
Int. J. Embedded Systems, Vol. 6, No. 4, 2014 319

Copyright © 2014 Inderscience Enterprises Ltd.

Hardware-software architecture for priority queue
management in real-time and embedded systems

N.G. Chetan Kumar and Sudhanshu Vyas
Department of Electrical and Computer Engineering,
Iowa State University,
2215 Coover Hall, Ames, IA 50011, USA
E-mail: ckng@iastate.edu
E-mail: spvyas@iastate.edu

Ron K. Cytron and Christopher D. Gill
Department of Computer Science and Engineering,
Washington University in St. Louis,
1 Brookings Dr., St. Louis, MO 63130, USA
E-mail: cytron@cse.wustl.edu
E-mail: cdgill@cse.wustl.edu

Joseph Zambreno and Phillip H. Jones*
Department of Electrical and Computer Engineering,
Iowa State University,
2215 Coover Hall, Ames, IA 50011, USA
E-mail: zambreno@iastate.edu
E-mail: phjones@iastate.edu
*Corresponding author

Abstract: The use of hardware-based data structures for accelerating real-time and embedded
system applications is limited by the scarceness of hardware resources. Being limited by the
silicon area available, hardware data structures cannot scale in size as easily as their software
counterparts. We assert a hardware-software co-design approach is required to elegantly
overcome these limitations. In this paper, we present a hybrid priority queue architecture that
includes a hardware accelerated binary heap that can also be managed in software when the
queue size exceeds hardware limits. A memory mapped interface provides software with access
to priority-queue structured on-chip memory, which enables quick and low overhead transitions
between hardware and software management. As an application of this hybrid architecture, we
present a scalable task scheduler for real-time systems that reduces scheduler processing
overhead and improves timing determinism of the scheduler.

Keywords: priority queue; hardware-software co-design; real-time and embedded systems;
hardware scheduler.

Reference to this paper should be made as follows: Kumar, N.G.C., Vyas, S., Cytron, R.K.,
Gill, C.D., Zambreno, J. and Jones, P.H. (2014) ‘Hardware-software architecture for priority
queue management in real-time and embedded systems’, Int. J. Embedded Systems, Vol. 6,
No. 4, pp.319–334.

Biographical notes: N.G. Chetan Kumar is a PhD student in the Department of Electrical and
Computer Engineering, where he is working with Prof. Phillip Jones. He completed his BS in
Electronics and Communication at Visveswaraya Technological University, Bangalore, India in
2007. His research interests include embedded and real-time systems and hardware/software
co-design. His current research focuses on developing techniques to improve predictability in
execution of core system operations in real-time systems, using hardware-software co-design
approaches.

Sudhanshu Vyas is a graduate student pursuing his PhD at Iowa State University. He joined ISU
in the Fall of 2009. Before joining, he received his BE from Birla Institute of Technology in
Electronics and Communication Engineering in 2006 and worked at CG-CoreEl, an embedded
systems company based in Bangalore. His research interests include reconfigurable architectures,
embedded systems, control systems and FPGA fault tolerance.

320 N.G.C. Kumar et al.

Ron K. Cytron is a Professor of Computer Science and Engineering at Washington University.
His research interests include optimised middleware for embedded and real-time systems, fast
searching of unstructured data, hardware/runtime support for object-oriented languages, and
computational political science. He has over 100 publications and ten patents. He has received
the SIGPLAN Distinguished Service Award and is a co-recipient of SIGPLAN Programming
Languages Achievement Award. He served as Editor-in-Chief of ACM Transactions on
Programming Languages and Systems for six years. He participated in writing the Computer
Science GRE Subject Test for eight years and chaired the effort for three years. He is a Fellow of
the ACM.

Christopher D. Gill is a Professor of Computer Science and Engineering at Washington
University in St. Louis. His research includes formal modelling, verification, implementation,
and empirical evaluation of policies and mechanisms for enforcing timing, concurrency,
footprint, fault-tolerance, and security properties in distributed, mobile, embedded, real-time, and
cyber-physical systems. He developed the Kokyu real-time scheduling and dispatching
framework used in several AFRL and DARPA projects and flight demonstrations, and led
development of the nORB small-footprint real-time object request broker at Washington
University. He has over 60 refereed technical publications and has an extensive record of service
in review panels, standards bodies, workshops, and conferences for distributed, real-time,
embedded, and cyber-physical systems.

Joseph Zambreno is an Associate Professor in the Department of Electrical and Computer
Engineering at Iowa State University, Ames, where he has been since 2006. His research
interests include computer architecture, compilers, embedded systems, and hardware/software
co-design, with a focus on run-time reconfigurable architectures and compiler techniques for
software protection. He was a recipient of a National Science Foundation Graduate Research
Fellowship, a Northwestern University Graduate School Fellowship and a Walter P. Murphy
Fellowship. He is a recent recipient of the NSF CAREER award (2012), as well as the ISU award
for Early Achievement in Teaching (2012) and the ECpE Department’s Warren B. Boast
undergraduate teaching award (2009, 2011).

Phillip H. Jones received his BS in 1999 and MS in 2002 in Electrical Engineering from the
University of Illinois at Urbana-Champaign, and his PhD in 2008 in Computer Engineering from
Washington University in St. Louis. Currently, he is an Assistant Professor in the Department of
Electrical and Computer Engineering at Iowa State University, Ames, where he has been since
2008. His research interests are in adaptive computing systems, reconfigurable hardware,
embedded systems, and hardware architectures for application-specific acceleration.

This paper is a revised and expanded version of a paper entitled ‘Improving system predictability
and performance via hardware accelerated data structures’ presented at Proceedings of the
International Conference on Computational Science (ICCS), 2012, Omaha, Nebraska, USA,
4–6 June.

1 Introduction

Deploying increasing amounts of computation into smaller
form factor devices is required to keep pace with the ever
increasing needs of real-time and embedded system
applications. The area of micro unmanned aerial vehicles
(UAVs) is an example of where such need exists. The size
of these vehicles has rapidly decreased, while the
capabilities users wish to deploy continue to explode. As
recently as June 2011, the New York Times published
several articles on the cutting-edge work being pursued by
Wright Patterson Air Force Base to develop micro-drones to
aid soldiers on the battlefield (Bumiller and Shanker, 2011).
In February of 2011, the DARPA funded nano air vehicle
(NAV) program demonstrated a humming bird form-factor
UAV weighing less than 20 grams (e.g., less than an AA
battery) (DARPA, 2011; Grossman et al., 2011) with video
streaming capabilities. These real-time and embedded
applications can no longer rely on manufacturing advances

to provide computing performance at Moore’s law rates,
owing to transistors approaching atomic scales and thermal
constraints (ITRS, 2009). Thus, more efficient use of the
transistors available is needed. For example, use of
application specific hardware has showed promise in
accelerating various application domains, from
cryptography (Eberle et al., 2008; Ors et al., 2008) to
numerical simulation (Rahmouni et al., 2013) to control
systems (Muller et al., 2013).

