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Abstract 
Software cache-based side channel attacks present 

serious threats to modern computer systems. Using 
caches as a side channel, these attacks are able to derive 
secret keys used in cryptographic operations through 
legitimate activities. Among existing countermeasures, 
software solutions are typically application specific and 
incur substantial performance overhead. Recent 
hardware proposals including the Partition-Locked cache 
(PLcache) and Random-Permutation cache (RPcache) 
[23], although very effective in reducing performance 
overhead while enhancing the security level, may still be 
vulnerable to advanced cache attacks.  

In this paper, we propose three hardware-software 
approaches to defend against software cache-based 
attacks - they present different tradeoffs between 
hardware complexity and performance overhead. First, 
we propose to use preloading to secure the PLcache. 
Second, we leverage informing loads, which is a 
lightweight architectural support originally proposed to 
improve memory performance, to protect the RPcache. 
Third, we propose novel software permutation to replace 
the random permutation hardware in the RPcache. This 
way, regular caches can be protected with hardware 
support for informing loads. In our experiments, we 
analyze various processor models for their vulnerability 
to cache attacks and demonstrate that even to the 
processor model that is most vulnerable to cache attacks, 
our proposed software-hardware integrated schemes 
provide strong security protection.  

1. Introduction 

Side channel attacks exploit “side channel” 
information such as power, heat, electromagnetic 
radiation, or time to derive confidential information, 
particularly secret keys used in cryptographic systems. 
Recently, there are newly developed software-based side 
channel attacks which exploit architectural features of 
modern commodity processors such as caches [1], [4], [5], 
[6], [15], [16], [19], [22] and branch predictors [2], [3]. 
These attacks do not require physical access to target 
computers or direct access to the memory space of victim 
processes and are conducted through legitimate software 
operations. As a result, they pose serious threats to 
modern computer systems [12, 23]. 

Current software cache-based side channel attacks 
include access-driven attacks [15], [16], [19] and time-
driven attacks [4], [6]. Access-driven attacks exploit the 
correlation between the secret key and the cache usage of 
a crypto thread/process. Since the cache is shared among 
multiple processes/threads, an attacker may derive the 
cache usage of the victim process by controlling a 
carefully crafted process, which runs together with the 
victim process. Time-driven attacks measure the 
execution times of victim processes and exploit the 
correlation between the secret key and the number of 
cache misses (which in turn determines the execution 
time) to infer the key. To defend against software cache-
based side channel attacks, various countermeasures have 
been proposed and many of them involve some 
modifications upon the software implementation of crypto 
algorithms [7], [17], [26]. However, these proposals are 
often application and attack specific. In order to achieve a 
high level of security protection, several defense 
techniques need to be combined, resulting in substantial 
performance overhead. In a recent work [23], Wang and 
Lee identify certain features in data caches as the root 
cause for software cache-based side channel attacks, and 
propose new cache designs (PLcache and RPcache) to 
prevent information leakage. Such hardware-based 
defenses, although effective for their targeted attacks, lack 
the flexibility to adapt to newly developed attacks [14]. 
Another approach to defeat cache-based attacks is to 
dedicate special hardware function units and instructions 
to a particular crypto algorithm, such as Intel’s AES 
(Advanced Encryption Standard [10]) instructions [11], so 
that cache accesses can be completely eliminated during 
crypto operations. This approach, however, requires non-
trivial hardware and software changes since existing 
crypto software has to be re-written/recompiled to 
leverage the new AES instructions. Furthermore, it does 
not protect crypto algorithms other than AES.  

In this paper, we review the state-of-art cache attacks 
and identify that in both access-driven and timing-driven 
attacks, cache misses of critical data, whose addresses are 
dependent on secret keys, are the source of information 
leakage. We then propose three integrated hardware-
software mitigation approaches. First, we propose to use 
preloading to secure the previously proposed PLcache [23] 
so as to ensure that all accesses to critical data will be 
cache hits. Second, we propose to use informing loads to 
protect the RPcache [23]. Informing loads [13] are 
lightweight architectural support originally proposed for 
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optimizing memory system performance. When an 
informing load (a special load instruction) misses in the 
cache, a user-level exception is raised. With the support 
for informing loads, we can easily integrate flexible 
software-based mitigation schemes into exception 
handlers. Although the RPcache randomizes cache miss 
addresses through random permutation, it is vulnerable to 
time-driven attacks (see Section 3.2) and our software 
scheme fixes the vulnerability by re-loading all critical 
data upon cache miss detection. It ensures that all 
subsequent cache accesses to those data are cache hits as 
long as the critical data fits in the cache and thus removes 
the correlation between the secret key and the number of 
cache misses. Third, we propose a software permutation 
scheme assisted by informing loads to replace the random 
permutation logic in the RPcache. This way, the 
protection can be extended to regular caches with the 
relatively minor hardware support for informing loads. 
Our experiments show that the proposed approaches 
based on the PLcache and RPcache provide strong 
protection with low performance overhead. For regular 
caches, our lightweight informing loads approach not only 
provides strong security protection without the high 
hardware cost of the PLcache or RPcache, but also has 
significantly lower performance overhead compared to 
existing software-only solutions.  

