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Abstract: Deep Neural Networks (DNNs) have shown superior accuracy at the expense of high
memory and computation requirements. Optimizing DNN models regarding energy and hardware
resource requirements is extremely important for applications with resource-constrained embed-
ded environments. Although using binary neural networks (BNNs), one of the recent promising
approaches, significantly reduces the design’s complexity, accuracy degradation is inevitable when
reducing the precision of parameters and output activations. To balance between implementation
cost and accuracy, in addition to proposing specialized hardware accelerators for corresponding
specific network models, most recent software binary neural networks have been optimized based
on generalized metrics, such as FLOPs or MAC operation requirements. However, with the wide
range of hardware available today, independently evaluating software network structures is not
good enough to determine the final network model for typical devices. In this paper, an architecture
search algorithm based on estimating the hardware performance at the design time is proposed to
achieve the best binary neural network models for hardware implementation on target platforms.
With the XNOR-net used as a base architecture and target platforms, including Field Programmable
Gate Array (FPGA), Graphic Processing Unit (GPU), and Resistive Random Access Memory (RRAM),
the proposed algorithm shows its efficiency by giving more accurate estimation for the hardware
performance at the design time than FLOPs or MAC operations.

Keywords: Binarized Neural Networks; FLOPs; hardware cost estimation; MAC operations

1. Introduction

In recent years, deep learning has demonstrated incredible performance in diverse
research areas with different tasks, such as classification and detection [1,2]. To expand
the scope of application with enormous datasets and stricter requirements, deep neural
networks have been deployed with deeper and bigger model sizes, leading to more compu-
tational, memory resources, and power consumption. Hence, optimizing them in terms
of memory and computations is an active research area [3–10]. Researchers have shown
various methods that are effective in optimizing the deep learning models. Pruning [3–5]
removes unnecessary weights from the neural network. Quantization [5–7] reduces the
bit-widths of the weights and activations. These methods help produce lighter and faster
neural networks. One of the most aggressive forms of quantization is used in Binarized
Neural Networks [10] and XNOR-Nets [9]. In these methods, the weights and activations
are both reduced to 1-bit precision. Since the network only uses 1-bit weight and activa-
tions, computing BNNs can be extremely fast and light-weight. However, the massive
reduction in the network results in substantial accuracy degradation. Therefore, gener-
ating a binary neural network model that can be implemented with the best power and
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resource efficiency while maintaining reasonable accuracy has recently been one of the
critical research objectives.

To take full advantages of the BNN and limit the impact on accuracy, from the training
solution of Courbariaux et al. in 2016 [10], many approaches have been proposed for
training strategies and hardware implementation. For the training process, a low learning
rate, PReLu, and new regularization term are newly proposed ideas in [11] to improve
accuracy and training stability. Approximating the full-precision weight with a linear com-
bination and employing multiple binary activations are other techniques applied to increase
accuracy [12]. In addition, new BNN architectures were proposed with higher accuracy.
For example, the authors in [13] proposed a new neural structure called ReActNet, which
can improve accuracy without any additional computational cost through generalizing the
traditional Sign, PReLU functions, and new distribution loss. Moreover, a new approach
to compensate for accuracy degradation is introduced in [14] with a rotated binary neural
network (RBNN), which considers the angle alignment between the full-precision weight
vector and its binarized version. In optimizing hardware implementation, processing
in-memory computing and accelerators on FPGA are popular directions used to deploy the
BNN architecture. In particular, XNOR logic for multiplication, popcount for binary accu-
mulation, threshold comparison for batchnorm operation, and OR logic for max-pooling are
well-known methods applied for the digital circuit on ASIC or FPGA [15–18]. Meanwhile,
regarding memory computing, a series of papers were published and proved their ability
in enhancing power and resource efficiency [19–22].

In general, in addition to proposing specialized accelerators for specific software neu-
ral network models to achieve optimization goals, at the software level, most researchers
have tried to minimize computational cost and the number of parameters based on gen-
eralized metrics, such as MAC operations. At the coarse-tuning stage, this direction
efficiently reduces evaluation time and gives us a quick overview of hardware overhead
when implementing the neural network. Nevertheless, at the fine-tuning stage for specific
target hardware, this information is not enough or can even make a wrong decision when
choosing the relevant model to implement because of their distinctive properties. More
specifically, the same network design may yield different costs in different hardware plat-
forms. In addition, if a BNN model is implemented in a GPU platform or custom hardware
platform, such as FPGA or ASIC implementations, the optimal model constructions can be
significantly different because the cost hardware platforms can provide various optimized
hardware operations. Therefore, although measuring hardware performance at design time
is challenging, it should be an indispensable part to find out the best neural network model
for corresponding hardware platforms.

In this paper, to design a hardware platform-aware optimal BNN, we propose a new
framework that can analyze and explore the ultimate software model based on the estima-
tion of the hardware performance with optimal effort and an architecture search for the
training period. In particular, firstly, the advantages of BNNs, such as low computational
cost, low memory area, are utilized to construct hardware cost estimation charts that can
provide more exact information about hardware implementation for the evaluated models.
Secondly, we present a neural network search algorithm called Deepbit, which can explore
optimal BNN models for target hardware platforms by using the binary search method
and hardware cost estimation charts. More specifically, our method is performed over
three steps:

• Pre-Training: Before training, we develop cost estimation charts. The cost estima-
tion charts are developed by deploying various models on the target hardware and
calculating their actual costs.

• Training: We propose the Deepbit method, which searches over a large hyperspace
and outputs a series of efficient BNN models with variable depths.

• Post-Training: Finally, we use the cost estimation charts to predict the performance
of our networks on actual hardware. Based on the predictions, we choose the most
efficient network. In the scope of this paper, FPGA, GPU, and RRAM are target
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hardware platforms, while the MNIST dataset is used for training to demonstrate the
effectiveness of our method.

Although the proposed method increases the computation at the training time, it can
provide a more accurate DNN model architectural search metric than independent software
evaluation methods. Since the training is performed on GPU servers that are resourceful
environments in terms of computing performance, power, and temperature, it is much
favorable to increase the computation at the training time if it results in an efficient neural
network for the targeted hardware.