We assert that the boundaries of software and hardware
must be reexamined and we believe a fruitful realm for
research is the hardware-software co-design of functionality
that has been traditionally implemented in software. Such a
co-design is needed to balance the cost of dedicating limited
silicon resources for high-performance fixed hardware
functionality, with the flexibility and scalability offered by
software. Additionally, we claim seamless migration
between software and hardware implemented functionality
is required to allow systems to adapt to the dynamic needs

 Hardware-software architecture for priority queue management in real-time and embedded systems 321

of applications. In this paper we examine a hybrid
architecture for priority queue management and evaluate
this architecture within a real-time scheduling context. The
following motivates the importance of low processing
overhead and timing predictably to a real-time scheduler’s
performance.

A real-time operating system (RTOS) is designed to
execute tasks within given timing constraints. An important
characteristic of an RTOS is predictable response under all
conditions. The core of the RTOS is the scheduler, which
ensures tasks are completed by their deadline. The choice of
a scheduling algorithm is crucial for a real-time application.
Online scheduling algorithms incur overhead, as the task
queues must be updated regularly. This action is typically
paced using a timer that generates periodic interrupts. The
scheduler overhead generally increases with the number of
tasks. A high resolution timer is required to distribute CPU
load accurately based on a scheduling discipline in real-time
systems, but such fine-grain time management increases the
operating system overhead (Park et al., 2001; Adomat et al.,
1996).

The extent to which a scheduler can ideally implement a
given scheduling paradigm [e.g., earliest deadline first
(EDF), rate monotonic (RM)], and thus provide the
guarantees associated with that paradigm, is in part
dependent on its timing determinism. A metric for helping
quantify the amount of non-determinism that is introduced
to the system by the scheduler is the variation in execution
time among individual scheduler invocations. This can be
roughly summarised by noting its best-case and worst-case
execution times. Variations in scheduler execution time can
be caused by system factors such as changes in task set
composition, cache misses, etc. Reducing the scheduler’s
timing sensitivity to such factors can help increase
deterministic behaviour, which in turn allows the scheduler
to better model a given scheduling paradigm.

Figure 1 In order to allow analytical analysis of schedule
feasibility, worst-case execution time (WCET)
typically needs to be assumed (see online version
for colours)

Note: Thus, scheduler execution time variations that

cause large differences between WCET and
typical case execution time reduce utilisation of
system computing resources.

Figure 1 illustrates how the variation in scheduler overhead
affects processor utilisation. To ensure that tasks meet their
deadlines, the scheduler’s worst-case execution times are
often overestimated. This can cause a system to be
underutilised and wastes CPU resources. In this paper, we
examine how the scheduler overhead and its variation

can be reduced by migrating scheduling functionality (along
with time-tick interrupt processing) to hardware logic. The
expected results of our efforts are increased CPU utilisation,
better system predictability, finer schedule and timing
resolution.

1.1 Contributions

The primary contributions of this paper are

1 a hardware accelerated binary min heap that supports
enqueue and peek operations in O(1) time, returns the
top-priority element in O(1) time, and completes a
dequeue operation in O(log n) time

2 a scalable hardware-software priority queue
architecture that enables fast and low-overhead
transitions of queue management between hardware
and hybrid modes of operation

3 a hybrid scheduler architecture that reduces scheduling
overhead and improves predictability.

1.2 Organisation

The reminder of this paper is organised as follows.
Section 2 describes the hardware-software priority queue
architecture and implementation details. Section 3 describes
the hardware scheduler architecture, which uses our priority
queue design. The evaluation methodology and results are
discussed in Sections 4 and 5. Section 6 presents related
work on hardware accelerated priority queues and
schedulers. Conclusions and future work are presented in
Section 7.

2 Hybrid priority queue architecture

Priority queues are commonly implemented using a binary
heap data structure, which supports enqueue and dequeue
operations in O(log n) time. A binary heap is constrained by
the heap property, where the priority of each node is always
less than or equal to its parent. In a binary min heap, lower
key-value corresponds to higher priority and the root node
has the highest priority (lowest key value). A binary heap
can be stored as a linear array where the first element
corresponds to the root. Given an index i of an element, i/2,
2i and 2i + 1 are the indices of its parent, left and right child
respectively.

Here we present a hybrid priority queue architecture that
includes the hardware implementation of a conventional
binary min heap (lower key value corresponds to higher
priority), which can be managed in hardware and/or
software. A binary heap could be stored compactly when
compared to skip list, binomial heap and Fibonacci heap,
without requiring additional space for pointers. Since the
memory available in hardware (on-chip memory) is limited,
the priority queue was implemented as a binary heap to
better utilise the available resources. The priority queue
operates in hardware mode when the queue size is less than
a hardware limit threshold. When managed in hardware, the

322 N.G.C. Kumar et al.

priority queue supports enqueue and peek operations in
O(1) time and dequeue operations in O(log n) time.
Although the dequeue operation takes O(log n) time to
complete, the top-priority (lowest key value) element can be
returned immediately, allowing the dequeue operation to
overlap its execution with the primary processor. Software
issues custom instructions to initiate hardware-implemented
enqueue and dequeue operations.

Once the priority queue size exceeds hardware limits,
excess elements are stored in the system’s main memory
and managed by both hardware and software. Elements of
the priority queue that are managed by hardware are
memory mapped, providing software with direct access to
these elements that are stored in a priority-queue-structured
on-chip memory. Figure 2 illustrates this architecture.
Memory mapping the priority-queue-structured on-chip
memory additionally allows rarely used priority queue
operations (e.g., delete element and decrease key) to be
easily implemented in software, thus reducing the
complexity of hardware control logic.

