

Electronics 2015, 4, 1062-1089; doi:10.3390/electronics4041062

electronics
ISSN 2079-9292

www.mdpi.com/journal/electronics

Article

Hardware/Software Co-Design of a Traffic Sign Recognition

System Using Zynq FPGAs

Yan Han, Kushal Virupakshappa, Esdras Vitor Silva Pinto and Erdal Oruklu *

Department of Electrical and Computer Engineering, Illinois Institute of Technology,

3301 South Dearborn Street, Chicago, IL 60616, USA; E-Mails: yhan30@ hawk.iit.edu (Y.H.);

kvirupak@hawk.iit.edu (K.V.); evitorsi@hawk.iit.edu (E.V.S.P.)

* Author to whom correspondence should be addressed; E-Mail: oruklu@iit.edu;

Tel.: +1-312-567-8814; Fax: +1-312-567-8976.

Academic Editor: Ignacio Bravo-Muñoz

Received: 31 August 2015 / Accepted: 26 November 2015 / Published: 4 December 2015

Abstract: Traffic sign recognition (TSR), taken as an important component of an intelligent

vehicle system, has been an emerging research topic in recent years. In this paper, a traffic

sign detection system based on color segmentation, speeded-up robust features (SURF)

detection and the k-nearest neighbor classifier is introduced. The proposed system benefits

from the SURF detection algorithm, which achieves invariance to rotated, skewed and

occluded signs. In addition to the accuracy and robustness issues, a TSR system should target

a real-time implementation on an embedded system. Therefore, a hardware/software co-design

architecture for a Zynq-7000 FPGA is presented as a major objective of this work. The sign

detection operations are accelerated by programmable hardware logic that searches the

potential candidates for sign classification. Sign recognition and classification uses a feature

extraction and matching algorithm, which is implemented as a software component that runs

on the embedded ARM CPU.

Keywords: traffic sign recognition; FPGA; SURF detector; hardware/software co-design

1. Introduction

Emerging technologies, such as vehicle-to-vehicle communications (V2V) [1], in-car cellular (online)

connectivity [2] and increased computational prowess of embedded processors, are heralding a revolutionary

OPEN ACCESS

Electronics 2015, 4 1063

change in car design and driver assistance systems. These technologies will play a key role in the

development of self-driving cars in the near future [3,4]. A key component of advanced driver assistance

systems is traffic sign recognition (TSR) that enables the car to recognize the road signs in real-world

environments. Successful detection and recognition of traffic signs can be used to alert the driver

and/or to facilitate autonomous driving operations. The main challenge for robust detection performance

comes from the complexity of the environment, such as lighting conditions, weather conditions, similar

color background and occlusions. A reliable and robust TSR system that can overcome those

cases/circumstances should be considered as a priority. Besides reliability, real-time operation is another

challenge for the TSR system. A system that can provide sign information even at high traveling speeds

is necessary for driver assistance systems.

In this work, a new TSR algorithm flow is proposed, which performs exceptionally robustly against

environmental challenges, such as partially-obscured, rotated and skewed signs. Another critical

component is the embedded system implementation of the algorithm on a programmable logic device

that can enable real-time operation. The proposed work is based on earlier research [5,6], which

introduced a programmable hardware platform for TSR. This study shares the sign detection steps, but

introduces a new sign recognition algorithm based on feature extraction and classification steps and its

corresponding hardware implementation.

In general, TSR systems are comprised of two parts: sign detection and sign recognition/classification.

Many approaches for sign detection are based on color space information. In [7], a summary is given for

color space threshold methods, including the RGB normalized threshold [8], the hue saturation

threshold [9], the hue saturation enhancement threshold [10] and the space threshold [11]. For sign

recognition [12], several feature extraction methods have been proposed, including Canny edge

detection [13], scale invariance feature (SIFT) [14] and, more recently, speeded-up robust feature

(SURF) [15]. HOG (histogram of oriented gradients) can also be used as features, as shown in [16,17].

Typically, features are extracted for the subsequent machine learning stage, which is used for the sign

classification. Support vector machine (SVM) [18] and neutral networks [19] are popular classifiers

based on such techniques.

In recent years, a great variety of hardware solutions for real-time TSR has been proposed. These

include conventional (general purpose) computers [20], custom ASIC (application-specific integrated

circuit) chips [21], field programmable gate arrays (FPGAs) [22–25], digital signal processors

(DSPs) [26] and also graphic processing units [27]. Although it is difficult to make a direct comparison

due to differences in the TSR algorithms employed, the following section discusses the motivation and

outcomes of these hardware architectures with respect to the proposed hardware/software solution.

In [20], a software-based solution running on a Linux system with a 2.4-GHz dual core CPU is

presented. The algorithm implements color processing and feature matching and is shown to have 95%

accuracy. However, their traffic sign set is limited to only 20 signs, and the PC platform is not an

embedded system that can be integrated into a car. In [21], a low power 0.13-μm ASIC chip has been

presented for traffic sign detection, incorporating an image enhancement preprocessor and a sign

recognition preprocessor. The image enhancement preprocessor uses the MSR (multi-scale retinex)

algorithm, providing a robust image, adaptable to light and dark conditions. It uses neural-fuzzy logic to

control the parameters of the MSR algorithm, and the recognition processor uses a support vector search

engine for classification. Although the chip performs well, it is considered to be a very costly solution

Electronics 2015, 4 1064

due to the inflexibility of the ASIC platform for any post-silicon changes. FPGAs, on the other hand,

provide unlimited reconfigurability as a hardware platform, and they are increasingly popular choices

for TSR implementations. In [22], a SURF detector has been implemented on Kintex-7 FPGA, which is

claimed to achieve a frame rate at 60 fps at 800 × 600 resolution. However, no information regarding

the traffic sign recognition algorithm or relevant detection performance are given in the paper.

The architecture given in [23] uses HOG features and the SVM classifier. The classification accuracy

is 93.77%. However, the absence of any preprocessing step (sign detection) in the algorithm makes it

difficult to recognize a potential sign in a raw image, and the effective accuracy is lower. Another FPGA

architecture given in [24] uses a multi-core SoC implementation, targeting a latency of less than 600 ms

(maximum latency for a car traveling at a speed of 180 km/h). Specifically, a Gaisler/Pender Electronics

FPGA board, GR-CPCI-XC4V [28], is used for hosting a dual core LEON-3 processor and realizing a

dedicated hardware accelerator for the support vector machine kernel used in the TSR algorithms. This

is a very expensive prototype board and not feasible for production purposes. In [25], a TSR system is

implemented on a Spartan-6-FPGA and includes color-based sign detection and feature-based

classification steps, similar to our work, but their system is only capable of detecting speed limit signs.

