs a significant number of MSlIs that all indicate this same state on a
write. The cause is probably false sharing because it is unlikely for one processor to write
to the same memory block as another processor without a read in-between. If, on the other

46

hand, the requesting processor had missed frequently because of a read, it is more likely
that true sharing or migratory data is present.

From this example, it can be seen that a memory state indicator can give useful infor-
mation about data sharing patterns. In addition to this, it can also be used to estimate the
amount of coherence activity that was required to maintain consistency

Miss Latency: Other Effects

The miss penalty measurements reflect the performance of the memory subsystem from
the viewpoint of a single processor memory request. Although the total miss penalty does
impact performance, cycles spent servicing a miss are not necessarily wasted processor
cycles. This is because counting cache misses or miss latencyt doespsulate other
activities that go on in parallel.

A common metric used by memory system designers is miss (or memory) cycles per
instruction, ofiMCPI. This is defined as the total latency of misses divided by the number
of instructions executed; the goal is to reduce MCPI by reducing the latency of misses.
This metric is useful for gauging memory system performance, but it falls short of
accounting for program performance because of latency-hiding mechanisms used in the
latest generation of processors.

Todays processors employ numerous micro-architectural features to tolerate long
memory latencies. Among the many features used, the most common are: non-blocking
loads and stores, lockup-free caches, dynamic scheduling, speculative execution, and
prefetching. These features are all based upon extracting instruction-level parallelism and
overlapping execution of multiple events.

And yet, because of these advancementsgapparentmiss penalty of a cache miss is
reduced. That is, while the latency of a miss may remain the same or become worse (ser-
vicing multiple transactions tends to increase waiting in the network and at memory), the
program usuallygets fasterbecause the processor is still busy finding and completing
other useful work. The result is an increase in utilization of processor resources and fewer
unused cycles.

To a programmer trying to extract the most performance, it is crucial to measure these
unused cycles; MCPI is not $igfent. The causes are numerous, including new stalls due
to lack of resources(g, all outstanding loads are still in-flight, no free reservation sta-
tions, or no free renaming registers) and time wasted executing speculative instructions
which are eventually discarded. In measuring these unused cycles, it is useful to construct
a new metric, apparent MCPI or AMCPI, which is defined as follows:

Definition AMCPI or Appar ent Miss Cycles Per Instructionis the total
wasted processor cycles divided by the number of (useful) instruc-
tions executed. The wasted cycles accrue due to waiting on a result
from memory or instructions cancelled due to speculative memory
operations.

47

This metric captures the positivefegit that latency-hiding mechanisms have on perfor-
mance. Furthermore, reducing AMCPI is more likely to improve performance, so it is
more useful as an optimizationdat than MCPI.

A problem with AMCPI is that it does not capture all of the subfleces of the latest
processors. For example, suppose an instruction cache miss occurs and fewer instructions
are available for dynamic scheduling. Assume that because of the miss, some functional
units are left idle. AMCPI counts these cycles as lost opporfisutyt increases. How-
ever suppose the instruction cache miss had not occurred but dependency restrictions still
left the same functional units idle. Here, AMCPI is lower than the cache miss case, but
performance has not improved. Numerous other subtéxtefexist and these make
AMCPI a difficult metric to measure.

The end result is that new processors are quite successful at hiding the latency of
memory on the given benchmark® Gapture this, a metric similar to AMCPI would be
useful. Howeverthe complexity of the latest processors makes it vefigulifto measure
AMCPI. In addition to AMCPI, the older MCPI is still a useful memory system metric.
Programs with limited instruction-level parallelism feufmore because of MCPI, so it
cannot be ignored when designing a memory system.

Miss Latency: Summary

The complete latency of a miss can be divided into basic service time, waiting due to
memory and network contention, and delays caused by coherence .asthilg/the basic

service time can likely be determined in advance, the memory and network contention
latency components can be measured by monitoring the status of their service queues. The
delay and causes of additional coherence activity are not convenient to measure explicitly
so a memory state indicator (MSI) should be included with data responses. The MSI pro-
vides insight into the processsrview of the type of coherence transactions that may
accompany the misses, as well as an indication of the data sharing pattern.

The role of PhaselD has been extended so that it tags memory references throughout
the system. Additionallyinforming memory operations have been made reactive to a
TRIGGER pin. These changes help to pinpaihenandwhele a program is inditient.

Finally, it is noted that theppaentlatency to the program, AMCPI, can be much less
than the actual latency because of advanced micro-architectural features which hide
latency by extracting parallelism. Although processors employing these features exhibit
excellent benchmark performance, they can still experience a significant slowdown if
memory latencies are not kept in check or if limited parallelism exists. Conseguently
these new processors should measure both types of memory latencies: MCPI and AMCPI.
Together they provide an optimization gt and a measure of thdeetiveness of the
latency-hiding mechanisms. UnfortunateMCPI is difficult to quantify because of the
many subtle aspects of processor operation.

48

3.3.4 Summary: Pocessor \ew of Memory Stalls

In this section, memory stalls have been characterized from the perspective of a processor
executing a parallel program. Where possible, general hardware schemes have been
shown to recognize dédrent types of cache misses (especially those arising from multi-
processor activity), measure latency and performance loss, and correlate misses with pro-
gram activity The primary goal of this hardware has been to give fine-grained insight into
program memory behavior so that performance bottlenecks can be understood and
removed without becoming intrusive or necessitating excessive cost. Hptevirfor-

mation also enables software to be reactive to prevailing conditions and adjust its behav-
iour accordingly

A summary of the hardware recommendations to measure memory stall activity is as
follows:

8. Provide informing memory operations from [Horowitz95], with external
TRIGGER pin support. If the pin is active during a response, the appropri-
ate miss handler is invoked. This feature enables sophisticated software-col-
lected performance-monitoring and adaptive program behaviour

9. Create a usetlevel PhaselD egister Changes to the register should be fast
and appear to be done in-ord€he contents of the register should always
accompany all memory transactions throughout the system and are used to
separate performance data. This register need notdee iacan be 4 to 16
bits wide.

10. Profile cache activityby counting misses to each line separat€hys is
useful for identifying some cache conflict misses. Periodic sampling of a
profile can help show some miss trends.

11. Support cache-pofile watchpoints and/or thresholds which generate
interrupts. These are necessary to trace back misses (observed during pro-
filing) from dynamically-allocated data. By specifying a threshold, the watch
is delayed until a real problem occurs. This can help software be reactive to
cache misses.

12. Count invalidation misses.These are very important multiprocesspe-
cific misses present in invalidation-based coherence protocaisiplement
this, cache line tags must be cleared properly during cache flushes or an
additional empty state is required.

13. Count external invalidation hits. This metric is not as important as invali-
dation misses, but it can help identify migratory data.

14. Count ownership missesin update-based coherence protocols, they indi-
cate performance that can be gained through relaxed consistency models. In
invalidate-based protocols, they indicate the need for load-with-intent-to-
store hints.

49

15. Measure queue performanceof memory modules and the network. This is
important for understanding components of miss latewtych should be
reduced.

16. Measure locality of memory references.By separating local and remote
misses, the &ctiveness of locality enhancements can be measured.

17. Return the memory block state with every esponse.Processor perfor-
mance monitoring hardware can count the number of hits to each state. This
helps convey information about data sharing patterns.

18. Measure total miss cyclego establish MCPI.

19. Measure apparent miss cyclego establish AMCPI. This can only be mea-
sured by the processor because it knows what instructions are issued, retired,
stalled or cancelled. It measures th&ea@fveness of latency-hiding tech-
niques and can be used as a performance optimizatget.tar

3.4Hardwar e Support for Software Tools

Although CProf and MemSpy are more powerful than gprof or Mtool, they run too slowly
to be usable. In previous sections, it has been shown that similar information about mem-
ory system performance can be collected at full speed by using hardware. In this section,
additional hardware mechanisms to reduce the intrusiveness of profiling tools like Mtool
are introduced.

3.4.1 Timer Support

As recommended by [Goldlgd3] and [Hollingsworth93], processors should provide a
high-resolution cycle, otimestamp counter for accurate timing. The counter should be
readable in one or two cycles and run continuguelymatter if an interrupt occurs or an
outstanding memory reference is being satisfied, for example.

In addition, another timer local to each process should also be available. By having the
operating system save and restore phgecess timeon a context switch, the process is
able to exclude time spent in other processes from its measurements. This simple concept
was used in [Shand92] to measure and improve the performance of interrupt handlers.

3.4.2 Basic Block Pofiling

A common component of CProf, Mtool and MemSpy is that they all do some form of pro-
gram profiling. The most useful level of granularity is at the basic block level, because it
can be guaranteed that all instructions in a basic block are executed the same number of
times. © improve the diciency of profiling at this level, hardware support is considered

for two types of profiling, counting and timing. The hardware is used to reduce the over-
head and to improve the timing resolution of these software monitoring tools. Since these
applications can reuse previously suggested hardware, they are veryamisteef

50

Basic Blocks: Counting Pofile

The number of times a basic block is executed is useful for generating dynamic instruction
counts of a program, estimating ideal run time and overhead, and dividing up execution
time among program components. Mtool relies upon powerful analytic techniques to
reduce the intrusion level of basic block counting to 5%, which is quite acceptable for
most applications. Howevett is possible to virtually eliminate this overhead using the
previously-suggested cache profiling hardware to count basic blocks instead.

An analysis of the PERFECT Club benchmarks [Berry89] using pixie reveals that the
largest program, SPICE, contains approximately 15,000 basic blocks in 18,000 lines of
code. D profile all of these blocks with a 32-bit countgbout 60,000 bytes of storage is
required, a reasonable amount that is comparable in size to the cache profile SRAM. By
placing a single store instruction in each basic block, a control unit could be signalled to
increment an appropriate counter in the SRAM. This store is capeafitng stoe. The
target address of the store can indicate which basic block is being profiled, hence which
counter to access in the SRAM. Since this is easy to hard-code into the instruction itself as
a fixed ofset, no additional instructions are needed. Howev@rocessor register is still
needed to hold the base address of the control unit.

