
Hardware/Software Co-design of Public-Key

Cryptography for SSL Protocol Execution in
Embedded Systems

Manuel Koschuch1, Johann Großschädl2, Dan Page2, Philipp Grabher2,
Matthias Hudler1, and Michael Krüger1

1 FH Campus Wien – University of Applied Sciences,
Favoritenstraße 226, A–1100 Vienna, Austria

{manuel.koschuch,matthias.hudler,michael.krueger}@fh-campuswien.ac.at
2 University of Bristol, Department of Computer Science,

Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom
{johann,page,grabher}@cs.bris.ac.uk

Abstract. Modern mobile devices like cell phones or PDAs allow for a
level of network connectivity similar to that of standard PCs, making
access to the Internet possible from anywhere at anytime. Going along
with this evolution is an increasing demand for cryptographically secure
network connections with such resource-restricted devices. The Secure
Sockets Layer (SSL) protocol is the current de-facto standard for secure
communication over an insecure network like the Internet and provides
protection against eavesdropping, message forgery and replay attacks.
To achieve this, the SSL protocol employs a set of computation-intensive
cryptographic algorithms, in particular public-key algorithms, which can
result in unacceptably long delays on devices with modest processing
capabilities. In this paper we introduce a hardware/software co-design
approach for accelerating SSL protocol execution in resource-restricted
devices. The software part of our co-design consists of MatrixSSLTM, a
lightweight SSL implementation into which we integrated elliptic curve
cryptography (ECC) to speed up the public-key operations performed
during the SSL handshake. The hardware part comprises a SPARC V8
compliant processor core with instruction set extensions to support the
low-level arithmetic operations carried out in ECC. Our co-design exe-
cutes a full SSL handshake using an elliptic curve over a 192-bit prime
field in less than 300 msec when the SPARC processor is clocked at 20
MHz. A pure software implementation like OpenSSL is, depending on
the field type and order, up to a factor of 10 slower than our co-design
solution.

1 Introduction

The current de-facto standard for secure communication over an insecure, open
medium like the Internet is the Secure Sockets Layer (SSL) protocol [9] and
its successor, the Transport Layer Security (TLS) protocol [8,33]. Both use a
combination of public-key and secret-key cryptographic techniques to ensure
confidentiality, integrity and authenticity of communication between two parties

S. Qing, C.J. Mitchell, and G. Wang (Eds.): ICICS 2009, LNCS 5927, pp. 63–79, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 M. Koschuch et al.

(typically referred to as client and server). The SSL protocol is composed of two
layers and includes several sub-protocols. At the lower level is the SSL Record
Protocol, which specifies the format used to transmit data between client and
server (including encryption and integrity checking) [9]. It encapsulates various
higher-level protocols, one of which is the SSL Handshake Protocol. The main
tasks of the handshake protocol are the negotiation of a set of cryptographic
algorithms, the authentication of the server (and, optionally, of the client1), as
well as the establishment of a pre-master secret via asymmetric (i.e. public-key)
techniques [9]. Both the client and the server derive a master secret from this
pre-master secret, which is then used by the record protocol to generate shared
keys for symmetric encryption and message authentication [9]. The handshake
protocol, on the other hand, relies on services provided by the record protocol
to exchange messages between client and server.

The SSL/TLS protocol is algorithm-independent (or algorithm-agile) in the
sense that it supports different algorithms for one and the same cryptographic
operation, and allows the communicating parties to make a choice among them
[9]. At the beginning of the handshake phase, the client and the server negotiate
a cipher suite, which is a well-defined set of algorithms for authentication, key
agreement, symmetric encryption, and integrity checking. Both SSL and TLS
specify the use of RSA or DSA for authentication, and RSA or Diffie-Hellman
for key exchange. In 2006, the TLS protocol was revised to include ECDSA as
signature primitive and ECDH for key exchange [5]. The big benefit of Elliptic
Curve Cryptography (ECC) [19] over traditional public-key schemes operating
in Zn or Z

∗
p is its better security-per-bit ratio: A carefully chosen 160-bit ECC

cryptosystem attains a security level comparable to that of 1024-bit RSA. As
a consequence, public-key schemes based on elliptic curves over finite fields can
use significantly shorter keys compared to their “classical” counterparts. These
reduced key lengths translate directly into memory and bandwidth savings when
SSL handshakes are performed with one of the ECC-based cipher suites from
[5] instead of an RSA cipher suite. In addition, certain cryptographic operations
(e.g. generation of signatures, key exchange) can be executed much faster in an
elliptic curve group than in a multiplicative group like Z

∗
p.

The advent of the wireless Internet has created a strong demand for secure
communication via mobile devices such as cell phones or PDAs. However, these
devices are battery-operated, and hence severely constrained by computational
resources (processing power, memory, network bandwidth, etc.). When imple-
menting SSL for mobile devices, great care must be taken to utilize the scarce
resources as efficiently as possible [2,3,14]. The delay a user experiences when
establishing an SSL connection depends heavily on the execution time of the
public-key operations carried out during the handshake (i.e. authentication and
key agreement). If an RSA-based cipher suite is used, the client has to perform

1 Most Internet applications use SSL only for server-side authentication, which means
that the server is authenticated to the client, but not vice versa. Client authentication
is typically done at the application layer (and not the SSL layer), e.g. by entering a
password and sending it to the server over a secure SSL connection.

Hardware/Software Co-design of Public-Key Cryptography for SSL 65

two modular exponentiations, one for the verification of the server’s certificate
and one for the encryption of the pre-master secret2. Even though these expo-
nentiations involve public exponents (which are usually small), they constitute
a significant overhead. For example, Gupta et al [14] analyzed the performance
of an SSL client written in Java on a 20 MHz Palm Vx and found that the two
RSA public-key operations account for almost 30% of the overall execution time
of the SSL handshake3. On the other hand, when using an ECC cipher suite, the
public-key operations (i.e. ECDSA verification, ECDH key exchange) make up
more than 80% of the handshake time4 [23]. Therefore, hardware acceleration
of the public-key operations carried out during the handshake is desirable.