Figure 2 A high level block diagram of the hardware-base
priority queue interface (see online version for colours)

2.1 Hardware priority queue

A high level architecture diagram for the priority queue is
shown in Figure 3. Central to the priority queue is the queue
manager, which provides the necessary interface to the CPU

and executes operations on the queue. Elements in each
level of the binary heap are stored in separate on-chip
memories called block rams (BRAMs) to enable parallel
access to elements, similar to Bhagwan and Lin (2000) and
Ioannou and Katevenis (2007). The address decoder
generates addresses and control signals for the BRAM
blocks. Queue operations in hardware mode are explained in
detail below, using a min-heap example, where a lower key
value corresponds to a higher priority.

2.1.1 Enqueue

Enqueue operations in a software binary heap are
accomplished by inserting the new element at the bottom of
the heap and performing compare-swap operations with
successive parents until the priority of the new element is
less than its parent. In software, the worst-case behaviour of
this operation occurs when the priority of the new element
is greater than the rest of the nodes present in the heap. In
this case, the new element bubbles-up all the way to the root
of the heap [i.e., O(log n) time].

However, our hardware implementation can perform
this operation in O(1) time. We first calculate the path from
the next vacant leaf node to the root. The index, i, of this
leaf node is always one more than the current size of the
queue, and each ancestor of this leaf node can be computed
in parallel using a closed form equation (e.g., kth parent is
located at index i/2k) in hardware. This path includes all
ancestors from the leaf node to the heap’s root. The heap
property ensures that the elements in this path are in sorted
order.

The shift register mechanism, shown in Figure 3, inserts
a new element in constant time. This is similar to the
shift-register priority queue described in Moon et al. (1997).
Each level of the heap is mapped to an enqueue cell, which
consists of a comparator, multiplexer and a register. The
element to be inserted is broadcast to all the cells during an
enqueue operation. The enqueue operation is then
completed in the three steps shown in Figure 4. In the first
step, all the elements in the path from the leaf node to the
root node are loaded into the corresponding enqueue cells.
The address for each BRAM block is generated by the
address decoder. In the second step, the comparator in each
enqueue cell compares the priority of the new element with
the element stored locally and decides whether to latch the
current element, new element or the element above it. In the
final step, the elements along with the new entry are stored
back into the heap.

 Hardware-software architecture for priority queue management in real-time and embedded systems 323

Figure 3 The hardware priority queue architecture (see online version for colours)

Figure 4 Steps of enqueue operation in hardware mode, (a) elements in the insertion path are loaded to enqueue cells
(b) sorted insert of the new element to the enqueue cell array (c) elements in the enqueue cell array are stored
back to the heap (see online version for colours)

Figure 5 Steps of dequeue operation in hardware mode, (a) the root element is removed by replacing it with last element
of the queue (b) new root is swapped with highest priority child (c) no more swap operations as the heap property
is restored (see online version for colours)

Note: In worst case there will be log(n) swap operations.

2.1.2 Dequeue

Figure 5 illustrates an example of a dequeue operation in
hardware mode. The dequeue operation can be divided into
two stages: removing the root element from the queue
(as the value to be returned by the dequeue call), and
reconstruction of the heap. The root element is first
removed by replacing it with the last element of the queue
to keep the heap balanced. The new root element is then
compared with its highest priority child and is swapped if its
priority is less than that of its child. This operation is
repeated until the priority of the new root element is greater
than that of its children.

Note that the root element is returned immediately to the
processor before restoring the heap property. The processor
is not required to wait for the operation to complete, as the
heap property of the queue is restored in hardware which
executes in parallel to the CPU. Back-to-back dequeue
operations would cause the processor to wait for the first
operation to be completed in hardware before getting the
result of the second request. Hence, the worst case
execution time of a dequeue operation is O(log n).

324 N.G.C. Kumar et al.

2.1.3 Decrease-key and delete

The decrease-key operation decreases the priority of a given
queue element, and the delete operation removes a specified
element from the queue. Supporting these rarely used
operations in hardware adds considerable complexity to the
hardware’s control logic. To avoid this complexity, these
operations have been implemented in software. Software
accesses the hardware priority queue elements via a
memory mapped interface as if they resided in main
memory.

2.2 Hybrid priority queue management

The size of the hardware priority queue is limited by the
available on-chip memory resources of the device.
Gracefully handling size overflow situations allows the use
of hardware data structures for a wider range of
applications. We achieve this by extending the heap array to
off-chip memory (i.e., main memory) and managing the
queue in both hardware and software. In hybrid mode, the
enqueue and dequeue operations are executed in two stages.
The hardware executes a part of the queue operation in the
first stage, and then control is returned to software, which
completes the rest of the operation.

A memory mapped interface, shown in Figure 6(a),
provides software access to on-chip priority queue elements
as if they were resident in main memory. Since the address
space of memory mapped hardware and the extended
priority queue will typically not be part of the same
continuous memory block, as shown in Figure 6(b). The
queue algorithm needs to be modified accordingly to access
the correct address depending on the array index of the
element. The combination of memory mapping the
hardware-base priority queue and implementing small
modification to the queue algorithm enables our hybrid
approach to have fast and low overhead transitioning
between hardware and software management. The priority
queue operations in hybrid mode are explained in detail
below.

Figure 6 (a) Memory mapped interface provides access to
priority queue elements stored in BRAM
(b) Virtual address space showing extended
priority queue (see online version for colours)

(a) (b)

2.2.1 Enqueue

Figure 7 presents an example of the enqueue operation in
hybrid mode. In the first stage of an enqueue operation, the
new element is inserted into the hardware priority queue,
which forms the top portion of the queue. This is similar
to the hardware enqueue operation as explained in
Section 2.1.1. Since we only go into hybrid mode when the
queue size exceeds hardware limits, the lowest priority
element in the hardware insertion path must be moved to the
overflow buffer shown in Figure 3. This first stage is
performed in constant time as explained in Section 2.1.1.
Control is then returned to software. The overflow buffer is
available to software through a memory mapped interface.
In the second stage of the enqueue operation, the element in
the overflow buffer is copied to the bottom of the extended
queue and compare-swap operations are performed with
successive parents until the heap property is restored. This
stage is similar to the software enqueue operation and only
the extended part of the queue (stored in main memory) is
modified by software. The software implementation of
enqueue operation is outlined in Algorithm 1.

Algorithm 1 Pseudocode of hybrid priority queue’s enqueue
operation

1: procedure HYBRiD_PQ_ENQUEUE(queue, elem)

2: if Queue = Full then

3: throwexception

4: end if

5: Hardware_pq_enqueue(elem)

6: queue.size + +

7: if queue.size > queue.hwlimit then

8: index = queue.size

9: Copy overflown hardware element to the end of
software queue.

