

Hardware-Software Integrated Approaches to
Defend Against Software Cache-based Side Channel Attacks

Jingfei Kong1, Onur Acıiçmez2, Jean-Pierre Seifert3 and Huiyang Zhou1

University of Central Florida1, Samsung Electronics2, TU Berlin & Deutsche Telekom Laboratories3
{jfkong, zhou}@cs.ucf.edu1, o.aciicmez@samsung.com2, jpseifert@sec.t-labs.tu-berlin.de3

Abstract
Software cache-based side channel attacks present

serious threats to modern computer systems. Using
caches as a side channel, these attacks are able to derive
secret keys used in cryptographic operations through
legitimate activities. Among existing countermeasures,
software solutions are typically application specific and
incur substantial performance overhead. Recent
hardware proposals including the Partition-Locked cache
(PLcache) and Random-Permutation cache (RPcache)
[23], although very effective in reducing performance
overhead while enhancing the security level, may still be
vulnerable to advanced cache attacks.

In this paper, we propose three hardware-software
approaches to defend against software cache-based
attacks - they present different tradeoffs between
hardware complexity and performance overhead. First,
we propose to use preloading to secure the PLcache.
Second, we leverage informing loads, which is a
lightweight architectural support originally proposed to
improve memory performance, to protect the RPcache.
Third, we propose novel software permutation to replace
the random permutation hardware in the RPcache. This
way, regular caches can be protected with hardware
support for informing loads. In our experiments, we
analyze various processor models for their vulnerability
to cache attacks and demonstrate that even to the
processor model that is most vulnerable to cache attacks,
our proposed software-hardware integrated schemes
provide strong security protection.

1. Introduction

Side channel attacks exploit “side channel”
information such as power, heat, electromagnetic
radiation, or time to derive confidential information,
particularly secret keys used in cryptographic systems.
Recently, there are newly developed software-based side
channel attacks which exploit architectural features of
modern commodity processors such as caches [1], [4], [5],
[6], [15], [16], [19], [22] and branch predictors [2], [3].
These attacks do not require physical access to target
computers or direct access to the memory space of victim
processes and are conducted through legitimate software
operations. As a result, they pose serious threats to
modern computer systems [12, 23].

Current software cache-based side channel attacks
include access-driven attacks [15], [16], [19] and time-
driven attacks [4], [6]. Access-driven attacks exploit the
correlation between the secret key and the cache usage of
a crypto thread/process. Since the cache is shared among
multiple processes/threads, an attacker may derive the
cache usage of the victim process by controlling a
carefully crafted process, which runs together with the
victim process. Time-driven attacks measure the
execution times of victim processes and exploit the
correlation between the secret key and the number of
cache misses (which in turn determines the execution
time) to infer the key. To defend against software cache-
based side channel attacks, various countermeasures have
been proposed and many of them involve some
modifications upon the software implementation of crypto
algorithms [7], [17], [26]. However, these proposals are
often application and attack specific. In order to achieve a
high level of security protection, several defense
techniques need to be combined, resulting in substantial
performance overhead. In a recent work [23], Wang and
Lee identify certain features in data caches as the root
cause for software cache-based side channel attacks, and
propose new cache designs (PLcache and RPcache) to
prevent information leakage. Such hardware-based
defenses, although effective for their targeted attacks, lack
the flexibility to adapt to newly developed attacks [14].
Another approach to defeat cache-based attacks is to
dedicate special hardware function units and instructions
to a particular crypto algorithm, such as Intel’s AES
(Advanced Encryption Standard [10]) instructions [11], so
that cache accesses can be completely eliminated during
crypto operations. This approach, however, requires non-
trivial hardware and software changes since existing
crypto software has to be re-written/recompiled to
leverage the new AES instructions. Furthermore, it does
not protect crypto algorithms other than AES.

In this paper, we review the state-of-art cache attacks
and identify that in both access-driven and timing-driven
attacks, cache misses of critical data, whose addresses are
dependent on secret keys, are the source of information
leakage. We then propose three integrated hardware-
software mitigation approaches. First, we propose to use
preloading to secure the previously proposed PLcache [23]
so as to ensure that all accesses to critical data will be
cache hits. Second, we propose to use informing loads to
protect the RPcache [23]. Informing loads [13] are
lightweight architectural support originally proposed for

393978-1-4244-2932-5/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

optimizing memory system performance. When an
informing load (a special load instruction) misses in the
cache, a user-level exception is raised. With the support
for informing loads, we can easily integrate flexible
software-based mitigation schemes into exception
handlers. Although the RPcache randomizes cache miss
addresses through random permutation, it is vulnerable to
time-driven attacks (see Section 3.2) and our software
scheme fixes the vulnerability by re-loading all critical
data upon cache miss detection. It ensures that all
subsequent cache accesses to those data are cache hits as
long as the critical data fits in the cache and thus removes
the correlation between the secret key and the number of
cache misses. Third, we propose a software permutation
scheme assisted by informing loads to replace the random
permutation logic in the RPcache. This way, the
protection can be extended to regular caches with the
relatively minor hardware support for informing loads.
Our experiments show that the proposed approaches
based on the PLcache and RPcache provide strong
protection with low performance overhead. For regular
caches, our lightweight informing loads approach not only
provides strong security protection without the high
hardware cost of the PLcache or RPcache, but also has
significantly lower performance overhead compared to
existing software-only solutions.

The remainder of the paper is organized as follows. In
Section 2, we define the threat model and analyze the
software cache-based side channel attacks. Section 3
discusses existing software and hardware
countermeasures. In Section 4, we propose integrated
hardware-software approaches to defend against cache
attacks. Section 5 demonstrates that our solutions are
effective against cache attacks and examines their
performance overheads. We summarize the paper in
Section 6.

2. Threat Model and Attacks

There exist mainly two types of software cache-based
side channel attacks: access-driven and time-driven
attacks. In access-driven attacks, the adversary has control
over one or multiple spy processes, which share the cache
with the victim process. Due to cache sharing, the victim
process may evict the spy process’ cache lines when it
accesses key-dependent (i.e. critical) cache lines. By
measuring the access times of its own cache lines, the spy
process can figure out which cache lines are evicted by
the victim process. Such cache access behavior of the
victim process may leak enough information for the
adversary to infer the key. In time-driven attacks, the
adversary sends various encryption/decryption requests to
the target crypto process. Upon receiving responses the
adversary records the encryption times. Since the secret
key may correlate to different number of cache misses
upon different inputs/outputs, the variations among
encryption times may provide sufficient information for
the adversary to derive the key. Although time-driven

attacks may be much slower than access-driven attacks,
we consider both in this paper.

In this paper, we use one widely used cryptographic
algorithm – the Advanced Encryption Standard (AES)
[10] to illustrate current cache attacks as well as the
existing countermeasures and demonstrate the advantages
of our proposed schemes. However it should be noted that
our proposed schemes may also be applied to cache
attacks on other applications.

