
"Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and /or a fee."

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

Abstract
Novel test bench techniques are required to cope with a
functional test complexity which is predicted to grow much
more strongly than design complexity. Our test bench
approach attacks this complexity by using a strong
hierarchical architecture, application domain-independent
synchronization, reusable modules, and easy incremental
extendability based on table-driven techniques. In addition,
the integration of VHDL/C co-simulation under the control
of the test bench makes it possible to use the hardware model
for software testing and vice versa and thus enables extreme
reductions in test bench coding. The efficiency of our test
bench has already been demonstrated in several industrial
projects, among them a four-ASIC ATM board with one
embedded core and one external micro controller.

1 Introduction
Test bench complexity is going to be the dominating factor
in future ASIC and digital system design. In this context,
Nortel noted at VIUF’96 Spring conference in the panel
"VHDL in Use: Experience from Telecom and Networking"
that the size of test bench code increases much more than the
size of RT code. A similar conclusion was reached at the last
DAC’96 in the panel with the embedded tutorial
"Verification of Electronic Systems". Here design
complexity was related to Moore’s Law, while test vector
complexity was compared with Murphy’s Law. Synopsys
argued at the EURO-DAC’96 panel "What do Tool Vendors
think" along the same lines and pointed out that design
complexity increases 4x every year whereas functional test
complexity goes up by 100x over the same period.

This dramatic increase in test bench complexity implies
two major problems: Test generation and evaluation, and test
execution.

The second problem is tackled by simulation speed
improvement using e.g. cycle-based simulators, parallel
simulation, simulation hardware acceleration, or emulation.
Furthermore, test vector reduction is applied by using e.g.
metrics to recognize how many tests are actually required.
Formal methods could also help in functional tests.
However, they are not able to deal with current levels of
system complexity and can be applied to particular problems
only.

To attack the first problem, we developed a hierarchical,

flexible, and extendable test bench approach for regression
tests with generators as well as analyzers running under
control of a synchronizer. To further reduce test outlay we
integrated VHDL/C co-simulation capabilities into our test
bench. In this way we were able to use the unit under test as
a hardware model for the software test. Moreover, software
acts as a generator and analyzer for the unit under test. The
key point is the selective activation of software units
clustered in subroutines in conjunction with test streams
under control of a test synchronizer.

The paper is organized as follows: First related work,
especially test bench methods and hardware/software co-
simulation capabilities are discussed. Then the basic
principles of the test bench are presented, followed by a
detailed description of the test bench approach and the
VHDL/C co-simulation integration. Afterwards an
application example is discussed. A look at future work
concludes the paper.

2 Related Work

2.1 Test benches
A domain-independent method for pure HDL test benches
based on building blocks was presented in [Sch95].
Applying stimuli from a file in a wave format [WAV] has the
disadvantage that bit values only can be specified and
applied to the unit under test. A domain-specific test bench
for DSP models was shown in [Arm94].

The sequential nature of all of these approaches reduces
their applicability. Systems requiring a concurrent and only
partially synchronized data stream as ATM traffic cannot be
tested suitably in this way.

2.2 Co-Simulation
Two major approaches exist for co-simulating hardware and
software [Bar96]: Simulating the final machine code on a
processor model or compiling the software for a computer
and linking the executable to a bus functional model of the
processor, which is simulated in conjunction with the
hardware component.

The first approach distinguishes in the kind of processor
model: Software model or hardware model. Different
detailed software models are used ranking from an
instruction set model to a cycle accurate model. Sometimes
even propagation delay is considered at the interface. An
accurate timing can be achieved at the expense of simulation
effort. New approaches use the compilation of an
intermediate code for simulation speed-up without reduction
of accuracy [Ziv96].

The second approach differentiates in the used coupling
method between software and simulator [Bec92, Rom96,
Row94, Sch96, Sil95]. The benefits of this approach is the
nearly real time execution of the software, however, under

Hardware/Software Co-Simulation in a VHDL-based Test Bench Approach

Matthias Bauer, Wolfgang Ecker
Siemens AG, Corporate Technology, ZT ME 5

D-81730 Munich
E-Mail: {Matthias.Bauer, Wolfgang.Ecker}@mchp.siemens.de

loss of timing accuracy. An approach to decrease this
disadvantage by back-annotation of software runtime was
presented in [Soi95].