One advantage of this design is that many basic blocks already contain a NOP in the
delay slots of loads, stores or branches into which the additional store can be scheduled.
As long as the write bidrs dont overflow there should be minimal impact on runtime.
Also, the dificult control-flow analysis used by software is only necessary for extremely
large programs that have too many basic blocks for the hardware to manage.

Another advantage of the profiling store is that it essentially accomplishes the same
purpose as updating anf-pirocessor PhaselD registén this sense, the purpose of the
profiling store is to signal a change of program state to the hardware, notably tfet a dif
ent basic block is being executed.

Basic Blocks: Timing Profile

Timing basic blocks can be considerably more complex than counting them. Most tools
use periodic program counter sampling, but this statistical estimation can be intrusive and
errorprone. Instead, block-level timing can be done using the hardware already recom-
mended for cache profiling and basic block counting. Basic block execution times are
accumulated in SRAM by placing the timestaimphe data portiorof the profiling store

used for basic block counting. The exact procedure for timing is described below

Immediately upon entry to a basic block, the current timestamp should be loaded into a
general purpose registérhen, the time diérence since the previous basic block times-
tamp can be computed, or it can be left férobfip hardware to calculate. The result is the
time to execute thpreviousbasic block. Next, a profiling store can be executed at any
point within the block to write the timestampfdifence to the performance monitBre-
viously, when counting basic blocks, the profiling store contained the hardwired basic
block identifier but this no longer works because the time is for a previous basic block of

51

unknown origin. In this case, the profiling store must use an address from a processor reg-
ister which was loaded in the previous basic block. After the store, the monitor SRAM
accumulates the execution time for that previous basic block. Fitmeladdress identify-

ing the current basic block must be loaded into a register for use by the next basic block.
Thus, the time spent in each basic block can be accurately measured.

Generic assembler code for this process is given in F&yarand code for machines
with an automatic-cleawn-read timestamp counter or with a hardware monitor that will
automatically compute time @i#frences is shown in FiguBe3. The overhead ranges from
three to five instructions per basic block. Furthermore, between two and three processor
registers must be dedicated to monitoring functions and one or two registers is needed for
temporary computation.

% Conventi ons:

%rl and r3 are tenporary-lifetime registers

%r2 contains the timestanp at the entry of the previous basic bl ock (BB)
% r4 contains the address to be used for the profiling store

% r5 contains the base address of the nonitor hardware

% Basi c bl ock code may be schedul ed anywhere after the first instruction.

nov rl, tinmestanp % first basic block instruction

sub r3, r2, rl % store execution time of previous BBin r3
nov r2, rl % save timestanmp in r2

Sw r3, 0(r4) % profiling store

addi r4, r5, bb_identifier % create new address for next basic bl ock

FIGURE 3.2. Time-based basic block pofiling without special hardware support.

The same SRAM which is used to accumulate basic block counts can also be used to
accumulate timing information. This has the advantage of saving cost, but it requires two
runs of the same program to collect both counting data and timing data because the infor-
mation is often used togethés Goldbeg [Goldbeg93] points out, this is unacceptable
for programs whose compute time can vary widely with only small changes in runtime
conditions, but such programs are ill-behaved and uncommon. Alternabaslg block
counting could be done in software and timing could be remain in hardware.

% Conventi ons:
%r3 is atenporary-lifetine register
% r4 contains the address to be used for the profiling store

% r5 contains the base address of the nonitor hardware
% Basi ¢ bl ock code may be schedul ed anywhere after the first instruction.

nov r3, tinestanp % first basic block instruction
sw r3, 0(r4) % profiling store
addi rd4, r5, bb_identifier %create new address for next basic bl ock

FIGURE 3.3. Time-based basic block pofiling with special hardware support.

A disadvantage of this hardware timing solution is the need for two or three registers
to be reserved exclusively for profiling. It is hoped that this does not impose a significant
increase in register spill code or execution time. Also, the writieoverflow problem
still exists, but possible solutions include not profiling very small basic blocks. Fihally
instruction overhead of three to five instructions is not negligible, but this is no worse than
what current basic block profiling code must add, and the benefits of timing information
outweigh this small additional cost.

52

3.4.3 Pointing Losses Back to Code and Data

Software tools that do profiling can benefit from understanding how to use the profiling
store address as the PhaselD regi®grselecting a diérent base address¥ in the
examples), the changing program state is reflected in the otherwise static basic block. In
this way performance data specific to each phase can automatically be separated as a pro-
gram passes through ifent phases of execution. This is helpful when the same proce-
dure is used to perform fent types of computation, depending upon the value of a
parameter passed to it. Such code is very common in object-oriented or structured code
where one routine may operate on the same data structuréenemifways. Thus, using

this variant of PhaselD can help overcome one of gppafor assumptions that every pro-
cedure invocation takes the same length of time.

3.4.4 Summary: Hardware Support for Software Tools

Software performance-monitoring tools range from mildly intrusive to highly intrusive.
Various hardware structures have been shown which can make these tools less intrusive
and more accurate. The specific hardware features that have been recommended are:

20. Timestamp counter(a.k.a. cycle counter). Key features are: high-precision,
low-latency usetevel read access. A 64-bit counter should bécsemt. A
variant of the counter should automatically reset itself after a read.

21. Local process counterSave and restored with context switches, this per-
mits a process to exclude other system activity from measurements. Also,
the diference between the timestamp and local process counter shows how
much system activity took place. A variant of the counter should automati-
cally reset itself after a read.

22. Basic block counting SRAM. The SRAM needih’be lage: for example,
64 KB is enough to profilall of the basic blocks in SPICE, an 18,000-line
program.

23. Basic blocktiming SRAM. This may be mged with the counting SRAM,
but programs must then be run twice to collect both pieces of information.

24. Implementation note: the fgprocessor PhaselD register should be used to
address the counting and timing SRAM.

Of these features, the first two are the most important and should be included on all future
processors. Although all of the latest processors have timestamp counters, they do not all
provide usetevel access to it.

3.5Summary

In the software view of performance, speed is compromised when algorithms &re inef
cient, extra parallel work is present, synchronization and load imbalance cause waiting
delays, system and library calls are fiogént or have side &dcts, and when limited paral-

53

lelism exists. Measurements of these performance areas are readily done with software-
based instrumentation techniques. The measurements provide indicatdrsieoé pro-
gram is slowbut they do not sti€iently explainwhy or whenperformance sigrs.

The why question is better answered by a hardware view of performance. In this
domain, there are many sources of performance loss in a computer system: too many
instructions, limited instruction-level parallelism from scheduling, memory and other
stalls, exceptions or interrupts, mispredicted branches, and other special cases. Although
software can simulate some of theséeds, accurate results require very slow and
detailed simulations. In contrast, these performance impediments are generally easy to
measure with hardware.

Of the diferent sources of hardware performance loss, memory stalls are the most sig-
nificant in shared-memory cache-coherent multiprocessors. A thorough view of memory
stalls was presented in this chaptecluding the identification of two types of multipro-
cessor data-sharing cache misses: invalidation misses and ownership misses. These misses
are easily measured by hardware, and such measurements can be valuable for characteriz-
ing data sharing patterns and providing insight to speed up a program. This is contrasted
with external invalidation hits, a measurement made by some processors, which has less
influence on performance but can also help identify data sharing patterns. In addition to
counting multiprocessor misses, a hardware technique for identifying some forms of con-
flict (and invalidation) misses and tracing these misses back to a program was presented.
The technique involves interrupting the processor when a particular cache line incurs too
many misses.

The when question can be answered by a combination of hardware and software.
Informing memory operations allow loads or stores to invoke a miss handler when a cache
miss occurs. By adding an external hardware TRIGGER pin to the informing memory
operation, the miss handler can be bypassed until an important event occurs, such as too
many misses to a certain cache line. Thus, the miss handler is invoked only when needed.
An additional scheme permits the software to inform the hardware when an important
change of software state has occurred by updating the PhaselD hardware rfdysster
register is used to separate performance data collectedftaedifstates, and in this way
the performance-costly state can be identified. A PhaselD register can be implemented on-
or off-processarin the former case, load and store serialization problems with respect to
PhaselD changes are solved internally and changes to the state can occur more quickly
Unfortunately the PhaselD contents must be broughtia processor somehgpwither on
dedicated or multiplexed pins, so that external performance-monitoring SRAM can be
used to track the changes; currensiych SRAM is too costly to implement directly on-
chip. In the latter case, the PhaselD register can also be used to enable basic block count-
ing and time profiling to quickly collect accurate data for software tools.

Many of the hardware monitoring features described here will be present in the
NUMACchine hardware performance monijtdescribed in the next chapter

54

Chapter 4
Hardwar e Implementation

In the previous chaptenumerous hardware features that are useful for performance mon-

itoring of a multiprocessor were given. As an example of how the features can be imple-
mented, this chapter will describe the hardware monitoring system being built into the
NUMACchine processor card. The implementation uses FPGAs and CPLDs to keep proto-
typing costs lowbut the reprogrammable nature of these devices is also advantageous for
changing or improving the way data is collected.

Beginning with an introduction of the NUMAchine architecture, the context of the
monitored environment is constructed. Following this, a description of the processor card
and its monitoring subsystem are given. Then, the programmable configuration modes of
the monitor are described. Finaltile implementation is evaluated based on cost and how
well it realizes the recommended features. These results are summarized in tables at the
end of the chapter

4.1 Intr oduction to NUMAchine

NUMAchine is a distributed shared-memory multiprocessor which supports a sequen-
tially-consistent memory model. The smallest NUMAchine unit is a station composed of
four 150 MHz MIPS R4400 processors, memanyd I/O on a split-transaction bus. An
example station is illustrated in Figutel. Lager systems are built by adding a network
cache and ring interface to each station and connecting a number of stations together in a
slotted ring network. The network cache is necessary to provide an intermediate node in
the coherence protocol, which will be discussed shdstlyit also provides data caching

and reduces network tfaff by combining remote requests. Stilldar systems can be built

by connecting multiple rings together with ager ring and intering switches; such a
system is depicted in Figu#e2. The NUMAchine prototype being constructed is limited

to 64 processors, but the architecture is designed to be scalable to a few hundred.