The remainder of the paper is organized as follows. In 
Section 2, we define the threat model and analyze the 
software cache-based side channel attacks. Section 3 
discusses existing software and hardware 
countermeasures. In Section 4, we propose integrated 
hardware-software approaches to defend against cache 
attacks. Section 5 demonstrates that our solutions are 
effective against cache attacks and examines their 
performance overheads. We summarize the paper in 
Section 6. 

2. Threat Model and Attacks 

There exist mainly two types of software cache-based 
side channel attacks: access-driven and time-driven 
attacks. In access-driven attacks, the adversary has control 
over one or multiple spy processes, which share the cache 
with the victim process. Due to cache sharing, the victim 
process may evict the spy process’ cache lines when it 
accesses key-dependent (i.e. critical) cache lines. By 
measuring the access times of its own cache lines, the spy 
process can figure out which cache lines are evicted by 
the victim process. Such cache access behavior of the 
victim process may leak enough information for the 
adversary to infer the key. In time-driven attacks, the 
adversary sends various encryption/decryption requests to 
the target crypto process. Upon receiving responses the 
adversary records the encryption times. Since the secret 
key may correlate to different number of cache misses 
upon different inputs/outputs, the variations among 
encryption times may provide sufficient information for 
the adversary to derive the key. Although time-driven 

attacks may be much slower than access-driven attacks, 
we consider both in this paper. 

In this paper, we use one widely used cryptographic 
algorithm – the Advanced Encryption Standard (AES) 
[10] to illustrate current cache attacks as well as the 
existing countermeasures and demonstrate the advantages 
of our proposed schemes. However it should be noted that 
our proposed schemes may also be applied to cache 
attacks on other applications. 

2.1 The Advanced Encryption Standard (AES)  

AES processes a 16-byte input with a secret key of 16, 
24 or 32 bytes to produce a 16-byte output. There are 
multiple identical rounds involved in 
encryption/decryption and each round performs four types 
of operations (substitute bytes, shift rows, mix columns 
and add round key). Among them, the “substitute bytes” 
operation requires table lookups, in which a 1-byte input 
is used as an index to a compact S-box table (an 8-bit 
substitution box) to generate a 1-byte output. For fast 
software AES implementations, the four operations are 
combined into 16 XOR operations and 16 table lookups. 
The tradeoff is that five new lookup tables (T0, T1, T2, T3 
and T4) are used with each having 256 4-byte elements, 
larger than the original S-box table with 256 1-byte 
elements [10]. 

 
Fig. 1.  Vulnerable table lookup operations in AES 

2.2 Access-driven Attacks against AES 

In AES, two components decide the indices of table 
lookups. One is the 16-byte input and/or output and the 
other is the secret key (as shown in Figure 1). As a result, 
the key can be computed if an adversary obtains both the 
input/output and the indices of table lookups. Since the 
output of AES (i.e., the encrypted ciphertext) is not kept 
private and/or sometimes the adversary may even know 
the plaintext (i.e., the input to AES), it is reasonable to 
assume the availability of the input/output. So, the critical 
step for the key recovery is to obtain the indices of table 
lookups. Since the indices determine which cache lines 
are accessed in the shared cache, the adversary is able to 
recover the key once the accessed cache lines can be 
identified. To identify the cache lines accessed by AES 
table lookups, access-driven attacks require that those 
cache lines must not reside in the shared cache beforehand 
so that some of the spy process’ data can be replaced 
later. In other words, the table lookups shall experience 
cache misses. This condition is essential for the access-
driven attacks otherwise the spy process cannot know the 
cache usage. Such condition, however, can be satisfied by 
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the spy process, which loads a large data set to effectively 
flush the cached data of the victim crypto process.   

There are some complications regarding the realization 
of access-driven attacks. For example, one cache line may 
contain several lookup table elements and thus knowing 
one accessed cache line does not exactly lead to the 
corresponding index value. Nevertheless, from multiple 
samples (as few as 15 [15]) the correct key values can be 
filtered out statistically. Detailed description of access-
driven attacks against AES is reported by Neve [15] and 
Osvik [16]. 