The straightforward approach to hardware acceleration of public-key cryp-
tography is the integration of a dedicated co-processor to off-load the compu-
tationally expensive parts of an algorithm (e.g. modular exponentiation in the
case of RSA, scalar multiplication in ECC) from the main processor [7,17]. In
the embedded realm, however, fixed-function hardware accelerators in the form
of cryptographic co-processors exhibit a number of disadvantages. Co-processors
for RSA generally demand large silicon area, which poses a particular problem
for low-cost embedded devices. On the other hand, co-processors for ECC often
lack the flexibility to support the multitude of implementation options that are
recommended by several standardization organizations around the world. One
example of these options is the large number of “standardized” finite fields upon
which elliptic curve cryptosystems can be built [34]. Supporting various fields
of different characteristic and order is difficult with a fixed-function (i.e. hard-
wired) accelerator and may also consume a large amount of silicon area. Given
the algorithm-agile nature of the SSL protocol, it seems questionable whether a
cryptographic co-processor can meet the desired level of flexibility at moderate
hardware cost. Modern security protocols, such as SSL or IPSec, are constantly
evolving and hence changing their repertoire of crypto algorithms (e.g. to phase
out compromised algorithms, to include new algorithms, or to adapt the minimal
key size of algorithms), which again calls for a flexible and scalable approach to
hardware acceleration.

In this paper we present a new methodology for hardware acceleration of the
SSL handshake based on hardware/software co-design [35] of the involved cryp-
tographic algorithms. The specific co-design approach we followed in our work is
the integration of custom instructions into a general-purpose processor to speed
up the processing of performance-critical arithmetic operations carried out in
ECC (e.g. multiplication in finite fields). Hardware/software co-design at the

2 Instead of sending a single certificate to the client, the server may also send a chain
of two or more certificates linking the server’s certificate to a trusted certification
authority (CA). However, throughout this paper we assume that the certificate chain
consists of just one certificate, and hence a single signature verification operation is
sufficient to check the validity of the certificate.

3 A 1024-bit modular exponentiation with a public exponent of 65537 executes in 1433
msec [14, Table I], and the full SSL handshake takes approximately 10 seconds.

4 We will argue in Subsection 3.2 why ECC is advantageous over RSA for client-side
SSL processing on resource-constrained devices.

66 M. Koschuch et al.

granularity of instruction set extensions is particularly area-efficient and allows
one to retain the full flexibility of a “pure” software solution, which makes this
approach perfectly well suited for hardware acceleration of the SSL protocol in
low-cost embedded systems. The hardware part of our co-design comprises an
embedded SPARC V8 processor into which we integrated a set of six custom
instructions to facilitate the efficient execution of arithmetic operations in prime
and binary fields of large order [13]. The software part consists of MatrixSSL, a
“lightweight” SSL implementation written in ANSI C [29]. MatrixSSL provides
both client and server functionality, but lacks support for ECC. Therefore, we
developed a simple crypto library including RSA, DSA, Diffie-Hellman, as well
as ECC over prime and binary fields, and integrated it into MatrixSSL along
with the ECC cipher suites from [5]. Our experimental results show that, due
to the lightweight implementation of the SSL stack, the speed-up gained at the
low-level field arithmetic propagates almost lossless up to the application layer.
We also compare the results of our co-design with the performance figures of a
pure software implementation of the SSL protocol, namely OpenSSL [28]. This
comparison confirms that hardware/software co-design in the form of instruction
set extensions for public-key cryptography, in particular ECC, is a good way to
accelerate the SSL handshake.

2 Public-Key Cryptography

The SSL/TLS protocol makes heavy use of public-key cryptography during the
handshake phase to accomplish such tasks as authentication and key establish-
ment. In this section we briefly discuss implementation aspects of both classical
public-key cryptosystems (RSA, DSA, Diffie-Hellman) as well as elliptic curve
cryptosystems in the context of the SSL handshake.

2.1 RSA, DSA, Diffie-Hellman

The RSA cryptosystem operates in the residue class ring Zn, where n is the pro-
duct of two large primes. DSA and Diffie-Hellman, on the other hand, use the
multiplicative group Z

∗
p (or a subgroup thereof) as underlying algebraic struc-

ture. The basic operation of all these cryptosystems is exponentiation, i.e. the
repeated application of the ring or group operation, namely multiplication, to an
element of the ring (resp. group). Of course, the multiplications are performed
modulo n (or modulo p, respectively), which means that said exponentiation is
actually a modular exponentiation of the form c = me mod n [24]. In case of the
RSA algorithm, the modulus n is a product of primes, the exponent e satisfies
gcd (e, φ(n)) = 1, and the base m is in the interval [0, n − 1], i.e. m ∈ Zn. The
security of the RSA cryptosystem is closely related to the Integer Factorization
Problem (IFP), even though no mathematical proof exists that the factorization
of n is needed to break RSA. Factoring an RSA modulus is widely believed to
be computationally infeasible if its prime factors are large (e.g. ≥ 512 bits). On
the other hand, the security of DSA and Diffie-Hellman relies on the Discrete

Hardware/Software Co-design of Public-Key Cryptography for SSL 67

Logarithm Problem (DLP) in Z
∗
p, which is defined as follows: Given a generator

g for Z
∗
p (or a subgroup thereof) and an element a of said (sub)group, find the

integer x such that a = gx mod p. The DLP is considered intractable, provided
that the group Z

∗
p and the generator g are properly chosen.