Many industry TSR solutions, such as cars manufactured by BMW and Mercedes, are also limited to

speed limit signs [29]. In [26], an automated sign detection algorithm has been implemented using a TI

OMAP L138 DSP chip. The DSP solution is shown to achieve an execution time of 300 ms for both

detection and recognition parts. However, the recognition part is based on template matching, which

would generally fail for tilted, rotated and partially-obscured traffic signs, unlike the feature matching

algorithm in our proposed system. Finally, a GPU (graphical processor unit)-based solution is proposed

in [27]. At the software level, the authors have used parallel processing to improve the efficiency of

computing. An average frame rate of 21 fps is achieved by the GPU (~50-ms latency), which presents a

good alternative to FPGAs due to the programmability of GPUs, but generally, the cost and power

consumption of GPUs are very high.

The TSR system presented in this work is unique due to a balanced approach in the software and

hardware components. TSR algorithm has robust recognition performance (i.e., tolerates rotated, tilted,

shifted and even obscured signs); it supports all traffic signs (not just speed limit signs); it can be easily

expanded to different regional traffic sign sets (belonging to different countries or states) by training;

and it is computationally efficient. The target hardware platform, the Zynq FPGA, is a low cost, low

power and flexible system that provides fast development due to embedded ARM processor cores and

the reconfigurable logic blocks. It can also be integrated into automotive embedded systems.

The rest of the paper is organized as follows: In Section 2, color-based sign detection is described,

and the SURF detection algorithm is introduced. New feature extraction methods are explained.

Section 3 discusses the FPGA platform and the system components. Finally, experimental results for

evaluating the detection accuracy are shown in Section 4, and hardware performance results are given.

2. Algorithm Overview

The task of traffic sign recognition can be divided into two sub-tasks of detection and classification.

Detection is the response of finding the region of interest that could contain a traffic sign. Classification

takes the challenge of identifying if these candidates are truly traffic signs and classifying them.

Electronics 2015, 4 1065

Figure 1 presents the proposed algorithm used for sign detection and classification. The main goal of

this work is to design a fast, robust and reliable TSR system. To overcome the challenges mentioned

above, the algorithms are chosen carefully. The presentation of the image is transferred from the RGB

space to the hue/saturation/intensity space to achieve lighting invariance. To make the system invariant

to rotation and skew, the SURF detector is adopted to extract the feature for matching. To achieve

real-time sign recognition, an FPGA-based implementation is utilized in order to map the entire

algorithm into hardware acceleration. As shown in Figure 1, the algorithms implemented as hardware

acceleration include hue detection, morphological filter, labeling and scaling, while feature extraction

and nearest neighbor search are done on an embedded CPU core.

Figure 1. System flowchart for the proposed traffic sign recognition (TSR) algorithm.

The green section (left) highlights detection and classification operations executed on an

embedded system (FPGA). The blue section (right) shows the training steps executed on

a PC.

The original input image is transferred from the RGB domain to the HSI (hue, saturation and intensity)

domain. By mapping the values with the hue color wheel in HSI, pixels can be categorized as a particular

color, such as red or yellow. Then, morphological filters (opening and closing steps) are applied, which

are used to eliminate the noise from the single or small group of red pixels. The rest of the positive pixel

groupings are labeled as the potential signs. The labeling process identifies a square block for each and

every pixel grouping in the image. The labeled pixel groupings are candidates for possible traffic signs.

Among these candidates, most of them are too small, that they may not contain enough information for

candidate matching. Hence, these non-feasible candidates need to be filtered out by calculating their

height and width. Only those candidates that contain enough resolution are considered as good

candidates. The subsequent steps deal with the second part of the TSR algorithm: the sign classification

part. The possible traffic sign candidates are scaled into a certain resolution, and features are extracted

by the SURF detector. These features are used to perform nearest neighbor search (or other machine

Electronics 2015, 4 1066

learning algorithms) with the training database for classification. If the matching condition is satisfied,

it will be classified as the equivalent traffic sign. The algorithms mentioned above are implemented on

a Xilinx FPGA board. An example of the off board process required to prepare the database for sign

classification is shown in Figure 1. Training images are captured for feature extraction. To accelerate

the searching speed, the features are constructed into a k-means tree structure and stored in the board.

The following sections provide more details about the algorithms.

2.1. Color-Based Segmentation

Sign detection is primarily finding the region of interesting (ROI) that may contain signs. One of the

most popular methods is color-based segmentation. A traffic sign is usually designed with a single

background color, e.g., red, yellow or blue, which can be easily distinguished from the environment.

Images are usually displayed in the RGB color model, in which red, green and blue light are combined

together to reproduce a broad array of colors. RGB is very useful when displaying colors and widely

used in our input/output devices, like cameras, scanners and color TV. Using RGB directly is considered

as the simplest way for color segmentation. However, the three color components used to present red,

green and blue pixels are highly correlated and also easily affected by illumination conditions. The same

color, under different saturation levels or light, may cause an almost random variance of RGB values.

2.1.1. Color Detection

In this paper, color-based segmentation in the HSI space is taken. HSI represents a pixel by its hue,

saturation and intensity. The hue component describes the color itself in the form of an angle

between [0, 360] degrees. Zero degrees means red; 120 means green; 240 means blue; 60 degrees is

yellow; 300 degrees is magenta. The saturation component signals how much the color is polluted with

white color. The range of the S component is [0, 1], if the RGB value has been normalized to [0, 1]. The

Intensity range is between [0, 1], and zero means black and one white, if the RGB value has been

normalized to [0, 1].

Given an image in RGB format, the H component of each pixel is obtained using the equation [30]: = ≤360° − ≥ (1)

with: = 	 cos (−) + (−)(−) + (−)(−) (2)

A fast version is given by [31]:

= 	
0, = =(−)60°(, ,) − (, ,) 360°, ≥ ,(−)60°(, ,) − (, ,) + 120°, ≥ ,(−)60°(, ,) − (, ,) + 240°, ≥ ,

 (3)

Electronics 2015, 4 1067

The saturation and intensity can be calculated by equation [32]: = 1 − 3(+ +) min(, ,) (4)= (+ +) (5)

Once the conversion is made, the hue values for each pixel can be used for detection. Detection is the

process of identifying a pixel whose hue value falls in a certain range of the hue wheel. Then, the image

can be split into two components: pixels that have the color of interest and those that do not. A binary

image can be created by flagging each pixel as to whether it belongs to the color of interest or not.

According to [7], the red, yellow, blue and white colors can be detected by the following Equation (6)

with the thresholds listed in Table 1:

(,) =

, (,) ≤ ℎ(,) ≥ ℎ	, 	 (,) ≥ ℎ 		 	 (,) ≤ 	 ℎ	, 	 (,) ≥ ℎ	 	 (,) ≤ 	 ℎ 		 	 (,) ≥ 	 ℎ	ℎ , 	 (,) 	 ≤ ℎ 			 	 (,) ≥ 	 ℎ 	, ℎ

 (6)

Table 1. Color detection thresholds [7].