2.1 The Advanced Encryption Standard (AES)

AES processes a 16-byte input with a secret key of 16,
24 or 32 bytes to produce a 16-byte output. There are
multiple identical rounds involved in
encryption/decryption and each round performs four types
of operations (substitute bytes, shift rows, mix columns
and add round key). Among them, the “substitute bytes”
operation requires table lookups, in which a 1-byte input
is used as an index to a compact S-box table (an 8-bit
substitution box) to generate a 1-byte output. For fast
software AES implementations, the four operations are
combined into 16 XOR operations and 16 table lookups.
The tradeoff is that five new lookup tables (T0, T1, T2, T3
and T4) are used with each having 256 4-byte elements,
larger than the original S-box table with 256 1-byte
elements [10].

Fig. 1. Vulnerable table lookup operations in AES

2.2 Access-driven Attacks against AES

In AES, two components decide the indices of table
lookups. One is the 16-byte input and/or output and the
other is the secret key (as shown in Figure 1). As a result,
the key can be computed if an adversary obtains both the
input/output and the indices of table lookups. Since the
output of AES (i.e., the encrypted ciphertext) is not kept
private and/or sometimes the adversary may even know
the plaintext (i.e., the input to AES), it is reasonable to
assume the availability of the input/output. So, the critical
step for the key recovery is to obtain the indices of table
lookups. Since the indices determine which cache lines
are accessed in the shared cache, the adversary is able to
recover the key once the accessed cache lines can be
identified. To identify the cache lines accessed by AES
table lookups, access-driven attacks require that those
cache lines must not reside in the shared cache beforehand
so that some of the spy process’ data can be replaced
later. In other words, the table lookups shall experience
cache misses. This condition is essential for the access-
driven attacks otherwise the spy process cannot know the
cache usage. Such condition, however, can be satisfied by

394

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

the spy process, which loads a large data set to effectively
flush the cached data of the victim crypto process.

There are some complications regarding the realization
of access-driven attacks. For example, one cache line may
contain several lookup table elements and thus knowing
one accessed cache line does not exactly lead to the
corresponding index value. Nevertheless, from multiple
samples (as few as 15 [15]) the correct key values can be
filtered out statistically. Detailed description of access-
driven attacks against AES is reported by Neve [15] and
Osvik [16].

2.3 Time-driven Attacks against AES

As discussed in Section 2.1, AES relies heavily on
table lookup operations and the indices to lookup tables
depend on the key and inputs/outputs. If prior to AES
execution the lookup tables are not in the cache, different
data inputs may cause different sequences of table
lookups, which in turn result in different numbers of
cache misses and thus different execution times. Time-
driven attacks exploit the relationship between
inputs/outputs and execution times to infer the key.
Bernstein [4] demonstrated that different inputs can cause
various execution times and thus the key can be inferred.
Bonneau [6] presented a cache-collision attack that finds
the key using a much smaller number of timing samples.

-97.54

-72.03

-47.77

-26.87
-8.89

7.82

-120

-100

-80

-60

-40

-20

0

20

0 1 2 3 4 5

Total Number of Collisions in the Final Round (0-5)

R
el

at
iv

e
E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Fig. 2. The relationship between the number of
collisions in the last round of AES and the
encryption time on one Pentium 4 machine.

A cache collision happens when two table lookups
refer to the same element, in which case, the second
lookup will be a cache hit assuming no conflict misses
occurred in between. For a non-cache-collision case, the
second lookup may experience a cache miss. For
successful cache-collision timing attacks on AES, the
basic observation is that a higher number of cache
collisions results in a smaller number of cache misses,
thus a shorter encryption time [6],[22]. For example,
Figure 2 shows the relationship between the mean
execution time of one AES encryption and the number of
cache collisions in the last round of AES. The results are
collected from 16 millions timing samples using one
Pentium 4 machine running AES with the same random
key. As shown in the figure, the execution time (relative
to the average of overall timing samples) declines as the
number of collisions increases (e.g., +7.82 cycles for 0
collision and -8.89 cycles for 1 collision). Based on this
observation, attackers can pick two table lookups and

guess cache-collision cases to infer the XORed values
between key bytes, which lead to the complete key
recovery. In this particular example, 215 samples were
good enough for revealing the key. Detailed information
on cache-collision attacks can be found in [6], [22].

2.4 Source of Information Leakage in Software
Cache-based Side Channel Attacks

Although access-driven attacks and time-driven
attacks are different in the way the attacks are performed,
the source of information leakage is the same: cache
misses of lookup table data (whose indices are key
dependent) are exploited to infer the key. Section 4 shows
how we utilize this observation to defend against both
types of cache attacks.

3. Current Countermeasures

Current countermeasure proposals are either
application-level software solutions or hardware
solutions. Among software approaches, each vulnerable
application is analyzed and changed against specific
attacks. In order to achieve reasonable security protection,
software approaches are often combined, which may incur
substantial performance overhead. Hardware proposals
revise cache architecture to eliminate information leakage
exploited in cache attacks. Although hardware schemes
are able to provide general protection at small
performance cost, they often incur non-trivial hardware
changes and suffer from inflexibility to evolve against
newly developed attacks.

3.1 Software Countermeasures

(1) Access-all against access-driven attacks
Since cache attacks use cache lines to infer the indices

to the lookup tables, one way to defeat them is to
eliminate the correspondence between cache lines and
table indices. In a released patch [26] of RSA against
access-driven attacks [19], each table element is
distributed so that accessing one element ends up
accessing all the cache lines of the whole table. This
approach is effective for RSA (only less than 10%
performance overhead) given the heavy computations
involved in RSA. However, it is not applicable to AES
since touching the entire table for each table lookup
operation incurs too much performance overhead given
the high number of table lookups in AES.
(2) Random permutation against access-driven attacks

Random permutation of lookup tables changes the
mapping between table indices and cache lines. It
obfuscates attackers’ observation on cache access
activities. However fixed permutation can still leak
information, as demonstrated in [5] for AES. Although
the security offered by random permutation can be
increased by frequently updating the permutation, the
updating frequency remains an open question for pure

395

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

software approaches due to the tradeoff between
performance and security.
(3) Small tables against access/time-driven attacks

Efficient AES implementations typically utilize large
lookup tables, which are pre-computed from the original
S-box table. One protection scheme is to use the small S-
box table instead to trade performance for security [16].
This way, one single cache line contains more elements,
complicating the attacks. There are also other similar
approaches, which use smaller numbers of lookup tables
[16]. However, at the cost of substantial performance
overhead, these approaches only increase the number of
samples required for access-driven and time-driven
attacks [5],[22].
(4) Preloading against access/time-driven attacks

Preloading of all lookup tables before cryptographic
operations aims to mask cache access activities to prevent
cache attacks [17]. However, preloading still provides no
security guarantee against access-driven attacks since the
adversary may still use spy processes to evict the lookup
tables after the preloading process.
(5) Hybrid approaches

In [7], several defense techniques are combined to
provide secure and efficient protection for AES.
* Software version 1 (v1): All rounds use the compact S-
box table without permutation. Preloading is performed
before each round. This is a combination of (3) and (4).
* Software version 2 (v2): The most vulnerable rounds
(first round and last round) use the compact S-box table.
The other rounds use large pre-computed lookup tables.
All tables are permuted. Preloading is performed before
the first round and the last round. It is a combination of
(2), (3) and (4) and it trades security for improved
performance.
* Software version 3 (v3): All rounds use the compact S-
box table with permutation. Preloading is performed
before each round. This is a combination of (2), (3) and
(4).