The standard algorithm for computing a modular exponentiation me mod n
is the square-and-multiply algorithm, which is also referred to as binary expo-
nentiation method [24] since it uses the binary expansion of the exponent e. Two
variants of the binary method are described in [24]; one scans the bits of e from
left to right (i.e. MSB first), the other from right to left (i.e. LSB first). Assuming
an exponent e of length l = 1 + �log2 e� bits, the square-and-multiply algorithm
executes l modular squarings and roughly l/2 modular multiplications, with the
exact number depending on the Hamming weight of e. The number of modular
multiplications can be reduced if some extra memory for storing powers of the
base m is available. For example, the k-ary exponentiation method (also called
window method) processes k bits of the exponent e at a time, thereby reducing
the number of modular multiplications to l/k in the worst case. However, the
k-ary exponentiation requires pre-computation and storage of 2k powers of the
base m (see Algorithm 14.82 in [24]), which is why this method is rarely imple-
mented on resource-constrained embedded devices like smart cards. If the base
m is fixed and known a-priori (which is, for example, the case when generating
a DSA signature), the number of both modular multiplications and squarings
can be reduced through the fixed-based comb method as described in [24].

The execution time of a modular exponentiation depends heavily on the im-
plementation of the two operations it consists of, namely modular multiplication
and modular squaring. Both operations include a modular reduction, which can
be efficiently performed using the well-known Montgomery technique [25]. Koç
et al [22] describe several optimized software algorithms for Montgomery mul-
tiplication, among these is the so-called Coarsely Integrated Operand Scanning
(CIOS) method. The CIOS method executes a total of 2s2 + s single-precision
(i.e. w-bit) multiply instructions, whereby n denotes the number of w-bit words
that are needed to accommodate an n-bit operand, i.e. s = �n/w� (see [22] for a
detailed analysis).

The computational cost of a modular exponentiation can be reduced if the
exponent e and/or the base m are suitably chosen, which is possible for RSA as
well as DSA and Diffie-Hellman. For example, it is common practice to choose a
small public exponent in RSA; a typical value is 216 +1. In this case, operations
involving the public exponent (e.g. RSA encryption) are significantly faster than
operations involving the private exponent, even when the latter are supported
by the Chinese Remainder Theorem [24]. On the other hand, Diffie-Hellman and
DSA can use special primes to simplify the reduction operation. In addition, the
generator g used in Diffie-Hellman key exchange can be small (e.g. g = 2), which
reduces the cost of a modular exponentiation. DSA implementations generally
take advantage of a generator g that generates a (large) subgroup of Z

∗
p, e.g. a

160-bit subgroup when p is a 1024-bit prime, which considerably alleviates the
computational burden of a modular exponentiation with g as base.

68 M. Koschuch et al.

2.2 Elliptic Curve Cryptography

Elliptic curve cryptosystems operate in an additive Abelian group, namely the
group of points on an elliptic curve defined over a finite field. A discussion of the
mathematical foundations of ECC is beyond the scope of this paper; we refer
the interested reader to textbooks such as [19] and [4]. In short, ECDSA and
ECDH can be seen as the elliptic-curve “equivalents” of the classical DSA and
Diffie-Hellman cryptosystems, whereby the group Z

∗
p is replaced by E(Fq), the

group of Fq-rational points on a curve E. The basic building block of all ECC
schemes is scalar multiplication, i.e. an operation of the form k · P where P is a
point on the curve (i.e. P ∈ E(Fq)) and k is an integer [4]. Scalar multiplication
in an additive group corresponds to exponentiation in a multiplicative group;
both are performed through repeated application of the group operation to an
element. However, the group operation in E(Fq) is the addition of points, which
in turn is realized by a sequence of arithmetic operations in the underlying finite
field Fq. The security of both ECDH and ECDSA is based on the intractability
of the elliptic curve discrete logarithm problem (ECDLP), which can be defined
as follows: Given an elliptic curve group E(Fq), a base point P ∈ E(Fq), and a
second point Q ∈ E(Fq), find the smallest integer k so that Q = k · P , provided
such an integer exists. Currently, the fastest algorithm known for solving the
ECDLP requires fully exponential time when E(Fq) and the base point P were
chosen with care. As a consequence, ECC schemes can use much shorter keys
than their “classical‘” counterparts based on the DLP or the IFP (e.g. 160 bits
instead of 1024 bits) [19].

Ephemeral ECDH key exchange requires the server and the client to execute
two scalar multiplications of the form k · P ; one to generate a key pair and the
other to obtain the shared secret key. On the other hand, the generation of an
ECDSA signature costs just one scalar multiplication k · P , but the verifier has
to execute a double scalar multiplication of the form k · P + l · Q [4]. Similar to
the square-and-multiply algorithm for exponentiation, a scalar multiplication
can be carried out via point additions and point doublings, both of which, in
turn, involve a sequence of arithmetic operations (i.e. addition, multiplication
and inversion) in the underlying finite field Fq [19]. Inversion is by far the most
expensive field operation. However, it is possible to add points on an elliptic curve
without the need to perform costly inversions, e.g. by representing the points in
projective coordinates [19]. When using projective coordinates, an entire scalar
multiplication can be carried out solely with field additions (resp. subtractions)
and field multiplications (resp. squarings); just a single inversion is necessary to
convert the result from projective coordinates back to the conventional (affine)
coordinate system.

Before an ECDH key exchange (or any other elliptic curve scheme) can be
carried out, the involved entities have to agree upon a common set of so-called
domain parameters [19], which specify the field Fq, the elliptic curve E (i.e. the
coefficients a, b ∈ Fq defining the curve), a base point P ∈ E(Fq) generating a
cyclic subgroup of large order, the order n of this subgroup, and the co-factor

Hardware/Software Co-design of Public-Key Cryptography for SSL 69

h = #E(Fq)/n. Consequently, elliptic curve domain parameters are simply a
sextuple D = (q, a, b, P, n, h).