Color Threshold Values

Red ℎ 1 = 10, ℎ 2 = 300

Blue ℎ 1 = 190, ℎ 2 = 270

Yellow ℎ 1 = 20, ℎ 2 = 60, ℎ 3 = 150

White ℎ = 48, ℎ = 60

2.1.2. Morphological Filters

In the binary image created above, not all pixels are part of the traffic signs. Much spark noise

sometimes spreads on the image. Leaving them without any processing will only cause them to propagate

to the next level and harm the detection performance. Hence, the image has to be filtered. For this spark

noise, such as single dots or small pixel blobs, a morphological filter is an easy and efficient way to

remove those pixels and only leave larger candidates for the next step.

The basic idea of the binary morphological filter is to sweep an image with a window called the

structuring element (SE), which is a pre-defined small geometric window, such as a square or cross.

There are two basic operators: erosion and dilation. Other operators, such as opening and closing, are

sequential combinations of these two operators. Erosion is good enough to eliminate those small pixel

Electronics 2015, 4 1068

blobs, but it also trims other objects. Opening meets the requirement of eliminating the noise and

retaining the information of other objects. The remaining object(s) could be treated as a region of interest

that may contain a traffic sign. In this work, different structural elements have been tried, as shown in

Figure 2. Large structure elements may cause the loss of a potential sign; and multiple combinations of

erosion and dilation operations improve the results slightly. Therefore, the conclusion was that a single

opening operation (erosion and dilation) with a 3 × 3 square structure element provides the best results.

Figure 2. Experimental results of morphological filters with various combinations of

operations and structural elements. Clockwise from top left corner: original image; after

erosion and dilation steps using 3 × 3 pixel structural elements; after erosion and dilation

steps using 5 × 5 pixel structural elements; after erosion, dilation, dilation and erosion steps

using 3 × 3 pixel structural elements.

2.1.3. Labeling

Labeling is the process of scanning the image to detect pixel groupings. Pixels that share an edge or

a vertex are considered to be members of the same pixel grouping or “blob”. The remainder of this

section details the algorithm used to detect these blobs. The goal with labeling is to identify a bounding

box for each and every pixel grouping in the image. This will result in four parameters for every blob:

Xmin, Ymin, Xmax, Ymax. These are the two diagonal corners that define the bounding box. Simply put, the

labeling algorithm scans the image from bottom to top and left to right (raster order) keeping track of

Xmin, Ymin, Xmax and Ymax for all of the pixel groupings it encounters. During this scanning, only one row

plus two pixels are stored and labeled at a time in memory. Labels are assigned, and a table is built

containing the Xmin, Ymin, Xmax and Ymax values for each label. While scanning, a window of five pixels

is examined at a time: the current pixel and its four previously-visited neighbors. The window size is

chosen to be five due to the reduced memory usage (only one row plus two pixels). Each pixel initially

Electronics 2015, 4 1069

starts with a label of 0 (not labeled), and if the pixel is a foreground pixel, then a non-zero label is

assigned. The value of that label depends on the labels of its four neighbors.

Figure 3 shows all of the possible combinations for consideration when determining the label of the

current pixel. Each of these diagrams represents the current pixel, X, its immediate previously-scanned

neighbor, P, and its previously-scanned neighbors, 1, 2 and 3. Shaded pixels are active and labeled. There

are two special cases distinguished by the red and blue borders. The first special case, marked in red, is

the case in which none of the current pixel’s neighbors have a label. In this case, the current pixel receives

a new label. The second special case, marked in blue, is the case when the current pixel has multiple

neighbors that have labels, and these labels may not be the same. When different labels meet at the current

pixel, relabeling must happen, so that a single bounding box is generated to encompass what had been

two separate labels. The remaining case is the simplest: the current pixel has one or more previously-

labeled neighbors having the same label. In this case, the current pixel is simply labeled in kind.

Figure 3. Possible pixel configurations for the labeling process. X is the current pixel; P is

the immediate previous neighbor; 1, 2 and 3 are previously-scanned neighbors [5].

While pixel labels are being assigned, the bounding box for each label is being grown to encompass

all of the pixels that contain that label. This is done by maintaining a record table that holds Xmin, Ymin,

Xmax and Ymax for each label. The second special case described above is where the interesting portions

of this algorithm reside. When two labels meet, the algorithm is discovering for the first time that what

was previously thought to be two distinct blobs is indeed one. The records that have been maintained

thus far will need to be updated to include this information. One possible approach would be to rescan

all or portions of the image. However, given that doubling back to reliable portions of the image can be

a time-consuming step, it was chosen to solve this problem by using a level of indirection. Each pixel is

given a label. This label does not point to a record of Xmin, Ymin, Xmax and Ymax, but rather, to a record

number. This record number points to these actual bounding box parameters. In this way, when two

labels meet, both labels can be made to point to the same record that will now encompass what was once

two labeled groupings.

Consider the example in Figure 4. This is a simple 16 × 16 pixel image that contains two blobs that

should be labeled by the labeling algorithm. As the algorithm begins, as shown in Figure 4a, the first

three pixels encountered are labeled with new labels, as they have no labeled neighbors that have been

encountered yet. The pixels that are marked with red indicate this special case; a new label is used. The

Electronics 2015, 4 1070

record table to the right shows the values it would take at this point in the scan of the image. The next

two figures (Figure 4b,c) show what happens when Labels 1 and 2 meet and when Labels 2 and 3 meet.

The yellow box shows the window the algorithm is considering at that point in time. When two labels

meet, the label table is updated to point to the lower record entry. This entry is also updated, so that the

points it describes encompass all of the pixels of both labels. In this way, information is carried along.

Figure 4d shows the fully-labeled image with its completed record table. It can be seen that temporary

label numbers, 1, 2, 3, all point to the same record number and boundary box as expected, since they

belong to the same “blob”.

(a) (b)

(c) (d)

Figure 4. Labeling example. (a). Three new labels are created; (b) Labels 1 and 2 meet;

(c) Labels 2 and 3 meet; (d) completed labeling. Labels 1, 2 and 3 all point to the same record

number and boundary box.

Figure 5. Detection of potential traffic signs. Steps include RGB to HSI conversion,

denoising using morphological functions, labeling (grouping) of potential signs and

extraction of potential signs to be forwarded to the sign classifier process.

Electronics 2015, 4 1071

2.1.4. Segmentation and Detection of Traffic Sign Candidates

After the labeling step, multiple regions of interest (each label corresponds to an ROI) have been

identified and extracted, and they are sent to the sign classification part. This is accomplished by

mapping the associated binary image with the original image. The associated binary image is the result

of the original image processed by all steps mentioned above. Coordinates provide the location of the

ROI, and active binary pixels provide the exact pixels that need to be extracted from the original image.

