
Hardware/Software Implementation of FPGA-targeted
Matrix-Oriented SAT Solvers

Valery Sklyarov, Iouliia Skliarova, Bruno Pimentel, Joel Arrais

University of Aveiro, Department of Electronics and Telecommunications, IEETA,
3810-193 Aveiro, Portugal

{skl, iouliia}@det.ua.pt, {a21394, a21540}@alunos.det.ua.pt

Abstract. The paper describes two methods for the design of matrix-oriented
SAT solvers based on data compression. The first one provides matrix
compression in a host computer and decompression in an FPGA. It is shown
that although some improvements have been achieved in this case, there exists a
better solution. The second method makes possible to execute operations
required for solving the SAT problem over compressed matrices.

1 Introduction

The complexity of FPGAs is not always sufficient for implementing SAT solvers
and the required resources have to be partitioned between software running on a
general-purpose computer and hardware. This involves multiple data exchange, which
is either costly or time consuming. To overcome this drawback the following two
methods have been explored: 1) the technique for matrix compression/decompression
permitting to reduce the size of matrices in software, to transmit them to an FPGA
and to restore the original matrices in hardware; 2) matrix transfer in a relatively
simple compressed form and solving in hardware a 3-SAT problem [1, 2] over the
transmitted matrices avoiding the decompression step.

2 Matrix compression/decompression techniques

It is known that the SAT problem can be formulated over different models [3] and
we will consider for such purposes ternary matrices [4, 5]. They have been chosen
because of the reasons reported in [4, 5]. Fig. 1 demonstrates how the considered
technique for matrix compression/decompression has been applied. This technique is
useful if the following conditions are valid:
• Additional hardware that is necessary to implement the decompressing circuits is

reasonable. The latter can be estimated as follows. Let us assume that FPGA
resources can be defined as RFPGA, the resources needed to handle matrices with
n(2n) columns are Rn(R2n). If Rn ≤ RFPGA< R2n and after implementing the SAT
solver for an n-column matrix the remaining part of the FPGA (i.e. RFPGA-Rn) is

2 Valery Sklyarov, Iouliia Skliarova, Bruno Pimentel, Joel Arrais

sufficient to build the decompressing circuits, then additional hardware is
reasonable. The values n and 2n are considered because we assume that matrices
are kept in FPGA embedded memory blocks with reprogrammable numbers of
inputs and outputs. Incrementing an address size (i.e. adding one input) causes the
number of the available memory block outputs to be reduced by a factor of 2.

• Let T be the time of data transfer without the use of compression/decompression
and the following expression (see Fig. 1) is satisfied: T>(Tt+Th).

Software part
for SAT solver

Hardware part
for SAT solver

Transmitting
compressed

data (Tt)

General-purpose
computer

FPGA

Data compression
in software (Ts)

Data
decompression

in hardware
(Rh,Th)

Transmitting
non-compressed

result

Figure 1. Using compression/decompression technique for data exchange between

hardware/software parts of SAT solver

In order to validate these conditions the following technique has been applied.
• Matrix compression and decompression have been employed for the

hardware/software SAT solver considered in [5].
• Data compression/decompression have been provided with the aid of slightly

modified Huffman coding, which a) settles repeating coefficients for matrix don’t
care values because as a rule the number of don’t cares is significantly greater
than the number of ones and zeros; and b) is based on effective recursive
procedures considered in detail in [6].

Table 1 demonstrates the results of experiments (for data exchange through the
Ethernet for RC200 board [7]), which make possible to estimate the advantages and
disadvantages of the technique considered in Fig. 1 for different matrices M(n×m),
where n is the number of columns and m is the number of rows. A ratio is defined as
the size of compressed data divided by the size of non-compressed data and R is the
percentage of FPGA resources required for the decompressing circuit. Note that the
compression in software can be done in parallel with executing the SAT-solver
algorithm in hardware (that is why the last column shows just the time Th+Tt).