One common disadvantage of all these approaches is that
software runs completely independently of the test case,
similar to a reactive environment model. Thus the separate
activation of software units for testing and debugging cannot
be performed. In addition, detailed and test scenario-
dependent stimuli activation by software execution is
impossible.

3 Our Approach
The basic idea of our test bench is a hierarchical structure of
all our tests, which is reflected in the structure of the related
VHDL code. In detail, the interfaces of the unit under test are
classified. For each classification a set of operations is
defined which applies a sequence of stimuli to the unit under
test. These operations again may be clustered in several
levels. Finally a set of high-level operations which we call
commands is defined. The structure of this hierarchy is
directly reflected in its implementation. VHDL design units,
which we call in this case applications, relate to an interface
classification, and procedures to operations or commands.

The tests are mostly parameterized either statically by
using generics and files, or dynamically by parameterizing
an operation. Combinations of both techniques are also
supported e.g. by a file name associated as a parameter with
an operation. The file identified by the parameter contains
detailed information about a sequence of values or
operations.

A completely application-independent master synchro-
nizer controls and synchronizes the execution of operations
of different applications. It reads a control file which
contains the top-level test in ASCII form. Fast turnaround
and VHDL-independent test specification, which is
especially appreciated by software designers, is achieved in
this way.

Besides that, this approach shows a high re-use potential
due to the fact that our test bench can easily be extended by
instantiating a new application and broadcasting the new
application to the master synchronizer via tables.
Furthermore, the possibility of multiple usage of
applications in one test bench increases the re-use potential
of this approach.

Our approach also tackles the problem of test evaluation.
Hierarchical and parameterizable analyzers can be included
in the test bench and be synchronized by the master
synchronizer as well. In addition to detailed error reports
written by each application, the error status is collected by
the master synchronizer and logged globally. A final error
summary allows for easy go/no go analysis.

VHDL/C co-simulation capabilities are integrated as a
mixture of analyzers and generators. The test generation with
regard to hardware is established by a bus functional model
of the simulated micro processor supporting basic read and
write operations. These operations can be activated by the
master synchronizer directly, by additional linkable VHDL
code called V-ware, or by a C-code tool independently
connected to the VHDL environment via pipes and TCP/IP.
Finally, the master synchronizer can activate selected
procedures of both, V-ware and C-software.

4 Implementation Details

4.1 Test bench structure
The overall test bench structure is shown in Figure 1. It is
fully implemented in VHDL using 15K LoC and composed
of the master synchronizer and applications. The master
synchronizer reads a control file and writes a report file via
VHDL text I/O. The application stimulates the unit under
test and gets the responses.

4.2 Master synchronizer
The master synchronizer, the heart of the test bench, consists
of an initialization routine, an interpreter loop, and command
queues.

The initialization routine of the master synchronizer
builds up a linked structure over all applications and their
commands, which are used in the control file. This action is
performed on a table-driven basis to allow for easy
extension. Overthat, the use of generic parameters for the
table allows to pre-compile the master synchronizer. Based
on this information, the control file is subjected to a syntax
check. Finally the interpreter loop is started.

In the control file, user defined commands are allowed
which will be executed by the applications and built-in
commands. User-defined commands for an application are
defined via tables in a particular package which is only
visible for the master synchronizer and the application.
Built-in commands are hard-coded in the interpreter. They
consist of constant definitions, an include mechanism, loops,
conditional statements, report comments, and
synchronization commands.

Each executed user-defined command is reported to a file
with start time, end time, and status, which is returned by the
application. If the status is an error, a string with a
description is also passed. At the bottom of the report file the
number of errors are indicated.

All user-defined commands between two
synchronization commands are executed concurrently, if the
commands are intended to be executed by different
applications. If more than one command for one application
occurs in the command file between two synchronization
operations, then these commands are executed sequentially.

To examine this behavior, the interpreter loop of the
master synchronizer sends all user-defined commands to the
command queues. For each application one command queue
for sending the operation and one for receiving the status of
each operation is instantiated. The communication between
the master synchronizer and the command queues is a
dynamic integer communication (see 4.3) with 1xN
topology.