Figure 5 shows the complete procedure for the detection of traffic sign candidates.

2.2. Sign Classification

After the sign detection step, several regions of interest are obtained that may potentially contain

a traffic sign. Next, these potential signs are searched in the traffic sign database in order to find a match.

In this work, a sign classification approach based on speeded-up robust features (SURF) [33] and the

nearest neighbor classifier is used. The SURF detector is used to detect and extract features from

hundreds of sign templates for training. The nearest neighbor classifier is used in the final step

for categorization.

2.2.1. Feature Extraction and SURF Detector

SURF is a robust local feature detector popular in computer vision applications. It is based on the

SIFT algorithm and is shown to be faster and more robust against SIFT. It uses the determinant of the

Hessian matrix to find interest points. For a continuous function of x and y, the value of the function at (,) is given by (,). The Hessian matrix H of function at (,) is:

(,) = (7)

where , and are second partial derivatives of function .

The determinant of this matrix is given as: det() = − (8)

This determinant is used to estimate whether the function f has extremum at (,). If the determinant

is positive, which means f changes with x and y in the same direction, then point (,) could be a local

extremum. If the determinant is negative, which means f changes with and in different directions,

then point (,) is not a local extremum.

For image processing, we can just replace the function (,) by a gray image (,). The second

order derivative can be replaced by the Laplacian. Since Laplacian is sensitive to noise, the SURF

detector combines the Gaussian filter for smoothing. Then, the second order derivative is replaced by

the Laplacian of Gaussians (LoG).

SURF features are scale invariant. To achieve this, scale-space is used to find the extrema across all

possible scales. Typically, this is achieved by creating an image pyramid with smaller down-sampled

Electronics 2015, 4 1072

images. For computational efficiency, instead of using an image pyramid, SURF increases the size of

the filter to achieve a similar effect. Based on the response of these filters, a scale-space is created.

A non-maximal suppression is performed in a 3 × 3 × 3 neighborhood to localize interesting points. The

interest point localized by the determinant of the Hessian matrix is compared against its 26 neighbors. If

it is greater than its surrounding pixels, it is selected as a maximum. After locating the interest points,

descriptors are created using the Harr wavelet response of the surrounding pixels. Each interest point is

assigned an orientation. If descriptor components of an interest point are extracted relative to this

orientation, it will be invariant to image rotation. In order to determine the orientation, Haar wavelet

responses in the x and y direction are calculated for a set of sampled points within a radius of 6σ at the

detected interest point, where σ refers to the scale at which the interest point was detected.

2.2.2. Dataset, Feature Selection and Training

The SURF detector is used to find a reliable extractor that could provide robust features to the traffic

sign database for machine learning. One problem for feature extraction is the difficulty of finding a

suitable database that contains enough examples of U.S. traffic signs sampled from a natural

environment. Collecting examples from different sources is not desirable, since various brands of camera

plus various image formats will make the database unreliable for testing and training. Therefore, we

created a sign database by taking hundreds of signs with different rotation and scale values. The numbers

of signs with different color categories are listed in Table 2. Some example images are shown in

Figure 6.

Figure 6. Example images from the traffic sign dataset.

Electronics 2015, 4 1073

Table 2. Distribution of primary colors in the sign dataset.

Sign Color Number of Signs

red 8

yellow 13

white 12

Figure 7 shows an example traffic sign, “BUMP”, with detected interest points. It can be seen that

some of the interest points are detected at the edge. In fact, there are as many interest points at the edge

as the interest points detected around the center. Center interest points usually contain more valuable

(distinguishing) information. Most signs in our database contain edges that contribute a large number of

redundant interest points to our database. Furthermore, using this database for training leads to

undesirable outcomes. To avoid the disturbance of those interest points around edges and to reduce the

number of interest points, we propose two feature selection methods for database creation. One method

is to setup a threshold of the determinant of the Hessian matrix at the interest point detection step. Recall

the determinant function, where and are second derivatives of function f in the x and y direction,

respectively. Both and will have larger values, if point(x, y) is of the corner. If the point(x, y) is

of the edge, then either or would like to have a larger value. Hence, the determinant of the points

around the corner is larger than the determinant of the points around the edge. Based on the experimental

results, a threshold value is selected. The interest points detected after thresholding (interest points at the

edges are ignored) are shown in Figure 8a.

Another method is to cut off the edges from training images and then extract only “good” matches

from the remainder image (see Figure 8b). For each interest point of the query image, we calculate its

distance with every interest point in the template image and find the minimum distance and second

minimum distance. Generally, a good match has both a smaller absolute distance and smaller relative

distance. Hence, a determinant of a good match is given by: (<) (<) (9)

where is the minimum distance, is the second minimum distance, is the relative threshold and

 is the absolute threshold. This equation was validated by experimental results. To balance the number

of interest points of each sign, and can be adjusted during the extraction processing.

Figure 7. Detected interesting points (features) on a traffic sign image for “BUMP”.

Electronics 2015, 4 1074

Figure 8. Proposed interest point reduction methods for database creation. (a) Method 1:

removal of interest points around the edge; (b) Method 2: select only “good” interest

point matches.

The similarity measure between two interest point p and q is based on Euclidean distance, which is

given by: = (−) + (−) + ⋯ + (−) (10)

Figure 9 shows the flowchart of the feature database creation. For Method 1, interest point matching

is not required. The determinant threshold, which can eliminate edge points, needs to be set before

executing the program. The program is designed to build only one type of traffic sign at a time. Once

the program starts, a single training image will be loaded, then features will be extracted and stored. The

program will extract features iteratively until all images (belonging to one traffic sign) are done. The

final step will be combining these features extracted from different images together and storing in a

single file “database”.

As described earlier, Method 2 uses only features from training images that have “good” matches on

the template image. Hence, an extra matching step is inserted to create the database for Method 2, as

shown in Figure 9b. Since features of a single image have been extracted in the previous process, the

program starts from read features form “sign_name_i ipts” files. The standard template will be treated

as the target sign, and features from other training images will try to find their match on this template

sign. The iteration will keep executing until all images are done. The final step is to store all matched

features in a single file. For both programs, the final database contains features extracted from

33 different types of traffic signs (set from Illinois, USA).

Electronics 2015, 4 1075

Figure 9. Flowchart for database creation. Repeat the steps for each traffic sign. Training

can be done with any number of test images. (a) Method 1 uses the determinant threshold to

eliminate edge interest points; (b) Method 2 determines the “good” matches to a template

image and only uses those interest points as features.