Table 1. The results of experiments for the circuit in Fig. 1

M (n × m) T (ms) R Ratio Tt
 (ms) Ts (ms) Th (ms) Th+Tt

 (ms)

128×128 0.903 12% 0.130 0.117 20 0.943 1.060
256×500 3.310 12% 0.139 0.460 220 3.800 4.260
256×256 3.310 12% 0.105 0.347 60 3.715 4.062

256×1000 12.940 12% 0.087 1.126 230 15.380 16.506
256×1500 19.260 12% 0.077 1.483 872 23.024 24.507

Hardware/Software Implementation of FPGA-targeted Matrix-Oriented SAT Solvers 3

An analysis of Table 1 has shown that independently of the good ratio for data
compression the total time is increased, i.e. for all the examples Th+Tt>T. Note that
the Ethernet-based data exchange is very fast and in case of using other interfaces the
compression permits the total time to be shortened. For example, in case of parallel
interface the values T and Tt will be increased approximately in 10 times and
consequently for all the examples Th+Tt<T. However, we cannot provide significant
improvements.

3 Executing algorithms over compressed ternary matrices

In accordance with [5] a matrix-oriented SAT solver executes operations over
rows/columns of a ternary matrix applying the following set of rules:

1. If a column contains just don’t care values it must be deleted from the
matrix.

2. All rows that are orthogonal to an intermediate vector w (that incrementally
forms a solution) must be removed from the matrix. All columns that
correspond to the components of the vector w with values 1 and 0 must be
deleted from the matrix.

3. If the matrix contains a row with just one component 0 (1) with an index i
then the element i of the vector w must be assigned the value 1 (0), i.e. the
inverted value.

4. If there is a column j in the matrix without values 1 (0) then the element j of
w can be assigned the value 1 (0).

The considered SAT algorithm implemented in hardware is depicted in Fig. 2. On
the one hand the majority of the involved operations are similar to [5]. On the other
hand the algorithm has a number of distinctive features which make possible the
required hardware resources to be reduced without a degradation of performance.
These features are the following:

1. The rule 1 was avoided because it consumes time but does not simplify the
operations over matrix rows/columns.

2. Instead of dynamic selection of the next decision variable (column), a static
selection has been employed in such a way that all the columns have been
sorted by the number of non-don’t care values in an ascending sequence and
the selection has been performed from the first to the last matrix column. Our
experience has shown that such predefined sequence minimizes the required
FPGA resources and does not reduce performance (in hardware).

3. Any matrix is addressed in the memory by rows, which means that any row can
be read/written in one clock cycle.

4. The rules 2 and 3 are sequentially checked for all matrix rows starting from the
first row (see Fig. 2). Note that the relevant to the rules 2 and 3 operations can
be executed in parallel over any complete row.

5. During sequential operations over rows a vector, which identifies columns
containing just ones and don’t cares (or zeros and don’t cares), is incrementally
constructed. It permits the rule 4 to be applied after all rows have been
examined (see Fig. 2). Thus the matrix transpose is no longer required.

4 Valery Sklyarov, Iouliia Skliarova, Bruno Pimentel, Joel Arrais

All the other operations are exactly the same as in [5] and we will not replicate them
to keep the description short. Note that any compression technique leads to non-equal
sizes of different rows (vectors) and this conducts to irregularity of different SAT
solver blocks, such as the matrix memory, the combinational circuit, etc. To cope with
this problem the following approach has been employed.

1. The software transforms any matrix that is going to be dispatched to an FPGA
in such a way that all the matrix rows contain not more than three non-don’t
care values. It is known that such a technique is called 3-SAT [2] and the
respective transformation can be done in polynomial time.

2. Any non-don’t care value (i.e. any one or zero) is coded by its index followed
by the value. For example, the vector [0-------1-1----] is coded as 0000 0 1000 1
1010 1.