The rest of the paper is organized as follows. Section 2 introduces a common back-
ground related to BNN and prior work related to the proposed solution. Section 3 explains
basic design strategies used for the network to reduce the search space. The proposed
method to develop the cost estimation charts and the architecture search is presented in
Section 4. Section 5 shows the experimental results and discussions. Finally, the paper is
concluded in the last section.

2. Background and Related Work
2.1. Related Work

The previous work related to optimizing BNNs for hardware implementation is di-
vided into some categories. In the first category, some publications have focused on
proposing hardware techniques to reduce hardware costs for any available software neural
networks. For example, in [15,16], based on the advantages of the binary characteristic,
the authors proposed some techniques, such as replacing max-pooling with OR opera-
tion, using a threshold for batch normalization, Matrix-Vector–Threshold Unit (MVTU)
to reduce hardware overhead, and power consumption on binary convolution layers.
The authors in [18,23] proposed using the difference between the binary weight array to
reduce computation effort on both binary convolution and fully connected layers. The
popcount compression and Xnor-based binary MAC were applied in [17] to reduce hard-
ware resources on the BNN model independently. For in-memory computing, in [20], the
authors proposed mixed-signal in-memory computing (IMC) SRAM macro that can com-
pute ternary-XNOR-and-accumulate (XAC) operations in binary neural networks without
row-by-row data access. The proposed method gave better energy efficiency and energy-
delay product than conventional digital hardware. Moreover, RRAM was also utilized in
the paper [19] with a synaptic architecture (XNOR-RRAM) that can implement equivalent
XNOR and bit-counting operations. Based on these methods, BNNs can be effectively
optimized by evaluating the direct feedback from the hardware implementation results.
Other well-known methods used for hardware optimization can be found in [24–32]. All
compatible hardware techniques are flexibly used to optimize the design without impacts
on software functions of BNNs. However, only focusing on the hardware implementation
would not be a comprehensive optimization method when the software stage can also
potentially combine with the hardware implementation to provide better results for any
specific hardware platform with distinctive advantages.

The second category is software optimization. Most methods in this category inde-
pendently optimize the software models based on generalized metrics, such as accuracy,
FLOPS, and MAC operations. For example, in [33], to estimate the performance of the
network, the author proposed an architecture neural network search using reinforcement
learning to explore optimal neural network models based on accuracy and training time.
Transferable Architectures is proposed in [34] to reduce the search space for larges datasets
based on the training result from smaller ones. To evaluate the effectiveness of the solution,
FLOPs and accuracy criteria are also used for comparison. Moreover, some well-known
techniques, such as skip-connection, depth-wise separable convolution, Squeeze and Excita-
tion, inverted-bottleneck, and leaky-relu, were proposed for recent DNN models and have
given considerable high-accuracy reductions related to the number of parameters or MAC
operations. However, the network with minimal FLOPs [35] or MAC operations may not
reflect the actual hardware overhead or other critical costs of specific hardware platforms.
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The third category is optimizing the software models based on feedback from hardware
implementation results. The authors in [36–39] consider the inference performance of
the DNN models. However, they only target one type of hardware platform—ARM
architecture for mobile devices. Recent gradient-based methods [37,40,41] use direct metrics
for mobile CPUs. In particular, in [37], the authors mainly focused on latency to evaluate
the efficiency of the optimal neural network when implementing it in mobile platforms.
Moreover, Ref. [42] created a hardware simulator that generates latency and energy for
the Reinforcement Learning process to automatically determine the quantization policy
for each layer in specific neural networks. An automated mobile neural architecture
search was proposed in [43], in which a model latency, which measures the actual latency
on mobile devices, is included in the main objective. Hence, the search can identify a
model that achieves a desirable trade-off between accuracy and latency. However, there
is a variety of smart devices equipped with different types of hardware, such as GPU,
CPU, FPGA, ReRam, DSP, and various AI accelerators, such as Google TPU [44], Intel
Movidius [45], and Nvidia Jetson [46]. All of these devices have different hardware designs
and operational characteristics. This causes the same network architecture to perform with
different operational characteristics (latency, throughput, power consumption, heat, etc.) in
each of them. Therefore, it is also not optimal to recursively run a network architecture on
the target hardware to include the hardware performance in the design loop. Considering
these limitations of the existing systems, we propose a new approach in this paper. Cost
estimation charts are prepared based on the proposed method and the type of hardware
platforms before training and optimizing the target network architecture. This gives a
much more accurate hardware performance estimate than FLOPs or MAC operations.

In terms of the previous works related to searching neural networks for specific target
hardware platforms with a fixed configuration, as introduced in [47], the goal of this
approach is to find the best architecture in terms of accuracy and hardware efficiency for
one single target hardware. If new hardware or requirements have to be used for the
searching process, the entire process must be returned with the new setting and constraints.
Because, at each searching time, the architecture search can solely focus on several specific
hardware requirements. In this approach, two options are commonly selected: provide a
new configuration by updating the search strategy or search space.

For the updating strategy [36,37,48–53], in addition to optimizing accuracy, a compo-
nent used to measure hardware cost metrics updates the target constraints (latency, power
consumption, hardware resources). It then provides the results to guide the searching
process toward finding the desirable model for the reconfiguration. Most researchers use
this direction due to the enormous computational and time reduction. However, measuring
each operation on a real hardware platform still cannot show the full effects of constraints
on a whole model. Furthermore, each target configuration can have different effects when
measured on a whole model, causing the searching process not to obtain the best model for
hardware implementation.

For updating space [54–58], this is the direction that we perform in this paper. In
particular, prior work measured the operators’ performance and set some rules to narrow
the searching space based on the initial conditions. Next, the training process maximizes the
accuracy under constrained searching space and without cooperation with other hardware
metrics. This method can reduce the training time and be more effortless in performing
the searching process because the training process is like conventional searching direction
and independent of the hardware requirement. However, measuring the performance
of each operation may not show the correct effects on the entire searching model, which
may cause the searching space to be wrong. In addition, the search strategy may not find
the most desirable model during the searching process when the training model does not
depend on any hardware performance feedback. In our proposed method, because the
model is a binary neural network, it is easier to implement the models on target hardware
than full prevision neural networks. In doing so, hardware cost estimation charts can
measure the effects of initial conditions more precisely than measuring each operation’s
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performance. Because target conditions from hardware evaluation all need to have the
minimum number of channels on each layer (as explained in Section 4.2), after narrowing
the searching process, our method proposed minimizing the number of channels on each
layer while trying to meet the threshold accuracy. Moreover, at the end of the searching
process, the final optimal model is selected by evaluating the hardware cost based on the
hardware cost estimation charts. Consequently, hardware estimation is included in the
searching process instead of training without hardware constraints, as in prior work.