NUMACchine has a two-level cache coherence protocol: aheh&ork level between
network caches and memgpand thestation level between processor caches and the net-
work cache. Both levels employ a write-back, invalidate-based strduegfexibility in
the protocol and hardware has been reserved for simultaneously supporting an update-
based scheme. This flexibility allows a program to choose the best strategy féenéndif
types of data. Additionallythe R4400 processors force primary caches to maintain a strict
subset of secondary cache contents, a property déatteegion and follow a strict allo-
cate-on-write policy while handling a write miss. In contrast, the network cache does not
guarantee this inclusion (with respect to secondary caches) and it does not allocate a line
when writing back a block if it misses. The two-level coherence scheme used by NUMA-
chine is structured to match the hierarchy of the interconnect, so good performance is
expected.

55

Ring
Interface

Disks
4?’ 110 Memory Ngg/\é?]rek
Ethernet<i>

| |
| |
| |
| |
| |
| |
| |
I < Station Bus > :
| |
| |
| |
| |
| |
| |
| |

FIGURE 4.1. The NUMAchine station.

Central Ring

|
.

(Local Ring . Local Ring)

N 7

Stations

FIGURE 4.2. The NUMAchine hierarchy.

At the station level, processors keep cache lines in a variant of the well-known MESI
(modified, exclusive, shared, or invalid) states. NUMAchine drops the use of the exclusive
state so that memory is properly informed of a transition to the dirty (modified) state; nor-
mally, a processor simply makes the transition siletftly processor wishes to obtain data
in exclusive state, it is likely to modify the data. For this reason, NUMAchine places
exclusively-read data into the dirty state immediately

57

At the network level, the network caches and memory maintain state information
about a memory block. Specificalfpur primary states are defindaocal valid (LV), local
invalid (LI), global valid (GV), andglobal invalid (Gl). These states indicate whether a
local copy of the data exists on the station or if it exists rematety whether the current
copy in the network cache or memory is outdated because a (local or remote) processor
has a dirty copy

Beyond the states already mentioned, the network and processor caches both have a
logical not in (N) state to indicate that the memory block is not present. Thisfeseatit
from an invalid state because the latter implies a tag match. For further information about
the states and requests causing transitions, the reader is referred t@l Bigiewell, a
more detailed discussion about cache coherence policies can be fourahigs[E95].

LocalRead LocalReadEx, LocalReadEx

ProcrRead LocalUpgd
— =

ProcrRead ExternalWrite @ /~—LocalWrBack,——
@ LocalRead
Replacement ProcrRead
ExternalRead \
N I RemRead(Local ,
Replacemen L
ProcrWrite
ProcrWrite ExternalWrite

RemReadEX,
emuUp
Replacement ProcrWrite ~—
U Q RemWrBack, Q
. LocalRead,
Prochead/Prochnte: RemRead, RemRead RemReadEx
a) processor cache line state LocalRead

¢) memory block state

Ejection

LocalRead

LocalReadEx, LocalReadEx

LocalUpgd

LocalReadEXx,

=-tacalWrBack, ——

w:alRead

N

RemRepdEx Noi
RemRead| LocalReadEXx, alReadEx Q”

Lo
RemRegadEx
Ejecti
RemReadEX,
/Rﬁnﬂﬁd\s@

_/
LocalRead Q

RemReadEx

RemRead,
LocalRead

LocalRead

Ejection

b) network cache line state

FIGURE 4.3. Memory consistency state transition diagrams.

58

4.2 Processor Card Organization

Each NUMACchine station contains up to four processor cards on the NUMAchine bus.
The processor card datapath igaized according to Figude4. TheBus Interfacepro-

vides access to the station bus where the main memetwyork cache, ring interface, pri-
mary I/O (disks, ethernet), and other processors reside. Data is passed into and out of the
processor card througHFOs to smooth flow control and decouple the processor card and
bus clocks so they can run at independent speeds, if nec@dsaBxternal Ageniper-

forms two functions: 1) it acts as a bridge between the R4400 and the NUMAchine bus,
and 2) it controls data flow between the R4400, Monitor and FIFOdVidhéor is situ-

ated to observe trfid on the external agent bus as well as accept uncached reads and
writes from the processor or uncached writes from the system. The latter allows for sim-
pler initialization, synchronization, and reconfiguration of the monitor by using broadcast
writes throughout the system. For convenience, the monitoring interface serves an addi-
tional role of providing.-ocal I/Ofor the processor bootstrap code and a UA®R debug-

ging. Finally the processor has a dedicated interface t&édwendary Cachevhich can

be split in half between instructions and data or provide a single unified cgpieal T
operation will be done with a unified cache, but the spiiaiization can be used in con-
junction with some types of monitoring in which accesses to data and instructions should
be isolated; this feature is recommended in [Singhal94].

Secondary
Cache, 1IMB
(64K x 128)

addr

da

16

MIPS R4400

64 addr/data

External Agenl

' 64
ad
FIFO
FIFO

Bus Interface

FIGURE 4.4. NUMAchine processor card datapath organization.

59

The NUMACchine bus and all of the logic on the processor card are designed to run at
50 MHz. Additionally a small portion of the monitoring circuits connected directly to the
processor must run from a 75 MHz clock which is locked to one-half the processor speed.
Such aggressive system speeds afedlif to achieve in the implementation technology
(FPGAS) in a cost-&dctive manner and, consequenthave influenced many of the
design choices.

4.3 Monitor Organization

The processor card performance monitor is positioned so that it can monitoitdarahd

from the processor in a non-intrusive fashioa.db this, the monitor is situated on the
external agent bus, between the FIFOs and External Agent. When a program chooses to
consult with the monitor to read performance data, it uses normal load and store instruc-
tions to an uncached, but TLB-mapped, region of menByymapping the region, the
operating system can protect the monitor from unprivileged user processes. For conve-
nience, both word (32-bit) and doubleword (64-bit) accesses are supported. As previously
mentioned, the External Agent also allows writes to the monitor from other processors.

The internal aganization of the monitor is illustrated in Figur®, but control signals
are omitted from the figure for clariths shown, the external agent bus is split into the
monitor bus and local I/0O bus by thecal Bus Conwller. From the monitor bus, transac-
tions and configuration information travel to @enfiguration Conwller. Additionally,
the monitor bus allows data in t&&RAMor Counters & Interruptscircuits to be read or
written. TheLatency Tmer, Count & Incement Pipeline StatusSRAM and Counters &
Interrupts circuits all operate with the cooperation of the Configuration Controller to pro-
vide the monitoring functions. The monitor bus, howgeleander the control of the Local
Bus Controller

4.3.1 Local Bus Contoller

To allow nonintrusive monitoring of processor activitye Local Bus Controller (LBC)
passively observes external agent bus transactions. It also gives processors direct access to
the monitor bus and local I/O bus. The former is used so that a program can quickly obtain
performance feedback, while the latter is incidental to NUMAchine test and development.

During the normal LBC operation, transactions on the external agent bus are captured
in latches and placed onto the monitor bus. Convenjaght#tymonitor exploits two facts:
1) only the 64-bit address is needed from the transaction for monitoring, and 2) the exter-
nal agent cannot process more than one transaction every two cycles. These facts are used
to reduce the width of the monitor bus to only 32 bits by holding the Ungeaddress in
a register and sending it on the monitor bus after the lower half is sent. This does not
present a problem for doubleword writes to the monitor because the upper address bits can
be safely discarded and overwritten as the upper data word is written during the second
clock cycle. The upper address bits for doubleword writes to the monitor are not important
because it only contains network transaction information, as shovablie4T1.

60

external
agent bus, Local Bus
multiplexed 764 Controller

addr/data

addr

data

secondary cache
index (address)

64K x 32 addr buffer
SRAM 16
16
data « Latency|
Count & e
Increment ! 12 Timer
16
buffer
monitor bus
Configuration Pipeline
32 Controller Status

Counters &
other

events

Interrupts

local 1/0 bus

FIGURE 4.5. Processor card performance-monitoring subsystem.

Address Bits Name

63..
55..
51..
47..
39..
35..
31..

56
52
48
40
36
32
28

27..0

SRC Routing Mask
PID

PhaselD

DST Routing Mask
Station Address
Magic Bits
Reserved

Physical Address

Description
identifies source processor station of remote transactions

processor identifier: which processor in station ‘SRC’ issued transaction
indicates phase of remote or local procedsar monitor has own copy
identifies all destinations that were to receive this transaction

indicates packed-encoding of DST when there is only one destination
indicates special functions; the monitor has no special functions

future physical address extension

normal memory address

TABLE 4.1. Breakdown of 64-bit addess space in NUMAchine.

The LBC’s second function is to allow reading and writing of the performance data
and configuration of the monitdWhile the processor or system is reading or writing the
monitor, the External Agent is held busy to ensure that nédraf be monitored will be
lost. This should not be considered intrusive because accessing the monitor is inherently
an explicit, intrusive decision on the part of the program. Additionatiyes may be used
to reconfigure the monitor in two ways: either hiaad configurationor 2) asoft configu-
ration. The former involves changing the FPGA circuitry in the Configuration Controller
(CC) and Counters & Interrupts circuits and the latter simply writes a new value into the
configuration registers implemented in the CC.

61

A third function of the Local Bus Controller is to give the R4400 access to boot ROM
and a debugging UARvia a 68000-style local I/0 bus. During testing, a Motorola 68000-
based computer is situated on this local I/O bus to provide scratch memory and Ethernet to
the processor card. The LBC is designed so that a microcontroller situated on this bus can
also configure the monitor or access the performance data. Beyond its usefulness for test-
ing, this interface can be used by a remote workstation to continuously and dynamically
instrument, analyze, and display performance data without intruding upon a running pro-
gram.

4.3.2 Pipeline Status

In Section 3.2, the importance of processdiciehcy was described. Although most
recent processors already have two or more performance counters for this task, the MIPS
R4400 does not. Instead, it outputs pipeline status bits so that external hardware can mea-
sure this performance. The Pipeline Status (PS) circuit is used to help count the MIPS
R4400 pipeline states listed iafle 2.3.