3. If the vector has less than 3 non-don’t care values then the flag containing all
ones in the respective code is used. For example, the vector [---------------] can
be coded as 1111 0 1111 0 1111 0. Thus an r-bit code can be used for any
matrix, which has no more than 2r-1 columns and the number of matrix rows is
limited just by available FPGA resources.

Row = 1

Rule 2 Orthogonal

Not
orthogonal

Rule 3
Yes

No

Rule 4

Last row

Yes

No

Change
the vector w

Change
the vector w

Yes

No

Begin

There
are rows

Solution has
been found

No

End

Yes

NoOnly don’t
cares or there is no

columns

Backtracking is
possible

Solution cannot
be found

Yes

Backtrack

Increment
row number

Form element
of row mask

At least one
rule has been

applied

Selection

No

Yes

No

Yes

Figure 2. The SAT algorithm implemented in hardware

4 The results of experiments and implementation details

A SAT solver, which implements the algorithm in Fig. 2 has been designed in DK2
environment [7] from specification in Handel-C and implemented in Xilinx Virtex-II
XC2V1000 FPGA (Celoxica RC200 prototyping board). Mapping, placement, routing
and generating the bit-stream for FPGA from an EDIF file created by DK2 have been
performed in ISE 6.2.2 of Xilinx. The implemented in FPGA circuits permit to
process in hardware matrices containing up to 255 columns and 1500 rows. The clock
frequency was set to 45 MHz. As we can see from data in Table 2 the considered

Hardware/Software Implementation of FPGA-targeted Matrix-Oriented SAT Solvers 5

circuit has a high performance. In all the examples we have used randomly generated
3-SAT formulae.

Table 2. The results of experiments with the compressed-matrix-oriented SAT solver

Matrix (n × m) The result Time for solving the
problem in FPGA (s)

% of the used
FPGA resources

127 × 128 Satisfiable 0.00087 30
127 × 500 Unsatisfiable 0.127 30
255 × 256 Satisfiable 0.00357 54
255 × 1000 Unsatisfiable 0.195 54
255 × 1500 Unsatisfiable 0.264 54

5. Conclusion

One of the problems inherent to matrix-oriented SAT solvers is the relatively high
volume of data that have to be transferred from a host computer to the accelerator,
especially in the case of partitioning the problem between general-purpose software
and hardware. Due to the complexity of practical SAT problem instances this
partitioning is very common. To reduce the influence of data exchange on the total
time of computations, two methods have been explored and analyzed.

Acknowledgment

This work was partially supported by the Portuguese Foundation of Science and
Technology under grant POSI/43140/CHS/2001.

References

1. J. de Sousa, J. P. Marques-Silva, and M. Abramovici, A configware/software approach to SAT
solving, in Proc. 9th IEEE Int. Symp. on Field-Programmable Custom Computing Machines,
2001.

2. P. Zhong, “Using Configurable Computing to Accelerate Boolean Satisfiability”, Ph.D.
dissertation, Department of Electrical Engineering, Princeton University, 1999.

3. I. Skliarova, A.B. Ferrari, Reconfigurable Hardware SAT Solvers: A Survey of Systems,
Proceedings of the 13th International Conference on Field-Programmable Logic and
Applications – FPL’2003, Lisbon, Portugal, September, 2003, pp. 468-477.

4. I. Skliarova, A.B. Ferrari, The Design and Implementation of a Reconfigurable Processor for
Problems of Combinatorial Computation, Journal of Systems Architecture, Special Issue on
Reconfigurable Systems, vol. 49, 2003, pp. 211-226.

5. I. Skliarova, A.B. Ferrari, A Software/Reconfigurable Hardware SAT Solver. IEEE
Transactions on VLSI Systems, vol. 12, no. 4, Apr. 2004, pp. 408-419.

6. V.Sklyarov, FPGA-based implementation of recursive algorithms. Microprocessors and
Microsystems, Special Issue on FPGAs: Applications and Designs, vol. 28/5-6, 2004, pp. 197-
211.

7. Available: http://www.celoxica.com/