The efficient implementation of the field arithmetic, in particular the multi-
plication, has a major impact on the performance of ECC cryptosystems. Prime
fields and binary extensions fields are especially important since they have been
recommended by numerous standards bodies around the world. The elements
of a prime field Fp are simply the integers 0, 1, 2, . . . , p − 1, and the arithmetic
operations are addition and multiplication modulo p. Therefore, all algorithms
for arithmetic in Z

∗
p can be used for Fp as well, e.g. Montgomery reduction as

described in [22]. However, it is possible (and common practice) to use special
primes in ECC for which optimized modular reduction methods exist; a typical
example are the generalized-Mersenne (PM) primes that are specified in some
standards, e.g. in [34]. For example, the reduction of a 384-bit integer modulo
the 192-bit GM prime p = 2192 − 264 − 1 can be performed with three simple
192-bit additions. GM primes allow one to achieve better performance with the
trade-off that each GM-prime requires a different reduction routine, resulting in
large code size if all standardized GM-primes are to be supported.

The elements of a binary finite field F2m are binary polynomials of degree
up to m − 1; the arithmetic in F2m is polynomial arithmetic (i.e. addition and
multiplication of binary polynomials) performed modulo an irreducible polyno-
mial p(t) of degree m. Addition in F2m is equivalent to exclusive-or and can be
realized using the processor’s XOR instruction on words of the operands. The
major disadvantage of binary fields is that multiplication is relatively costly in
software. Multiplication in F2m consists of a polynomial multiplication over F2,
followed by a reduction of the product modulo the irreducible polynomial. The
former is typically realized with the basic Shift-and-XOR method or one of its
optimized variants such as the left-to-right comb method (see Algorithm 2.36 in
[19]). Combining this method with Karatsuba’s technique can be advantageous
for large operands [21]. Also the reduction modulo p(t) requires just shift and
XOR instructions, and is relatively fast when p(t) is sparse. Squaring in F2m is
a linear operation and, hence, requires just a faction of the execution time of a
multiplication.

3 Secure Sockets Layer (SSL) Protocol

The Secure Sockets Layer (SSL) protocol and its successor, the Transport Layer
Security (TLS) protocol, are standardized protocol suites for enabling secure
communication between a client and a server over an insecure network [8]. The
main focus in the design of these protocols lay in modularity, extensibility, and
transparency. Both SSL and TLS use a combination of asymmetric (i.e. public-
key) and symmetric (i.e. secret-key) cryptographic techniques to authenticate
the communicating parties and encrypt the data being transferred. The actual
algorithms to be used for authentication and encryption are negotiated during
the handshake phase of the protocol. SSL/TLS supports traditional public-key
cryptosystems (i.e. RSA, DSA, Diffie-Hellman) as well as elliptic curve systems
such as ECDSA and ECDH.

70 M. Koschuch et al.

Table 1. SSL handshake, optional messages printed italic

Client Server

ClientHello

ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Application Data Application Data

3.1 SSL Handshake

The SSL protocol contains several sub-protocols, one of which is the handshake
protocol. After agreeing upon a cipher suite5 that defines the cryptographic
primitives to be used and their domain parameters, the server (and possible the
client too) is authenticated and a pre-master secret is established using public-
key techniques. Table 1 shows an overview of this process (see [9] for a more
detailed description). When using an RSA cipher suite, the pre-master secret is
established through key transport: The client generates a random number and
sends it in RSA-encrypted form to the server. On the other hand, when using
an ECC-based cipher suite, the pre-master secret is established through a key
exchange to which both the client and the server contribute randomness.

In the ClientHello message the client sends its supported cipher suites to the
server, who confirms the selected suite in its own ServerHello message. Then,
the server transmits its certificate and an optional request for authentication to
the client. In most cases there is no mutual authentication and only the server
presents its certificate to the client. The client is rarely authenticated during
the handshake phase, but rather thereafter, e.g. by sending a password to the
server. The client then verifies the server’s certificate and answers with the
ClientKeyExchange message, containing the material needed for the server to
derive the shared pre-master secret. If the public key extracted from the server’s
certificate can not be used for encryption (e.g. because it is only authorized to
signing), then the server sends a ServerKeyExchange message including a sec-
ond public key. The ChangeCipherSpec is just a status message, telling both
parties to use the negotiated suite from now on. The final Finished message is
then the first one encrypted with the selected cipher and the symmetric key,
derived from the pre-master secret.
5 A cipher suite is a pre-defined combination of three cryptographic algorithms: A key

exchange/authentication algorithm, an encryption algorithm, and a MAC algorithm.

Hardware/Software Co-design of Public-Key Cryptography for SSL 71

The expensive steps in this process are the verification of the certificate’s
signature (using, for example, RSA, DSA, or its elliptic curve equivalent ECDSA)
and the establishment of the shared pre-master secret, which is usually done in
one of two ways, depending on the cipher suite chosen.

– If RSA is chosen, the client creates a random value, encrypts it with the
server’s public key (one modulo exponentiation) and sends the result back
to the server, who can decrypt it (another modulo exponentiation).

– If ECDH is chosen, the client creates a random value k, calculates R =
k · P (first scalar multiplication) and sends this value to the server. Then
it calculates k · Q (second scalar multiplication), with Q being the server’s
public key, obtained from its certificate. The server finally performs a single
scalar multiplication using R and its own private key. The final result for
both server and client is the shared pre-master secret (see [5] for details).

3.2 Advantages of ECC Cipher Suites over RSA Cipher Suites

When an RSA cipher suite is used for the handshake, the client has to perform
two modular exponentiations: one to verify the RSA signature contained in the
server’s certificate, and the other to encrypt the pre-master secret. Both of these
exponentiations are carried out with public exponents, which are usually small
[18,31]. Unfortunately, when using an ECC-based cipher suite, the situation is
less favorable for the client. ECDH key exchange requires the client to execute
two scalar multiplications, while the verification of an ECDSA signature involves
a double-scalar multiplication of the form k · P + l · Q [19]. ECDSA signature
verification is the most costly of the cryptographic operations performed during
an ECC-based handshake. In summary, RSA cipher suites impose high compu-
tational load on the server but low overhead on the client [1], while in general
the opposite holds when an ECC cipher suite is used [16]. It is widely believed
that RSA cipher suites are to prefer over their ECC-based counterparts when
the SSL client runs on an embedded device with modest resources, while ECC
cipher suites yield considerable better performance (i.e. throughput) figures on
the server side [15,30]. However, there exist also numerous good arguments in
favor of using ECC-based cipher suites on resource-restricted clients:

– Elliptic curve cryptosystems can use much shorter keys than RSA schemes
to ensure a certain level of security (e.g. 160 vs. 1024 bits), which translates
directly into memory and bandwidth savings. The former is important for
low-cost devices with small memory, while the latter is relevant for mobile
and battery-powered devices since wireless data transmission is very costly
in terms of energy [32].