The 150 MHz processor produces two sets of status signals once every 75 MHz cycle
to indicate the pipeline events in the last two processor cycles. ConsegiienENs cir-
cuit must operate at 75 MHz. Idealthe PS would contain 15 counters to measure each
possible event separatelyut this is not economical because FPGAs combining high-
speed and high-density are very caodihgtead, the PS circuit is used to decode and select
the events of interest so they may be counted by four slower (50 MHz) general-purpose
counters in the Counters & Interrupts circuit.

To account for the speed fdifence between the pipeline status changes and the
counters some special preprocessing is needed. The PS produces two bits every cycle to
indicate whether zero, one, or two events appeared in the last two processor cycles. These
two bits are then added into a 2-bit accumulator that is hidden from thdcusgy time
the 2-bit accumulator overflows, it triggers circuitry that synchronizes the overflow to a
50 MHz clock and then informs the counter of the event. As a result of this action, the gen-
eral-purpose counters are only incremented after every fourth event. This loss of accuracy
is minimal and should be acceptable for almost all applications.

To specify which pipeline events to count, it would be most convenient to use a 15-bit
control word to enable individual events fromble 2.3. Howevethis is not economical
because the resulting circuit isdarand would require a fast, expensive FPGA. On the
other hand, using a 4-bit control word to count only one event would require four runs of a
program to count all 15 events in the four counters. This is not reasonable in the cases
where full detalil is not requiredoTpermit greater flexibility while counting, but still keep
the circuit small, a 7-bit control word is used instead. The resulting circuit is more flexible,
yet it is small enough to fit in two inexpensive Altera MAX7064 CPLDs which easily
meet the timing requirement. These seven bits, named PS[6..0], are realized in the Config-
uration Controller as a portion of the control wo@RPCMx for each general-purpose
counter The function of these bits will be described below

The PS[6..0] bits are divided into two mode bits in the upper portion, and five selection
bits in the lower portion. The two most-significant bits indicate one of the three counting
modes listed in dble4.2. The single event mode monitors one specific pipeline state and
the other two modes allow certain states to be counted togathexged in one counter

PS[6] PSI[5] Monitoring Mode
0 Oor1l countssingle evenspecified by PS[3..0]
1 0 countsrunning cyclesmultiple events are selected

by setting the appropriate bits in PS[2..0]

1 1 countsidle cycles multiple events are selected by
setting the appropriate bits in PS[4..0]

TABLE 4.2. Pipeline Status bits PS[6..5] specify one of the operating modes.

The lower five bits select which specific event or events are of interest according to
Table4.3. In the single event mode, PSJ[3..0] specifies one pipeline state using the same
encoding shown indble 2.3. The other two modes use the lower bits tgenewultiple
pipeline states together by setting one or more bits in PS[4..0]. The specific eveiets mer
are listed in @ble4.3.

Single Events Running Cycles Idle Cycles
PS[4] reserved reserved integer + floating-point pipeline slips
PS[3] see Bble 2.3 reserved instructions killed due to exception +
branches

PS[2] see Bble 2.3 other integer + other floating- multiprocessing + other stalls
point instructions

PS[1] see Bble 2.3 taken + not-taken branch secondary cache stalls
instructions
PS[0] see Bble 2.3 load + store instructions primary instruction + data cache stalls

TABLE 4.3. Pipeline Status bits PS[4..0] select which events to monitor

It should be noted that the Pipeline Status circuit uses a fairly complex method to keep
FPGA costs low but still maintain reasonable flexihilitpwever since full-custom VLSI
can easily implement fast, aredi@ént counters [Uillemin91], it would be better to
include a lage number of counters directly on a processor

4.3.3 Counters & Interrupts

The Counters & Interrupts (C&Int) circuit is constructed to hold up to four general-pur-
pose 32-bit counters and, for convenience, a barrier register and two interrupt registers.
The interrupt registers are necessary for NUMAchine interrupt processing and the barrier
register is an experimental hardware synchronization mechanism used to accelerate per-
formance, but neither are essential for monitor operation. The counters, hoarever
essential for monitoring high-speed or overlapping events such as the pipeline states. The
selection of which event to count is governed by the Configuration Controller

63

The counters have been designed to produce a maskable interrupt on overflow and to
automatically reset if read from a specific address. By preloading a negative namber
program can wait for a precise number of events. This allows software to be reactive to an
excessive number of cache misses, for example. Also, overflow interrupts allow system
software to create the illusion of adar counterif desired. Additionally, the automatic
reset-on-read gives software a useful atomic fetch-and-clear option. For more information
about the implementation of the counters, see [Zilic95].

The C&Int components are interconnected so that they may be read or written from
the monitor bus, as depicted in Figdté. The read path is obvious but the write path is
unusual so it is highlighted by the shaded arrblws strange path is an example of how
the FPGA architecture has influenced the design: rather than using separate read and write
paths, they are mged so that fewer FPGA logic blocks are required. In thgedepath,
thedata holdmultiplexer serves two purposes. First, during a counter read it captures the
count in one cycle and holds it for as long as is necessary for the weak FPGA pins to drive
the monitor bus. Second, during a counter write it holds the new counter value for multiple
cycles while the countes complex carry chain stabilizes.itthut this oganization, a
larger and more expensive FPGA would be necessary

32

/—| Counter 0 I—

Counter 1

monitor Counter 2 / Barrier
bus

Counter 3 / Barrier

32

~/\

Barrier Register

data
hold Software Interrupt

N

Hardware Interrupt

32

>
FIGURE 4.6. Counters & Interrupts datapath, with write path highlighted.

Economics also play a role in the number of counters and barrier registers. The design
in the figure does not currently fit into thegiar FPGA, an Altera FLEX8636, because of
routing constraints. Consequentysimple design which does not include the shaded reg-
isters, hence is easier to route, is currently implemented. Designs with an additional
counter or barrier register have also been realized, and these may be programmed into the
FPGA via a hard reconfiguration of the C&Int device. Also, future experimentation may

1. The 32-bit width is stitient to limit the counter overflow interval to approximately 1.4 minutes. This is
considered infrequent enough to be nonintrusive.

64

eventually realize a design with all the features because there is considerable flexibility in
the counter design to tradeftdgic cell use for routability

Because of these routing constraints, it was decided to fix part of the C&Int architec-
ture (the unshaded registers) and allow the implementation of the shaded portions to float.
This allows a program to reconfigure the C&Int device with more barrier registers or more
counters, depending upon its requirements and the latest developments in fitting the circuit
in the FPGA.

4.3.4 SRAM Memory

The processor card includes fast SRAM that can be used for a variety of functions. The
primary use of the SRAM is to store the state for gelarumber of infrequently-used
counters. For this use, the depth of the SRAM (64Kk) is chosen so that it can be used to pro-
file secondary cache accesses as suggested in Section 3.3; this is the purpose of the ‘sec-
ondary cache index’ bigr in Figure4.5. Like the general-purpose counters, the SRAM is

wide enough (32 bits) to limit overflow frequency

The exact function of the SRAM is governed by the Count & Increment, Latency
Timer, and Configuration Controller devices which will each be described below-
ever the SRAM can also be used as scratch memory by the processor for any purpose.
One such use is for storing the FPGA configuration data before it reprograms them.

4.3.5 Count & Increment

The Count & Increment (C&Inc) circuit operates on data from the SRAM. Its main opera-
tion is to fetch a word from SRAM, add one to it, and write it back. Each operation
requires one clock cycle. Alternativetire write back cycle may be extended for multiple
cycles. During this time, the counter is incremented on each cycle if a count-enable signal
is asserted, and the latest count is continuously written back to the SRAM. An example of
this use is to separately count stalled cycles for each basic block. The final use of C&Inc is
as an accumulator for timing basic blocks. In this mode, the C&Inc is initialized by a word
write from the processor and then the contents of the SRAM are added to it before being
written back. Howevethis mode is not yet implemented in the current design.

The C&Inc circuit is simple enough to be implemented in the smallest Altera CPLD, a
MAX7032.

4.3.6 Latency Tmer

Although cache misses are important to count, Section 3.3 motivated the significance of
memory latencyTo time the memory response to a processor read, the Lateney T

(LT) is used. This timer is reset as the first part of the transaction is written from the exter-
nal agent into the outgoing FIFO and it increments every cycle until the response or a
BUS_ERROR is returned. The BUS_ERROR occurs after a time-olf ¢4@96) cycles;

this determines the size of th& tounter The timer value is used to produce a histogram

65

of memory access times in the SRAM. Additionaitywill be shown later that the histo-
grams can be separated by a 4-bit PhaselD, for example.

In addition to the normal 12-bit time representation, thean compact the time value
into a 7-bit floating-point representation. The seven bits are divided into a 3-bit exponent
(high bits) and 4-bit mantissa (lower bits). The significand contains an implied leading ‘1’
unless the exponent is zero, in which case a denormal representation is used. The exact
time implied by this is best explained using the following pseudocode:

if(exponent == 0) tinme = 0.manti ssa * 2"5;
else if(exponent >0) time = 1.mantissa * 2"5 * 2"(exponent-1);

The advantage of this format is it uses fewer bits to represent the latency by grouping
longer latency measurements together intgeiahistogram buckets. The idea is not new;

it was also used by SUPERMON to compact addresses. The bits saved will be used to sep-
arate the histograms more; for example, PhaselD can be extended to 9 bits.

Implementing the compaction requires a barrel shifterexponent generat@nd a
state bit for denormal support. Despite the seemingly complex behatwigutircuit can
also be implemented in the smallest Altera CPLD, a MAX7032.

4.3.7 Configuration Controller

The most complex portion of the monitor is the Configuration Controller (CC). It is the
command centre of the monitor that controls what is to be monitored and, in some cases,
determines whether an event being monitored has just occurred. It also controls whether
an interrupt should occur when a counter overflows. Due to the detail and complexity
involved, the next subsection will describe the CC in greater detail.

4.4 Programmable Configuration

The Configuration Controller (CC) is implemented in a reprogrammable FPGA so that its
function may be changed to collect new data or change the conditions of collection. How-
ever for typical uses a Master CC (MCC) circuit was designed to provide most of the flex-
ibility a user will require. This is done soft configurationof the circuit with simple
writes to the user configuration registers listedabl&4.4. The operation of the registers

will be explained below

4.4.1 PhaselD Register and PhaselD &tth

The PhaselD Register (PR) is a 16-bit implementation of the PhaselD recommended in
Chapter3 to easily partition the collected performance data. By writing a new PRvalue

2. In Chapter 3, two other methods of changing PhaselD were suggested which involved encoding the new
value into the address during a read or a write. These alternative methods have not yet been implemented,
but they are easy to add.