2.2. Binarized Neural Networks (BNNs)

Over the recent years, Binarized Neural Networks (BNNs) have been highly favored
by researchers due to their hardware-friendly characteristics. With only two states for
their weights and activations, BNNs significantly boost the target hardware by reducing
their memory consumption and computation effort. In particular, as in [9], the authors
introduced an Xnor-Nets, which quantizes the weights and activations to +1 or −1 in the
following equation:

xb = Sign(x) =

{
+1, if x ≥ 0
−1, otherwise

(1)

where xb is the output of the function after binarizing. Based on this characteristic, in
BNNs, the multiplication operations of both convolution and fully connected layers can be
simplified to simple XNOR operations, while the accumulation operation is replaced by
the popcount operation without accuracy degradation, as shown in Figure 1. On the other
hand, with only one-bit representation, memory used for parameters and output activation
storage reduces by almost 32× compared to 32 bit-full precision weights and activation.
Consequently, power consumption for memory access considerably reduces with BNN
models rather than conventional convolution or fully connected layers. These mentioned
advantages from BNNs are the reason leading to an increase in preference of researchers
towards BNNs with resource-constrained hardware.

Figure 1. Xnor operation and accumulation on a convolution layer.

In the scope of this paper, the deployment of BNNs in resource-constrained hardware
is studied. More specifically, the implementation for training our BNNs has followed the
method in [10], where the input pixels of the first layer are not binarized. Accordingly, an
architecture search algorithm that can estimate the hardware performance at the design
time is performed to explore BNNs explicitly optimized for the target hardware. The
design strategies for our BNNs are explained in detail in the following sections. Moreover,
the architecture search algorithm and hardware cost estimation at the design time is
also described.

3. Basic Design Strategies

The DNN model architectural search is computationally costly with an infinitely large
search space. Thus, this paper defines some basic design principles that can narrow down
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the search space and considerably reduce the computational complexity of the architectural
search. Typically, the Binarized Neural Network is used for the experiments based on the
implementation in [9] with the MNIST dataset. That means all the weights and activations
are binarized except for the input pixels of the first convolution layer. In addition, the
proposed approach manipulates only the convolution layers to find efficient network
architectures while keeping one fully connected layer at the end of all experimental neural
networks for classification.

In this paper, the searching space only focuses on standard convolution layers, with
a 3 × 3 kernel size, which is sufficient to provide high accuracy for the MNIST dataset.
Meanwhile, point-wise, depth-wise convolution, residual neural network, and bigger than
3 × 3 kernel size are out of searching space to avoid high memory access and reduce
the complexity as well as the searching time for our searching algorithm. Regarding the
activation function, batch normalization and the Tanh activation function are applied for
each convolution layer.

On the other hand, the well-known pooling technique is also added to the experimental
neural networks as a fundamental design strategy to reduce the computational cost further.
Using the mentioned kernel size and activation functions, in Table 1, a few binary neural
network models, including three convolution layers and one fully connected layer at the
end, are prepared with a different number of added pooling layers and kept the same
for the rest to estimate the effect of the pooling method based on the number of MAC
operations and the accuracy.

Accordingly, adding up to two pooling layers for the last two convolutions has a minor
effect on accuracy with 0.1% degradation and a substantial decrease in MAC operations
with 38%. Meanwhile, adding one pooling layer gives a trivial reduction in the number
of MAC operations. Hence, using two pooling layers is selected for the architecture
search algorithm in this paper. Moreover, the type of pooling layer is also considered for
searching space. As shown in Table 2, an accuracy comparison between a model using
only max-pooling layers and average pooling layers is described. In particular, the number
of convolution layers is still 3, accompanying the mentioned activation functions, and a
fully connected layer is attached at the end of these models. The number of channels on
each layer is the same and equal to 32. The two last convolution layers are used to add
pooling layers for both average pooling and max pooling. Based on the result, max-pooling
would be used for the scope of the evaluation with a better-produced accuracy rather than
average pooling. Finally, based on our design considerations, the base module for each
layer is shown in Figure 2.

Table 1. Effect of adding pooling layers.

Pooling Layers (#) Channels per Layer (#) Accuracy (%) MAC Operations

0 32 98.54 29,352,960
1 32 98.48 28,976,640
2 32 98.44 18,063,360

Table 2. Max pooling vs. Average pooling.

Type of Pooling Channels per Layers (#) Accuracy (%)

Average 32 98.35
Max 32 98.44

In summary, only the number of layers and channels are adjusted to find the optimal
architecture. It should be noted that the strictness of design strategies should depend on
the training resources. Based on our design strategy, we try to optimize six models in
terms of channels per layer, each with the depth ranging from 3 to 8. Given higher training
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resources, we can obtain 12 models, 6 with max-pooling in the last 2 layers and 6 with
average pooling in the last 2 layers.

Figure 2. The building module for a network architecture: (a) layer module for our network architec-
ture; (b) layer module for our network architecture with Max pooling.

4. Proposed Architecture Search Solution

To determine the ultimate optimal BNN model for hardware implementation, as
mentioned in the previous section, this work proposes the architecture search method that
can analyze and explore the ultimate software model based on a combination between the
training and hardware cost estimation process. Figure 3 shows a generic block diagram of
the architecture searching method. In particular, with the basic design strategies, a series
of BNN models are implemented on the target hardware platform, and then hardware
estimation charts, including the number of critical resources used for these models, is
constructed.

Figure 3. A generic block diagram for the architecture searching process.