– Results from the literature confirm that a 1024-bit RSA signature can be
verified significantly faster than a 160-bit ECDSA signature. However, the
picture changes with higher security levels (i.e. longer keys). Brown et al [6]
found that when using a Koblitz curve over F2233 , an ECDSA signature can
be verified in 5,878 msec on a Palm V device, whereas the verification of an

72 M. Koschuch et al.

RSA signature of roughly comparable strength (i.e. 2048-bit modulus and
17-bit public exponent) takes 7,973 msec.

– The key length of ECC scales linearly with that of symmetric ciphers such
as the AES. For example, the NIST [26] recommends to use 128-bit AES
in combination with 256-bit ECC or 3,072-bit RSA. However, 256-bit AES
demands RSA keys with a length of 15,360 bits for equivalent security, while
512-bit keys suffice when using ECC. This linear scaling property makes a
good case for ECC if AES-equivalent security levels are to be supported.

– Even though this paper focusses on client-side acceleration of SSL, it should
be noted that ECC offers significant performance-advantages for SSL servers
[15,16]. RSA cipher suites are highly computation-intensive on the server
side [7,36], which may also impact the overall latency of the handshake, in
particular if the server is under heavy load.

– When performing an SSL handshake with client authentication, ECC-based
cipher suites are, in general, less costly than their RSA counterparts (this
applies to both sides, the server and the client [15,30]).

– Using a cipher suite with ephemeral ECDH key exchange provides forward
secrecy, whereas RSA-based key transport does not [4]. Another advantage
of ECDH key exchange is that both the client and the server can contribute
randomness to the generation of the pre-master secret, which is not the case
with RSA-based key transport.

– ECDSA, ECDH, and ECMQV (an authenticated variant of ECDH) are the
only public-key schemes included in NSA Suite B [27], i.e. RSA must not be
used to secure sensitive or classified U.S. government communications.

For all these reasons we decided to use ECC cipher suites for the performance
evaluation of our co-designed SSL stack. However, other cipher suites based on
RSA, DSA, or Diffie-Hellman are also supported.

4 Implementation Details and Results

The hardware platform we used for our co-design is SPARC V8 softcore into
which we integrated a small set of custom instructions to speed up public-key
cryptography. Instruction set extension is a simple and efficient way to enhance
a processor’s capabilities to support special application domains. In contrast to
a dedicated co-processor, the hardware overhead of custom instructions is, in
general, relatively small. Moreover, since the instructions are directly integrated
into the ordinary processing pipeline, there is no need for expensive operand
transfers, which can heavily affect the performance of such solutions. Dedicated
co-processors are also limited in terms of flexibility and usually not designed to
support such a multitude of cryptographic algorithms as is needed in SSL.

Software implementations of cryptosystems often spend the majority of exe-
cution time in a few performance-critical code sections (e.g. inner loops), which
makes it amenable to processor customization. It was shown in [12] that a small
set of only five or six custom instructions suffices to accelerate the full domain

Hardware/Software Co-design of Public-Key Cryptography for SSL 73

Table 2. Format and description of the CIS instructions for public-key cryptography

Format Description Operation

umac rs1, rs2 Unsigned Multiply & Accumulate accu ← accu + rs1 × rs2

umac2 rs1, rs2 Unsigned Mul. & Accumulate Twice accu ← accu + 2(rs1 × rs2)

uaddac rs1, rs2 Add to Accumulator Unsigned accu ← accu + rs1 + rs2

shacr rd Shift Accu Registers Right rd ← accu[31: 0]; accu ← accu� 32

gf2mul rs1, rs2 Bin. Polynomial Multiply accu ← rs1 ⊗ rs2

gf2mac rs1, rs2 Bin. Polynomial Mul. & Accumulate accu ← accu ⊕ rs1 ⊗ rs2

of public-key primitives specified in the IEEE Standard 1363 [20]; these include
traditional cryptosystems such as RSA, but also ECC systems over both prime
fields and binary extension fields. Based on the ideas in [11,12], we devised the
Cryptography Instruction Set (CIS) extensions to the SPARC V8 architecture
[13] and integrated them into the LEON-2 softcore, an open-source SPARC V8
implementation developed by Gaisler Research. The LEON-2 VHDL model can
be synthesized to FPGA and standard cell technologies [10].

The CIS extensions for PKC consist of a set of six custom instructions (see
Table 2) and a functional unit (FU) on which the instructions are executed. This
FU is basically a multiply-accumulate (MAC) unit composed of a (32 × 16)-bit
unified multiplier and a 72-bit accumulator. A so-called unified multiplier is
a multiplier that uses the same datapath for two different types of operands,
namely integers and binary polynomials [12]. The MAC unit also contains three
result accumulation registers (%asr20, %y, and %asr18), in the following called
accu registers. Besides the six custom instructions shown in Table 2, the MAC
unit is capable to execute the two “native” SPARC V8 multiply instructions
umul and smul. Consequently, the CIS extensions can be easily integrated into
a SPARC V8 core by replacing the original integer multiplier by a MAC unit
for integers and binary polynomials and modifying the instruction decoder to
support the custom instructions.