66

Address Acronym

0

0 N o o B~ W N P

9,A B

D
E

F

PR

PW

Cw

CF
AWhi
AWIlo
AFhi
AFlo
GPCMO

GPCML1,
GPCM2,
GPCM3

SCM

reserved
GPCE

SRAMCE

Name
PhaselD Register

PhaselD Vdtch
Command Vdtch
Command Filter
Address Vetch High
Address Vdtch Low
Address Filter High
Address Filter Low

General-Purpose
Counter 0 Mode

General-Purpose
Counter 1, 2, 3 Mode

SRAM Counter Mode

reserved

Master General-Pur-
pose Counter Enable

Master SRAM Counter
Enable

Bits
15..
15..
12..
12..

31..

O © b © b o o o

31..

22..16
15
14.11
10

© B w o N ©
N D o

23..0

21..20
19
18
17
16
15
14.1
10..0
n/a

0

0

Notes
PhaselD Register

compared against PR

compared against filtered command
removes unwanted command bits

forms AW bits 39..32

forms AN bits 31..0

forms AF bits 39..32

forms AF bits 31..0

counter enable

pipeline status configuration bits PS[6..0]
enable interrupt on overflow

event select (count one of 16 events)

count cycles high or low-to-high transitions
enable masks below .. invert mask sense
enable PW compare .. invert compare sense
enable AV compare .. invert compare sense
enable CW compare .. invert compare sense
enable sending mask, SM

enable receiving mask, RM

same as GPCMO

enable interrupt on overflow

counter mode

muxMISS — uses miss type when set

MuxRSR — uses RSR when set

muxPRhi — uses upper 5 bits of PR when set
muxPRmid — uses middle 7 bits of PR when set
muxPRIlo — uses lower 4 bits of PR when set
event select (count one of 16 events)

same as GPCMO bits 10..0

reserved

master enable for all four general-purpose
counters

master enable for SRAM counters

TABLE 4.4. Master Configuration Controller user configuration registers.

67

the address to the SRAM is changed andfaréifit counter is selected. As will be shown
later, some SRAM counting modes may use only a portion of PhaselD. In these cases, a
new PR value will select a @grent bank of counters.

The lower 4 bits of the PR have an additional purpose. They are brought outside of the
processor card monitor and attached to some bits in the outgoing FIFO so that they are
attached to all memory transactions initiated by the proceBstiormance monitoring
hardware in the memory card and network can use these 4 bits to demarcate transactions
originating from diferent phases of a program.

The PR can also selectively enable the SRAM or C&Int counters. A constant, called
PhaselD Vdtch (PW), is compared against the PR. The result of this comparison drives a
counterenable circuit which will be described lat&he primary use of this feature is to
enable a C&lInt counter during one specific phase.

4.4.2 Command Watch and Command Filter

The Command \tch (CW) and Command Filter (CF) registers are used to restrict count-
ing to only certain types of transactions. Every NUMAchine transaction is composed of
multiple networkpackets each containing a 13-bit Command identifier to indicate the
transaction type. For example, it can identify whether the packet is a cache line read, a
request or response, or whether it contains an address Br data

The CF and CW registers are used in conjunction with the Command Register (CR).
The CR is automatically updated with every pack€bmmand as it is passed to and from
the External Agent. The Command Filter (CF) register is used as a bitmask to remove
uninteresting bits, and the result is compared against the Comnaold {@W) registé‘r
Again, the comparison result is used to drive a cotertable circuit.

By carefully selecting proper CW and CF values, it is possible to specify multiple
events to be monitored at once. For example, cache line read and read-exclusive responses
can be counted together

4.4.3 Address Watch and Address Filter

Similar to CW and CRhe Address \tch (AV) and Address Filter (AF) registers can be
used to watch accesses to a region of menB@gause of the 32-bit width of the monitor
bus, the upper and lower portions of th& And AF registers must be written separately
This can be done by software with two word writes or with a single doubleword write in
big-endian data-word order

3. Although packets forming a transaction are always placed contiguously on a NUMAchine bus, they may
be separated and interleaved with other transaction packets on a ring.

4. Software must ensure that a new CW value is compatible with CF by masking CW first, or the compari-
son may never match.

68

The AN and AF registers are used in the following mankiest, an Address Register
(AR) is automatically updated with the most recent physical address passed to or from the
External Agent. Then, AF is applied to AR as a bitmask and the result is compak¥d to A
With this setup, a contiguous region of memory which is aligned and sized to agfewer
2 can be monitored. Howevdor this to work properly the operating system must allow a
program to allocate a contiguous portion of memd@wditionally, the operating system
should lock these memory pages down so theytdwigrate and arendemand-paged to
disk.

4.4.4 General-Purpose Counter Modes

The general-purpose counters in the Counters & Interrupts circuit can count from a num-
ber of events and have a number ofeldént operating modes. The operation of these
counters is governed by the four GPCMx registers; each register is identical except that it
governs a dferent counterThe role of the various bits in these registers is described
below

The lower 10 GPCMx bits are invert and enable bits for the count-enable circuit
shown in Figuret.7. To limit the circuit size but maintain some flexibilitye counters
share comparators that feed individual count-enable circuits. One way this can be used, for
example, is to enable one counter on address matches while another is enabled for all sin-
gle-word reads. Another use is to AND together multiple comparators by enabling them
simultaneously to form a compound condition for enabling a coulliarnatively the
invert bits can be used to reverse the sense of the compassamof-equals) or to mge
multiple comparisons in an OR fashion. Finallge count-enable circuits can also be
enabled while transactions are sent or received (or both) by the external agent.

Bits 11 through 14 control a multiplexer that selects which event count according to
the list in able4.5. When bit 10 is cleathe counters will count time by incrementing for
every cycle the event is asserted. Howet@nakes sense to set bit 10 on events 3, 4, 5, 6,

7, 8, A, D and F so that only low-to-high transitions of the eventevent occuences

are counted instead of latency; these event occurrences are indicated with {braces} in the
table. Additionally when the counter is configured for pipeline status events, the PS con-
figuration bits, GPCMx[22..16], are used to specify the proper pipeline event. The func-
tion of these bits was already discussed in Section 4.3.2. The counters have a master
enable, bit 23, and can be configured to trigger an interrupt when they overflow by setting
bit 15.

General-Purpose Counter Event Details

A number of events indble 4.5 require some additional explanation. First, the latency or
number ofsuccessfubwnership misses are measured with event 7; an unsuccessful miss
is caused by a time-out, so a bus error exception is taken and may be counted by software.
This must be contrasted to cancelled ownership misses, which occur because a competing
processor ‘won’ the ownership first, that are counted by event 8. The total number of own-
ership misses is the sum of the successful, unsuccessful, and cancelled ownership misses.

69

programmable AND/OR selection

external .

command
:I D>
= :I D+-DHD
PW
CF
CW
AWhi+AWIo __ D_
AFhi+AFlo == _%
>t GPCMO
GPCM1 external —
GPCM2 agent
CPCM3 |: sending
Configuration external
Registers agent)
receiving
monitor bus Enable
Bits
|
* bitwise AND Count-Enable Circuit

FIGURE 4.7. MCC registers with one Count-Enable Cicuit.

Second, some transactions such as a read request may be negatively acknowledged
(NACKed) and returned by a device when it cannot service the transaction, so the External
Agent must retry these requests. This may happen if memory temporarily has a block
locked, for example, and it may be NACKed several times before a response arrives; this
is measured by event 9. Also, the total cycles spent from the first retry to the final response
is represented in event A; counting the low-to-high transition of this event counts the num-
ber of requests that received one or more NACKSs.

Third, the total latency of the most recent transaction is measured by event B. Here,
the counter is reset every time a request is issued and stopped whenever a response is
returned. Fourth, every cycle the external agent bus is used will be counted with event C;
measuring transitions of this corresponds to counting the total number of transactions.
Fifth, event D measures the response time of the bus, which may be slow due to conten-
tion. Sixth, invalidations that originate from outside the processor and hit in the secondary
cache are measured with event E and the number of invalidation misses are reflected by
event £

To measure external invalidation hits, the state machine in Figure 4.8a is used. The
invalidate starts a cache-watching state which waits for a secondary cache probe (from the
processor) that maps to the same address as the invalidate; a successful mapping is called

70

GPCMXx[14..11] Event

0 count nothing (disable)
1 count always (high-resolution cycle counter)
2 pipeline status events
3 interrupt request latency
{interrupt requests}
4 cache line read latency
{cache line reads}
5 cache line read-exclusive latency
{cache line read-exclusives}
6 cache line read latency + read-exclusive latency
{cache line reads + cache read-exclusives}
7 successful ownership miss latency (upgrades + updates)
{successful ownership misses}
8 cancelled ownership miss latency (upgrades + updates)
{cancelled ownership misses}
9 negative acknowledgement retries (may be >1 per request)
A negative acknowledgement cycles
{transactions with one or more negative acknowledgements}
B latency of most recent (cached or uncached) request,
eg: read, read exclusive, upgrade
C external agent bus activity€., utilization)
D bus request latency (until a bus grant is given)

{bus requests}
external invalidations that hit in the cache (estimate)

invalidation miss latency (estimate)
{invalidation misses}

TABLE 4.5. General-purpose counter events.

anindex matchlf the state of this line is valid and subsequently changed to invalid before

a different cache line is accessed, the state machine passes through the shaded state in the
figure and the event is counted. Otherwise, the state machine returns to the idle state. This
algorithm is only approximate because the MCC does not do the same tag comparison the
processor does; there are not enough pins left on the FPGA to monitor the tag SRAM.
Despite this, it should still be accurate. The state machine will onlycovet if the pro-

cessor intentionally invalidates a block which maps to the same line within an approxi-
mately 34-cycle time window (the external invalidate is guaranteed service within this
time by the processor design). This is unlikely to occur because the processor seldom
intentionally invalidates a line (only explicit cache flushes will do this). Also, it only
undercounts if the processor has 2 consecutive primary cache misses within this window
and the first maps to the same line as the invalidate. This, too, is unlikely because of high
primary cache hit rates and the improbable index match. Fioallyership misses which

are cancelled will be included in the external hit count, but they can also be measured by a

71

performance counter and subtracted out, if desired. Thus, the approximation should be
sufficient for most uses of the data.

wait wait

external
invalidate
received

cache read ANL
state is invalic

other read
trans. issued
OR no index
match

AND state
is invalid

CacheVditch

index

cache
index
changed

read or

state matches readexcl.
changed ANDl_%tate trans. issued
to invalid . IS vall AND index
matches
a) invalidation hit state machine b) invalidation miss state machine

FIGURE 4.8. State machines to detect invalidation hits and misses.