Moreover, a searching algorithm called Deepbit is also performed to explore the final
optimal BNN model, with inputs being accuracy threshold, hardware estimation charts,
and basic design strategies. The details of hardware cost estimation and Deepbit algorithm
are explained as follows.

4.1. Hardware Cost Estimation

Cost estimation charts are considered Look Up Tables used to evaluate the hardware
cost among neural network models during the searching process. Depending on the type of
hardware platforms, critical resources would be different. In particular, regarding hardware
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platforms, in this paper, FPGA devices with BNN streaming architectures, RRAM with IR
drop and sneak path effects [59,60] and GPU are targeted to find the corresponding optimal
software model.

In terms of FPGAs, a BNN streaming architecture is fully implemented to evaluate
the method. The architecture is a multi-layer architecture where a separate hardware
block accelerates each layer of the BNN. The design is achieved at the coarse-grained
pipeline level by dividing an inference workload into a layer granularity. The number of
pipeline stages is equal to the number of layers. In Figure 4, a general block diagram of
the accelerator is described. For the layer level, pipelining accompanied by the parallelism
technique is effectively applied. Typically, light-weight line buffers are responsible for
data conveyed among layers, while XNOR-popcount handles all multiplications and
accumulation with specific parallel levels. On the other hand, because binary weight
spends much smaller memory than full precision weight, all parameters are stored by
FPGA registers. The design with this approach eliminates power consumption, data
transmission latency from external memory, and on-chip memory to the design. Moreover,
because the output of the batchnorm operation is binarized before delivering to the next
layers, this operation is replaced by a comparison with a threshold, accompanied by a
XNOR operation as in Equation (2), in which ε is a small number to avoid a round-off
problem, µ and var are the mean and variance of the train data batch, and γ and β are
constants learned from the training process.

Z = (X ≥ (
−β
√

var + ε

γ
+ µ) XNOR sign(γ) (2)

Figure 4. Binarized Neural Network hardware architecture on FPGA.

The max-pooling is implemented by using the OR operation [16] to OR 4 input values
instead of finding the maximum value because the output of this operation is also binarized.

For RRAM devices, we do not own a physical device. Therefore, we create an RRAM
simulator in PyTorch, in which the error including on the RRAM device is also replicated.
More specifically, to emulate the accuracy deviation, the trained models are injected with
a certain amount of error into every output channel of each layer. The amount of errors
is approximated based on IR drop and sneak path effects [59,60] to satisfy the accuracy
deviation, as mentioned in [59], in which the array size is the number of channels or
width of a layer. Accordingly, if the number of channels increases, the accuracy deviation
increases. Based on the software simulator, we explore the BNN model, which would
perform optimally on an actual RRAM device.

The size of a chart depends on the search scope (the range of network width and depth),
hardware implementation cost, and implementation time. More data would give better
estimation results and consequently provide better neural network models for hardware
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implementation. However, in this paper, to explore a particular maximum number of
layers for the searching process, we evaluate accuracy for a list of models with appropriate
steps for increasing the number of layers and channels in constructing hardware estimation
charts for GPU. In particular, depending on the dataset size, the steps for increasing the
number of layers (2 for MNIST) and for increasing the number of channels (10 for MNIST)
are defined. Then, the training is performed for all models with the corresponding number
of layers and channels, which can be obtained by adding up the steps. According to the
results, we can see the correlation between accuracy and the number of channels and layers.
For example, according to Table 3 (GPU estimation charts for the MNIST dataset), the
threshold accuracy can be obtained for 3 to 8 layers with a number of channels under 50 for
the MNIST dataset. Meanwhile, with more than 8 layers, the accuracy tends to be saturated.

Table 3. GPU accuracy estimation charts.

Channels\Layers 3 4 5 6 7 8 9 10

5 89.79 91.87 92.14 91.61 93.07 94.09 93.69 93.41
10 95.46 96.23 96.66 96.97 96.86 97.09 97.57 97.29
15 96.61 97.46 97.56 98.01 97.95 97.91 98.19 98.15
20 97.72 97.85 98.05 98.25 98.44 98.32 98.24 98.47
25 97.85 98.33 98.37 98.35 98.51 98.44 98.7 98.4
30 98.15 98.34 98.48 98.59 98.55 98.57 98.71 98.62
35 98.45 98.44 98.38 98.6 98.65 98.82 98.7 98.6
40 98.49 98.57 98.74 98.71 98.7 98.83 98.64 98.75
45 98.4 98.48 98.68 98.76 98.85 98.8 98.78 98.86
50 98.47 98.48 98.82 98.88 98.84 98.75 98.84 98.88

To make the cost estimation charts’ creation more understandable, an example used
for the paper’s experiments is provided. More specifically, the range for network width
is defined between 5 and 50, with an interval of 5, while the network depth is defined
between 3 and 10, as the following.

L = depth = {3, 4, 5, 6, 7, 8, 9, 10}

C = width = {10, 15, 20, 25, 30, 35, 40, 45, 50}

Based on these ranges, L× C BNN models given by the Cartesian product of set L
and set C, as shown in Table 4, are prepared for the hardware evaluation and training
process, in which L is the number of convolution layers and C is the number of channels
in each layer. All these models are initialized with random weights and then deployed
on target hardware platforms to obtain actual hardware costs. Depending on the target
hardware platform, the cost metrics can be from different criteria, but all represent the
most critical resource of the corresponding target hardware. For example, in RRAM, the
RRAM accuracy is one of the cost metrics. However, in FPGAs, power consumption, Look
Up Tables (LUTs), and flip-flops are cost metrics. Based on these costs, the hardware cost
estimation is performed during the searching time to find the best software model for
each corresponding targeted accuracy. This direction saves us from rigorous hardware
testing after training optimal models. It is noticeable that the cost estimation charts need
to be developed only once for a specific hardware platform and can be referred to in the
future by other researchers. The only condition is that the search space for the architectural
search should be a subset of the search space of the cost estimation charts. Table 4 and
Figure 5 are examples of such charts for BNN models’ power consumption and hardware
resources. Firstly, Table 4 describes the power consumption of all models we can have
based on the range of width and depth after implementing them on a particular FPGA
platform. Each pair of width and depth corresponds to a model. The structure of each
layer in a model follows the design strategy introduced in Section 3. Secondly, Figure 5 is
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another representation of hardware estimation charts, in which the number of layers varies
in the range from 3 to 4, and the number of channels varies from 5 to 30 channels.