Among the three, the v3 is most secure as it combines
all three mitigation techniques. The v2 is most
performance efficient as it uses large pre-computed
lookup tables in inner rounds and does not preload them.

3.2 Hardware Countermeasures

Realizing the limitations of software countermeasures,
several hardware schemes are proposed to provide
comprehensive, efficient, and generic solutions (i.e., not
application/attack specific) to defend against cache
attacks.
3.2.1 Partitioned cache and Partition-Locked cache
(PLcache)

In partitioned caches [18], a part of the cache is
allocated exclusively to the protected process in order to
prevent information leakage. This may cause inefficient
cache sharing since the cache partition is fixed statically.

In a recent work, the partition-locked cache (PLcache)
[23] is proposed to address this problem with a fine-
grained locking control so that only the cache lines, which
contain the critical data, are isolated. The hardware
support for the PLcache includes two additional fields in
each cache line: an ID field and a lock bit. The ID
indicates the owner of the cache line, normally a process
and the lock bit indicates the locking status of the cache
line. As for control interface, two mechanisms are
proposed: ISA extension and segment/page-based
protection. The first introduces several new instructions to
provide fine-grain locking control of the cache lines. The
second involves new OS-level API calls for coarse-grain
control of memory regions. Also the cache line
replacement policy is changed to support the locking
mechanism.
3.2.2 Random-permutation cache (RPcache)

In contrast to partitioned caches, the random-
permutation cache (RPcache) [23] allows flexible cache
sharing but randomizes the mapping between memory
addresses (i.e., table indices) and cache lines to prevent
information leakage. In the RPcache, in case of cache
interference, i.e. when the fetched cache line and the
chosen replacement cache line belong to two different
processes, the original cache set will not be used for
replacement. Instead, another cache set is chosen
randomly and replacement happens in that set. This
changes the mapping between addresses and cache sets.
Because of the swapping of cache sets, the cache lines in
the original sets are invalidated. The hardware support
includes a permutation table and a revised replacement
policy.
3.2.3 Security issues with the PLcache and RPcache

The PLcache can still be vulnerable to both types of
cache attacks since AES may still experience cache
misses over the critical data before all of them are fetched
and locked in the cache. While software can be used to
pre-load the AES tables, such initial loading of the critical
data may still provide enough information leakage for key
recovery. Besides, the PLcache does not support locked
cache lines to be replaced even when they are not needed
(i.e. the owner process is switched out and not active).
This may cause excessive locking (unless properly
controlled by the OS [23]), and in any case reduces the
size of the cache available to other processes. The
RPcache defeats access-driven attacks because even if an
adversary knows which cache lines are accessed by a
crypto operation, the corresponding index can not be
derived due to random permutation. The vulnerability of
the RPcache, however, lies in its inability to defend
against cache-collision time-driven attacks since random
permutation does not eliminate the execution time
variances: a high number of collisions still results in lower
execution times. More detailed security analysis and
examples of successful attacks to the PLcache and
RPcache are presented in [14].

396

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

4. Integrated Hardware-Software Protection
Schemes

In this section, we propose three hardware-software
approaches to eliminate the source of information leakage
exploited in software cache-based attacks. First, we
propose to secure the PLcache by pre-loading the critical
data (e.g. the AES lookup tables). Second, we advocate
using informing loads to protect the RPcache from time-
driven attacks. With the support for informing loads, we
are able to respond to the source of information leakage –
caches misses over the critical data and integrate flexible
software-based defenses. Third, we propose informing
loads assisted software-based random permutation to
replace the permutation logic in the RPcache so as to
provide the security protection to regular caches. These
three approaches present different tradeoffs between
hardware complexity and performance overhead.

4.1 Preloading to Protect Partition-Locked cache

4.1.1 The idea
Previous works [5], [7], [17] discussed the concept of

preloading or cache warming as a possible
countermeasure for cache attacks. The basic procedure is
to load all security critical data, e.g., the AES lookup
tables, into the cache right before the crypto operations.
Preloading itself, however, cannot provide sufficient
protection against cache attacks simply because an
adversary can still manipulate the cache state after the
preloading process. As discussed in Section 3.2, the
PLcache does not provide high security either due to the
initial loading process of the critical data. However,
combining preloading and PLcache provides a solid
protection mechanism against access/time-driven attacks.

The key here is to make sure that before cryptographic
operations all the critical data are preloaded and locked in
the PLcache. After that, any access to those critical data
will result in a cache hit. This way, time-driven attacks
are effectively defeated since there is no correlation
between the secret key and cache hit/miss patterns. This
scheme also defeats access-driven attacks since all a spy
process can observe is that the whole set of the critical
data are in the cache, thereby leaking no information of
which parts of the critical table (or the indices to the
tables in AES) are used in a crypto operation. Here, note
that the PLcache with preloading is secure only if all the
critical data can fit in the cache. This issue is generally
not a problem for cryptographic algorithms, of which a
key design objective is to keep critical data small [10].
The five critical lookup tables in AES, for example, take
5KB (1KB for each table).

To address the issue of excessive locking associated
with the PLcache, we propose to allow the locked cache
lines to be replaced if the cryptographic process is
switched out (i.e., not active). When the cryptographic
process is switched back, those protected cache lines will
be reloaded and locked again.

4.1.2 Proposed implementation
Changes to the PLcache logic The change to the

PLcache logic is that when a new non-protected cache
line is about to replace a locked (protected) cache line,
which is always prohibited in the PLcache, the
replacement is now allowed if the owner process of the
locked cache line is not active. This is done by comparing
the ID field of a locked cache line with the active
processes' IDs.

 Architectural support for preloading One
implementation of preloading and reloading is through
hardware logic. In this implementation, a new preloading
instruction will be used to specify the beginning address
and length of the protected data. The preloading state (i.e.,
whether the preload has been performed or not and the
address range of preloading) becomes part of the process
context. Then, if the preloading state is set after a context
switch, the hardware will re-load all critical data. This
pure hardware approach may be too costly and introduce
extra hardware complexity.

The preloading and reloading can also be implemented
through software in an un-modified PLcache system. The
protected process performs the preloading and locking
before critical operations and performs unlocking once the
critical operations are completed. The operating system
(OS), however, needs to be changed to perform the
preloading and locking during context switches of the
protected process. Instead, we propose to use user-level
exception handling to provide efficient preloading and
offer flexibility to deploy newly developed software
defense mechanisms.

User-level exception handling is introduced by
Thekkath et al. [21]. It provides efficient handling of
synchronous exceptions by user-level code. In our
design, we implement it in the way described in [13].
When some instruction triggers a user-level exception, it
works as a conditional branch. The exception only
changes the program counter (PC) of the running process.
It does not invoke any OS code. Necessary additions
include two new instructions (EH-register and EH-jr) and
two new registers (an exception handler address register-
EHAR and an exception handler return register-EHRR).
EH-register will load the entry address of the user-level
exception handler to the EHAR. EH-jr is used at the end
of the exception handler to jump to the address stored in
EHRR to resume program execution. The procedure
works as follows. The user-level exception event will
trigger a pipeline squash when the offending instruction
reaches the head of the Reorder Buffer (ROB). The next
PC is saved to EHRR. Then the exception handler whose
address is stored in EHAR will take over the execution
and run as a regular function. It saves the registers that it
will use to the stack at the beginning and restores those
registers at the end. When the handling finishes, EH-jr
will use EHRR to return to the interrupted process.