Most of the CIS instructions listed in Table 2 get two 32-bit words from the
general-purpose register file as input and place the result in the accu registers.
The umac instruction can be used to implement the inner loop of long integer
multiplication according to the product scanning technique and is also useful
for Montgomery multiplication [11]. Long integer squaring can be efficiently ex-
ecuted with help of the umac2 instruction. The two instructions uaddac and
shacr facilitate the modular reduction operation for the special primes used in
EC cryptography. Finally, the instructions gf2mul and gf2mac interpret their
operands as binary polynomials and perform polynomial multiply/MAC oper-
ations that allow to speed up EC systems based on binary fields. A detailed
description of the custom instructions and their use in the diverse arithmetic
algorithms can be found in [11,12].

Especially for binary extension fields, the presence of hardware support for
polynomial multiplication offers a significant performance gain compared to a
native software implementation. The additional instructions are easily accessi-
ble through a modified assembler and the use of inline assembly in ordinary

74 M. Koschuch et al.

C programs. Due to their generic nature, they can be used for all sorts of cryp-
tographic algorithms requiring fast integer or polynomial arithmetic.

We integrated the CIS extensions into the LEON-2 core and prototyped the
extended processor in an FPGA. The CIS extensions have no impact one the
cycle time, i.e. the extended LEON-2 can be clocked with the same frequency
as the “original” LEON-2 processor (up to 50 MHz in our FPGA device). We
also synthesized the extended LEON-2 using a 0.35μ standard cell library and
found that the CIS extensions entail an increase in area by merely 5,550 gates
compared to a baseline LEON-2 core with a (32 × 16)-bit multiplier.

4.1 Evaluation of Code Size and Performance

The software part of our co-designed SSL stack is based on the freely available
MatrixSSL library [29]. MatrixSSL in its original form provides both client and
server functionality, but does not feature ECC. Therefore, we developed a light-
weight public-key cryptographic library and integrated it into MatrixSSL so as
to support the ECC cipher suites specified in [5]. We used OpenSSL [28] as a
reference implementation with respect to code size and performance. Similar to
OpenSSL, our implementation is generic in the sense that it works for every
curve over prime or binary extension fields and allows free combination of the
cryptographic primitives (e.g. using ECDSA as signature primitive and RSA for
key establishment). Table 3 shows a comparison between our implementation
(i.e. MatrixSSL+ECC), the original MatrixSSL version (without ECC support)
and the OpenSSL library in terms of source files and code size. The integration
of ECC increased the size of MatrixSSL by just 15-20%. For comparison, the
OpenSSL executable is almost 20 times larger.

The crypto library we integrated into MatrixSSL is realized in a very straight-
forward way. We used Algorithm 2.9 in [19] to implement the multiple-precision
multiplication and Montgomery’s well-known algorithm for modular reduction
[25]. In order to keep the size of our library at a minimum, we did not include
optimized reduction functions for special primes like the NIST primes. Also the
curve arithmetic over Fp is based on well-known algorithms. We represent the
elliptic curve points using the mixed Jacobian-affine coordinates described in
[19, Section 3.2.2]. The scalar multiplication over Fp is carried out according
to the double-and-add technique with non-adjacent-form (NAF) representation
of the scalar to save some point additions. For ECDSA verification, Shamir’s
trick [19] in combination with a joint-sparse-from (JSF) representation of the
scalars is used to interleave the two scalar multiplications [19]. We decided to

Table 3. Comparison of MatrixSSL, our SSL, and OpenSSL

Number of Lines of Size of
Implementation

source files code executable

Original MatrixSSL 30 ∼ 9,500 114 kB
MatrixSSL with ECC 50 ∼ 10,900 130–140 kB
OpenSSL 0.9.8 1,100 ∼ 250,000 2,374 kB

Hardware/Software Co-design of Public-Key Cryptography for SSL 75

not implement a window method for scalar multiplication because we aimed to
keep the memory footprint at a minimum.

Also the algorithms for arithmetic in F2m are well documented and rather
straightforward to implement. We used the so-called left-to-right comb method
with windows of width 4 for the multiplication of binary polynomials [19]. Fur-
thermore, we implemented a generic reduction function for irreducible trinomials
and pentanomials. The term generic in this context means that the reduction
function accepts arbitrary trinomials and pentanomials as input. In addition, we
also included the Montgomery reduction for binary polynomials in our library to
support irreducible polynomials which are not trinomials or pentanomials. The
scalar multiplication on elliptic curves over F2m is performed according to the
well-known algorithm of Lopez and Dahab [19].

We actually implemented two versions of the crypto library: one is written
entirely in ANSI C, whereas the second contains assembly-language statements
to access the custom instructions of our extended LEON-2 core. Reference [13]
explains the implementation of the field arithmetic using the CIS instructions
in detail. The CIS-optimized version uses Montgomery multiplication for both
prime and binary fields. We refrained from the implementation of special re-
duction techniques for GM primes or sparse irreducible polynomials since we
aimed at a “lightweight” implementation of the cryptographic primitives with
small code size. The results from [13] indicate that the CIS extensions speed up
the multiplication in prime fields by a factor of between two and three, whereas
the multiplication in binary fields achieves a six to ten-fold performance gain.
The exact speed-up factor depends on a number of implementation options (e.g.
loop unrolling) and the length of the operands (e.g. when Karatsuba’s technique
[21] is used).

In the following, we evaluate and analyze the handshake performance of the
co-designed SSL stack. As mentioned before, our implementation is generic in
the sense that it supports arbitrary cipher suites and arbitrary ECC domain
parameters. It is, of course, not feasible to evaluate every possible combination
of cipher suites and domain parameters in this paper. Therefore, we focus on a
representative example, namely an ECC cipher suite that uses ephemeral ECDH
for key exchange and ECDSA as signature primitive [5]. We let our co-designed
SSL stack operate as server, which means that it has to execute two scalar mul-
tiplications to establish a shared secret key. As usual, no client authentication is
performed, i.e. the client does not send a certificate to the server.