If a synchronization operation is read by the interpreter,
then the synchro signal is set to start. Each command queue
now sends all collected user defined commands to its
application. A new command is sent only if the last
command was acknowledged by the application. The
command queue sets itself a ready signal if all commands
have been sent to the applications and all acknowledgment
messages have been received.

If all commands have been processed, which is shown by
the setting of the synchro signals of all queues, the master
synchronizer requests all acknowledgment information from
the command queues and writes it to the report file. The
interpreter loop continues afterwards until a new
synchronization or the end command has been reached.

4.3 Communication and synchronization
The communication between the master synchronizer and the
applications is established by a dynamic integer handshake
protocol, which is a delta cycle-based transmission of
variable-length integer vectors [BaEc93]. A second
communication layer for transmission of other VHDL types,
such as strings or enumeration types, is based on this integer
communication. It is required due to the lack of
polymorphism or at least variant records in VHDL. A third
layer is responsible for operation and parameter transmission.
All subroutines implementing the second layer are collected
in one package. But subroutines of the third layer are
assembled in packages specific to each application. Each
message requesting the execution of a command must be
acknowledged to guarantee the causality of the individual test
actions.

4.4 Applications
Applications are the direct interface to the unit under test.
Examples of applications are a generator, an analyzer, or a
mixture of both. For the implementation two application
types are imaginable: Single-sensibility functionality and

multiple-sensibility functionality.
Single-sensibility functionality means that the application

process is blocked until a command is received. This
command is then executed. Afterwards the acknowledgment
is sent back to the master synchronizer. Alternatively the
acknowledgment can be given if the command is not finished
or only partially executed. Finally the process is blocked
again. Multiple-sensibility functionality allows also
sensibility with regard to other signals, i.e. its communication
is non-blocking. If a message is present on the channel, the
same behavior as in the case of single-sensibility
functionality is performed. In the other case, if present, the
functionality for the event on one of the other signals is
executed.

The integrity of master synchronizer and applications is
established by using one single table for the definition of the
commands. The parsing, packing, and unpacking of
commands and parameters is performed based on this table.

Figure 1: Test bench structure

Initialization
routine

Interpreter
routine

Control file Report file

Master synchronizer

Synchro

Channel

Command
queues

Applications

Channels

Unit
under

test

5 Co-Simulation
As already mentioned, hardware/software co-simulation is
motivated by the fact that hardware can be used to test and
debug software routines or the entire software. Conversely,
the software can be used to test the hardware. The result of
this knowledge is an enormous dispense. The validation of
the software can be started after completion of the behavioral
model of the unit under test. During the development of the
RT model of the unit under test, the software can use this
model, and during the design of the software the hardware
can use the software for testing.

To fully support testing and debugging of both hardware
and software, we defined a processor application for our test
bench environment as shown in Figure 2. This application
consists of a message handler, a bus functional model, V-
ware and a software link.

5.1 Message Handling
The central feature of the processor application is a message
manager, which receives messages from either the master
synchronizer or the software. This message is decoded and
dependent on the execution on certain actions:

• If the message directly requests a micro processor com-
mand, then the corresponding procedure of the bus
functional model is called and an acknowledgment is
sent back to the source of the message, either the master
synchronizer or the software.

• If the message requests software actions, then the mes-
sage is passed on to the software via a software link.

• If the message is an acknowledgment of a software com-
mand, then the acknowledgment is forwarded to the
master synchronizer.

5.2 Bus Functional Model
Speaking generally, any kind of micro processor can be used
in a system. For our co-simulation purpose a bus functional
model is sufficient.

Commands for the bus functional model are called from
the master synchronizer. These commands are defined in a
table as for all applications. The basic commands are the read
compare and write commands. For defining complex
composite commands the nop operation is also necessary.
Complex composite commands are for example read, read in
sequence, write in sequence or polling commands. The

Figure 2: Hardware/software co-simulation environment

Micro processor

send

Software
server

Master sychronizer

Channel

FIFOs

Message handler

Software link

application

Unit
under
test

Software
client

Software

TCP/IP

CPU bus

Bus functional modelV-ware

Calls
Interrupts

recv

implementation is performed in an additional package. Only
basic commands directly reflect the CPU bus. Other
operations are mapped on these basic commands.