10: queue.data[index] = overflow_cell

11: while index > queue.hw_limit do

12: if queue.data[index]
<queue.data[parent(index)} then

13: swap_queue_data(queue, index,
parent(index))

14: index = parent(index)

15: end if

16: end while

17: end if

18: end procedure

 Hardware-software architecture for priority queue management in real-time and embedded systems 325

Figure 7 Steps of enqueue operation in hybrid mode, in this example we assume that the first 3 levels of the heap are managed in
hardware, (a) hardware elements in the insertion path are loaded to enqueue cells (b) sorted insert of the new element and the
lowest priority element is moved to the overflow buffer (c) hardware stores back the elements in enqueue cells and the overflow
buffer element is moved to the bottom of the queue by software (d) software performs compare-swap operation to restore heap
property (see online version for colours)

Figure 8 Steps of dequeue operation in hybrid mode, in this example we assume that the first three levels of the heap are managed in
hardware, (a) the root element is removed by replacing it with the last element of the queue by software (b) the heap property is
restored by swapping the new root (31) with highest priority child (c) hardware completes dequeue operation and returns the
position of new root(31) (d) software continues restoring the heap property from the position returned (see online version
for colours)

2.2.2 Dequeue

Figure 8 provides an example of the dequeue operation in
hybrid mode. In the first stage of a dequeue operation, the
root element of the queue is removed by replacing it with
the last element of the queue. This operation should be
performed by software, since the last element of the queue
resides in main memory. The hardware dequeue operation is
then initiated through a custom instruction, which restores
the heap property of the hardware portion of the queue as
explained in Section 2.1.2. The custom instruction when

completed returns the position of the newly inserted
element, which can be accessed by software through
memory mapped interface. The software then continues
restoring the heap property starting from the position
returned. The software implementation of dequeue
operation is outlined in Algorithm 2.

Comparing our approach with the related work reported
in Section 6, our approach scales nicely without requiring
complex hardware control logic to manage pipelining. Our
hardware-software co-design approach overcomes the size

326 N.G.C. Kumar et al.

limitations of hardware, enabling the support of arbitrarily
large priority queues.

3 Hardware scheduler

3.1 Overview

As an application of the priority queue described above, we
propose a hardware-software scheduler architecture
designed to reduce the time-tick interrupt processing and
scheduling overhead of a system. In addition, our hybrid
architecture increases the timing determinism of the
scheduler operations. The instruction set architecture of a
processor was extended to support a set of custom
instructions to communicate with the scheduler. The
hardware scheduler executes the scheduling algorithm and
returns control to the processor along with the next task to
execute. Software then performs context switching before
executing the next task.

Algorithm 2 Pseudocode of hybrid priority queue’s dequeue
operation

1: procedure HYBRiD_PQ_DEQUEUE(queue)
2: if Queue = Empty then
3: throw exception
4: end if
5: result = queue.top;
6: if queue.size < queue.hw_limit then
7: hardware_pq_dequeue()
8: else
9: Replace root with last element of heap array.
10: queue.data[0] = queue.data[size]
11: Execute hardware dequeue and return position of

newly inserted element.
12: new_index = hardware_pq_dequeue()
13: Continue heap restoration in software from the

position returned.
14: Restore_sw_heap(new_index)
15: end if
16: queue.size – –;
17: end procedure

A software timer periodically generates interrupts to check
for the availability of a higher priority task. The check is
accomplished using a single custom instruction that returns
a preempt flag, set by the hardware scheduler, based on
which the processor chooses to continue executing the
current task or preempts it to run a higher priority task. The
following describes the functionality of the key components
of the hardware accelerated scheduler.

3.2 Architecture

A high level block diagram of the hardware scheduler is
shown in Figure 9.

3.2.1 Controller

The controller is the central processing unit of the
scheduler. It is responsible for the execution of the
scheduling algorithm. The controller processes instruction
calls from the processor and monitors task queues (ready
queue and sleep queue).

3.2.2 Timer unit

The timer unit keeps track of the time elapsed since the start
of the scheduler. This provides accurate high-resolution
timing for the scheduler. The resolution of the timer-tick
can be configured at run time.

3.2.3 CPU interface

The interface to the scheduler is provided through a set of
custom instructions as an extension to the instruction set
architecture of the processor. This removes bus arbitration
timing dependencies for data transfer. Basic scheduler
operations such as run, configure, add task, and preempt
task are supported.

3.2.4 Task queues

At the core of the scheduler are the task queues, which are
implemented as priority queues. The ready queue stores
active tasks based on their priority. The sleep queue stores
inactive tasks until their activation time. The task with the
earliest activation time is located at the front of the sleep
queue.

3.3 Modes of operation

The scheduler is designed to operate in either hardware or
hybrid mode, depending on the size of the hardware priority
queues and the number of tasks in the system. Once the
number of tasks exceeds the hardware limit, the queues
extend to off-chip memory (i.e., main memory) and the
scheduler starts operating in hybrid mode. In hybrid mode
the scheduling algorithm is executed in software and the
hybrid priority queues described in Section 2 are used to
accelerate scheduler operations. This transition involves
stalling the hardware scheduler through a co-processor call
(custom instruction) and calling the software scheduler
function. As the elements stored in the on-chip priority
queues can be accessed by software via a memory mapped
interface, it avoids the need to copy data between hardware
and software memory when the scheduler changes modes.
The proposed scheduler architecture scales to support an
arbitrarily large number of tasks.

4 Evaluation methodology

4.1 Platform

The hybrid priority queue and the scheduler were deployed
and evaluated on the re-configurable autonomous vehicle

 Hardware-software architecture for priority queue management in real-time and embedded systems 327

infrastructure (RAVI) board, an in-house developed FPGA
prototyping platform. RAVI leverages field programmable
gate array (FPGA) technology to allow custom hardware to
be tightly integrated to a soft-core processor on a single
computing device. It enables exploration of the
software/hardware co-design space for designing system
architectures that best fit an application’s requirements. The
portions of the RAVI board used for our experiments
included the Cyclone III FPGA, the on-board DDR DRAM
and the UART. The FPGA was used to implement the
NIOS-II (Altera’s soft-processor), the DDR stored software
that was executed on the NIOS-II, and the UART supported
data collection. A pictorial description of the setup is shown
in Figure 10.