Besides the support for the user-level exception
handling mechanism, we propose two new instructions
(PL-begin and PL-end) and one new control status

397

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

register (PL-S). PL-begin and PL-end are inserted to
enclose the cryptographic operations that need to be
protected. The status register PL-S indicates the state of
locking and preloading.

The whole procedure works as follows:
1) The user-level exception handling mechanism registers
the entry address of the user-level exception handler
during program initialization.
2) When the crypto process comes to the cryptographic
operation, PL-begin sets the status register (PL-S) to
indicate that the PLcache locking mechanism and
preloading become effective for this crypto process. In the
meanwhile, it triggers the exception handler, which pre-
loads and locks all the critical data.
3) During program execution, if a context switch happens,
the status register PL-S will be saved along with other
states of the process. The PLcache locking mechanism
becomes ineffective for the switched-out process, by
comparing every cache access with an Active Process
register. When the process is switched back, the status
register PL-S is examined. If PL-S indicates that the
critical data needs to be loaded and locked, a user-level
exception is raised and the same exception handler will
reload and lock the critical data to the cache.
4) When the protected cryptographic operations are
completed, the PL-end instruction resets the status
register, indicating that the critical data are no longer
needed. The PLcache locking mechanism becomes
ineffective for the process.

4.2 Securing the RPcache with Informing Loads

4.2.1 The idea
With cache-based attacks taking advantage of cache

hit/miss behavior of crypto processes, we argue that the
crypto process itself can leverage the same information to
defend against the attacks. Informing loads, originally
proposed as a lightweight architectural support for
memory optimization [13], enable the crypto process to
gain the control once an access to critical data misses in
the cache. This way, flexible software defense
mechanisms can be deployed. In this section, we show
that informing loads can be used to effectively address the
security vulnerability of the RPcache. Because of its
flexibility, our approach can be further extended to protect
regular caches (Section 4.3).

As explained in Section 3.2, the RPcache defeats
access-driven attacks by randomizing cache line mapping.
However, it is vulnerable to cache collision attacks since
not all critical data are guaranteed to reside in the cache.
Therefore, the fundamental assumption behind collision
attacks still holds. In other words, a higher number of
collisions still results in lower encryption time. To protect
the RPcache, we propose to use informing loads to access
the critical data. In the case of AES, it means that all the
table lookups are implemented using informing loads
while other data accesses use regular load instructions.
The informing loads detect whether the critical data is in

the cache. If not, they will redirect the PC to a user-level
exception handler. Note that preloading alone can’t
provide sufficient security support against cache collision
attacks as preloaded data can still be replaced. Such a
case could be that during the execution, internal data of
the victim process may replace the preloaded data, which
is identified as internal interference in [23].

In this paper, we devise an exception handler to load
all the critical data (or the tables T0-T4, in AES) into the
cache. The objective is that after the exception handling,
subsequent accesses to the critical data will hit in the
cache, thereby eliminating time variations. Note that, such
data loading is just one possible solution. The key
advantage of using informing loads over pure hardware-
based defense mechanisms such as the RPcache is that the
exception handler can be easily updated to defend/detect
future cache-based attacks or to incorporate a better
crafted defense algorithm.
4.2.2 Proposed implementation

Informing loads are special load instructions that
“inform” the software when the load misses in the cache.
There are three ways of implementing informing loads
[13]. The first is to use a cache outcome condition code
and branch-and-link instructions. The second is a branch
operation with a slot that is squashed if there is a hit. The
third one is a low-overhead user-level cache miss trap.
We choose to use the low-overhead cache-miss trap for its
low hardware complexity.

Fig 3. Code of the informing load exception handler

Using AES as an example, the proposed procedure
works as following. In the cryptographic operations, those
protected tables are loaded with informing load
instructions. These informing load instructions work as
normal loads with no extra overhead when they hit in the
cache. Whenever an informing load misses in the cache, a
user-level exception will be generated and the exception
handler, shown in Figure 3, will be executed. As shown in
Figure 3, the exception handler loads the critical tables in
a random order. The reason is due to an artifact of the
RPcache, in which cache lines may be invalidated when a
cache line index is randomized. As a result, if the
exception handler loads the tables in a determined order,
the elements that are loaded earlier have higher chances to
be invalidated than those loaded later. The random order
(achieved by XORing a random number r in Figure 3) in
the exception handler eliminates the determinism.

Combining informing loads with the RPcache defeats
software cache-based attacks. The RPcache itself is

r = random_number;
// from hardware random number generator (i.e. the one
// used by the RPcache)
 i_max = number_of_tables;
 j_max = table_size / table_element_size;
 for (i=0; i < i_max; i++) // Fetch each protected table
 for (j=0; j < j_max; j +=
 cache_line_size/table_element_size)
 Prefetch(T[(i XOR r) % i_max][(j XOR r) % j_max]);
 // Fetch each protected cache line in a random order

398

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

effective against access-driven attacks and the informing
load exception handling provides a defense mechanism
against time-driven attacks. Due to the invalidation effect
of the RPcache, in theory we still can not guarantee that
all the table access hit in the RPcache since some critical
data may be invalidated during the permutation process.
As a result, there may still be access latency variations
among different table elements, although the randomized
loading order in our exception handler already makes
such variations non-deterministic. To completely
overcome the problem, we can change the RPcache to let
it selectively swap the cache lines instead of invalidating
them during the permutation process. In other words, if a
cache line to be invalidated contains some critical data,
the content will be copied to the new location instead of
being invalidated. Such a change increases the complexity
of the RPcache but may further improve the security.
With such implementation, the randomized loading order
in the informing load exception handler can be removed.

4.3 Securing Regular Caches with Informing
Loads

4.3.1 The idea
To protect regular caches, we first use software

random permutation to randomize the crypto process’
cache footprint against access-driven attacks. However, as
discussed in Section 3.1, fixed permutation leaks
information and frequent updates of permutation may
incur unnecessary performance overheads. To overcome
these problems, we propose to change the permutation
only when it is necessary. As discussed in Section 2,
cache attacks rely on cache misses to identify whether a
cache line is used by the victim process. Therefore, we
choose to change the permutation whenever there is a
cache miss of the critical data, which is supported by
informing loads. In other words, we integrate permutation
update in the exception handler of informing loads. Such
informing loads assisted software permutation can also be
viewed as a replacement of the permutation logic in the
RPcache so that the security protection can be provided
with no need for hardware changes for the RPcache.

To defeat time-driven attacks, loading of all critical
data is also performed in the exception handler upon
cache misses detected by informing loads, similar to the
way to further secure the RPcache.
4.3.2 Proposed implementation

The key of software permutation is to use one level of
indirection to randomize the address mapping between the
table lookup values and their memory addresses. Using
the critical tables of AES as an example, we use an
indirection table to produce the actual address of one
protected unit, i.e. a cache line in our implementation, as
shown in Figure. 4.