The micro processor application also supports the option
of executing macros. Macros are a predefined number of
commands which are implemented in VHDL. If the micro
processor component receives such a macro command from
the master synchronizer, then this command is forwarded to
a V-ware component. The V-ware component decides which
macro procedure has to be executed. The macro definition
must also be implemented in the command definition
package. For all commands that can be used in the macro a
VHDL-calling procedure is included in the command
definition package, so that each command which can be
invoked from the control file can also be invoked within
VHDL.

Interrupt and DMA handling is also included in the co-
simulation application. For this feature primarily the V-ware
component is used. If an interrupt occurs, an exception
handling procedure is called, which sends an exception
request to the V-ware component. In the V-ware the interrupt
and DMA routine can be easily adapted to the necessary
requirements. For both interrupt and DMA handling a
counter is available to indicate the number of exceptions
detected. These counters can be modified in the interrupt or
DMA routine. To read the value of the counter a command
is defined in the command definition package which can be
used only in the control file.

5.3 Software Handling
To communicate from VHDL with software two approaches
are possible: first the VHDL-tool-dependent approach based
on a non-portable VHDL-C interface and second a tool-
independent text I/O approach.

The VHDL-tool-dependent approach has the
disadvantage that for each VHDL simulation tool a complete
new test bench would be necessary, because each vendor has
a different VHDL-C interface for its tool. This is completely
at variance with our goal of reducing code outlay for test
benches by re-use.

The text I/O approach doesn’t have this disadvantage.
For this communication method between VHDL and C all
data is transmitted in ASCII notation. Two FIFOs (named
pipes) are necessary to send and receive data from C to
VHDL and vice versa. To receive data in VHDL, a file is
opened and not closed until simulation is completed.
Furthermore, this file is only read if it is not empty. For
sending data from VHDL to C, a second file is opened and
closed for each operation, because this is the only method in
VHDL to flush a buffer.

The software should be executed on the same host as the
VHDL tool or on any remote host. Thus, to build up a
communication channel between the software and the
hardware an interface module for the software was designed
called software client. Its function is to communicate via
UNIX sockets with the test bench and the processor model
and to take activation requests for subprograms from the
hardware or test bench controller and to pass read and write
operation requests from the software on to the bus functional
model.

Direct communication with the hardware, however, is
not possible, because VHDL is not able to communicate via
UNIX sockets. So as an intermediate device a software
server is defined, which controls the FIFO communication to
the VHDL-tool and the UNIX-socket communication with
the software client.

The communication between test bench, software and
micro processor is established as follows: If a software
command, predefined in the command definition package,
occurs in the control file, it is passed via VHDL
communication channels to the micro processor application,
converted to ASCII notation, and written to the send FIFO
pipe. The send FIFO pipe is read from the software server
and the data is moved from this pipe to the TCP/IP link. In
this step the data is also passed as characters. The received
data is analyzed by the software client which calls the
corresponding software routines, among them a routine
including the entire software. Thus, we can run the software
as a pure environment model but also activate parts of it.

Each software command creates a sequence of micro
processor commands resulting from I/O operations in the co-
simulation. Each micro processor command is transmitted
via TCP/IP and FIFO pipe back to the co-simulation
application and then to the micro processor model. Here it is
decoded, and the related VHDL procedure is called in order
to execute one or more of the basic read, write or nop
operations. After finalization an acknowledgment is passed
back to the software via the send FIFO and socket. Finally an
acknowledgment is sent from the software via the processor
model to the master synchronizer.

Exception handling in the software is also possible.
Instead of sending the interrupt request to the V-ware as
predefined, the request can be sent user-defined to the
software client, which calls C routines. It interacts with the
micro processor model in the sane way as that of any other C
procedure.

To sum up, the basic idea is that the VHDL test bench is
master for the co-simulation and the software runs under the
control of the VHDL simulator. The software is executed in
zero delay, because the simulation tool is waiting for a micro
processor command. Only the micro processor commands
consume simulation time. Important is the conservation of
the causality.

6 Usage in Designs
The test bench was, as already mentioned, used in several
ASIC projects. One of them, a board design out of the ATM
domain consists of four ASICs including one embedded core
and one external micro controller. It shall now be used to
show the application of our concept:

Each of the ASICs was first modeled as a behavior model
and tested separately using the test bench approach described
above. Applications were a clock generator, value
sequencers adjusting the ASIC state, RAMs, the VHDL/C
co-simulation unit and communication traffic generators as
well as analyzers. ASIC-specific software was developed
and tested using the test bench.