4.2 Architecture configuration

The priority queue and the scheduler were implemented
as an extension to the instruction set architecture
(using custom instructions) of a Nios II embedded processor
running at 50 MHz on an Altera Cyclone III FPGA. The
priority queue supported up to 255 elements in hardware
mode and up an arbitrarily large number of elements in
hybrid mode of operation. For our evaluation we limited the
queue size to 8,192 elements. A binary heap-based priority
queue implemented in software was used as a baseline to

compare against the performance of our hybrid priority
queue.

The scheduler can support up to 255 tasks when
managed in hardware, and up to an arbitrarily large number
of tasks when in hybrid mode. For our evaluation we limited
the task set size to 2,048, which is sufficient to support a
vast majority of embedded systems. The scheduler can be
configured to use EDF or a fixed priority-based scheduling
algorithm such as rate monotonic scheduling (RMS). The
scheduler overhead was also measured using different
timer-tick resolutions (0.1 ms, 1 ms, 10 ms), which is used
to generate periodic interrupts for the scheduler. A software
test bench was built to accurately measure the overhead of
the scheduler for different task sets and timer resolutions.
Hardware-based performance counters, supported by the
NIOS II processor provided a relatively unobtrusive
mechanism to profile software programs including interrupt
service routines in real-time. An EDF (Liu and Layland,
1973) scheduler was deployed to measure the impact of
running a dynamic scheduling algorithm on the processor.
In EDF scheduling, task priorities are assigned based on the
absolute deadline of the current request. At any given time,
the task with the nearest deadline will be assigned the
highest priority and executed. A software EDF scheduler
implementation was used as a baseline to compare against
our hybrid implementation.

Figure 9 A high level architecture diagram of the hardware scheduler along with the custom instruction interface
(see online version for colours)

Figure 10 FPGA-based evaluation platform (see online version for colours)

328 N.G.C. Kumar et al.

4.3 Workload and metrics

The performance of the priority queue was evaluated using
the classic hold model (Vaucher and Duval, 1975); Jones,
1986), where a priority queue of a given size is initialised
and hold operations (dequeue followed by enqueue) are
performed repeatedly on the queue. The size of the queue
remains constant for the whole duration of the experiment.
The access time measured by the hold model is dependent
on the initial queue size and priority increment distribution.
For our evaluation we used exponential, uniform, bimodal
and triangular distributions, similar to those used in Vaucher
and Duval (1975) and Ronngren and Ayani (1997). The
transient behaviour of the priority queue is measured using
the up/down model (Ronngren et al., 1991), where the
queue is initialised to a given size by series of enqueue
operation and then emptied by series of dequeue operation.

A set of periodic tasks with randomly generated
parameters (i.e., task execution time and period) was used to
evaluate the performance of the EDF scheduler. The relative
deadline of the tasks were assumed to be equal to their
period. The number of tasks in the task set were varied,
keeping the utilisation factor constant at 80%. The metrics
used to evaluate our scheduler were:

• scheduler overhead: time spent executing the
scheduling algorithm

• timer-tick overhead: time taken to service the periodic
timer interrupt

• predictability: variation in the execution time of
individual scheduler invocations.

5 Results and analysis

This section presents the results of our hybrid priority queue
versus software priority queue evaluation experiments. A
discussion is then given on the results of our hybrid and
hardware scheduler evaluation experiments.

5.1 Priority queue

5.1.1 Mean access time

The mean access times of the hybrid and software priority
queues measured using classic hold and up/down

experiments are shown in Figures 11 and 12. The hybrid
priority queue is fully managed in hardware when the queue
size is 255 or less. The results show that the hybrid queue is
six times faster than the software queue when the queue size
is 255. The hybrid priority queue extends to software
memory when the queue size exceeds 255 elements and the
fraction of total work done in hardware decreases as more
levels of heap are stored in software memory. Hence, the
difference in performance between the hybrid and software
priority queue decreases as the size of the queue increases.
Even when the queue contains 8,192 elements, the hybrid
priority queue performs close to 30% better than software
priority queue. The performance of the hybrid and software
priority queue is not very sensitive to priority increment
distributions.

5.1.2 Resource utilisation and scalability

We implemented our hardware priority queue design on an
Altera Cyclone III (EP3C25) FPGA. The resource
utilisation of the priority queue for different queue lengths is
shown in Table 1. Each priority queue element is 64 bits
wide, with a 32 bit priority value. The amount of
combinational logic required increases logarithmically with
the size of priority queue. Since the number of elements
doubles with each additional level, the combinational logic
scales logarithmically with queue size. The device contains
66 M9K memory blocks, which can be used as on chip
memory. Each M9K block can hold 8,192 memory bits with
a maximum data port width of 36. Since each level of the
heap is stored in a BRAM with a 64 bit wide port, a
minimum of 2 M9K blocks are used per level. The BRAM
usage can be optimised by moving the first 5 levels of the
heap to memory mapped registers. We also implemented the
shift-register and systolic array-based priority queue
architectures described in Moon et al. (1997). The resource
utilisation of both architectures are shown in Table 2. These
architectures use distributed memory instead of BRAMs to
store queue elements. Figure 13 shows that our queue
architecture scales well for large queues, as compared
to shift-register and systolic array-based architectures
(Moon et al., 1997) in which the combinational logic
required increases linearly with queue size.

 Hardware-software architecture for priority queue management in real-time and embedded systems 329

Figure 11 Performance comparison between the software and hybrid implementation of a priority queue, (a) software priority queue
(b) hybrid priority queue (see online version for colours)

(a) (b)

Note: Evaluated using the classic hold model, for four different priority increment distributions.

Table 1 FPGA resource utilisation of the proposed priority queue design for different queue sizes

Resources1
Size

Look-up tables (LUTs) Flip-flops Memory (bits) BRAMs

31 1,411 (5.73%) 906 (3.68%) 1,920 (0.32%) 8 (12.12%)
63 1,996 (8.1%) 1,048 (4.25%) 3,968 (0.65%) 10 (15.15%)
127 2,561 (10.4%) 1,182 (4.8%) 8,064 (1.325%) 12 (18.18%)
255 3,161 (12.84%) 1,330 (5.4%) 16,256 (2.67%) 14 (21.21%)

Note: 1Altera Cylone III FPGA contains: 24,624 LUTs, 24,624 flip-flops and 66 BRAMs.