2.3 Time-driven Attacks against AES 

As discussed in Section 2.1, AES relies heavily on 
table lookup operations and the indices to lookup tables 
depend on the key and inputs/outputs. If prior to AES 
execution the lookup tables are not in the cache, different 
data inputs may cause different sequences of table 
lookups, which in turn result in different numbers of 
cache misses and thus different execution times. Time-
driven attacks exploit the relationship between 
inputs/outputs and execution times to infer the key. 
Bernstein [4] demonstrated that different inputs can cause 
various execution times and thus the key can be inferred. 
Bonneau [6] presented a cache-collision attack that finds 
the key using a much smaller number of timing samples. 
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Fig. 2. The relationship between the number of 
collisions in the last round of AES and the 
encryption time on one Pentium 4 machine.  

A cache collision happens when two table lookups 
refer to the same element, in which case, the second 
lookup will be a cache hit assuming no conflict misses 
occurred in between. For a non-cache-collision case, the 
second lookup may experience a cache miss. For 
successful cache-collision timing attacks on AES, the 
basic observation is that a higher number of cache 
collisions results in a smaller number of cache misses, 
thus a shorter encryption time [6],[22]. For example, 
Figure 2 shows the relationship between the mean 
execution time of one AES encryption and the number of 
cache collisions in the last round of AES. The results are 
collected from 16 millions timing samples using one 
Pentium 4 machine running AES with the same random 
key. As shown in the figure, the execution time (relative 
to the average of overall timing samples) declines as the 
number of collisions increases (e.g., +7.82 cycles for 0 
collision and -8.89 cycles for 1 collision). Based on this 
observation, attackers can pick two table lookups and 

guess cache-collision cases to infer the XORed values 
between key bytes, which lead to the complete key 
recovery. In this particular example, 215 samples were 
good enough for revealing the key. Detailed information 
on cache-collision attacks can be found in [6], [22]. 

2.4 Source of Information Leakage in Software 
Cache-based Side Channel Attacks 

Although access-driven attacks and time-driven 
attacks are different in the way the attacks are performed, 
the source of information leakage is the same: cache 
misses of lookup table data (whose indices are key 
dependent) are exploited to infer the key. Section 4 shows 
how we utilize this observation to defend against both 
types of cache attacks. 

3. Current Countermeasures 

Current countermeasure proposals are either 
application-level software solutions or hardware 
solutions. Among software approaches, each vulnerable 
application is analyzed and changed against specific 
attacks. In order to achieve reasonable security protection, 
software approaches are often combined, which may incur 
substantial performance overhead. Hardware proposals 
revise cache architecture to eliminate information leakage 
exploited in cache attacks. Although hardware schemes 
are able to provide general protection at small 
performance cost, they often incur non-trivial hardware 
changes and suffer from inflexibility to evolve against 
newly developed attacks. 

3.1 Software Countermeasures 

(1) Access-all against access-driven attacks 
Since cache attacks use cache lines to infer the indices 

to the lookup tables, one way to defeat them is to 
eliminate the correspondence between cache lines and 
table indices. In a released patch [26] of RSA against 
access-driven attacks [19], each table element is 
distributed so that accessing one element ends up 
accessing all the cache lines of the whole table. This 
approach is effective for RSA (only less than 10% 
performance overhead) given the heavy computations 
involved in RSA. However, it is not applicable to AES 
since touching the entire table for each table lookup 
operation incurs too much performance overhead given 
the high number of table lookups in AES. 
(2) Random permutation against access-driven attacks 

Random permutation of lookup tables changes the 
mapping between table indices and cache lines. It 
obfuscates attackers’ observation on cache access 
activities. However fixed permutation can still leak 
information, as demonstrated in [5] for AES. Although 
the security offered by random permutation can be 
increased by frequently updating the permutation, the 
updating frequency remains an open question for pure 

395

Authorized licensed use limited to: Princeton University. Downloaded on June 18, 2009 at 19:06 from IEEE Xplore.  Restrictions apply.



