
Abstract - Hardware-software co-simulation refers to verifying
that hardware and software function correctly together. This
has traditionally been a task performed after the prototype
hardware is available using in-circuit emulators and other tech-
niques. With hardware-software co-design and embedded pro-
cessors within large single ICs, it is more necessary to verify
correct functionality before the hardware is built. This paper
surveys the techniques available for co-simulation with an eye
toward the strengths and weaknesses of each.

Overview

The available techniques for hardware-software co-simula-
tion trade off between a number of factors, including:

● raw performance (generally of simulation, but sometimes
of turnaround time)

● timing accuracy

● model availability

● visibility of internal state for debugging purposes

Raw performance is often at odds with timing accuracy.
Many of the co-simulation techniques listed here represent
different modelling styles that provide a different accuracy/
performance trade off. Performance numbers provided in
this paper are based on anecdotal numbers and not on rigor-
ous benchmarking, so your mileage may vary. In all cases,
the performance numbers are heavily dependent on how fast
the hardware that surrounds the processor simulates.

Model availability is a completely different kind of problem
and can often dictate the choice of technique. There are ways
to avoid model availability problems using both hardware
and software techniques.

Techniques Requiring Models

The most accurate software model, but with the slowest per-
formance, is to use a processor model that has nano-second
accurate timing for all the pins plus complete functionality.
Because each pin is changing at potentially unique times,
many events must be propagated, slowing down the simula-
tion. However, for ringing out the hardware, this is by far the
most accurate method. Typical performances for these types
of models are in the 1 to 100 instructions per second.

Hardware/Software Co-Simulation

James A. Rowson

Redwood Design Automation Inc.
97 South 2nd Street, San Jose, CA 95113

jimr@redwood.com

The next most accurate software model provides the correct
transitions at each clock edge but without regard for timing
(a “zero-delay” or “cycle accurate” model). Internally, this
model can be simpler since it is not attempting to schedule
each pin separately. Also, there are fewer unique event times
in the system, making the simulator run faster. Typical per-
formance for this type of model is in the 50 to 1000 instruc-
tions per second.

Faster yet is a model of the processor that only guarantees to
emulate the instruction set accurately, which means that the
values in registers and memory are correctly modelled. Inac-
curacies here revolve around superscalar ordering effects
and pipeline stalls that are not modelled. Speed is again
improved by ignoring the internal pipelines, hazards, and
interlocks. These kind of instruction emulation models can
run from 2000 to 20,000 instructions per second.

Techniques Requiring No Model

If the software and hardware communicate through asyn-
chronous communication methods such that time between
communications has no effect on functionality, then an even
faster method of simulation is available. At this level, there
is no need for a processor model. The software is compiled
on the host machine and linked with the simulator. The
detailed communication between hardware and software is
then replaced with a synchronizing handshake. With the soft-
ware running at the native speed of the workstation, you get
the fastest possible version of the software running with the
simulation of the hardware. Using this synchronizing hand-
shake technique, the software can run at workstation speeds,
measured in MIPS. The overall speed will be dominated by
the hardware simulator performance.

One of the fastest, but with the least pretense of accuracy, is
to have no hardware model at all, but instead to create a vir-
tual operating system and machine in pure software that has
no relation to the real hardware - disk I/O is just mapped
through the native operating system, etc. At this level, the
hardware is not being debugged at all, just the software. Here
again, the software runs at workstation speed, but now the
operating system and hardware is also running at that speed.

At the other end of the spectrum, bus functional models of



the processor allow the simulation of the hardware, but no
simulation of the software. Here, the bus functional model
allows the user to create test benches that make sure inter-
faces are correct. Very elaborate test benches are possible
that emulate the traces that will be generated by real soft-
ware. Because the processor is not fully modelled, it is diffi-
cult to measure instructions per second for this technique,
but it should be limited more by disk I/O than processing, so
might be in the 1000 to 10,000 range.

The traditional way to avoid needing a hand generated soft-
ware model is to use a hardware modeler. Hardware model-
ers use an actual part as the model, called by the simulator.
Systems based around complex processors often use hard-
ware modelers to emulate the CPU. Current implementations
of hardware modelers have the most accurate models from a
functionality point of view, but have only modest perfor-
mance because of the network round trips necessary to inte-
grate the modeler into the simulator. Long simulation runs
can also be a problem since the hardware modeler has to
reapply the entire stimulus history to get the next vector. One
drawback to hardware modelling is the lack of visibility into
the processor state during simulation. Hardware modelers
typically run in the 10 to 50 instructions per second range,
with network round trips making it unlikely to see more than
500.

Perhaps the fastest raw performance comes from doing emu-
lation. Emulators map the hardware down onto programma-
ble hardware that runs only slightly slower than the real
hardware (perhaps 1/10th the speed). Most emulators allow
the designer to add customization boards for processors,

memory, and other standard products. Again, visibility into
the internal states of the add-on standard products and limita-
tions on debug access into the emulated hardware can make
debugging here approximately the same difficulty as the true
prototype. In addition, the turn-around time to make a
change to the hardware can be very slow. However, emula-
tion provides the closest to a real prototype that is possible.

Conclusions

Most companies today still use in-circuit emulation to inte-
grate their hardware and software. Model availability domi-
nates those who try to co-simulate. Bus functional models
are the least expensive and most readily available, and are
the most widely used technique to debug hardware. When a
model is available, the nano-second accurate technique is by
far the most popular, although only limited diagnostics can
be run in software, not entire algorithms. Where models are
not readily available, hardware modelers are often used
Table 1 summarizes some of the most important characteris-
tics of each technique.

Co-simulation is a relatively unexplored topic. There are a
variety of techniques available, each with advantages and
disadvantages. Timely model availability will continue to
dominate the choice of techniques, until processor vendors
release models before silicon (which is starting to happen).
Full functionality models will be predominately cycle accu-
rate and instruction level. The synchronized handshake will
be used in isolated cases only if the software architecture
allows it.

Table 1: Comparison of Hardware/Software Co-Simulation Techniques

speed debug model turn-around sw hw

nano-second accurate 1-100 best hardest fast ok yes

cycle accurate 50-1000 excellent hard fast ok yes

instruction level 2000-20,000 ok medium fast yes ok

synchronized handshake limited by
hardware sim

no processor
state

none fast yes ok

virtual hardware fast no processor
or hw state

none fast yes no

bus functional limited by
hardware sim

no processor
state

easier fast no yes

hardware modeler 10-50 no processor
state

timing only fast ok yes

emulation fast limited none slow ok ok