Table 2 FPGA resource utilisation of shift register and systolic array-based priority queue architectures (Moon et al., 1997) in
comparison with proposed priority queue design

Shift register Systolic array Proposed design
Size

LUTs Flip-flops

LUTs Flip-flops

LUTs Flip-flops

31 4,995 (20.29%) 2,077 (8.43%) 8,560 (34.76%) 3,999 (16.24%) 1,411 (5.73%) 906 (3.68%)
63 10,275 (41.73%) 4,221 (17.14%) 17,520 (71.15%) 8,127 (33.00%) 1,996 (8.1%) 1,048 (4.25%)
127 20,835 (84.61%) 8,509 (34.56%) – – 2,561 (10.4%) 1,182 (4.8%)
255 – – – – 3,161 (12.84%) 1,330 (5.4%)

Note: – Configurations for which the priority queue resources do not fit in Altera Cyclone III FPGA.

Figure 12 Performance comparison between the software and hybrid implementation of a priority queue, (a) software priority queue (b)
hybrid priority queue (see online version for colours)

(a) (b)

Note: Evaluated using the up/down model, for four different priority increment distributions.

330 N.G.C. Kumar et al.

Figure 13 Comparing FPGA look-up table utilisation of the
proposed priority queue design against shift register
and systolic array-based priority queue architectures
(Moon et al., 1997) for different queue sizes
(see online version for colours)

Note: Flip-flop utilisation also shows a similar trend.

5.2 Scheduler

For our analysis we have considered the following three
configurations of an EDF scheduler.

• Software scheduler: used as the baseline for evaluating
our hybrid and hardware scheduler. Evaluated for up to
2,048 tasks.

• Hardware scheduler: executes scheduling algorithm,
manages task queues, and supports up to 255 tasks in
hardware.

• Hybrid scheduler: the task queues of the software
scheduler is replaced by our hybrid priority queue to
accelerate scheduler operations. Evaluated for up to
2,048 tasks.

5.2.1 Scheduler overhead

The overhead of the scheduler was measured for different
sets of tasks and timer tick resolutions. Figure 14(a) shows
the percentage overhead of software scheduler. The
software scheduler overhead increases with the number of
tasks and the timer-tick resolution. Most of this overhead
results from time tick processing, where the scheduler
periodically processes interrupt requests to check for new
tasks and managing the task queues. This time-tick
processing has been a limiting factor for implementing
dynamic priority-based scheduling algorithms in embedded
real time systems (Park et al., 2001; Adomat et al., 1996),
since finer granularity time ticks lead to closer to ideal
implementation of such schedulers.

Figure 14(b) shows the scheduling overhead when the
hardware scheduler is used. The results show that when the
timer tick resolution is set to 0.1 ms and with 255 tasks, the
scheduler overhead is less than 0.4%. This is a 90%
reduction in scheduler overhead as compared to the
software implementation. Most of the scheduling overhead
is eliminated by the hardware scheduler, as the time tick
processing and a majority of the scheduling functionality is
migrated to hardware. A call to the software scheduler is
now replaced by a custom instruction call to obtain the next
task for execution or to preempt the current task. The
overhead of managing the task queues in software is
removed, as the scheduler runs in parallel to the processor
and hardware priority queues are used to accelerate task
queue management. The time tick processing overhead is
reduced considerably as the software interrupt service
routine just needs to execute a single instruction to check
the availability of a higher priority task in the hardware
scheduler.

Figure 14 Performance of the software scheduler compared with hardware scheduler for task sizes less than or equal to 255,
(a) software scheduler (b) hardware scheduler (see online version for colours)

(a) (b)

 Hardware-software architecture for priority queue management in real-time and embedded systems 331

Figure 15 Performance of software scheduler compared with hybrid scheduler for task sizes greater than 255, (a) software scheduler
(b) hardware scheduler (see online version for colours)

(a) (b)

Figure 16 Variation in execution times of software and hardware scheduler, (a) software scheduler (b) hardware scheduler
(see online version for colours)

(a) (b)

Once the number of tasks exceeds 255, our scheduler
executes in hybrid mode where the scheduling algorithm
runs in software and queue operations are accelerated using
our hybrid priority queues. The switching between hardware
and hybrid scheduler mode is quick and has little or no
overhead in part due to the hardware queues being memory
mapped. The overhead of the scheduler in hybrid mode is
50% less than the software scheduler overhead as seen in
Figure 15.

5.2.2 Predictability

The predictability of the scheduler can be measured as the
variation in the execution time of a single call to the
scheduler. The variation in execution times of the hardware
and software scheduler is shown in Figure 16. The
difference between the best case and worst case execution
time of the software scheduler is 50 times larger then the
hardware implementation as shown in Figure 16. This
variation for the software implementation is due to system
factors such as changes in task-set composition, cache

misses, etc. The processing time of the software priority
queues (task queues) varies, as it depends on the current
queue size and task parameters. These variations can make
the scheduler a significant source of non-determinism in
real-time systems. Since the system must be designed for
worst case behaviour to ensure task deadlines are met,
increases in execution time variation reduces CPU task
utilisation (i.e., CPU becomes underutilised). On the other
hand, the execution times of the hardware scheduler show
more deterministic behaviour with very little variation.
Migrating time-tick processing to hardware and the use of
hardware accelerated priority queues results in tighter
worst-case execution time bounds for the scheduler. This in
turn leads to higher CPU task utilisation. Figure 17 shows
the variation in execution time of the hybrid scheduler in
comparison with the software scheduler. The use of hybrid
priority queues in the software scheduler reduces the
variation in the scheduler execution time by more than 50%
as shown in Figure 17.

332 N.G.C. Kumar et al.

Figure 17 Variation in execution times of software and hybrid scheduler, a) software scheduler (b) hardware scheduler
(see online version for colours)

(a) (b)

6 Related work

6.1 Hardware priority queues

Many hardware priority queue architectures have been
implemented in the past, most of them in the realm of
real-time networks for packet scheduling (Moon et al.,
1997; Bhagwan and Lin, 2000; Ioannou and Katevenis,
2007). Moon et al. (1997) compared four scalable priority
queue architectures: first-in-first-out, binary tree, shift
registers and systolic array-based. The shift-register
architecture suffers from bus loading, as new tasks must be
broadcasted to all the queue cells. The systolic array
architecture overcomes the problem of bus loading at the
cost of doubling hardware storage requirements. The
hardware complexity for both the shift register and systolic
array architecture increases linearly with the number of
elements, as each cell requires a separate comparator. This
makes these architectures expensive to scale in terms of
hardware resources.