Figure 1 shows the execution time (in clock cycles) of a scalar multiplication
using four NIST prime fields as underlying algebraic structure. All cycle counts
were measured on a LEON-2 core with CIS extensions [13], synthesized onto a
Xilinx XCV-800 board, clocked at 20 MHz. When using a small field (e.g. a 160
or 192-bit field), the ANSI C version of our crypto library reaches roughly the
same performance as OpenSSL, which is a remarkable result when considering
that the latter features several performance enhancements such as specialized
reduction methods for standardized primes, hand-written assembly code for all
performance-critical operations, and code-size increasing optimizations like loop

76 M. Koschuch et al.

0

2

4

6

8

10

12

160 bit 192 bit 224 bit 256 bit

M
ill

io
n

 C
lo

ck
 C

yc
le

s Our Work

OpenSSL

Our Work with ISE

Fig. 1. Performance of scalar multiplication over prime fields

0

10

20

30

40

50

60

70

80

90

160 bit 192 bit 224 bit 256 bit

M
ill

io
n

 C
lo

ck
 C

yc
le

s

Our Work

OpenSSL

Our Work with ISE

Fig. 2. Performance of entire handshake over prime fields

unrolling). On the other hand, both versions of our library perform the modular
reduction according to Montgomery’s algorithm [25], i.e. better timings would
be possible when using one of the optimized reduction methods discussed in
Section 2.2. The CIS extensions allow one to execute a full scalar multiplication
over a 192-bit prime field in 2.6 · 106 cycles. Depending on the field size, the CIS
extensions accelerate scalar multiplication by a factor of between 2.0 and 2.5.

Figure 2 illustrates that the performance gained at the field or group level
propagates almost lossless all the way up to the application (i.e. the handshake)
level. The CIS version of our SSL stack is again by a factor of between 2.0 and
2.5 faster than the ANSI C version that does not use custom instructions for field
arithmetic. Our co-design is able to perform a full SSL handshake, from sending
the first Hello message until receiving final Finished message, in less than 300
msec on a device running at 20 MHz when using a 192-bit field as underlying
algebraic structure. Similar results can also be achieved for binary extension
fields of roughly the same order. For comparison, OpenSSL is—depending on

Hardware/Software Co-design of Public-Key Cryptography for SSL 77

the field type and order—up to a factor of 10 slower than our implementation
utilizing the CIS instructions. This big difference is partly due to the efficiency
of our field arithmetic and partly due to the lightweight implementation of our
protocol stack.

5 Conclusion

We presented a hardware/software co-design of the SSL handshake based on
instruction set extensions for the low-level arithmetic operations carried out in
public-key cryptography. Our solutions offers a significant gain in performance
for field arithmetic as well as for an entire handshake when compared with a
pure software implementation, thus allowing a handshake over a 192-bit prime
field to complete in about 300 msec on a 20 MHz LEON-2 processor equipped
with our CIS extensions. A single scalar multiplication over the same field takes
approximately 2.6 · 106 cycles when using Montgomery’s algorithm for the field
arithmetic. Our solution requires very little additional hardware (about 5,500
gates), consumes a negligible amount of additional memory, and allows one to
speed up a multitude of cryptographic algorithms, including RSA, DSA, Diffie-
Hellman, as well as ECDSA and ECDH over both prime and binary fields. In
addition, we have shown that the speed-up achieved in the low-level operations
(i.e. the field arithmetic) propagates almost lossless up to the highest layers
of the SSL protocol. So, by speeding up field multiplication and squaring using
instruction set extensions, the entire high-level SSL handshake can be sped up
by almost the same factor.

Acknowledgements. A preliminary version of this paper was presented at the
2nd Workshop on Embedded Systems Security (WESS 2007), which took place
in Salzburg, Austria on October 4, 2007.

The research described in this paper has been supported by the EPSRC under
grant EP/E001556/1 and, in part, by the European Commission through the
ICT Programme under contract ICT-2007-216676 ECRYPT II. The information
in this paper reflects only the authors’ views, is provided as is, and no guarantee
or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

Manuel Koschuch, Matthias Hudler and Michael Krüger have been supported
by the MA27 – EU-Strategie und Wirtschaftsentwicklung – in the course of the
funding programme “Stiftungsprofessuren und Kompetenzteams für die Wiener
Fachhochschul-Ausbildungen.”

References

1. Apostolopoulos, G., Peris, V.G., Pradhan, P., Saha, D.: Securing electronic com-
merce: Reducing the SSL overhead. IEEE Network 14(4), 8–16 (2000)

2. Argyroudis, P.G., Verma, R., Tewari, H., O’Mahony, D.E.: Performance analysis
of cryptographic protocols on handheld devices. In: Proceedings of the 3rd IEEE
International Symposium on Network Computing and Applications (NCA 2004),
pp. 169–174. IEEE Computer Society Press, Los Alamitos (2004)

78 M. Koschuch et al.

3. Berbecaru, D.G.: On measuring SSL-based secure data transfer with handheld
devices. In: Proceedings of 2nd IEEE International Symposium on Wireless Com-
munication Systems (ISWCS 2005), pp. 409–413. IEEE, Los Alamitos (2005)

4. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

5. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Möller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). Internet
Engineering Task Force, Network Working Group, RFC 4492 (May 2006)

6. Brown, M.K., Cheung, D.C., Hankerson, D.R., López Hernández, J.C., Kirkup,
M.G., Menezes, A.J.: PGP in constrained wireless devices. In: Proceedings of the
9th USENIX Security Symposium (SECURITY 2000), pp. 247–261. USENIX As-
sociation (2000)

7. Coarfa, C., Druschel, P., Wallach, D.S.: Performance analysis of TLS Web servers.
ACM Transactions on Computer Systems 24(1), 39–69 (2006)

8. Dierks, T., Rescorla, E.K.: The Transport Layer Security (TLS) Protocol Version
1.1. Internet Engineering Task Force, Network Working Group, RFC 4346 (2006)

9. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol Version 3.0. Internet
Draft (November 1996), http://wp.netscape.com/eng/ssl3/draft302.txt

10. Gaisler, J.: The LEON-2 Processor User’s Manual (Version 1.0.10) (January 2003),
http://www.gaisler.com/doc/leon2-1.0.10.pdf

11. Großschädl, J., Kamendje, G.-A.: Architectural enhancements for Montgomery
multiplication on embedded RISC processors. In: Zhou, J., Yung, M., Han, Y.
(eds.) ACNS 2003. LNCS, vol. 2846, pp. 418–434. Springer, Heidelberg (2003)

12. Großschädl, J., Savaş, E.: Instruction set extensions for fast arithmetic in finite
fields GF(p) and GF(2m). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 133–147. Springer, Heidelberg (2004)

13. Großschädl, J., Tillich, S., Szekely, A., Wurm, M.: Cryptography instruction set
extensions to the SPARC V8 architecture (submitted for publication) (2007)

14. Gupta, V., Gupta, S.: Experiments in wireless internet security. In: Proceedings of
the 3rd IEEE Conference on Wireless Communications and Networking (WCNC
2002), vol. 2, pp. 860–864. IEEE, Los Alamitos (2002)

15. Gupta, V., Gupta, S., Chang Shantz, S., Stebila, D.: Performance analysis of elliptic
curve cryptography for SSL. In: Proceedings of the 3rd ACM Workshop on Wireless
Security (WiSe 2002), pp. 87–94. ACM Press, New York (2002)

16. Gupta, V., Stebila, D., Fung, S., Chang Shantz, S., Gura, N., Eberle, H.: Speeding
up secure Web transactions using elliptic curve cryptography. In: Proceedings of
the 11th Annual Network and Distributed System Security Symposium (NDSS
2004), pp. 231–239 (2004)

17. Gura, N., Chang Shantz, S., Eberle, H., Gupta, S., Gupta, V., Finchelstein, D.,
Goupy, E., Stebila, D.: An end-to-end systems approach to elliptic curve cryptogra-
phy. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 349–365. Springer, Heidelberg (2003)

18. Gutmann, P.: Performance characteristics of application-level security protocols
(2005), http://www.cs.auckland.ac.nz/~pgut001/pubs/app_sec.pdf

19. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer, Heidelberg (2004)

20. Institute of Electrical and Electronics Engineers (IEEE). IEEE Std 1363-2000:
IEEE Standard Specifications for Public-Key Cryptography (August 2000)

21. Karatsuba, A.A., Ofman, Y.P.: Multiplication of multidigit numbers on automata.
Soviet Physics - Doklady 7(7), 595–596 (1963)

http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.gaisler.com/doc/leon2-1.0.10.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/app_sec.pdf

Hardware/Software Co-design of Public-Key Cryptography for SSL 79

22. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

23. Koschuch, M., Großschädl, J., Payer, U., Hudler, M., Krüger, M.: Workload char-
acterization of a lightweight SSL implementation resistant to side-channel attacks.
In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339,
pp. 349–365. Springer, Heidelberg (2008)

24. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

25. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

26. National Institute of Standards and Technology (NIST). Recommendation for Key
Management – Part 1: General (Revised). Special Publication 800-57 (March 2007),
http://csrc.nist.gov/publications/PubsSPs.html

27. National Security Agency (NSA). NSA Suite B Cryptography. Fact sheet (March
2008),
http://www.nsa.gov/ia/programs/suiteb_cryptography/

28. OpenSSL Project. OpenSSL 0.9.7k. (September 2006), http://www.openssl.org
29. PeerSec Networks, Inc. MatrixSSL 1.7.1. (2005), http://www.matrixssl.org
30. Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A study of the energy

consumption characteristics of cryptographic algorithms and security protocols.
IEEE Transactions on Mobile Computing 5(2), 128–143 (2006)

31. Potlapally, N.R., Ravi, S., Raghunathan, A., Lakshminarayana, G.: Optimizing
public-key encryption for wireless clients. In: Proceedings of the 37th IEEE Inter-
national Conference on Communications (ICC 2002), vol. 2, pp. 1050–1056. IEEE,
Los Alamitos (2002)

32. Ravi, S., Raghunathan, A., Potlapally, N.R.: Securing wireless data: System archi-
tecture challenges. In: Proceedings of the 15th International Symposium on System
Synthesis (ISSS 2002), pp. 195–200. ACM Press, New York (2002)

33. Rescorla, E.K.: SSL and TLS: Designing and Building Secure Systems. Addison-
Wesley, Reading (2000)

34. Standards for Efficient Cryptography Group (SECG). SEC 1: Elliptic Curve Cryp-
tography (2000), http://www.secg.org/download/aid-385/sec1_final.pdf

35. Wolf, W.H.: Hardware-software co-design of embedded systems. Proceedings of the
IEEE 28(7), 967–989 (1994)

36. Zhao, L., Iyer, R., Makineni, S., Bhuyan, L.: Anatomy and performance of SSL
processing. In: Proceedings of the 5th International Symposium on Performance
Analysis of Systems and Software (ISPASS 2005), pp. 197–206. IEEE Computer
Society Press, Los Alamitos (2005)

http://csrc.nist.gov/publications/PubsSPs.html
http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.openssl.org
http://www.matrixssl.org
http://www.secg.org/download/aid-385/sec1_final.pdf

	Hardware/Software Co-design of Public-Key Cryptography for SSL Protocol Execution in Embedded Systems
	Introduction
	Public-Key Cryptography
	RSA, DSA, Diffie-Hellman
	Elliptic Curve Cryptography

	Secure Sockets Layer (SSL) Protocol
	SSL Handshake
	Advantages of ECC Cipher Suites over RSA Cipher Suites

	Implementation Details and Results
	Evaluation of Code Size and Performance

	Conclusion
	References