Table 4. Cost estimation charts for power consumption.

Channels\Layers 3 4 5 6 7 8 9 10

10 0.611 0.676 0.74 0.791 0.836
15 0.721 0.877 0.985 1.127 1.26 1.422 1.561
20 0.77 1.053 1.281 1.494 1.718 1.983 2.251 2.499
25 0.966 1.117 1.692 2.143 2.525
30 1.429 2.079

Figure 5. The hardware and power cost estimation for a list of BNN models with different L and C
values on FPGA: (a) hardware resources for BNN models with different L and C values on FPGA;
(b) power consumption for BNN models with different L and C values on FPGA.

4.2. Architectural Search via Deepbit Method

Deepbit algorithm is the most crucial part of the proposed solution, which is respon-
sible for training and hardware evaluation to explore the optimal model for a specific
hardware platform. In particular, the training process is performed first for a series of BNN
models to reduce the searching scope. Next, hardware cost for output BNN models is
estimated according to the hardware cost estimation charts. Finally, the ultimate optimal
BNN model is determined based on hardware cost comparison among BNN models. The
detail of an example used for our experiments is described with the following input:

1. The set L defines the range for the depth (the number of convolution layers) of the
BNN model. In our experiments:

L = {3, 4, 5, 6, 7, 8}

2. The maximum number of uniform channels per layer. In our experiments, we set this
value at 50.

3. The threshold for an acceptable model. In most cases, the threshold is the minimum
acceptable accuracy.

As introduced in the previous section, the target platforms of this paper are FPGA
devices with streaming BNN architecture, RRAM devices with the influence of the IR drop
and sneak path [59,60] and GPU. For FPGA devices, because streaming BNN architectures
are fully implemented on FPGA, with a certain number of layers, an increase in the number
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of channels on each layer directly increases the hardware resources and power consumption,
as shown in Figure 5. Hence, minimizing the number of channels on each layer becomes
the target of the Deepbit algorithm during the searching process. Similar to FPGA devices
with streaming BNN architecture, RRAM devices affected by IR drop and sneak path also
consider minimizing the number of channels on each layer an essential factor needed to
perform. In particular, as shown in Figure 6, when increasing the number of channels into
each layer, the accuracy is affected more severely, and the accuracy deviation consequently
increases. In conclusion, during the searching process, to reduce impacts on critical target
results for RRAM and FPGA devices, in this work, the Deepbit algorithm aims to minimize
the number of channels on each layer. In doing so, the output of the Deepbit algorithm is a
series of optimal BNN models. Each of them is an optimal BNN model with the minimum
number of channels per layer, and the number of layers is the corresponding value in the
set of L input. Therefore, the number of output models is the same as the size of set L.

Figure 6. An example of accuracy deviation on RRAM devices (40 nm, 20 nm, 10 nm), effected by IR
drop and sneak path, in which Bitline number represents the number of channels on each layer, and
read inaccuracy is accuracy deviation: (a) accruacy deviation with a number of bitline from 1 to 8;
(b) accuracy deviation with a number of bitline from 1 to 32.

The Deepbit method is performed in three phases. In the first phase, for any given
model, the width of the network (the number of output channels of each convolution
layer) is reduced uniformly for each layer. In other words, for a given model, the width
of the network remains constant across all layers. The first phase is started by defining a
model with a depth equal to the minimum number in set L, while the width of the network
is defined by the mentioned second input (50 for our experiments). The binary search
algorithm is used to explore the BNN model with a minimal uniform width that matches
the minimum accuracy threshold defined in the third input to our method. The algorithm
for phase 1 is explained in Algorithm 1.

More specifically, the result of Algorithm 1 is optimal_uni f orm_width, which is the
minimum uniform width for the model with a certain number of layers. Meanwhile, inputs
of the algorithm are max_width from the second input of the Deepbit, layers (the number
of convolution layers of the searching model), and thresh, which is the accuracy threshold
(the third input of the Deepbit). To start the searching process in this algorithm, firstly,
a range of model width is initialized (low_width, high_width). Next, a binary searching
process is performed on this range until high_width− low_witdh < 1. During the binary
searching process, the model with the width being the midpoint of the range is trained. If
the accuracy is better than the accuracy threshold, the upper half of the searching range is
selected for the subsequent searching round. By contrast, the lower half of the range would
be selected for the subsequent searching round. The final output optimal_uni f orm_width,
corresponding to the certain number of layers, is stored to use for the second phase.
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In the second phase, our method tries to find the optimal width for each layer. This
method is performed on the output of phase 1. In this phase, the uniform width of our
network is reduced to the minimum width of the network found in phase 1. A binary
search is used again to find the optimal width for the first layer, while the width for the
other layers is set constant to the optimal uniform width. Once the optimal width for the
first layer is found, searching the optimal widths of the rest layers is performed with the
same process. During the search for a typical layer, the widths of the rest layers need to be
kept with the initial value, even for those that have performed the optimal width search.
All optimal width values for all convolution layers are stored and resumed for the next
phase of the searching method. The algorithm for phase 2 is described in Algorithm 2.
Similar to Algorithm 1, the searching process is performed in an initial range, in which
high_width is the optimal_uni f orm_width from phase 1, and low_width is zero. However,
as mentioned before, the searching is executed for each layer while keeping other ones with
the optimal_uni f orm_width.