2.2.3. k-NN Classification

In pattern recognition applications, the k-nearest neighbor is a non-parametric method used for

classification and regression. In k-NN classification, the output is a class membership. An object is

classified by a majority vote of its neighbors, with the object being assigned to the class most common

among its k-nearest neighbors, If k = 1, then the object is simply assigned to the class of that single

nearest neighbor. It has been proven that the risk of 1-NN is never more than twice the value of the

Bayes risk [34].

The training examples are vectors in a multidimensional feature space, each with a class label. The

training phase of the algorithm consists of only storing the feature vectors and assigning labels of the

training samples. In the classification phase, k is a user-defined constant, and a query is classified by

assigning the label that is most frequent among the k training samples nearest to that query point.

Electronics 2015, 4 1076

The easiest way of searching the nearest samples is exhaustive search or brute force search. In this

algorithm, each query point is compared to all training points in the database. Searching the closest

matches to high-dimensional vectors in a large database will lead to a computationally-expensive

problem. Instead of using exhaustive search, our database is transferred into a k-means tree structure.

Once the tree is constructed, the searching problem becomes tracing a branch to find a leaf and

comparing with every points inside the leaf to find the nearest points. Again, the Euclidean distances are

calculated for the similarity measure. If the distance is smaller than the threshold, it will be considered

as a good match. The sign that contains the highest number of good matches will be treated as a potential

positive detection. If this number is greater than the threshold and it occupies 30% of the total number

of good matches, it will be considered as a positive detection, and the traffic sign is identified. The 30%

threshold is to avoid those noises that may have broad matches among different signs. Figure 10 shows

the sign classification flow with the database creation described above.

Figure 10. Sign classification based on SURF and nearest neighbor search.

3. FPGA Implementation

In this section, an FPGA-based TSR system implementation is described. The sign detection part

has been successfully realized as a custom IP core [5]. The sign classification based on template

matching and k-NN classification is designed as software code running on the ARM CPU embedded in

a Zynq FPGA.

3.1. Development Environment

The TSR system has to be able to provide the traffic sign information as a car approaches the sign.

Then, the execution time of the algorithm becomes an issue. Generally, the hardware implementation is

necessary due to timing requirements. However, some operations or some types of data may increase

Electronics 2015, 4 1077

the complexity of the hardware design. If possible, a compromise between hardware and software is

desirable. In this scheme, the software component is used to pre-process data and communicate with

hardware blocks. For example, MicroBlaze is an embedded soft core processor, optimized for

implementation on Xilinx FPGAs. It has advanced architecture options, like an AXI or PLB interface, a

memory management unit, instruction and data-side cache, a floating-point unit, and more. Figure 11

shows our earlier TSR design using the MicroBlaze soft core [5]. The MicroBlaze was initially used to

handle the input and output data streams, setup parameters for the image processing peripheral and

implement some portions of the image processing algorithm [5]. Since MicroBlaze is soft core, it has

vast flexibility. There are many options for configuring the soft core according to the performance and

resource utilization requirements. The key drawback of the MicroBlaze soft core system was the limited

clock frequency of the programmable logic. The RAM access during the application programming is

also inconvenient, which increases the complexity of development. To fill the market requiring more

powerful embedded system development tools, Xilinx released Xilinx Zynq-7000, which contains a dual

1-GHz ARM Cortex-A9 processor that comes with a high performance memory system. ZedBoard is a

complete development kit for designers using the Zynq-7000 All programmable SoC. As shown in

Figure 11 [5], this board includes all of the necessary interfaces and peripherals to enable a wide range

of applications.

Figure 11. System block diagram [5].

One of the key goals of this work is to develop an efficient combination of a software processing

system (C code running on CPU cores) and an FPGA logic for hardware acceleration and control.

Compared to the MicroBlaze CPU, the ZedBoard processing system, shown in Figure 12, runs much

faster, and it is not necessary to add and manage a RAM unit. It has 512 Mb DDR3 attached, which is

large enough for most of the applications. ZedBoard provides an efficient combination of a processing

system (software) and FPGA. The development of custom IP cores is more like a plug-and-play design. A

framework was designed based on this stimulus, as shown in Figure 13 [6]. Xilinx’s Embedded

Development Kit (EDK) was used to create this platform, which includes blue and red parts, as shown

in the figure. The processing system includes the ARM cores, which are responsible for running the

program on top. The red part is the interface AXI4 and its attached registers, the back-bone of the whole

Electronics 2015, 4 1078

system. It carries the responsibility of communications among the processing system, hardware

peripherals and PC. Registers attached to customer peripherals (once they are created) are software

accessible. This means parameters can be sent to the peripherals by writing simple codes to set these

registers. These registers could be classified as a control register, a status register, a data register and an

address register. The control register is used to initialize the peripheral. The data register is used to

transfer data, and the address register is used to set a proper IP buffer address for data register, which

means the data in the data register will be transferred into the IP buffer associated with the address

register. Overall, the interface is very intuitive. Since software-accessible register drivers will be

automatically generated, EDK has been used to create the custom IP. The debug window is like an HCI,

which is used to display the interaction of applications. The processing system handles the input and

output data. The system uses UART to build the connection to the PC. AXI4 interface is used to build

the connection between the CPU processing system and hardware peripherals. The proposed system was

implemented on a Xilinx ZedBoard as a HW/SW co-design.

Figure 12. ZedBoard and peripherals [35].

Figure 13. FPGA system framework (adapted from Han and Oruklu [6], with permission

from © 2014 IEEE).

Electronics 2015, 4 1079

3.2. Hardware Implementation

3.2.1. Hue Calculation and Detection: Hardware IP Core

Generally, the hardware has its advantage in processing data streams. Hence, the image is transferred

as a stream of pixels in RGB format. As described in the previous section, the image is converted into

the HSI color spectrum. The hue value represents the color; the saturation represents the purity of the

color; and intensity represents how dark that color is. Hence, only hue calculation should be good enough

to detect the color. Unfortunately, there is no such hue value for the white sign. In this situation,

saturation and intensity have to be calculated. Compared to the hue calculation, determining the

saturation and intensity is much easier. Figure 14 shows the implementation of hue calculation in the

hardware. The circuit takes in the RBG values and outputs hue values. The division step requires

17 clock cycles to fill the pipeline and generates the quotient every clock cycle. Hence, it is necessary to

introduce delay registers that allow the control signals, offsets and quotient to align.

Figure 14. Hue calculator logic.