 

software approaches due to the tradeoff between 
performance and security.  
(3) Small tables against access/time-driven attacks 

Efficient AES implementations typically utilize large 
lookup tables, which are pre-computed from the original 
S-box table. One protection scheme is to use the small S-
box table instead to trade performance for security [16]. 
This way, one single cache line contains more elements, 
complicating the attacks. There are also other similar 
approaches, which use smaller numbers of lookup tables 
[16]. However, at the cost of substantial performance 
overhead, these approaches only increase the number of 
samples required for access-driven and time-driven 
attacks [5],[22]. 
(4) Preloading against access/time-driven attacks 

Preloading of all lookup tables before cryptographic 
operations aims to mask cache access activities to prevent 
cache attacks [17]. However, preloading still provides no 
security guarantee against access-driven attacks since the 
adversary may still use spy processes to evict the lookup 
tables after the preloading process. 
(5) Hybrid approaches  

In [7], several defense techniques are combined to 
provide secure and efficient protection for AES. 
* Software version 1 (v1): All rounds use the compact S-
box table without permutation. Preloading is performed 
before each round. This is a combination of (3) and (4). 
* Software version 2 (v2): The most vulnerable rounds 
(first round and last round) use the compact S-box table.  
The other rounds use large pre-computed lookup tables. 
All tables are permuted. Preloading is performed before 
the first round and the last round. It is a combination of 
(2), (3) and (4) and it trades security for improved 
performance. 
* Software version 3 (v3): All rounds use the compact S-
box table with permutation. Preloading is performed 
before each round. This is a combination of (2), (3) and 
(4).  

Among the three, the v3 is most secure as it combines 
all three mitigation techniques. The v2 is most 
performance efficient as it uses large pre-computed 
lookup tables in inner rounds and does not preload them.  

3.2 Hardware Countermeasures 

Realizing the limitations of software countermeasures, 
several hardware schemes are proposed to provide 
comprehensive, efficient, and generic solutions (i.e., not 
application/attack specific) to defend against cache 
attacks.  
3.2.1 Partitioned cache and Partition-Locked cache 
(PLcache) 

In partitioned caches [18], a part of the cache is 
allocated exclusively to the protected process in order to 
prevent information leakage. This may cause inefficient 
cache sharing since the cache partition is fixed statically. 

In a recent work, the partition-locked cache (PLcache) 
[23] is proposed to address this problem with a fine-
grained locking control so that only the cache lines, which 
contain the critical data, are isolated. The hardware 
support for the PLcache includes two additional fields in 
each cache line: an ID field and a lock bit. The ID 
indicates the owner of the cache line, normally a process 
and the lock bit indicates the locking status of the cache 
line. As for control interface, two mechanisms are 
proposed: ISA extension and segment/page-based 
protection. The first introduces several new instructions to 
provide fine-grain locking control of the cache lines. The 
second involves new OS-level API calls for coarse-grain 
control of memory regions. Also the cache line 
replacement policy is changed to support the locking 
mechanism.  
3.2.2 Random-permutation cache (RPcache) 

In contrast to partitioned caches, the random-
permutation cache (RPcache) [23] allows flexible cache 
sharing but randomizes the mapping between memory 
addresses (i.e., table indices) and cache lines to prevent 
information leakage. In the RPcache, in case of cache 
interference, i.e. when the fetched cache line and the 
chosen replacement cache line belong to two different 
processes, the original cache set will not be used for 
replacement. Instead, another cache set is chosen 
randomly and replacement happens in that set. This 
changes the mapping between addresses and cache sets. 
Because of the swapping of cache sets, the cache lines in 
the original sets are invalidated. The hardware support 
includes a permutation table and a revised replacement 
policy. 
3.2.3 Security issues with the PLcache and RPcache 

The PLcache can still be vulnerable to both types of 
cache attacks since AES may still experience cache 
misses over the critical data before all of them are fetched 
and locked in the cache. While software can be used to 
pre-load the AES tables, such initial loading of the critical 
data may still provide enough information leakage for key 
recovery. Besides, the PLcache does not support locked 
cache lines to be replaced even when they are not needed 
(i.e. the owner process is switched out and not active). 
This may cause excessive locking (unless properly 
controlled by the OS [23]), and in any case reduces the 
size of the cache available to other processes. The 
RPcache defeats access-driven attacks because even if an 
adversary knows which cache lines are accessed by a 
crypto operation, the corresponding index can not be 
derived due to random permutation. The vulnerability of 
the RPcache, however, lies in its inability to defend 
against cache-collision time-driven attacks since random 
permutation does not eliminate the execution time 
variances: a high number of collisions still results in lower 
execution times. More detailed security analysis and 
examples of successful attacks to the PLcache and 
RPcache are presented in [14]. 
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4. Integrated Hardware-Software Protection 
Schemes  

In this section, we propose three hardware-software 
approaches to eliminate the source of information leakage 
exploited in software cache-based attacks. First, we 
propose to secure the PLcache by pre-loading the critical 
data (e.g. the AES lookup tables). Second, we advocate 
using informing loads to protect the RPcache from time-
driven attacks. With the support for informing loads, we 
are able to respond to the source of information leakage – 
caches misses over the critical data and integrate flexible 
software-based defenses. Third, we propose informing 
loads assisted software-based random permutation to 
replace the permutation logic in the RPcache so as to 
provide the security protection to regular caches. These 
three approaches present different tradeoffs between 
hardware complexity and performance overhead. 