Algorithm 1: Optimal uniform channel search for a given BNN model
Result: optimal_uni f orm_width

procedure UNIFORM_WIDTH_SEARCH(model, thresh, max_width, layers)
high_width← max_width;
low_width← 0;
while high_width− low_width > 1 do
mid_width← b(high_width− low_width)/2c+ low_width;
for k = 1 to layers do

model[k].width← mid_width;
end
best_accuracy← 0;
for i = 1 to 10 do

model ← train(model);
acc← test(model);
if acc >best_accuracy then

best_accuracy← acc;
end

end
if best_acc >thresh then

high_width← mid_width;
optimal_uni f orm_width = mid_width

else
low_width← mid_width;

end
end

In the third phase, which is also the final phase of the searching method, the optimal_width
of each layer from the second phase is used to define the optimal BNN model. Since all
the layers were set to a uniform width while searching for an optimal width for a spe-
cific layer, the desirable accuracy degradation can be expected when combining all of the
optimal_widths of each layer. To compensate for the accuracy loss, the width of each layer
is increased by two more channels for each layer. If the width of each layer is greater
than the model’s optimal_uni f orm_width in the first phase, the optimal_uni f orm_width
is applied for this layer instead of using the optimal value plus 2. The next step is the
training process on the new BNN model with reconfigured width values. If the accuracy
matches the threshold accuracy, the model is selected as the optimal BNN model with
the given initial depth. If the accuracy is below the threshold, the width of each layer
continues to increase one, and the model is retrained to check the accuracy. This process
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is repeated until the optimal model with accuracy matching the threshold is achieved,
or the width of any layer is equal to the optimal_uni f orm_width in phase 1. This process
is repeated for all the depth values in set L. Consequently, a series of BNN models with
optimal width configurations and variable depths is produced. In our experiments, we
keep the depth of the network from 3 to 8. The algorithm for phase 3 is explained in
Algorithm 3. More specifically, at the beginning, the width of each layer is updated with
min(optimal_width[k] + 1, optimal_uni f orm_width). In the while loop, the width of each
layer is increased one to ensure increasing two for initialization. After training 100 times,
the best model and corresponding accuracy are stored. If the best accuracy is less than the
accuracy threshes, the training process is repeated until we obtain the model with better
accuracy than the accuracy threshold.

Algorithm 2: Optimal width search for a given BNN model
Result: optimal_width

procedure OPTIMAL_WIDTH_SEARCH(model, thresh, optimal_uni f orm_width, layers)
for k = 1 to layers do

high_width← optimal_uni f orm_width;
low_width← 0;
for j = 1 to layers do

model[j].width← optimal_uni f orm_width;
end
while high_width− low_width > 1 do

mid_width← b(high_width− low_width)/2c+ low_width;
model[k].width← mid_width;
best_accuracy← 0;
for i = 1 to 10 do

model ← train(model);
acc← test(model);
if acc >best_accuracy then

best_accuracy← acc;
end

end
if best_acc >thresh then

high_width← mid_width;
else

low_width← mid_width;
end

end
optimal_width[k]← high_width;

end

In summary, the entire Deepbit algorithm is summarized in Algorithm 4. More specifi-
cally, based on the initial inputs, including the number of layers, accuracy threshold, and initial
max-width, the uni f orm_width_search procedure is used to explore optimal_uni f orm_width
(phase 1). Then, the optimal_uni f orm_width is used to find the optimal_width for each
layer by using the optimal_width_search procedure (phase 2). Finally, the optimal_widths of
all layers are used to construct a unique model, and this model is continuously optimized
with the optimal_bnn_search procedure until we have the minimum width for each layer,
and this final model satisfies the accuracy threshold (phase 3).
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Algorithm 3: Optimal BNN search based on optimal width configuration
Result: Optimal_BNN

procedure OPTIMAL_BNN_SEARCH(model, thresh, optimal_width, layers)
for k = 1 to Layers do

model[k].width← min(optimal_width[k] + 1, optimal_uni f orm_width);
end
acc← 0;
best_accuracy← 0;
while best_acc < thresh do

for k = 1 to Layers do
width← model[k].width;
model[k].width← min(width + 1, optimal_uni f orm_width);

end
for i = 1 to 100 do

model ← train(model);
acc← test(model);
if (acc >best_accuracy) then

best_accuracy← acc;
optimal_BNN ← model;

end
end

end

The output of the Deepbit algorithm is a list of optimal BNN models. Each model
corresponds to a certain number of layers in the L input list. To find the most hardware-
friendly model based on this series of optimal BNN models, the target hardware costs for
each model are estimated according to the hardware cost estimation method introduced in
the previous subsection. Typically, every model uses a uniform width in the hardware cost
charts to represent the number of channels per layer. This means the number of channels
per layer is the same as the model’s uniform width. Hence, to evaluate the hardware cost
for an optimal model, the average number of channels per layer can play the same role
as the model’s optimal width and can be used to search the optimal model based on the
hardware estimation charts. Because the estimation charts do not show all hardware costs
for all optimal width values, the linear regression method can be further used to estimate
the target hardware cost for each model. When more than two models have the same
average number of channels per layer during the searching process, the corresponding
hardware designs are implemented to evaluate them correctly. After the entire process, the
optimal BNN model will be selected, which has the minimum hardware cost.

Algorithm 4: Deepbit Architecture search algorithm
Result: Optimal BNN models

procedure DEEPBIT(model, thresh, max_width, L)
for layers in L do

optimal_uni f orm_width← uni f orm_width_search();
optimal_width← optimal_width_search();
optimal_bnns← optimal_bnn_search();

end

5. Experimental Results and Discussion

In this section, some experiments are conducted to demonstrate the effectiveness of
the proposed method. GPUs, RRAM, and FPGA are target platforms to find optimal BNN
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architectures. Depending on the type of target platforms, the corresponding Hardware
Cost Estimation is prepared for the sensitive resources.

For FPGA devices, the BNN architecture is implemented on the Ultra96 evaluation
Board, which includes an xczu3eg-sbva484-1-e Ultrascale+ MPSoC. In particular, the Pro-
cess Subsystem (PS) comprises a quad-core Arm Cortex-A53 application processing unit
and a dual-core Arm Cortex-R5 real-time processing unit. In the programmable logic (PL),
there are 141,120 flip-flops, 70,560 LUTs, 360 DSP slices, and 7.6 Mbits block ram. The
register-transfer level (RTL) design is simulated on Synopsys VCS, then synthesis and im-
plementation are executed on Vivado 2018.3. All experiment results describing the number
of LUTS, flip-flops, and estimated power consumption is collected from Vivado’s report.
For RRAM devices, as introduced in previous sections, an error simulation is prepared
for the training process and inference period. Meanwhile, for the GPU experiments and
training task, we use RTX 2080ti to find the model with the best accuracy on this device.