According to Equation 2, the hue value should be a value between zero and 359. To simplify the

multiplication, 64 (a power of two) degrees are used as the multiplier, rather than multiplying by

60 degrees [31]. This resulted in a color wheel with a range between zero and 383. Furthermore, the red

color has a zero value in the original color wheel. To avoid the modulo calculation for red pixels, the

color wheel is rotated by 64 degrees. This can be achieved by implementing the offset according to the

following equation:

Offset = 256∙Bmax + 128∙Gmax + 64 (11)

3.2.2. Morphological Filtering: Hardware IP Core

Figure 15 shows the hardware implementation of morphological filters, which can be used for both

erosion and dilation. Single-bit registers are used to hold the pixels within the filter window, which is

Electronics 2015, 4 1080

also called a structural element. The enabled signal is attached to the output of each register to make the

structural elements programmable. The filter window is implemented as a 5 × 5 rectangle. Therefore,

it is not necessary to redesign the combination logic when the structural element changes. Further, the

duality relation between erosion and dilation enables both to be implemented with a single circuit.

A control signal E/_D is used to complement both input and output signals. This increases the flexibility

of the design and allows for reuse when different combinations of filters are needed. The center of the

window is the pixel under evaluation. Combinational logic compares the central pixel and its neighbors

to determine if the output pixel should be active or inactive. Given that the image arrives as a data stream,

a row buffer has to be attached to hold all of the pixels in a row. Therefore, when the filter window scans

the image, the pixels stored in the buffer can be piped to the filter. Since a 5 × 5 filter window is chosen,

four row buffers are required.

Figure 15. Morphological filter implementation.

According to experimental results, a structural element of a 3 × 3 square and a single open operation

gives the cleanest image, while not Hamming the traffic sign. This is based on the image with a resolution

of 320 × 240. If the resolution of the image increases, a larger structural element may be needed to

adapt to the changes.

3.2.3. Labeling: Hardware IP Core

Similar to the morphological filter process, labeling also requires a window to scan the binary images.

The five pixels in the window, as mentioned in Section 2, are the current pixel and its four previous visited

neighbors. A pixel buffer and a label buffer are required to hold pixels and labels, respectively.

Figure 16 shows the block diagram for the labeling circuit. The label and record update logic block

Electronics 2015, 4 1081

determine the labels for each pixel and update the label and record table. If the current pixel is active, a

label will be assigned to that pixel. It is determined by which case gets hit (see Figure 3).

Figure 16. Labeling implementation.

At the end of the labeling process, an acknowledgement will be received by the software part

indicating that the segmentation is done, and the labeling results are ready to be loaded.

3.2.4. Candidate Resizing: Embedded CPU Program

At this stage of the TSR algorithm, the boundaries of potential candidates have been extracted and

loaded by the ARM CPU for sign classification. Before executing the classification algorithm, the

candidates need to be further processed. A small box may not contain enough information for

classification, and a big box has no chance to be a traffic sign. Those candidates that are too small or big

could be easily removed by calculating the Xmax-Xmin and Ymax-Ymin. After this, only those candidates

with a proper size remain. Each candidate has to be scaled to a certain resolution based on the method

of classification. So far, two classification methods have been implemented on the ZedBoard. One

method is to directly match the template pixel by pixel. Another method is based on the nearest neighbor

classifier. For the template matching method, each candidate will be scaled to the same resolution as the

template and then compared to each template. For the nearest neighbor classifier, each candidate will be

scaled to 200 × 200 pixels, and then, features will be extracted. For both methods, the scaling algorithm

calculates the ratio between the original size of the candidate and the target resolution. A new memory

location is used as the storage location of the new resized candidate. The algorithm locates and scans the

candidate on the original image based on its boundaries and sets the pixels of the scaled candidate to be

active or inactive according to the calculated ratio.

Electronics 2015, 4 1082

3.3. Classification Implementation: Embedded CPU Program

The SURF detector has been implemented on many platforms, such as the OpenCV library and

MATLAB. However, our bare-metal system can only run pure C/C++ code plus basic C/C++ library.

Hence, OpenSURF [36], which is given in nearly pure C++ code, is adopted and converted to a C version

that can run on an ARM processor. The OpenSURF still uses the OpenCV library to load the image and

stores in Mat format, which is primarily used by the OpenCV function. In the C library, we only have

the array or matrix that can be used as the image container. During the implementation, it was found that

the matrix created by the “malloc” function does not work properly, which left “array” as the only choice.

All of the function calls or use of the Mat container have been transferred to proper ones. OpenSURF

also uses the OpenCV library to perform the last step in localizing the interest point, whereas our

implementation uses the Gaussian elimination algorithm.

For sign recognition, as described in Section 2, features are extracted from training images and stored

in a file. This database will be loaded to the ZedBoard before sign detection. To find the best matches in

the database, each feature calculates its Euclidean distance. Once the distance meets the condition,

a good match is counted. The sign that contains the highest number of good matches will be treated as

a potential positive classification.

4. Accuracy Analysis and Performance Results

4.1. Experimental Results

For initial accuracy performance analysis, experiments are carried out on a PC, using

Visual Studio 2010 with OpenCV library Version 2.49 and OpenSURF. Our image database includes

33 types of signs and thousands of test images in total. Experiments are categorized into three database

groups, Group 1, Group 2 and Group 3, depending on the feature selection and interest point reduction

method. In order to make a comparison, the images used for extracting interest points for each group are

the same.

For Group 1, No interest point reduction strategy is used.

For Group 2, feature selection Method 1 is used; no interest points around the edges.

For Group 3, feature selection Method 2 is used; only interest points that have a good match are used.

The accuracy results are listed in Table 3 and Figure 17. The accuracy results are represented

in two ways: (1) misclassification rate and (2) false classification rate. The misclassification (MC)

represents the signs that are detected in the sign detection stage, but neglected and not classified into any

category in the sign classification stage. False classification (FC) represents the signs that are detected

in the sign detection stage, but classified to the wrong category. Most of the false recognitions are caused

by blurry images (shown in Figure 18), which do not contain enough good features for matching. For

actual applications, false classification is more critical than misclassification. The camera may capture

dozens of frames per second; and most misclassified signs may be eventually correctly recognized.

On the other hand, FC errors cannot be recovered from. Considering that FC is more critical than MC,

both Group 2 and Group 3 databases have better results. The Group 3 database (generated using

Electronics 2015, 4 1083

Method 2) has the least FC. All groups perform robustly for rotated and skewed signs, as shown in

Figures 19 and 20, respectively.

Table 3. Accuracy analysis for SURF feature extraction and nearest neighbor search.

 Group 1 Database Group 2 Database Group 3 Database

Number of training images 231 231 231

Number of test images 1236 1237 1218

Misclassification (MC) 7.69% 5.74% 11.82%

False classification (FC) 3.80% 2.18% 0.99%

Figure 17. Performance of test images with 20% blurry images and 30% rotated images.

MC is misclassification; FC is false classification; and TF is total failure. Groups 1, 2 and 3

differ in their interest point selection for database creation.

Figure 18. Examples of blurry images.