In Figure 4, one dimension table T with N elements is
converted into a two-dimension K x L array T ’, where K x

L = N and L is the number of elements in one cache line,
i.e. L = Cache line size / size of each table element.
Compared to T, which occupies a continuous region of
memory, the data in T ’ are distributed in memory and are
accessed through pointer indirection.

Fig. 4. Converting a one-dimension table into a two-
dimension array.

With the critical data organized in a two-dimension
array, we can easily perform address permutation. As
illustrated in Figure 5, assuming that the address of table
element T[0] (i.e., &T[0] or T ’[0]) is 0x40, address
permutation upon T ’[0] proceeds as follows. First, one
entry among T ’[1, … K-1] is randomly selected
(assuming T ’[1] is selected and T ’[1] = 0x80). Second,
both the indirection pointers (T ’[0] and T ’[1]) and the
data pointed to (*T ’[0] and *T ’[1]) are swapped. After
permutation, the new address of T[0] becomes 0x80. The
data value of T[0] (or T ’[0][0]) is unchanged due to the
data swapping between *T ’[0] and *T ’[1].

...

T’[0, …, K-1]

Addr: 0x80

Addr: 0x40

Address permutation
by pointer & data ...

T’[0, …, K-1]

Addr: 0x80

Addr: 0x40
Fig. 5. Address permutation by swapping both the
pointers and the data.

With the proposed way to perform permutation, we
devise the exception handler for informing loads to defeat
the cache attacks. The scheme works as follows. In the
crypto algorithm (e.g., AES) implementation, two-
dimension arrays are used to store the critical data (each
of T0-T4 in AES). The table lookups use informing loads
while other data accesses use regular load instructions.
Once a critical data access misses in the cache, the
exception handler for informing loads will be triggered.
The exception handler prefetches all critical data to the
cache and meanwhile performs the permutation change
upon the missing table entry, as illustrated with the
pseudo code in Figure. 6.

Fig. 6. Pseudo code of the exception handler for
informing loads, which prefetches all critical data to
the cache and randomly permutes the cache lines.

0. The cache line of T[i] is missing in the cache
1. Prefetch from addresses T’[0],T’[1],…,T’[K-1]
2. Find the corresponding T’[p] that points to T[i]
3. Randomly select a target entry T’[q] for permutation
4. Swap *T’[p] and *T’[q]; swap T’[p] and T’[q]

399

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

5. Experiments

5.1 Methodology
Our experiments are conducted using a detailed timing

simulator developed from the SimpleScalar toolset [8].
The underlying processor model is MIPS R10000 and the
default configuration is listed in Table 1. We implemented
both the PLcache and RPcache in the simulator. Proper
architectural support for informing loads is included in the
simulator. The detailed user-level exception handling
including pipeline squashing, control flow transfer to and
from the user-level handler is implemented to faithfully
measure the performance of our proposed approaches.

Table 1. Default processor configuration
Branch

Predictor
64K-entry g-share, 4K-entry direct
mapped Branch Target Buffer (BTB)
7-stage pipeline:
Fetch/Dispatch/Issue/RegisterRead/EXE
/WriteBack/Retire, Pipeline bandwidth:4
Fully-symmetric Function Units: 4
Reorder Buffer (ROB) size: 128
Issue Queue (IQ) size: 64
Load Store Queue (LSQ) size: 64

Superscalar
Core

Fetch Policy for SMT: round-robin

Execution
Latencies

Address Generation: 1 cycle
Memory Access: 2 cycles (hit in data cache)
Integer ALU ops: 1 cycle
Complex ops:MIPS R10000 latencies

Instruction
Cache

32KB 2-way, Block size 64B
10-cycle miss penalty

L1 Data
Cache

32KB 2-way, Block Size 64B
10-cycle miss penalty
8 Miss Status Handling Registers (MSHRs)

L2 Unified
Cache

2MB 16-way Block size: 64B
300-cycle miss penalty

Our AES code is extracted from the OpenSSL 0.9.7c
implementation. The key size is 16 bytes. For
performance evaluation, the OpenSSL speed test program,
a standard microbenchmark program included in
OpenSSL [24], is used as our benchmark program. In the
program, AES runs in the cipher-block chaining (CBC)
mode. We use the message size of 8KB in our
experiments. In terms of the performance metric for AES,
we use cycles per byte instead of instructions per cycle.
The reason is that different hardware/software approaches
have different implementations, different lookup tables or
different number of instructions. Cycles per byte, in
contrast, directly reflects the throughput of AES: the
number of bytes encrypted per time unit.

5.2 Security Analysis

5.2.1 Microarchitectural effects on cache collision
time-driven attacks

We first investigate the microarchitectural effects on
cache-collision time-driven attacks against AES. The
reason is that both instruction-level parallelism (ILP) and
memory-level parallelism (MLP) affect the encryption
time. With a high degree of parallelism, many cache
misses can be overlapped, thereby reducing the impact

from cache collisions. In this experiment, we use five
processor configurations as shown in Table 2 and
examine the relationship between the encryption time and
the number of cache collisions. In the experiment, a clean
cache state is established before the 128-bit-key standard
OpenSSL AES encryption and 16-million samples are
collected for each processor configuration. Since different
processor configurations lead to different encryption
times, we report the relative encryption times in Figure 7,
in which the encryption times are normalized to the mean
encryption time with the same configuration. For
reference, we also include the results from a real Pentium
4 machine in Figure 7.
Table 2. Different processor configurations to
evaluate cache collision effects

Configuration 1 In order issue, 1way-issue, 1MSHR
Configuration 2 In order issue, 4way-issue, 4MSHRs
Configuration 3 Out-of-order execution, 4way-issue

4MSHRs, 64ROB/32IQ/32/LSQ
Default
Configuration

Out-of-order execution, 4way-issue
8MSHRs, 128ROB/64IQ/64/LSQ

Configuration 4 Out-of-order execution, 8way-issue
32MSHRs, 256ROB/128IQ/128/LSQ

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

0 1 2 3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Configuration 1
Configuration 2
Configuration 3
Pentium 4
Default Configuration
Configuration 4

Fig. 7. The relationship between the number of
collisions in the final round and the normalized
encryption time on various processor
configurations.