Similarly, invalidation misses are detected by the state machine in Figure 4.8b. It waits
for an access which reads an invalid state from the secondary cache. If the next read or
read-exclusive transaction emitted by the External Agent maps to the same line, the event
is counted. If the index doesmhatch, or an uncached read is performed, the state machine
resets. Howeveif a write or writeback transaction is encountered instead, it must still
wait for an External Agent read transaction because the write may have been generated
earlier than the invalidation miss. Again, this circuit only forms an estimate of invalidation
misses because the cache tag is unknown and unchecked. Hence, it may incorrectly count
some other types of misses as invalidation misses, but the error is expected to be small.

4.4.5 SRAM Counter Mode

The purpose of the SRAM Control Mode (SCM) register is to: 1) control the count-enable
signal for the C&Inc device, 2) select the events to count, and 3) choose the address sup-
plied to the SRAM. The count-enable circuit, which is identical to that used for the gen-
eral-purpose counters, is controlled by the lowésbiis. The event to count is selected
using the next 4 bits, SCM[141]l1 as shown in dble4.6. Not all possible events have

been defined in the table, so room is left for future expansion. Howheeiew events

that are present can be combined with the count-enable circuit to collect a wide variety of
data. This will become apparent below

SCM[14..11] Appropriate Event

Mode

0 any count nothing (disable)

1 any count always

2 0 count secondary cache accesses

3 0 count secondary cache reads

4 0 count secondary cache writes

5 0 count secondary cache misses

6 1,2,0r3 cache line reads + read exclusives + upgrades
7TtoF any reserved

TABLE 4.6. SRAM counter events.

The address supplied to the SRAM counters is determined by the next group of seven
SCM bits. The lower five of thesee. bits 15 through 19, control a collection of multi-
plexers in the MCC that form the SRAM address. This circuit is shiowigure4.9;,
refer to Bble 4.4 for definitions of the various signals in the figure. The two upper bits
control the tristate-enables in the figure and are encoded so that software cannot mistak-
enly enable competing drivers; the encoding is showmlohe®.7. Furthermore, the mul-
tiplexer and tristate controls can be overridden by the muxAR control which is generated
automatically when the R4400 attempts to read or write the SRAM counters.

SCM[21..20] Mode SRAM Addr ess Souce
0 Secondary Cache Mode secondary cache index
1 Latency Tmer Mode latency timer (all 12 bits) plus muxPRIo data
2 MCC Mode all MCC sources (muxPRIlo, muxPRmid, and
muxPRhi)
3 Latency Tmer Compact Mode latency timer (lower 7 bits, compressed format)

plus muxPRIlo and muxPRhi data

TABLE 4.7. SRAM counter modes.

The Secondary Cache Mode allows the SRAM counters to count secondary cache
accesses, reads, or writes. Because all secondary cache accesses are caused by a primary
cache miss, the number of primary cache misses can be monitored. By counting the num-
ber of loads and stores with the general-purpose counters, primary cache miss rates can
easily be determined. Similaylyecondary cache miss rates can be measured. Note that the
miss counts are per cache line, so small regions thiar $tdm conflict or invalidation
misses can be determined. By initializing all of the SRAM with a suitable initial count and
enabling interrupts on overflowoftware can be informed when a cache line receives too
many misses. Additionallyhe R4400 can optionally split the secondary cache by placing
instructions in the upper half (index bit 17 is set) and data in the lower half. By using the
split mode, separate statistics on instructions and data can be collected.

Miss Type

73

muxMISS
| I SRAM
PR[15..1] | PR[10..4]| PRJ[3..0] Lo > iress
v [15..0]
*
e DI NEY:
3..0 |
* secondary
AR[39..32, muxPRIo 1 cache
26..19]7 | ~d index
AR[17..2] . [17,15..1]
\ I\r\ 10..4
mMuxAR L0..4] L .
: latency
muxPRmid 15.11 —— timer
[11..7]
* : latency
10.4 —— timer
. [6..0]
15.11 I\R 15..1
L~ _
RSR . = tristate controls are
muxPRhi encoded in @ble 4.7.

mMuxRSR

FIGURE 4.9. SRAM address generation. The outlined portion is inside the MCC.

The two Latency imer Modes construct a histogram of memory access latencies. The
histogram from the ‘full width’ timer shows exactly how many read requests took 0, 1, 2,
..., 4095 cycles to obtain a response. The compact timer divides these times into increas-
ingly-sized bucket intervals as follows:

0-1, 2-3, ..., 62-63,

64-67, 68-71, ..., 124-127,

128-135, 137-143, ..., 248-255,
256-271, 272-287, ..., 494-511,
512-543, 544-575, ..., 992-1023,
1024-1087, 1088-1151, ..., 1984-2047,
2048-2175, 2176-23083, 3968-4095.

From either of these histograms, a memory latency distribution, including characteristics
such as average and variance, can be constructed.

The statistics generated with the Latenaydr Modes can be also be separated by the
PhaselD RegisteaMiss ype Register (MTRand a 5-biResponse State Register (RSR)
The PhaselD has been described previously MTR and RSR are new registers that
describe a cache miss. The MTR is a 2-bit quantity that describes the type of cache miss
according to &ble4.8. In contrast, the RSR contains the 3-bit memory state indicator
(MSI) in the upper half and two bits in the lower half to indicate the request type.

74

Value Description

0 successful ownership misses
1 cancelled ownership misses
2 invalidation misses

3 other misses

TABLE 4.8. Miss types encoded in the Missype Register

The MSI bits returned with every NUMAchine memory response indicate whether
data was returned from the network cache (a network cache hit) or memory and one of the
four memory states:\, GV, LI, and GI. In the case of a network cache hit, the state of the
network cache line is returned; in all other cases the state at the home memory module is
returned. The additional two bits in the RSR indicate whether the access was to local or
remote memory and whether the request was a read or a read exclusive/upgettiey T
these five bits give details about how far the request had to travelfativehess of the
network cache, and the amount of coherencédrtfat was required to respondhen
using the RSR, a user must beetalrto use theaceiving (incoming) mask lest the SRAM
counters be incoectly updated beferthe RSR arrivesThe encoding of the RSR is
shown in Bble4.9.

Value RSR[4] RSR[3] RSR[2] RSR[1] RSR[0]
0 Network Local Invalid Local Read
Cache Miss State Address
1 Network Global Valid Remote Read Exclusive
Cache Hit State Address or Upgrade

TABLE 4.9. Response State Register encoding.

The final SRAM counter mode places the SRAM address completely under MCC con-
trol. This means the entire SRAM can be addressed by PhaselD rquastesf it can
come from the RSR or MTR, or portions can be constructed from the Address Register
The flexibility comes from the ability to specify the individual multiplexer control signals.
One particular configuration, when these controls are all set to zero, uses the
AR[39..32,26..19] bits to provide the SRAM address. In this ‘Address Mode’, all refer-
ences to secondary-cache sized blocks (1 MB) are counted. This is an experimental feature
to count how widespread the cache-miss access patterns of the application are. In particu-
lar, remote memory is counted distinctly from local memeoya measure of locality can
be constructed. By counting access latetitls mode can also help identify whether a
particular memory module or network connection is more congested than others.

4.4.6 Master Counter Enables

Two master counter enables are provided so that monitoring can be easily stopped or
started without décting the configuration of the counters. Separate enables are provided
for the SRAM and the general-purpose counters, but both may be enabled (or disabled)

75

simultaneously with one doubleword write. Furthermore, multiple processor card moni-
tors can be enabled using a NUMAchine multicast write.

4.5 Summary

The NUMAchine monitor described above is capable of measuring many events, but it
may not clear to the reader whether it satisfies the measurements proposed in Chapter 3. A
summary of the 23 specific features recommended to monitor and how the implementation
meets these requirements is shownabl&4.10. From this table, it can be seen that only

five items cannot be monitored, of which three are not applicable to the R4400. The other
two items, memory and network queue measurements and basic block timing support are
left as future implementation items. Of these, the memory and network queues should be
given higher priority because they are relevant for evaluating NUMAchine architecture
performance.

One of the primary objectives of this thesis is to maintain a cfesttiee focus. In this
regard, several design decisions for the NUMAchine processor card msadoras what
size FPGA to use, were influenced by minimizing the cost of the hardveatéustrate
the costs, dble 4.1 shows the cost of the major performance monitor components
described in this chaptefhe total price of $345 is slightly inflated because two of the
more expensive components, namely the Local Bus Controller and Counters & Interrupts
circuits, contain not only monitoring circuits, but also other non-monitoring functions that
are required by NUMAchine.