Figure 19. Rotated sign examples.

Figure 20. Skewed sign examples.

If the blurry images are removed from the test images, the accuracy performance is greatly improved,

as shown in Figure 21. Group 3 still has the best FC. Group 2 has the best overall performance in

recognition. From the experiments, it was observed that signs with a similar layout have a higher false

classification rate, such as “lane merge right” and “lane merge left”. The speed limit sign has the highest

Electronics 2015, 4 1084

false classification rate. The speed limit signs for 30, 45 and 55 have similar layouts, except the number,

which leads to a significant mixed boundary between their features. The larger mixed boundary will

cause a higher false classification rate.

Figure 21. Performance of test images without blurred images. MC is misclassification; FC

is false classification; and TF is total failure. Groups 1, 2 and 3 differ in their interest point

selection for database creation.

4.2. Hardware Performance Results

Table 4 compares the execution time of our earlier TSR algorithm running on Virtex 5 and ZedBoard

platforms. This particular algorithm uses the same front end (HSI color space, morphological filters,

labeling and scaling steps) and implements a simple template matching based on Hausdorff distance

calculation, which is fast, but not very robust with respect to accuracy [5].

Table 4. Comparison of TSR algorithm performance running on Virtex 5 and Zynq FPGA platforms.

Algorithm Steps:
Execution Time:

MicroBlaze and IP Cores on Virtex 5 ARM CPU and IP Cores on Zynq

Custom IP peripheral core: (HSI conversion,

morphological filters, labeling)
114 ms 28.7 ms

Scaling and template matching

(Hausdorff distance)
663.3 ms 67.8 ms

Total Time 777 ms 96.5 ms

Next, the SURF-based feature extraction and matching algorithm is implemented on the ZedBoard

FPGA hardware. A user-friendly PC interface in C# is designed for controlling the ZedBoard (shown in

Figure 22). The terminal window presents all of the responses from the application, which displays the

same information as the SDK terminal. The debug window displays the execution times of the SURF

detector and search. Once the ZedBoard is initialized, the program running on the board loads the test

image and waits for the command to execute the SURF detector. The open image button displays the

image under test. Start SURF will trigger the ZedBoard to execute the SURF detector to extract features

for matching. The classification results and timing results are shown on the left.

Electronics 2015, 4 1085

Figure 22. Execution time for the (recognition phase only) “CROSSWALK” sign using

brute force matching.

Figure 22 shows an example of brute force searching based on the database that only contains 10

signs. The number of features stored in the database is around 1500. The average classification time,

which includes executing the SURF detector and brute force searching, is about three seconds.

Figure 23 shows the timing performance of k-means search, which contains the complete Group 3 dataset

that includes around 5000 features. As shown in the results, the matching time of k-means is much faster

(less than a second) than the brute force template match, even if the number of features stored in the

system is 3.3-times larger. Nevertheless, a 992-ms total execution time (shown in Table 5) cannot be

considered as a real-time operation speed for fast moving cars. Therefore, the execution time of the

SURF detector in particular needs to be improved by the hardware accelerator blocks instead of the

software implementation.

Figure 23. Execution time for the (recognition phase only) “CROSSWALK” sign using

k-means matching.

Electronics 2015, 4 1086

Table 5. Performance results for the proposed TSR algorithm.

Sign Detection (Hardware IP

Cores for HSI Conversion,

Morphological Filters, Labeling)

Sign Recognition and Classification

(Runs on ARM CPU)

SURF Feature Extractor k-NN Search

Execution Time 28.7 ms
892 ms 72 ms

964 ms

Total Time 992.7 ms

Figure 24 shows the resource utilization of the target Zynq FPGA platform. Due to the software-only

implementation of the SURF algorithm, only 30% of the logic slices are needed for the TSR hardware

IP blocks. It is evident that more hardware peripherals can be instantiated to accelerate the feature

extraction algorithm and achieving real-time operation.

Figure 24. FPGA hardware resource usage for the proposed TSR system.

5. Conclusions

In this paper, a new TSR system that combines the SURF feature extractor and nearest neighbor

classifier methods has been presented. The system shows robust detection performance even for rotated

or skewed signs. False classification rates can be reduced to less than 1%, which is very promising. The

proposed TSR system that combines hardware and software co-design is implemented on Xilinx’s

ZedBoard. An ARM CPU framework based on the AXI interconnect is developed for custom IP design

and testing. Overall, the system throughput is eight times faster compared to the authors’ previous design

based on the Virtex 5 FPGA, when considering both IP hardware execution and algorithms implemented

in software. The current execution time of 992 ms may not be sufficient for real-time operation (when a

fast moving car is considered); however, the FPGA resource usage is very low, and dedicated IP blocks

can be used to implement the SURF algorithm and improve the computation time. This would enable

real-time TSR. This hardware platform can be also expanded to include other driver assistance

technologies that may be necessary in autonomous cars, such as pedestrian detection and lane detection,

which utilize similar computer vision methods.

Electronics 2015, 4 1087

Acknowledgments

The authors would like to acknowledge the research grant and support from the Illinois Institute of

Technology, Armour College of Engineering, Program for Undergraduate Research Education (PURE).

Author Contributions

Yan Han was the lead developer and contributed to both the hardware and software development

of the TSR system. Kushal Virupakshappa was responsible for implementing the feature extraction and

k-NN algorithms. Esdras Vitor Silva Pinto contributed to the embedded C development for the ARM

SURF detector and created the PC-ZedBoard user interface. Erdal Oruklu supervised the entire project

and established the experimental testing procedure. All authors contributed to the manuscript preparation

and submission.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Vehicle-to-Vehicle (V2V) Communications for Safety. Available online: http://www.its.dot.gov/

safety/v2v_comm_safety.htm (accessed on 15 September 2015).

2. Uconnect systems. Available online: http://www.driveuconnect.com/features/wifi/ (accessed on

15 September 2015).

3. Google Self Driving Car Project. Available online: https://plus.google.com/

+GoogleSelfDrivingCars/ (accessed on 15 September 2015).

4. Audi Piloted Driving. Available online: http://www.audi.com/content/com/brand/en/vorsprung_

durch_technik/content/2014/10/piloted-driving.html (accessed on 15 September 2015).

5. Waite, S.; Oruklu, E. FPGA-Based Traffic Sign Recognition for Advanced Driver Assistance

Systems. Transp. Technol. 2012, 3, 1–16, doi:10.4236/jtts.2013.31001.

6. Han, Y.; Oruklu, E. Real-time traffic sign recognition based on Zynq FPGA and ARM SoCs.

In Proceedings of the IEEE International Conference Electro/Information Technology (EIT),

Milwaukee, WI, USA, 5–7 June 2014; pp. 373–376.