From Figure 7, it can be seen that the collision attacks
are most effective against single issue, in-order processors
with limited MLP. Both out-of-order (OOO) execution
and high degrees of MLP reduce the effect of cache
collisions. Furthermore, we perform AES final-round
collision attacks on those samples. The analysis tool that
we used is from [6], which performs collision attack
analysis (i.e., key search) on AES encryption samples
using a number of artificial intelligence techniques and
reports the number of samples required to recover the
complete key. The results, which are shown in Table 3,
validate our observations. For processor configuration 1,
around 4k samples are enough to break the key. In
comparison, it takes around 400k samples to break the
key for processor configuration 4. Our experiments on
these processor configurations with the RPcache also
show similar results for the different processor
configurations, confirming that the RPcache is still
vulnerable to collision attacks. From this experiment, it
can also be seen that encryption times of modern high
performance processors is less correlated to the number of
cache collisions (or the number of cache misses) than in-
order processors. This is due to the effect of OOO

400

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

execution and MLP. However the vulnerability to
collision attacks remains since the number of samples
required to reveal the correlation is still in feasible ranges.
Table 3. Required numbers of samples for key
recovery on various processor configurations.
(based on 25 random keys with random input plaintext)

 min median max
Configuration 1 3k 4k 5k
Configuration 2 6k 10k 13k
Configuration 3 7k 11k 13k
A real Pentium 4 12k 20k 27k

Default Configuration 17k 24k 29k
Configuration 4 328k 393k 459k

5.2.2 Security evaluation of the proposed schemes
The PLcache with preloading (PLcache+PL) As

discussed in Section 4.1, the PLcache with preloading
ensures that all critical data reside in the cache throughout
the crypto process' lifetime. It defeats access-driven
attacks since the only information that a spy
process/thread can obtain is that all the critical data are
used. It defeats time-driven attacks as any access to the
critical data will hit in cache, thereby no timing variations.

The RPcache with informing loads (RPcache+IL)
Through random permutation, the RPcache is effective
against access-driven attacks (see [23] for the theoretical
proof). With informing loads, any access to the critical
data, if it misses in the cache, will invoke the exception
handler to load all the critical data. Next, we examine how
well this approach mitigates cache-collision attacks.

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

0 1 2 3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Config. 1 with Regular cache

Config. 1 with RPcache

Config. 1 with RPcache+IL
Config. 1 with Regular cache + IL

Fig. 8. The effect of our informing loads approaches
on the relationship between the number of
collisions in the final round and the normalized
encryption time.

We first examine the relationship between the
encryption time and the number of cache collisions as
shown in the Figure 8. As analyzed in Section 5.2.1,
processor configuration 1 is most vulnerable to collision
attacks. Therefore, we use this processor configuration to
evaluate various cache designs. For the RPcache
enhanced by informing loads (Config. 1 with
RPcache+IL), we observed no evident correlation
between the encryption time and the number of cache
collisions compared to the RPcache case (Config. 1 with
RPcache). Then, we repeated the key recovery
experiments. Compared to the RPcache, upon which 8K
samples are enough for a complete key recovery, the
attack fails on the RPcache+IL when presented with 16-
million samples. More samples have not been tried due to
the required simulation time as it takes 16 days to
simulate one 16-million encryption run. Attacks on other

processor configurations equipped with the RPcache+IL
also failed when presented with 16-million samples.

From the experiments, we can conclude that using
informing loads with the proposed exception handler can
greatly enhance the security of the RPcache. However, as
discussed in Section 4.2.2, if further cache security is
desired, one can choose to selectively swap cache lines
instead of invalidating them. This way, the cache collision
attacks upon uniprocessors can be completely defeated
since all the tables reside in the cache and all the access to
those tables are cache hits. For more complex cache-
collision attacks upon multi-threaded processors, further
exploration is necessary and left as our future work.

Regular caches with informing loads (Regular
cache+IL) For access-driven attacks, our solution is to
use software permutation to randomize the mapping of the
cache lines that contain critical data. Every time if the
adversary tries to exploit a cache miss to observe the
cache usage, the permutation varies. In fact, the
permutation with updates on cache misses can be viewed
as a software implementation of the RPcache design,
which is already proven to be secure from access-driven
attacks from the information theory perspective [23].

For time-driven attacks against AES, again we
examine the relationship between the encryption time and
the number of cache collisions as in the previous sections
and the results are also in Figure 8. From Figure 8, it can
be seen that for processor configuration 1, there exists no
evident correlation between the encryption time and the
number of cache collisions in our informing loads
approach (Config. 1 with Regular cache+IL) compared to
the regular cache case (Config. 1 with Regular cache).
Next, we repeat the cache-collision attacks to evaluate the
effectiveness of our approach against time-driven attacks
on the processor configuration 1. For the regular cache the
tool successfully retrieves the key with less than 8K
samples. For the cache protected by our approach, the tool
fails on 16-million samples, demonstrating our approach’s
effectiveness. Attacks on other configurations equipped
our regular cache+IL also failed on 16-million samples.
This is similar to what we observed from the RPcache+IL,
as both use reloading of all the critical data as the
countermeasure against collision attacks.

5.3 Performance Evaluation

In this section, we study the performance impact of our
proposed approaches, i.e., preloading on top of the
PLcache (PLcache+PL), informing loads combined with
the RPcache (RPcache+IL) and informing loads combined
with the regular cache (Regular cache+IL), upon AES,
which represents the code to be protected. The baseline is
the standard OpenSSL AES implementation which uses 5
precomputed lookup tables with the total size of 5KB.
5.3.1 Performance impact on AES

In this experiment, we analyze the performance impact
of different protection schemes on AES using various L1
data cache configurations. We vary the L1 data cache

401

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

sizes from 8KB to 32KB and the set associativity from 1-
way to 4-way. The throughputs normalized to the baseline
results (i.e., regular cache) are shown in Figure. 9. Among
different cache designs, the PLcache and PLcache+PL
have almost the same performance since all critical data
are locked in both designs after the short warm-up phase.

0%

20%

40%

60%

80%

100%

1way 2way 4way 1way 2way 4way 1way 2way 4way

8K 16K 32K

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline

PLcache(+PL)

RPcache

RPcache+IL

Software v2

Regular
cache+IL

Fig. 9. Performance impacts of different protection
schemes over various cache configurations.

From Figure 9, we make the following observations.
First, for the 8KB direct-mapped cache, the PLcache (and
PLcache+PL) incurs non-trivial performance overhead
(26%). It is because locking introduces extra cache
conflict misses over the protected cache lines. With larger
caches and higher associativities, the number of conflict
misses is reduced, resulting in smaller performance
overhead (e.g. 15% of the baseline for 16KB direct
mapped cache and almost 0% of the baseline for 16KB 2-
way). Second, the RPcache has almost no performance
difference compared to the baseline results. This is
because the performance impact caused by random
invalidation is small. These results also agree to that
reported with the original PLcache and RPcache [23].
Third, the RPcache+IL has substantial performance
overhead for 8KB direct mapped cache (63%). The reason
is that because of frequent conflict misses, informing
loads exception handler is invoked frequently, wasting
lots of cycles. With larger caches and higher
associativities, the cache is able to hold the working data
set of AES and the RPcache+IL has low performance
overhead (only 8% overhead for the 8KB 2-way cache
and almost 0% overhead for the 8KB 4-way cache).