76

Recommended Item

Implemented? Notes

1 dynamic instruction y pipeline counters form groups of instruction counts
count
2 cycles lost due to y pipeline counters can measure slips
NOPs and pipeline NOPs can be measured via basic block counts
slips
o~ 3 cycles lost due to y pipeline counters allow flexible grouping offdifent
‘2 stalls stalls
'% 4 pipeline flushing partial pipeline counters can measure pipeline flushes,
3 and restarting processor support required for counting restarts
TLB faults y can be monitored in software
6 branch prediction n/a — processor does not use branch prediction
7 special hardware fea- y network cache hits
tures
8 informing memory n n/a — processor must have special support for this
operations
9 phaselD register varies between 4-bits and 16-bits
10 profile cache activity y SRAM can count primary cache misses, secondary
cache misses, etc.
11 cache-profile watch- y can preload SRAM with negative-threshold and inter-
points or thresholds rupt on overflow
12 invalidation miss y estimate onlyneed more FPGA pins to form an accurate
count count
13 external invalidation y estimate onlyneed more FPGA pins to form an accurate
K hits count
.5 14 ownership misses y estimate onlyneed more FPGA pins to form an accurate
© count
&
15 memory and network n future monitoring implementation
gueue performance
16 measure locality of y the RSR indicates a local/remote request; address-region
references monitoring can watch memory that is local/remote/both
17 memory state indica- y result returned from memory indicates network cache
tor hits and local/global or valid/invalid states
18 measure total miss y pipeline counters can be ryed to count all cache miss
cycles stall cycles
19 measure apparent n n/a — R4400 has a simple pipeline with no latency-hid-
miss cycles ing mechanisms
20 timestamp counter provided by R4400
< 21 local process counter a general-purpose counter can be used for this
™
S 22 basic block counting y supported by using entire 16-bit PhaselD
b SRAM
)
23 basic block timing n accumulate function not implemented, possible future

SRAM

extension; SRAM must be shared with basic block
counting item

TABLE 4.10. Comparison of ecommended versus implemented featas.

Cir cuit Device Quantity Appr oximate
Price ($CAD)

Local Bus Controller FLEX8452A-5, 2 $90
160-pin QFP

Pipeline Status MAX7064-10, 2 $35
44-pin PLCC

Counters & Interrupts FLEX8636A-5, 1 $70
84-pin PLCC

SRAM 64k x 16 2 $30

Count & Increment MAX7064-15, 1 $15
84-pin PLCC

Latency Tmer (shared with C&Incr)

Configuration Controller FLEX8636A-5, 1 $75
160-pin PLCC

buffers latching, tristate 3 $15

other control MAX7064-15, 1 $15
84-pin PLCC

TOTAL $345

TABLE 4.11. Approximate cost of monitoring components.

78

Chapter 5
Conclusions

Motivated by improving software performance in multiprocessors, this thesis has identi-
fied a number of performance measurements that can be made in hardware. These mea-
surements were coalesced into a hardware performance monitor for NUMAchine which
implements 18 of the 23 recommended features.

In retrospect, the MIPS R4400 processor used in NUMAchine was an excellent choice
from a performance monitoring standpoint. The observable pipeline status and the single
in-order pipeline were especially helpful at keeping the design simple yet flexible.

5.1 Contributions

In addition to developing hardware performance monitoring circuitry for NUMAchine,
this thesis has made the following contributions:

Comprehensive List of Performance Measwments for Multipr ocessors

A thorough examination of factorsf@€ting performance in cache-coherent, shared-mem-
ory multiprocessors resulted in a list of 23 important types of performance measurements.
Many of the measurements can be implemented directly by the prodasissome of

them require specialized fgfrocessor hardware. The cost of the external hardware is
modest, so it should be feasible to add to all but the most cost-sensitive computers. In par-
ticular, the hardware suggested would add significant value to application developers and
many scientific and engineering users.

Informing Memory Operations, TRIGGER Support

The idea of informing memory operations, where a cache miss stimulates the invocation
of a software miss hand|awvas proposed in [Horowitz95]oTenhance performance and
permit greater selectivitythis thesis has proposed that an external TRIGGER pin on the
processor enable or disable the handlgwvocation.

PhaselD Register

To separate performance statistics at a fine or coarse granulastyhesis has recom-
mended a PhaselD registéo guarantee proper consistency under all circumstances, the
register should be integrated into the procegsoovel aspect of PhaselD use is attaching

it to all network and memory transactions so that those subsystems can also be sensitive to
changes in program state. Additionallyhe problem of maintaining consistency of
PhaselD contents to memory operations was briefly described.

79

80

Recent independent work by Martonosi [Martonosi96] has proposed a Statéar
gory register for separating performance data. Howeneheir use the category does not
travel through the network with memory transactions as done with PhaselD.

Memory State Indicator

In addition to transporting the PhaselD value with transactions from the prodéssor
thesis has suggested attaching a memory state indicator (MSI) to responses. In the
NUMAchine implementation, the MSI describes the state of the memory block as found at
the home memory module or the network cache. It is used to help identify data sharing
patterns and estimate the amount of coherence overhead necessary to construct the
response.

To date, the only feature (of which we are aware) that is similar to this is the ability of
some processors to count hits to cache lines found in a particular state.

Invalidation and Ownership Misses

Recent work on multiprocessor misses from invalidate protocols [Dubois93] concentrates
on the precise identification of invalidation misses and obtaining ownership for writes. In
particular the penalty of obtaining ownership is downplayed because of relaxed consis-
tency models. Instead, invalidation misses are categorized as true and false sharing misses
by simulating updates within a write-invalidate protocol. Unfortunatkely scheme is not
practical to implement in hardware because the intrusive updates involved could saturate
an interconnection network.

This thesis has described obtaining ownership as an ownership miss because of the
penalty associated in sequentially-consistent multiprocessors. Also, practical hardware
mechanisms for detecting invalidation and ownership misses were outlined. Additionally
although invalidation misses are not categorized distinctly as true or false sharing misses,
it was noted that some false sharing patterns can be detected using the external invalida-
tion hit counts and separating misses based on the MSI and the processor request type.

Other Contributions

A reactive cache conflict detection scheme was developed by separately counting accesses
to each cache line. A similabut more limited, scheme was used in [Singhal94] which
involved counting accesses to even and odd lines separsisaly by raising an interrupt

when one line stérs from excessive misses, our approach can be used to help identify the
data objects that conflict in the cache.

Using the same base hardware, a method was developed for performing fine-grained
timing that is comparable in overhead to basic block counting. This timing information is
an alternative to program counter sampling, the current widely-used technique.

Due to current latency-hiding mechanisms found in recent processors, miss cycles per
instruction (MCPI) no longer gauges processor performance well. Instead, this thesis pro-

81

posed a new metric, apparent MCPI, to help quantify the posifee #iese mechanisms
have on performance by measuring lost processing opportimfyactise, it may be dif-
ficult to precisely quantify this opportunity cost; this could be the subject of future investi-
gation.

5.2 Futur e Work

As testified by new processors, the realm of hardware-based performance monitoring is
just beginning to take shape. Future work in the monitoring area involves better integra-
tion of monitoring functions in processors and new software tools to exploit the monitor-
ing features. Also, improvements in computer architecture will demand new measure
ments be made forfettive deployment of resources.

With respect to NUMAchine, future work involves the construction of hardware to
monitor queue lengths and memory state transitions. A brief introduction to this work in
progress is presented in Appendix A. Additionatither work will involve providing an
off-processor functional equivalent to the informing memory operations, exploring a use
for the response to the read that changes the PhaselD regiséting a Configuration
Controller circuit to use the SRAM as a small tracddsuéind the development of a bus-
transaction tracing board.

82

Appendix A
Memory Card Monitoring

This appendix describes some of the monitoring features planned for the NUMAchine
memory card performance monitor

The memory card is ganized as shown in Figufel. The monitor receives memory
block addresses, the type of transaction (Command), FIFO depth changes, and informa-
tion about the state of the memory block from other components of the memory card. The
monitor contains reprogrammable FPGAs and counter SRAM so that complex histograms

and event counting can be done.

4-Way

Interleaved
DRAM Memor

’—%— Monitor

64 ‘ Control I

pd
~

FIFO
FIFO

Bus Interface

FIGURE A.1. Memory card organization.

FIFO Depths

Dedicated hardware counters are used to maintain the current depth of the incoming and
outgoing FIFOs. Wo types of depths are recorded: number of packets and number of
transactions. Additionallythe maximum FIFO depth is recorded in a special register

83

84

The current queue depth is added in an accumulator on every cycle. Dividing this by
the number of cycles yields the time-average queue length. If the queue depth is only
accumulated after every change in queue length, a population average is obtained instead.

Histogram Statistics

An SRAM memory and controller are used to productemint types of histograms. In
particular the most interesting types of histograms are a memory state hit table and page
use statistics.

Data sharing patterns and performance prediction can make use of a memory state hit
table. This table counts the number of request types that hit a particular memory block
state. An example of this is shown iable A.1.

Request ype
State Read Read Update | Writeback
Exclusive
Lv # # # #
LI # # # #
GV # # # #
Gl # # # #

TABLE A.1. Memory state hit table.

When collecting page use statistics (a.k.a. frequent flyer miles) every staiooe'ss
to a page is recorded in the SRAM memdirpne page is accessed by a particular station
significantly more often than the others, that page should be migrated to that station. The
term ‘frequent flyer miles’ refers to the fact that frequent users of the page are logged, and
eventually the station may collect enough points to get a free ‘trip’ to a new home. The
best way of detecting when and how to migrate the page has not yet been decided.

Bibliography

[Amdahl67]

[Bacon94]

[Bacque9l]

[Ballo4]

[Berry89]

[Collins95]

[Convex94]

[Convex95]

[Cray92]

[Dally94]

[Digital92]

[Dubois93]

G.M. Amdahl, “\alidity of the Single Processor Approach to Achieving
Large Scale Computing Capabilitie®foceedings of the AFIPS Spring
Joint Computer Confence April 1967, pp. 483-485.

D.F. Bacon, S.L. Graham, O.J. Sharp, “Compilarngformations for
High-Performance Computing®RCM Computing Surveysol. 26,
December 1994, pp. 345-420.

J.B. Bacque, “SUPERMON: Flexible Hardware for Performance Monitor-
ing,” M.A.Sc. Thesis, University ofdronto, 1991.

T. Ball, J.R. Larus, “Optimally Profiling anddcing Programs ACM
Transactions on Rigramming Languages and Systen@HLAS) 16(4),
July 1994, pp. 1319-1360.

M. Berry, D. Chen, PKoss, D. Kuck, S. Lo, YPang, R. Roldf A. Sameh,

E. Clementi, S. Chin, D. Schneid&. Fox, PMessina, D. \Wlker, C. Hsi-
ung, J. SchwarzmeieK. Lue, S. Orzag,.Fseidl, O. Johnson, G. Swanson,
R. Goodrum, J. Martin, “The PERFECT Club Benchmark&dife Per-
formance Evaluation of Supercomputersgthinical Report CSRD-827,
Center for Supercomputing Research and Development, University of Illi-
nois, Urbana, IL, May 1989.