Bhagwan and Lin (2000) proposed a new pipelined
priority queue architecture based on p-heap (a new data
structure similar to binary heap). A pipelined heap manager
was proposed in Ioannou and Katevenis (2007) to pipeline
conventional heap data structure operations. Both of these
pipelined implementations of a priority queue are scalable
and are designed to achieve high throughput, but at the
expense of increased hardware complexity.

The size of the priority queues discussed above is
limited by the availability of on-chip memory. A hybrid
priority queue system (HPQS) was proposed in Zhuang and
Pande (2006), where both SRAM and DRAM was used to
store large priority queues used in high speed network
devices. A java-based hardware-software priority queue
was proposed in Chandra and Sinnen (2010), where a
shift-register-based priority queue (Moon et al., 1997) was
extended by appending a software binary heap. Bloom et al.
(2012) presented an exception-based mechanism for
handling overflows in hardware priority queue, where
additional data is moved to secondary storage by the
exception handler.

6.2 Hardware schedulers

Several architectures (Adomat et al., 1996; Burleson et al.,
1999; Saez et al., 1999; Kuacharoen et al., 2003;
Gupta et al., 2010; Kohout et al., 2003) have been proposed
to improve the performance of schedulers using hardware
accelerators. Most schedulers implement some kind of
priority-based scheduling algorithm that requires a priority
queue to sort the tasks based on their priority. A real time
kernel called FASTHARD has been implemented in
hardware (Adomat et al., 1996). The scheduler of
FASTHARD can handle 256 tasks and eight priority levels.
The Spring scheduling coprocessor (Burleson et al., 1999)
was built to accelerate scheduling algorithms used in the
Spring kernel (Stankovic and Ramamritham, 1991), which
was used to perform feasibility analysis of the schedule.
Kuacharoen et al. (2003) implemented a configurable
hardware scheduler that provided support for three
scheduling disciplines, configurable during runtime. A slack
stealing scheduling algorithm was implemented in hardware
(Saez et al., 1999) to support scheduling of tasks (periodic
and aperiodic) and to reduce scheduling overhead. Nakano
et al. (1995) implemented most of the/xITRON kernel
functionality including tasks scheduling in a co-processor
called STRON-1 which reduced the kernel overhead. A
hardware scheduler for multiprocessor system on chip is
presented in Gupta et al. (2010), which implements the Pfair
scheduling algorithm. A real time task manager (RTM) that
implements scheduling, time management, and event
management in hardware is presented in Kohout et al.
(2003). The RTM supports static priority-based scheduling
and is implemented as an on-chip peripheral that
communicates with the processor though a memory mapped
interface. The SERRA run-time scheduler synthesis
and analysis tool was presented in Mooney and
Micheli (1997). The tool automatically generated a
run-time hardware-software scheduler from system level
specification. A hardware-software kernel was presented in
Morton and Loucks (2004), which implemented a
scheduling co-processor running EDF scheduling algorithm.

 Hardware-software architecture for priority queue management in real-time and embedded systems 333

A hardware real-time scheduler coprocessor (HRTSC)
architecture for NIOS II processor was described in
Varela et al. (2012), which could be configured to run any
priority-based scheduling discipline.

The hardware priority queues described above use
on-chip memory to store data, which limits the size of the
queue due to resource constraints of the device. In our
hybrid priority queue architecture, the hardware priority
queue can be extended into off-chip memory and managed
in both hardware and software, when the queue size exceeds
hardware limits. The priority queue, when managed in
hardware, supports constant time enqueue operations and
dequeue operations in O(log n) time. The hardware
utilisation of the our priority queue increases
logarithmically with the queue size and avoids complex
pipelining logic.

One of the limitations of the hardware schedulers
described above is that, once deployed, they can only
support a fixed number of tasks. Our hybrid scheduler
architecture overcomes this limitation by switching between
hardware and software modes of operation depending on the
number of tasks in the system. The transitions between
hardware and software is fast and has low overhead. The
hybrid priority queue is used as a part of our real-time
scheduler to improve performance and timing predictability.

7 Conclusions and future work

A new hybrid priority queue architecture has been
implemented, which can be managed in hardware and/or
software. The priority queue when managed in hardware
supports enqueue and peek operations in O(1) time, returns
the top-priority element in O(1) time, and completes a
dequeue operation in O(log n) time. The design enables
quick and low overhead transition between hardware and
software management. We utilise hardware logic to enhance
the performance of queue operations even when managing
the priority queue in software. As an application of the
proposed priority queue architecture, a scalable hybrid
scheduler is implemented that supports 255 tasks in
hardware mode and up to an arbitrarily large number of
tasks in hybrid mode. The scheduler when managed in
hardware, showed up to 90% reduction in scheduler
overhead when compared to the software scheduler. Our
results show that the hardware scheduler has 98% less
variation in execution time when compared to the software
scheduler, thus giving more predictable execution times,
which is necessary in high-performance real time systems.

Avenues of future work include,

1 reducing the rate of performance degradation as queue
overflows into software,

2 evaluating the use of our hybrid priority queue in
discrete event simulation and network optimisation
algorithms

3 integrating our hybrid scheduler with Real-time Linux
and characterising the scheduler performance.

Acknowledgements

This work is supported in part by the National Science
Foundation (NSF) under award CNS-1060337, and by the
Air Force Office of Scientific Research (AFOSR) under
award FA9550-11-1-0343.

References
Adomat, J., Furunas, J., Lindh, L. and Starner, J. (1996) ‘Real-time

kernel in hardware RTU: a step towards deterministic and
high-performance real-time systems’, in Real-Time Systems,
Proceedings of the Eighth Euromicro Workshop on,
pp.164–168.

Bhagwan, R. and Lin, B. (2000) ‘Fast and scalable priority queue
architecture for high-speed network switches’, in INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, Proceedings,
Vol. 2, pp.538–547.

Bloom, G., Parmer, G., Narahari, B. and Simha, R. (2012) ‘Shared
hardware data structures for hard real-time systems’,
in Proceedings of the tenth ACM International Conference on
Embedded Software, EMSOFT ‘12, pp.133–142, ACM, New
York, NY, USA.

Bumiller, E. and Shanker, T. (2011) ‘War evolves with drones,
some tiny as bugs’ [online]
http://www.nytimes.com/2011/06/20/world/20drones.html
(accessed February 2014).