For our informing loads with the regular cache
(Regular cache+IL), we also compare it to the software-
based hybrid protection schemes (v1, v2 and v3 in Section
3.1). Since v1 and v3 always cause more than 6X
slowdown to the baseline in our experiments, Figure 9
only includes the results for v2. From Figure 9, it can be
seen that due to extra instructions (pointer indirection in
our approach and S-box-based computation as well as
permutation in v2), both v2 and Regular cache+IL have
non-trivial performance overhead compared to the
protection schemes with special cache designs. For 8KB
direct mapped, 8KB 2-way, 16KB direct mapped and
32KB direct mapped caches, our scheme incurs higher
performance overhead than v2. This is due to the large
number of conflict cache misses over the protected cache
lines, which lead to frequent invocation of the exception
handler. As the cache size and set-associativity increase,
such performance overhead quickly diminishes. The L1

data caches in modern commodity processors often have
capacity bigger than 8KB and/or set associativity higher
than one-way (as indicated in Intel® 64 and IA-32
Architectures Software Developer's Manuals). With those
configurations, our approach incurs much smaller
performance overhead compared to v2. For example, for
the 16KB 2-way cache, our scheme incurs 40% overhead
while v2 has 67%. For the 32KB 2-way cache, our
scheme has 37% overhead and v2 has 67%. The main
reason is that our proposed approach only responds to the
potential dangerous event (i.e., cache miss over critical
data), during which permutation updates and loading of
all critical data are performed. In comparison, pure
software approaches such as v2 have to perform these
operations no matter whether there is a potential
information leakage event or not. Furthermore, v2 offers
relatively lower security levels because of its treatment of
the inner rounds of AES as discussed in Section 3.1.
5.3.2 Performance impact on an SMT processor

In this experiment, we examine the performance
impact of the protection schemes on SMT processors. We
use two-way SMT processors and have AES run together
with one of the ten SPEC2000 INT benchmarks (bzip2,
gap, gcc, gzip, mcf, parser, perl, twolf, vortex and vpr).
For each benchmark, SimPoint [20] is used to select a
simulation phase of 300-million instructions. We vary the
L1 data cache configurations from 8KB direct-mapped to
16KB, 32KB and 64KB 4-way set-associative. The results
are shown in Figure 10. We report two metrics for each
cache configuration, the overall instructions per cycle
(IPC) for throughput and the Hmean metric (Harmonic
mean of the IPC speedup/slowdown of each separate
thread [9]) for fairness. Note that although here we use
instructions per cycle as the performance metric for AES
implementations, these IPCs are relatively normalized to
the baseline’s IPC in terms of AES throughput (cycles per
byte) to ensure fair overall IPC comparison. Here, the
baseline is the standard OpenSSL AES implementation
and assume that it takes N instructions to encrypt a
message. Due to added defense mechanisms, a software
approach, e.g., v2, may require a different number of
instructions (e.g., M) to encrypt the same message. To
ensure fair comparison, the IPC of v2 is computed using
the baseline instruction count, N. Our results exclude the
instructions for the user-level exception handler.

From Figure 10, we can make the following
observations on PLcache+PL and RPcache+IL. First, for
the 8KB direct-mapped cache, the PLcache (and
PLcache+PL) incurs performance degradation in
throughput (8% on average) because locking introduces
extra cache misses. When measuring Hmean, however,
the PLcache reports 6% improvement. The reason is due
to the memory-intensive benchmark mcf, which
dominates the cache usage and significantly affects the
performance of AES. With the PLcache, the AES lookup
tables are locked, thereby reducing such negative impact
from mcf upon AES. With mcf excluded, PLcache reports

402

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

a 4% loss on Hmean. The RPcache improves both the
throughput (7%) and Hmean (7%) because the cache line
relocation alleviates the cache conflict problem associated
with the direct mapped cache. Second, for 16KB, 32KB
and 64KB 4-way set-associative caches, the PLcache
achieves very small throughput improvement. This is
because those cache configurations have enough capacity
for the working sets of both AES encryption and the
SPEC CINT benchmarks and locking helps to avoid cache
misses on the protected tables. The RPcache has a little
degradation in IPC (1% for 16KB) because of the effect
of invalidations from cache line relocation. This effect
tends to diminish for large caches such as 32KB (almost
0%) caches due to their higher number of cache sets.
These results also agree to that reported with the original
PLcache and RPcache [23]. In terms of Hmean, the
PLcache (PLcache+PL) and RPcache have very limited
impact compared to the baseline caches. Third, the
RPcache+IL incurs higher overhead compared to the
original RPcache. The reason is due to user-level
exception handling. For 8KB directed mapped and 16KB
4-way caches, the AES lookup tables are frequently
replaced with the data from SPEC benchmarks. Therefore,
the exception handler is invoked frequently, resulting in
49% and 45% losses in IPC and 19% and 57% losses in
Hmean for those two cache configurations, respectively.
The low Hmean results for the RPcache+IL are due to
inherently unfair usage of informing loads. Since only the
AES code uses the informing loads, the performance loss
due to invocations of the exception handler is mainly
upon AES rather than the SPEC workloads, thereby
indeed being unfair. Such performance loss is recovered
when the cache size is increased to 32KB (12% loss in
IPC and 12% loss in Hmean) and 64KB (5% loss in IPC
and 4% loss in Hmean) as the lookup tables will reside in
the cache for much longer time.

0%

20%

40%

60%

80%

100%

120%

8K
_1

w
ay

16
K_

4w
ay

32
K_

4w
ay

64
K_

4w
ay

8K
_1

w
ay

16
K_

4w
ay

32
K_

4w
ay

64
K_

4w
ay

Throughput Hmean

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline

PLcache (+PL)
RPcache
RPcache+IL
Software v2
Regular cache+IL

Fig. 10. Performance impacts of various protection
schemes over various cache configurations in two-
way SMT processors.

In Figure 10, we also show the performance on the
most efficient software hybrid approach (Software v2)
and the regular cache with informing loads scheme
(Regular cache+IL) for two-way SMT processors. The
results of v1 and v3 are not shown since both are much
worse than v2. For throughput, both v2 and Regular
cache+IL have significant throughput degradation for all

cache configurations. In the meantime, Regular cache+IL
gains higher throughput over v2 except for the 8KB
direct-mapped cache. This is due to the diminishing
number of conflict misses as the cache can hold the
working sets of both threads. Therefore it results in a
small number of invocations of the exception handler,
which lead to small performance overhead. For fairness,
v2 reports similar results to the baseline as v2 makes no
use of informing loads, thereby is not affected. Regular
cache + IL reports lower fairness results. The reason is
due to the unfair usage of informing loads: informing
loads are only used in AES but not in the other thread.
Therefore, when an informing load exception happens, it
only affects AES and does not affect the co-running
thread. The fairness of Regular cache + IL improves
quickly when the cache goes from 8KB up to 64KB as a
result of the reducing number of invocations of the
exception handler.

5.4 Summary

Protecting computer systems is often about selecting
the tradeoff between security and efficiency. A stronger
level of security protection usually comes at extra cost.
Here we use performance overhead, hardware complexity,
flexibility, compatibility with legacy programs and
software change complexity as the factors for
consideration and present a comparison among various
protection schemes against software cache-based side
channel attacks, as shown in Table 4. For security,
although the PLcache and RPcache designs are effective
against the two cache attacks analyzed in [23], they are
still vulnerable to other cache attacks [14]. Our proposed
hardware-software integrated approaches address the
source of information leakage and are able to mitigate the
latest cache attacks. Software hybrid approaches are also
able to provide certain resistance against cache attacks but
may trade security for performance, such as v2. From the
perspective of performance overhead, the special
hardware designs reduce the performance cost, while our
informing loads with regular cache approach incurs non-
trivial performance degradation because of extra pointer
indirection. PLcache+PL and RPcache+IL pose a small to
medium performance overhead upon the original cache
designs, while pure software approaches usually incur the
highest performance overhead. In terms of the ability to
evolve when better software countermeasures are crafted
or new attacks are developed, pure hardware designs lack
the flexibility compared to software approaches, as
evidenced by the vulnerabilities of the original RPcache
designs to some timing-based attacks. Our proposed
hardware-software integrated approaches combine some
of the performance advantage of the hardware design with
the flexibility of the software defense. Among them, the
PLcache+PL and RPcache+IL provide performance
efficiency at the cost of extra hardware and complexity
and our approach for regular caches has smaller
performance overhead compared to the pure software

403

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

Table 4. A comparison between various protection schemes
 PLcache RPcache PLcache+PL RPcache+IL Regular cache +IL Software v1,v2,v3

Mitigation against
access-driven attacks?