R. Collins, “int) secrets,”ht t p: / / x86. met r onet . com December
1995.

Convex ComputelSPP1000 Systems Overvj&onvex Computer Corpo-
ration, 1994.

Convex Computepmon man page, Convex Exemplar SPP-UX 3.1.134,
Convex Computer Corporation, 1995.

Cray Research)NICOS Performance Utilities Re@arce ManualCray
Research Inc., May 1992.

W.J. Dally S.W Keckler N. Carter A. Chang, MFillo, W.S. Lee, “M-
Machine Architecture v1.0,” MIT Concurrent VLSI Architecture Memo
58, MIT Artificial Intelligence LaboratoryMIT, August 1994.

Digital Equipment Corporation, “DECchip 21064-AA Microprocessor
Hardware Reference Manual,” Digital Equipment Corporation, October
1992.

M. Dubois, J. Skeppstedt, L. Ricciulli, K. RamamurtRyStenstdm, “The
Detection and Elimination of Useless Misses in MultiprocessBrs;”

85

86

[Gao95]

[Glew9s]

[Goldbeg93]

[Graham82]

[Graham83]

[Heinrich94]

ceedings of the 20th Annual International Symposium on Computair Ar
tecture, San Diego CA, May 1993.

H. Gao, J.L. Larson, “A &ars Profile of Academic Supercomputer Users
Using the CRAX Hardware Performance MonitdiTechnical Report 1403,
Center for Supercomputing Research and Development, University of Illi-
nois at Urbana-Champaign, February 1995.

A. Glew, Intel, personal communication, December 1995.

A.J. Goldbeg, J.L. HennessyMtool: An Integrated System for Perfor-
mance Debugging Shared Memopry Multiprocessor ApplicatidBEE
Transactions on Parallel and Distributed SysteA(d), January 1993, pp.
28-40.

S.L. Graham, B. KesslerPB. McKusick, “gprof: A Call Graph Execu-
tion Profiler” Proceedings of the SIGPLAN ‘82 Symposium on Compiler
Construction SIGPLAN Noticesl7(6), June 1982, pp. 120-126.

S.L. Graham, B. KesslerPB. McKusick, “An Execution Profiler for
Modular Programs,Softwae — Practice and Experienceol. 13, 1983,
pp. 671-685.

J. Heinrich R4000 Micoprocessor Useés Manua) Second Edition, MIPS
Technologies Inc., Mountaini&v CA, April 1994.

[Hennessy96JJ.L. HennessyD.A. PattersonComputer Achitectue: A Quantitative

[Hillg8]

Appmoach Second Edition, Mgan Kaufmann Publishers, San Franscisco,
CA, 1996.

M.D. Hill, “A Case for Direct Mapped CachesComputer21(12),
December 1988, pp. 25-40.

[Hollingsworth93]

J.K. Hollingsworth, B.PMiller, “Dynamic Control of Performance Moni-
toring on Lage Scale Parallel System®&roceedings of 7th International
Confeence on Supeomputing July 1993, pp. 185-194.

[Hollingsworth94]

[Horowitz95]

J.K. Holllingsworth, B.PMiller, “Dynamic Program Instrumentation for
Scalable Performancedls,” Proceedings of the 1994 Scalable High-Per-
formance Computing Confarce Knoxville TN, May 1994.

M. Horowitz, M. Martonosi, TC. Mowry, M.D. Smith, “Informing Mem-

ory Operations: Providing Memory Performance Feedback in Modern Pro-
cessors,” &chnical Report CSL-TR-95-673, Computer Systems
Laboratory Standford UniversityStanford, CA, July 1995.

[HP94]

[Jouppi90]

[KSR92a]

[KSR92b]

[Larus93]

[Lebeck94]

[Lenoski92]

[Ludloffo4]

87

Hewlett-Packard, “R-RISC 1.1 Architecture and Instruction Set Refer-
ence Manual,” Third Edition, HP Part Number 09740-90039, Hewlett-
Packard Companyebruary 1994.

N.P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addi-
tion of a Small Fully-Associative Cache and PrefetcHd3af’ Proceed-

ings of the 17th International Symposium on Computehifactue, 1990,

pp. 364-373.

Kendall Square ResearddSR 1 Principles of Operation Manu#&endall
Square Research Corporation, Boston, MA, 1992.

Kendall Square Research, pmon man page, KSR OS R1.2.2, Kendall
Square Research Corporation, August 1994.

J.R. Larus, “Hicient Program flacing,” Computey 26(5), May 1993, pp.
52-61.

A.R. Lebeck, D.A. dod, “Cache Profiling and the SPEC Benchmarks: A
Case Study Computey27(10), October 1994, pp. 15-26.

Daniel E. Lenoski, “The Design and Analysis of DASH: A Scalable
Directory-based Multiprocessdirechnical Report CSL-TR-92-507, Com-
puter Systems Laborator$tandford UniversityStanford, CA, February
1992.

C. Ludloff, “4P: Programmeés Processor Power Packaget’t p: / /
www. Xx86. or g/ 4p, Version 3.14, January 1995.

[Manjikian95]N. Manjikian, personal communication, November 1995.

[Martonosi95]M. Martonosi, A. Gupta, .E. Anderson, “Tining Memory Performance of

Sequential and Parallel ProgramSd@mputey 28(4), April 1995, pp. 32-
40.

[Martonosi96]M. Martonosi, D.W Clark, M. Mesarina, “The SHRIMP Performance

Monitor: Design and ApplicationsPirst SIGMETRICS Symposium on
Parallel and Distributed dols May 1996.

[Mathisen94] T. Mathisen, “Pentium Secret8Byte 19(7), July 1994, pp. 191-192.

[Miller9s]

[MIPS95]

B.P. Miller, M.D. Callaghan, J.M. Cgille, J.K. Hollingsworth, R.B. Irvin,
K.L. Karavanic, K. Kunchithapadam, Rewhall, “The Paradyn Parallel
Performance Measuremeridls,” Computey 28(11), November 1995.

MIPS TechnologiesR10000 Micoprocessor Useés Manual — ¥rsion
1.0, MIPS Technologies Inc., Mountaini&y, CA, June 1995.

88

[Motorola94aJMotorola, PowerPC Micoprocessor Family: The Bgramming Envion-

ments Motorola Inc., 1994.

[Motorola94b]Motorola, PowerPC 604 Risc Mioprocessor Usés Manua) Motorola

[Shand92]

[Singhal94]

[Smith91]

[Stumm93]

[Sun95]

[Torrellas95]

[Torrie95]

[Varley93]

Inc., 1994.

M. Shand, “Measuring System Performance with Reprogrammable Hard-
ware,” PRL Research Report 19, Digital Equipment Corporation, Paris
Research LaboratgriRueil-Malmaison, France, August 1992.

A. Singhal, A.J. Goldbeyr, “Architectural Support for Performancaniing:

A Case Study on the BRCcenter 2000,Proceedings of The 21st Annual
International Symposium on Computeciitectue, Chicago, IL, April
1994, pp. 48-59.

M.D. Smith, “Tracing with pixie,” Bchnical Report CSL-TR-91-497,
Computer Systems LaboratpStandford UniversityStanford, CA,
November 1991.

M. Stumm, Z. Yanesic, R. White, R. Unrau, K. Farkas, “Experiences with
the Hextor Multiprocess@grCSRI Technical Report CSRI-276, Computer
Systems Research Institute, University ofdnto, ronto, 1993.

Extended version of paper with same title in Proc. Intl. Parallel Processing
Symposium Parallel Systems Fdif93, pp. 9-16.

Sun,SuperSRRC Il Data SheetSun, 1995.

J. Torrellas, C. Xia, R. Daigle, “Optimizing Instruction Cache Performance
for Operating System Intensivedfkloads,” to appear ilEEE Transac-
tions on Computers 995.

E. Torrie, C-W Tseng, M. Martonosi, M.\\Hall, “Evaluating the Impact
of Advanced Memory Systems on CompiRarallelized Codes/Jhterna-
tional Confeence on Parallel Athitectues and Compilation€chniques
June 1995.

D.A. Varley, “Practical Experience of the Limitations of gpradgdftwae
— Practice and Experienc23(4), April 1993, pp. 461-463.

[Vranesic91l] Z.G. wanesic, M. Stumm, D.M. Lewis, R. White, “Hector — A Hierarchi-

cally Structured Shared-Memory Multiprocess@omputer 24(1), Janu-
ary 1991, pp. 72-80.

[Vranesic95] Z. Vranesic, S. Brown, M. Stumm, S. Caranci, A. Grbic, R. Grindley

M. Gusat, O. KriegerG. Lemieux, K. Loveless, N. Manijikian Z. Zilic,
T. Abdelrahman, B. Gamsa, Pereira, K. Sevcik, A. Elkateeb, S. Srbljic,
“The NUMAchine Multiprocessgt CSRI Technical Report CSRI-324,

89

Computer Systems Research Institute, Universityoodiito, ronto,
June 1995.

[Vuillemin91] J.E. Willemin, “Constant ime Arbitrary Length Synchronous Binary

[Welbon94]

[Xia96]

[Zilic95]

Counters,”1991 IEEE 10th Symposium on Computer Arithm&ireno-
ble, France, June 1991.

E.H. Welbon, C.C. Chan-Nui, D.J. Ship@y.A. Hicks, “POWER?2 Perfor-
mance Monitaf PowerPC and POWER2etThnical Aspects of the New
IBM RISC System/6000, IBM Corporation, SA23-2737, 1994, pp. 55-63.

C. Xia, J. Drrellas, “Improving the Data Cache Performance of Multipro-
cessor Operating Systems,” to appedtrid International Symposium on
High-Performance Computer énitectue, 1996.

Z. Zilic, G. Lemieux, K. Loveless, S. Brown, Zranhesic, “Designing for
High Speed-Performance in CPLDs and FPGRsgceedings of The 8r
Canadian Wirkshop on Field-Rygrammable Devices (FPD’95Ylontreal,
Canada, June 1995, pp. 108131