5.1. Optimal BNN Search

Based on the basic design strategies defined in Section 3 and the Deepbit method,
in this subsection, the searching process performed on our experiments with a specific
configuration is described. In addition, the corresponding results are also shown to prove
the efficiency of the proposed method. In particular, for FPGA, the target for the optimal
BNN architecture is 98.4% accuracy with minimal hardware resources. Meanwhile, the
target for GPU and RRAM is simply developing a BNN architecture with maximum
accuracy. As mentioned in the previous section, the Deepbit method takes three inputs:

1. L = {3, 4, 5, 6, 7, 8}
2. maximum number of channels = 50
3. minimum accuracy threshold = 98.4%

In terms of the training process, a combination of the Adam and SGD optimizer is
applied. More specifically, the SGD optimizer is used for the 100 epochs. The learning rate
and momentum are set at 0.03 and 0.5, respectively. Each training is conducted 10 times
for phase 1 and phase 2 of the architectural search method. In the final phase, at the time
searching for the final model, the training has repeated a total of 10 times. Six required
optimal BNN models correspond to a depth from 3 to 8. The width configuration for
each model is defined in Table 5. On the other hand, as mentioned in Section 3, a layer
module for BNN models is depicted in Figure 2. Each module comprises a convolution
operation followed by a batch norm and a Tanh activation function. Moreover, the last two
convolution layers comprise the Max pooling layer, and the last layer of all BNN models
is always the fully connected layer. Finally, the optimal width for each layer of our BNN
models is found by the Deepbit architecture search method.

Table 5. The width configuration of optimal BNNs found by Deepbit method.

md1 md2 md3 md4 md5 md6

3 Layers 4 Layers 5 Layers 6 Layers 7 Layers 8 Layers

Layers Channels Channels Channels Channels Channels Channels

1 26 23 20 19 11 8
2 24 21 21 19 9 15
3 31 22 21 14 20 17
4 21 21 16 15 17
5 20 18 20 17
6 19 20 10
7 20 17
8 17

MAC OPs 5,989,368 7,756,896 10,206,896 8,916,432 9,964,640 9,854,684
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5.2. Estimating the Hardware Costs for Optimal Models

To estimate the hardware costs, the most sensitive hardware resources depending
on each hardware platform are selected and estimated based on the method described in
Section 4. In particular, for FPGA, Look Up Tables, flip-flops, and power consumption
are selected to estimate the hardware cost. The range for network depth and width is
the follows.

L = {3, 4, 5, 6, 7, 8}

C = {10, 15, 20, 25, 30}

All the possible models with depth and width defined by the set L and C are initialized
with random weight values. Next, these models are physically tested on corresponding
target hardware platforms. Based on the implemented results, hardware estimation charts
are prepared for the searching method. In Tables 6–8, the cost estimation charts based
on Look Up Tables, flip-flops, and power consumption are provided for FPGA platforms.
Specifically, the actual hardware costs for various models with a width interval of five
channels are prepared prior. As mentioned in the previous section, in a cost estimation
chart, because each model has a uniform width for each layer, the average width per layer
is considered the uniform width of optimal BNN models. The actual hardware cost for the
optimal model can be found with a uniform width and the number of layers existing in the
hardware cost estimation chart. In this case, if the optimal width is not in the estimation
chart, linear interpolation can be applied to estimate the hardware cost of the optimal
model. For example, with the three layers optimal model, as shown in Table 5. The average
width per layer for this model is 27. The cost estimation chart shows hardware cost C1 for
BNN models with 25 channels per layer and C2 for BNN models with 30 channels per layer.
Finally, the hardware cost for model (C_est) is estimated with linear interpolation as the
following equation:

Cest = [
(average− lower_estimate)

(higher_estimate− lower_estimate)
∗ (C2−C1)] + C1 (3)

In Table 9, the hardware costs of the optimal BNN models found by the estimated
method are provided. Accordingly, the model with four layers consumes the lowest number
of LUTs (18,764) and energy (1.151), while flip-flop is consumed the least by the model with
three layers. By comparing the number of MAC operations among optimal models, we
can conclude that the model with the minimum number of MAC operations may or may
not be the optimal one for hardware implementation on FPGA. Therefore, estimating the
actual hardware costs for software models is significant in exploring the best model for
implementation on any specific target platform.

Regarding GPU and RRAM devices, the accuracy is the only target for architecture
search in the scope of experiments. Thus, optimal BNN models, which have maximum
accuracy, are the output of the architecture search for GPUs and RRAM. In particular,
the accuracy charts for GPU are described in Table 3. Different from other devices, the
computational cost on GPU depends on the number of MAC operations. Hence, the optimal
BNN model would have the fewest number of MAC operations and the highest accuracy.
According to Table 3, the accuracy tends to saturate when the number of channels exceeds
40, and the number of layers is more than 5. Accordingly, increasing the number of channels
or layers (leading to increased MAC operations) in this experiment does not constantly
improve accuracy and can be a burden for the computation. Based on observations, the
optimal BNN model for GPU is the model with 6 convolution layers and 50 output channels
that give the best accuracy (98.88%) and an optimal number of MAC operations.
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Table 6. LUT estimation charts.

Channels\Layers 3 4 5 6 7 8 9 10

10 9192 10,329 11,935 12,381 13,259
15 11,003 13,340 15,546 17,823 20,058 22,268 24,592
20 12,648 16,230 19,387 23,299 26,911 31,188 38,827 43,374
25 16,845 22,801 29,206 38,535 45,095
30 25,465 35,192

Table 7. Flip-flop estimation charts.

Channels\Layers 3 4 5 6 7 8 9 10

10 6037 6732 7862 8590 8859
15 7076 8288 9511 10,755 11,551 12,720 13,975
20 7449 9157 10,483 12,258 13,987 16231 17,553 19,777
25 8723 11,123 13,970 16,379 18,788
30 11,296 14,528

Table 8. Power consumption estimation charts.