Yes, with SW
preloading

Yes Yes Yes Yes Yes

Mitigation against
time-driven attacks?

Yes, with SW
preloading

No Yes Yes Yes Yes

Performance overhead None-Small None+ Small-Medium* Small-Medium* Medium-High* High

Hardware changes Trivial Non-trivial Non-trivial Non-trivial Light-weight None
SW flexibility in
handling misses

No No Yes Yes Yes Yes

Compatibility
with legacy programs

Yes with OS
change

Yes No No No No

Software change complexity Small None Medium Medium High High
 * Note: for small size and low-associativity caches, the performance overhead would be high

 +Note: Performance can increase for RPcache for small cache size and direct-mapped caches

approach, for caches larger than 16 KB, while requiring
only minor architectural support for informing loads. For
compatibility with legacy programs, RPcache is able to
provide protection without requiring any software
changes. In terms of the complexity of software changes
PLcache requires relatively small change in order to
provide fine-grain locking control of cache lines and
RPcache requires no software changes, while
PLcache+PL and RPcache+IL need the user-level
exception handler. In comparison, regular cache+IL and
software v1, v2, v3 introduce software random
permutation and other changes to the target programs.

6. Conclusions
Software cache-based side channel attacks pose

serious threats to the security of computer systems. In this
paper, we review current cache attacks and identify the
weakness of existing hardware/software countermeasures.
We then propose integrated hardware-software
approaches to provide stronger security protection. We
use preloading to protect the PLcache from the initial
loading exposure. A light-weight hardware support,
informing loads, is used to detect the sign of potential
danger - cache misses of critical data and then to deploy
flexible software countermeasures. We propose to use
informing loads combined with simple yet effective
software countermeasures to protect both the RPcache and
regular caches. Experimental results show that our
approaches achieve strong security protection at relatively
low performance overheads.

Acknowledgements
We would like to thank our shepherd, Ruby Lee, and the
anonymous reviewers for their valuable comments. This
work was supported by an NSF CAREER award CCF-
0747062.

References
[1] O. Acıiçmez. Yet Another MicroArchitectural Attack: Exploiting I-
Cache. ACM workshop on Computer Security Architecture (CSAW), 2007.
[2] O. Acıiçmez, Ç.K. Koç and J.-P. Seifert. On the Power of Simple
Branch Prediction Analysis. ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2007.
[3] O. Acıiçmez, Ç.K. Koç and J.-P. Seifert. Predicting Secret Keys via
Branch Prediction. The Cryptographers’ Track at the RSA Conference (CT-
RSA), 2007.

[4] D. Bernstein. Cache-timing attacks on AES. preprint, 2005,
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
[5] J. Blommer and V. Krummel. Analysis of countermeasures against
access driven cache attacks on AES. Workshop on Selected Areas in
Cryptography (SAC), 2007.
[6] J. Bonneau and I. Mironov. Cache-Collision Timing Attacks against
AES. Workshop on Cryptographic Hardware and Embedded Systems (CHES)
2006. Source code available at http://www.jbonneau.com/research.html
[7] E. Brickell, G. Graunke, M. Neve and J.-P. Seifert. Software mitigations
to hedge AES against cache-based software side channel vulnerabilities.
Cryptology ePrint Archive, Report 2006/052, 2006.
[8] D. Burger and T.M. Austin. The Simplescalar Tool Set Version 2.0.
Technical Report, Computer Science Department, University of Wisconsin-
Madison, 1997.
[9] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynamically
Controlled Resource Allocation in SMT Processors. International Symposium
on Microarchitecture (MICRO), 2004.
[10] J. Daemen and V. Rijmen. The design of Rijndael: AES - the advanced
encryption standard. Springer-Verlag, 2002.
[11] S. Gueron. Advanced Encryption Standard (AES) Instructions Set.
White Paper, Intel Corporation, July 2008.
[12] S. Gueron, J.-P. Seifert, G. Strongin, D. Chiou, R. Sendag and J. J. Yi:
Where Does Security Stand? New Vulnerabilities vs. Trusted Computing.
IEEE Micro, Nov.-Dec. 2007.
[13] M. Horowitz, M. Martonosi, T. Mowry and M. Smith. Informing
Memory Operations: Providing Memory Performance Feedback in Modern
Processors. International Symposium on Computer Architecture (ISCA), 1996.
[14] J. Kong, O. Acıiçmez, J.-P. Seifert and H. Zhou, Deconstructing New
Cache Designs for Thwarting Software Cache-based Side Channel Attacks,
ACM Workshop on Computer Security Architecture (CSAW), 2008.
[15] M. Neve and J.-P. Seifert. Advances on Access-driven Cache Attacks on
AES. Workshop on Selected Areas in Cryptography (SAC), 2006.
[16] D.A. Osvik, A. Shamir and E. Tromer. Cache attacks and
Countermeasures: the Case of AES. The Cryptographers’ Track at the RSA
Conference (CT-RSA), 2006.
[17] D. Page. Defending Against Cache Based Side-Channel Attacks.
Information Security Technical Report, volume 8(1): 30-44, 2003.
[18] D. Page. Partitioned Cache Architecture as a Side-Channel Defense
Mechanism. Cryptology ePrint Archive, Report 2005/280, 2005.
[19] C. Percival. Cache Missing For Fun and Profit. BSDCan 2005.
Available at: http://www.daemonology.net/papers/htt.pdf
[20] T. Sherwood, E. Perelman, G. Hamerly and B. Calder. Automatically
Characterizing Large Scale Program Behavior. International conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2002.
[21] C. A. Thekkath and H. M. Levy. Hardware and Software Support for
Efficient Exception Handling. ASPLOS 1994.
[22] K. Tiri, O. Acıiçmez, M. Neve, F. Andersen. An Analytical Model for
Time-Driven Cache Attacks. Fast Software Encryption workshop (FSE), 2007.
[23] Z. Wang and R. B. Lee. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. International Symposium on Computer
Architecture (ISCA), 2007.
[24] OpenSSL: the open source toolkit for SSL/TLS. http://www.openssl.org/
[25] OpenSSL: Montgomery exponentiation side-channel local information
disclosure vulnerability. http://www.securityfocus.com/bid/25163/, 2007.
[26] OpenSSL: implement fixed-window exponentiation to mitigate hyper-
threading timing attacks, http://cvs.openssl.org/chngview?cn=13344, 2005.

404

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore. Restrictions apply.