Afterwards the ASICs were virtually integrated in a
board and included in a test bench as shown in Figure 3.
Board-specific software executing the ASIC-specific
software was developed and tested using this model.

In this way, the correctness of the specification could be
validated at an early stage. First pieces of software were
developed and tested. Test effort was reduced by the fact that
no test frame for software test was required and huge
sections of software could be used to test hardware.

Subsequently the ASICs were modeled at RT level and
synthesized. Simultaneously software development
continued and test cases were extended. The RT models
were afterwards integrated in the test frame and are currently
being tested.

We expect additional benefits from our approach due to
the fact that low software layers and bring-up software were
tested before being run on the first hardware prototype.

7 Conclusion and Outlook
We presented a highly flexible test bench approach with
VHDL/C co-simulation capabilities. Its main goal is the
reduction of coding effort for test bench development by re-
using and multiply using the code. This was achieved by
developing an application-independent and parameterizable
master synchronizer, a set of parameterized applications, and,
most important, the inclusion of a VHDL/C interface under
control of the test bench.

Future work will focus on simplifying applications
improving timing accuracy and simulation speed up. We plan
to integrate software runtime information into our interface in
order to increase accuracy. In addition, partial modeling of
the applications as RT models to allow for faster simulation
is under discussion.

8 Bibliography
[Arm94] J.R. Armstrong, G. Frank, S. Hrishikesh, P. Gowri-

sankaran, Z. Xu, "Test Bench development for RASSP
DSP Models". First Annual RASSP Conference,
Washington DC, August 15-18, 1994.

[BaEc93] M. Bauer, W. Ecker, "Communication Mechanisms for
Specification and Design of Hardware Starting at
System Level". VHDL-Forum for CAD in EUROPE,
Innsbruck, Austria, March 14-17, 1993.

[Bar96] J.K. Bartolomew, G.J. Buza, "Connecting Hardware
and Software Design Environments: Realities in Brid-
ging the Gap". VIUF’96, Santa Clara, USA, February
28 - March 2, 1996.

[Bec92] D. Becker, R.K. Singh, S.G. Tell, "An Engineering
Environment for Hardware/Software Co-Simulation".
DAC’92, Anaheim, USA, June 8-12, 1992.

[Rom96] K.V. Rompaey, D. Verkest, I. Bolsens, H. De Man,
"CoWare - A design environment for heterogeneous
hardware/software systems". EURO-DAC’96, Geneva,
Switzerland, September 16-20, 1996.

[Row94] J.A. Rowson, "Hardware/Software Co-Simulation".
DAC’94, San Diego, USA, June 6-10, 1994.

[Sch95] M. Schütz, "How to Efficiently Build VHDL Testben-
ches". EURO-DAC’95, Brighton, Great Britain, Sep-
tember 18-22, 1995.

[Sch96] B. Schnaider, E. Yogev, "Software Development in a
Hardware Simulation Environment". DAC’96, Las
Vegas, USA, June 3-7, 1996.

[Sil95] A. Silburt, I. Perryman, J. Bergeron, S. Nichols, M.
Duresne, G. Ward, "Accelerating Concurrent Hardware
Design with Behavioral Modelling and System Simula-
tion". DAC’95, San Francisco, USA, June 12-16, 1995.

[Soi95] J.P.Soininen, T. Huttunen, K. Tiensyrjä, H. Heusala,
"Cosimulation of Real-Time Control Systems". EURO-
DAC’95, Brighton, Great Britain, September 18-22,
1995.

[WAV] "WAVES Test Bench Utilities Packages for IEEE STD
1164".

[Ziv96] V. Zivojnovic, H. Meyr, "Compiled HW/SW Co-Simu-
lation", DAC’96, Las Vegas, USA, June 3-7, 1996.

Figure 3: A test bench example

Traffic
Analyzer

Traffic
Analyzer

Traffic
Generator

Traffic
Generator

SequencerSeq. Seq. Seq.

Micro controller

ASIC1 ASIC2 ASIC3 ASIC4

CORE

RAM RAM

Master controller

Clock