Channels\Layers 3 4 5 6 7 8 9 10

10 0.611 0.676 0.74 0.791 0.836
15 0.721 0.877 0.985 1.127 1.26 1.422 1.561
20 0.77 1.053 1.281 1.494 1.718 1.983 2.251 2.499
25 0.966 1.117 1.692 2.143 2.525
30 1.429 2.079

For RRAM devices, a simulator is prepared to emulate the RRAM’s working mecha-
nism, in which errors are caused by I/R drop and white noise is injected into the simulator.
Theoretically, more channels give a considerable error in a convolution layer implemented
on RRAM devices. With this characteristic, the simulation is performed, and the accuracy
estimation is provided in Table 10 for RRAM devices. Accordingly, even though the effect of
RRAM error is minimal, 10 channels are not enough to provide high accuracy. Meanwhile,
the error shows that the models with 50 channels are significantly affected. Thus, the
accuracy is not improved with too many channels per layer. Based on this observation,
the model with 7 layers and 30 channels has the best performance, i.e., 98.45%, and it is
considered the optimal candidate for RRAM-based devices.

Table 9. Hardware cost estimates for the optimized BNN models.

Model Layers LUTS FFlops Power MAC OPs

md1 3 20,293 9752.2 1.1512 5,989,368
md2 4 18,764 10,000.5 1.151 7,756,896
md3 5 20,565 10,901 1.33 10,206,896
md4 6 19,422 10,884.5 1.2395 8,916,432
md5 7 20,422.17 11,679 1.296 9,964,640
md6 8 19,651 11,366 1.234 9,854,684

Table 10. RRAM accuracy estimation charts.

Channels\Layers 3 4 5 6 7 8 9 10

10 95.43 95.33 96.2 96.52 96.25 96.39 97.14 96.96
30 97.38 98.07 97.72 98.15 98.45 97.78 98.37 98.24
50 96.93 97.78 97.86 97.34 97.94 95.63 97.61 96.92
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5.3. Analysis and Discussion

The optimal model selected can be different depending on the target cost estimation.
For FPGA, as shown in Table 9, the model with three layers has the fewest flip-flops,
while the model with four layers has the fewest LUTs and consumes the lowest power
consumption. If the power consumption is considered the most critical resource, the model
with four layers will be the optimal candidate.

Table 11 shows the real hardware cost for our best model. Compares the hardware
costs of the selected model with md1, which has the fewest MAC operations, we can
see that the proposed method can reduce the power consumption of the target hardware
compared to using MAC operations. In addition, according to Table 9, the estimation
method gives valuable data related to the hardware cost compared to actual hardware
overhead. Therefore, the network designs can be considerably optimized on the critical
cost when applying the proposed method for complex networks and datasets. For example,
in our experiments, the model md4 with six convolution layers has almost 1.5 times more
MAC operations than the model with three layers but has similar hardware statistics as the
model with three layers. This result is proof that MAC operations can be misleading and
not a reasonable estimate for actual hardware performance.

Finally, the optimal BNN models found by our method for the different target hard-
ware in this paper are provided in Table 12. Based on this table, there is a conclusion that
the optimal network architecture is different for each hardware, and it is not possible to find
an optimal network for any hardware using generalized metrics, such as FLOPs or MAC
operations. Each hardware has different critical resources, and we need hardware-specific
metrics to find an optimal model for the target hardware.

Table 11. Comparison of actual hardware performance and MAC operations of various models.

Model Layers (#) LUTs FFlops Power MAC OPs

md1 3 19,211 9104 1.126 5,989,368
md2 4 20,692 10,082 1.123 7,756,896
md4 6 21,410 10,936 1.256 8,916,432

Table 12. Optimal BNN models for different hardwares.

Layers Width Configuration Accuracy on Target Device
(%)

FPGA 4 23-21-22-21 98.37
RRAM 7 30-30-30-30-30-30-30 98.45
GPU 6 50-50-50-50-50-50 98.88

5.4. Future Work

Based on the final evaluation result, the presented solution has shown effectiveness in
exploring the optimal BNN models for different hardware platforms and different critical
hardware requirements. In particular, each hardware platform is provided a different
optimal BNN model, which does not have the minimum number of MACs but would be
the best one for the target requirements. However, with the MNIST, a small dataset, the
proposed algorithm has not shown comprehensive benefits, and many potential issues
that occur with more extensive datasets may not be solved. Because of the complexity
in simulating the error affected by the IR drop and sneak path, the estimation charts for
RRAM devices on more extensive datasets are not available. Therefore, in future work,
Cifar-10 and ImageNet are going to be the next target datasets for the searching process.
In particular, to reduce the searching time, which may be the biggest drawback of the
proposed solution for an extensive dataset, the number of training times can be reduced for
each model in Algorithm 3 (100 for MNIST dataset). In addition, in Algorithm 3, instead
of adding two more channels for initialization and one channel to compensate for the
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accuracy in the while-loop, 64 channels can be used for initialization and 32 channels for
the while-loop. In terms of exploring the range of layers for the searching process, as
introduced in Section 4.2, there can be more steps for the increasing number of layers and
channels for bigger datasets.

6. Conclusions

Optimizing DNN models for hardware implementation has been challenging, es-
pecially for applications with resource-constrained embedded environments. Although
BNN, one of the prior approaches, can considerably simplify Neural Network models,
the accuracy degradation is still a drawback when binarizing weights and activations. In
addition to deploying optimal accelerators and optimizing based on accuracy and general-
ized metrics, such as FLOPs, MAC operations are also a popular method applied for most
neural network models. However, each hardware platform has different characteristics.
Thus, only evaluating on software level is not enough to select the optimal model for
hardware implementation. This paper has successfully demonstrated the possibility of an
architecture searching method (the Deepbit), including training strategies and hardware-
cost estimation techniques, to explore the final optimal BNN model for specific hardware
platforms. Typically, with the Deepbit algorithm, the scope of the searching process is
narrowed. Meanwhile, based on critical resources, the hardware-cost estimation can help
select better optimal BNN models for specific hardware platforms, with input being a list
of BNN models, compared to independent optimization on the software level. However, as
all experiments have only been conducted on a small dataset (MNIST) and simple neural
networks (BNNs), various challenges need to be tackled when applying the proposed
method to practical applications. Thus, Deepbit for DNNs will be deployed in future work
to evaluate the feasibility of the presented solution.
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