7. Gómez-Moreno, H.; Maldonado-Bascón, S.; Gil-Jiménez, P.; Lafuente-Arroyo, S. Goal Evaluation

of Segmentation Algorithms for Traffic Sign Recognition. IEEE Trans. Intell. Transp. Syst. 2010,

11, 917–930.

8. Kamada, H.; Naoi, S.; Gotoh, T. A compact navigation system using image processing and fuzzy

control. In Proceedings of the IEEE Southeastcon, New Orleans, LA, USA, 1–4 April 1990;

Volume 1, pp. 337–342.

9. Lafuente-Arroyo, S.; García-Díaz, P.; Acevedo-Rodríguez, F.J.; Gil-Jiménez, P.;

Maldonado-Bascón, S. Traffic sign classification invariant to rotations using support vector

machines. Adv. Concepts Intell. Vis. Syst. 2004, 8, 264–278.

Electronics 2015, 4 1088

10. De la Escalera, A.; Armingol, J.M.; Pastor, J.M.; Rodríguez, F.J. Visual sign information extraction

and identification by deformable models for intelligent vehicles. IEEE Trans. Intell. Transp. 2004,

5, 57–68.

11. Ohta, Y.; Kanade, T.; Sakai, T. Color information for region segmentation. Comput. Graph.

Image Process. 1980, 13, 222–241.

12. Møgelmose, A.; Trivedi, M.M.; Moeslund, T.B. Vision-Based Traffic Sign Detection and Analysis

for Intelligent Driver Assistance Systems: Perspectives and Survey. IEEE Trans. Intell. Transp. Syst.

2012, 13, 1484–1497.

13. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell.

1986, 6, 679–698.

14. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh

IEEE International Conference on Computer Vision, Corfu, Greece, 30 September–2 October 1999;

Volume 2, pp. 1150–1157.

15. Li, C.; Hu, Y.; Xiao, L.; Tian, L. Salient traffic sign recognition based on sparse representation of

visual perception. In Proceedings of the 2012 International Conference on Computer Vision in

Remote Sensing (CVRS), Xiamen, China, 16–18 December 2012; pp. 273–278.

16. Liang, M.; Yuan, M.; Hu, X.; Li, J.; Liu, H. Traffic sign detection by ROI extraction and histogram

features-based recognition. In Proceedings of the 2011 International Joint Conference on Neural

Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–8.

17. Wang, G.; Ren, G.; Wu, Z.; Zhao, Y.; Jiang, L. A robust, coarse-to-fine traffic sign detection

method. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN),

Dallas, TX, USA, 4–9 August 2013; pp. 1–5.

18. Min, K.-I.; Oh, J.-S.; Kim, B. Traffic sign extract and recognition on unmanned vehicle using

image processing based on support vector machine. In Proceedings of the 2011 11th

International Conference on Control, Automation and Systems (ICCAS), Gyeonggi-do, Korea,

26–29 October 2011; pp. 750–753.

19. Sermanet, P.; LeCun, Y. Traffic Sign Recognition with Multi-Scale Convolutional Networks.

In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose,

CA, USA, 31 July–5 August 2011; pp. 2809–2813.

20. Ren, F.; Huang, J.; Jiang, R.; Klette, R. General traffic sign recognition by feature matching. Image

and Vision Computing New Zealand, 2009. IVCNZ’09. In Proceedings of the 24th International

Conference, Willington, New Zealand, 23–25 November 2009; pp. 409–414.

21. Park, J.; Kwon, J.; Oh, J.; Lee, S.; Yoo, H.-J. A 92mW real-time traffic sign recognition system

with robust light and dark adaptation. In Proceedings of the Solid State Circuits Conference

(A-SSCC), 2011 IEEE Asian, Jeju, Korea, 14–16 Novermber 2011; pp. 397–400.

22. Zhao, J.; Zhu, S.; Huang, X. Real-time traffic sign detection using SURF features on FPGA.

In Proceedings of the High Performance Extreme Computing Conference (HPEC), 2013 IEEE,

Waltham, MA, USA, 10–12 September 2013; pp. 1–6.

23. Zhou, Y.; Chen, Z.; Huang, X. A pipeline architecture for traffic sign classification on an FPGA.

In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS),

Lisbon, Portugal, 24–27 May 2015; pp. 950–953.

Electronics 2015, 4 1089

24. Müller, M.; Braun, A.; Gerlach, J.; Rosenstiel, W.; Nienhuser, D.; Zollner, J.M.; Bringmann, O.

Design of an automotive traffic sign recognition system targeting a multi-core SoC implementation.

In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE),

Dresden, Germany, 8–12 March 2010; pp. 532–537.

25. Schwiegelshohn, F.; Gierke, L.; Hubner, M. FPGA based traffic sign detection for automotive

camera systems. In Proceedings of the 2015 10th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), Bremen, Germany, 29 June–1 July 2015;

pp. 1–6.

26. Phalguni, P.; Ganapathi, K.; Madumbu, V.; Rajendran, R.; David, S. Design and implementation

of an automatic traffic sign recognition system on TI OMAP-L138. In Proceedings of the 2013

IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa,

25–28 February 2013; pp. 1104–1109.

27. Chen, Z.; Huang, X.; Ni, Z.; He, H. A GPU-based real-time traffic sign detection and recognition

system. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Vehicles

and Transportation Systems (CIVTS), Orlando, FL, USA, 9–12 December 2014; pp. 1–5.

28. GR-CPCI-XC4V LEON Compact-PCI Development board. Available online:

http://www.gaisler.com/index.php/products/boards/gr-cpci-xc4v (accessed on 15 September 2015).

29. AutomotiveIT international: BMW has best traffic-sign recognition. Available online:

http://www.automotiveit.com/adac-bmw-has-best-traffic-sign-recognition/news/id-00819

(accessed on 15 September 2015).

30. Gonzalez, R.C.; Woods, R.E. Color Image Processing. In Digital Image Processing, 3rd ed.;

Pearson Education: Uttar Pradesh, India, 2008; pp. 394–456.

31. Bailey, D.G. Point Operations. In Design for Embedded Image Processing on FPGAs, 1st ed.;

John Siley & Sons (Asia) Pte Ltd.: Singapore, 2011; pp. 155–197.

32. Plataniotis, K.N.; Venetsanopoulos, A.N. Color Space. In Color Image Processing and

Applications, 2000th ed.; Springer: Singapore, 2000; pp. 1–45.

33. Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded up robust features. Comput. Vis. Image Underst.

2008, 110, 346–359.

34. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13,

21–27.

35. ZedBoard. Available online: http://www.xilinx.com/products/boards-and-kits/1-8dyf-11.html

(accessed on 15 September 2015).

36. Evans, C. Notes on the OpenSURF Library; University of Bristol: Bristol, UK, 2009.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