Burleson, W., Ko, J., Niehaus, D., Ramamritham, K.,
Stankovic, J., Wallace, G. and Weems, C. (1999) ‘The spring
scheduling coprocessor: a scheduling accelerator’, Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
Vol. 7, No. 1, pp.38–47.

Chandra, R. and Sinnen, O. (2010) ‘Improving application
performance with hardware data structures’, in Parallel
Distributed Processing, Workshops and PhD Forum
(IPDPSW), IEEE International Symposium on, pp.1–4.

DARPA (2011) ‘Nano air vehicle (NAV)’ [online]
http://www.darpa.mil/NewsEvents/Releases/2011/11/24.aspx
(accessed February 2014).

Eberle, H., Gura, N., Shantz, S.C. and Gupta, V. (2008)
‘A cryptographic processor for arbitrary elliptic curves over
gf (2m)’, International Journal of Embedded Systems, Vol. 3,
No. 4, pp.241–255.

Grossman, L., Brock-Abraham, C., Carbone, N., Dodds, E.,
Kluger, J., Park, A., Rawlings, N., Suddath, C., Sun, F.,
Thompson, M., Walsh, B. and Webley, K. (2011) ‘The 50
best inventions’, Time Magazine.

Gupta, N., Mandal, S., Malave, J., Mandal, A. and Mahapatra, R.
(2010) ‘A hardware scheduler for real time multiprocessor
system on chip’, in VLSI Design, VLSID ‘10, 23rd
International Conference on, pp.264–269.

Ioannou, A. and Katevenis, M. (2007) ‘Pipelined heap (priority
queue) management for advanced scheduling in high-speed
networks’, Networking, IEEE/ACM Transactions on, Vol. 15,
No. 2, pp.450–461.

ITRS (2009) ‘The International Technology Roadmap for
Semiconductors (ITRS)’, Lithography [online]
http://www.itrs.net/ (accessed February 2014).

Jones, D.W. (1986) ‘An empirical comparison of priority-queue
and event-set implementations’, Commun. ACM, Vo. 29,
No. 4, pp.300–311.

334 N.G.C. Kumar et al.

Kohout, P., Ganesh, B. and Jacob, B. (2003) ‘Hardware support
for realtime operating systems’, in Hardware/Software
Codesign and System Synthesis, First IEEE/ACM/IFIP
International Conference on, pp.45–51.

Kuacharoen, P., Shalan, M.A. and Mooney III, V.J. (2003)
‘A configurable hardware scheduler for real-time systems’,
in Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms,
pp.96–101, CSREA Press.

Liu, C. and Layland, J. (1973) ‘Scheduling algorithms for
multiprogramming in a hard-real-time environment’, Journal
of the ACM (JACM), January, Vol. 20, No. 1, pp.46–61.

Moon, S-W., Shin, K. and Rexford, J. (1997) ‘Scalable hardware
priority queue architectures for high-speed packet switches’,
in Real-Time Technology and Applications Symposium,
Proceedings, Third IEEE, pp.203–212.

Mooney, V.J. and Micheli, G.D. (1997) Hardware/Software
Co-design of Run-time Schedulers for Real-time Systems,
Technical report, Stanford, CA, USA.

Morton, A. and Loucks, W.M. (2004) ‘A hardware/software kernel
for system on chip designs’, in Proceedings of the 2004 ACM
Symposium on Applied Computing, SAC ‘04, pp.869–875,
ACM, New York, NY, USA.

Muller, M., Klockner, J., Gushchina, I., Pacholik, A., Fengler, W.
and Amthor, A. (2013) ‘Performance evaluation of
platform-specific implementations of numerically complex
control designs for nano-positioning applications’,
International Journal of Embedded Systems, Vol. 5, No. 1,
pp.95–105.

Nakano, T., Utama, A., Itabashi, M., Shiomi, A. and Imai, M.
(1995) ‘Hardware implementation of a real-time operating
system’, in TRON Project International Symposium,
Proceedings of the 12th, pp.34–42.

Ors, B., Batina, L., Preneel, B. and Vandewalle, J. (2008)
‘Hardware implementation of an elliptic curve processor over
gf (p) with montgomery modular multiplier’, International
Journal of Embedded Systems, Vol. 3, No. 4, pp.229–240.

Park, T.R., Park, J.H. and Kwon, W.H. (2001) ‘Reducing OS
overhead for real-time industrial controllers with adjustable
timer resolution’, in Industrial Electronics, ISIE, IEEE
International Symposium on, Vol. 1, pp.369–374.

Rahmouni, K., Chabanet, S., Lambelin, N. and Petrot, F. (2013)
‘Design of a medium voltage protection device using system
simulation approaches: a case study’, International Journal of
Embedded Systems, Vol. 5, No. 1, pp.53–66.

Ronngren, R. and Ayani, R. (1997) ‘A comparative study of
parallel and sequential priority queue algorithms’, ACM
Trans. Model. Comput. Simul., Vol. 7, No. 2, pp.157–209.

Ronngren, R., Riboe, J. and Ayani, R. (1991) ‘Lazy queue:
an efficient implementation of the pending-event set’,
in Proceedings of the 24th annual symposium on Simulation,
ANSS ‘91, pp.194–204, IEEE Computer Society Press,
Los Alamitos, CA, USA.

Saez, S., Vila, J., Crespo, A. and Garcia, A. (1999) ‘A hardware
scheduler for complex real-time systems’, in Industrial
Electronics, ISIE ‘99, Proceedings of the IEEE International
Symposium on, Vol. 1, pp.43–48.

Stankovic, J. and Ramamritham, K. (1991) ‘The spring kernel:
a new paradigm for real-time systems’, Software, IEEE,
Vol. 8, No. 3, pp.62–72.

Varela, M., Cayssials, R., Ferro, E. and Boemo, E. (2012)
‘Real-time scheduling coprocessor for NIOS II processor’,
in Programmable Logic (SPL), VIII Southern Conference on,
pp.1–6.

Vaucher, J.G. and Duval, P. (1975) ‘A comparison of simulation
event list algorithms’, Commun. ACM, Vol. 18, No. 4,
pp.223–230.

Zhuang, X. and Pande, S. (2006) ‘A scalable priority
queue architecture for high speed network processing’,
in INFOCOM, 25th IEEE International Conference on
Computer Communications. Proceedings, pp.1–12.