4.1 Preloading to Protect Partition-Locked cache 

4.1.1 The idea 
Previous works [5], [7], [17] discussed the concept of 

preloading or cache warming as a possible 
countermeasure for cache attacks. The basic procedure is 
to load all security critical data, e.g., the AES lookup 
tables, into the cache right before the crypto operations. 
Preloading itself, however, cannot provide sufficient 
protection against cache attacks simply because an 
adversary can still manipulate the cache state after the 
preloading process. As discussed in Section 3.2, the 
PLcache does not provide high security either due to the 
initial loading process of the critical data. However, 
combining preloading and PLcache provides a solid 
protection mechanism against access/time-driven attacks. 

The key here is to make sure that before cryptographic 
operations all the critical data are preloaded and locked in 
the PLcache. After that, any access to those critical data 
will result in a cache hit. This way, time-driven attacks 
are effectively defeated since there is no correlation 
between the secret key and cache hit/miss patterns. This 
scheme also defeats access-driven attacks since all a spy 
process can observe is that the whole set of the critical 
data are in the cache, thereby leaking no information of 
which parts of the critical table (or the indices to the 
tables in AES) are used in a crypto operation. Here, note 
that the PLcache with preloading is secure only if all the 
critical data can fit in the cache. This issue is generally 
not a problem for cryptographic algorithms, of which a 
key design objective is to keep critical data small [10]. 
The five critical lookup tables in AES, for example, take 
5KB (1KB for each table). 

To address the issue of excessive locking associated 
with the PLcache, we propose to allow the locked cache 
lines to be replaced if the cryptographic process is 
switched out (i.e., not active). When the cryptographic 
process is switched back, those protected cache lines will 
be reloaded and locked again. 

4.1.2 Proposed implementation 
Changes to the PLcache logic The change to the 

PLcache logic is that when a new non-protected cache 
line is about to replace a locked (protected) cache line, 
which is always prohibited in the PLcache, the 
replacement is now allowed if the owner process of the 
locked cache line is not active. This is done by comparing 
the ID field of a locked cache line with the active 
processes' IDs. 

 Architectural support for preloading One 
implementation of preloading and reloading is through 
hardware logic. In this implementation, a new preloading 
instruction will be used to specify the beginning address 
and length of the protected data. The preloading state (i.e., 
whether the preload has been performed or not and the 
address range of preloading) becomes part of the process 
context. Then, if the preloading state is set after a context 
switch, the hardware will re-load all critical data. This 
pure hardware approach may be too costly and introduce 
extra hardware complexity.  

The preloading and reloading can also be implemented 
through software in an un-modified PLcache system. The 
protected process performs the preloading and locking 
before critical operations and performs unlocking once the 
critical operations are completed. The operating system 
(OS), however, needs to be changed to perform the 
preloading and locking during context switches of the 
protected process. Instead, we propose to use user-level 
exception handling to provide efficient preloading and 
offer flexibility to deploy newly developed software 
defense mechanisms. 

User-level exception handling is introduced by 
Thekkath et al. [21]. It provides efficient handling of 
synchronous exceptions by user-level code.  In our 
design, we implement it in the way described in [13]. 
When some instruction triggers a user-level exception, it 
works as a conditional branch. The exception only 
changes the program counter (PC) of the running process. 
It does not invoke any OS code. Necessary additions 
include two new instructions (EH-register and EH-jr) and 
two new registers (an exception handler address register-
EHAR and an exception handler return register-EHRR). 
EH-register will load the entry address of the user-level 
exception handler to the EHAR. EH-jr is used at the end 
of the exception handler to jump to the address stored in 
EHRR to resume program execution. The procedure 
works as follows. The user-level exception event will 
trigger a pipeline squash when the offending instruction 
reaches the head of the Reorder Buffer (ROB). The next 
PC is saved to EHRR. Then the exception handler whose 
address is stored in EHAR will take over the execution 
and run as a regular function. It saves the registers that it 
will use to the stack at the beginning and restores those 
registers at the end. When the handling finishes, EH-jr 
will use EHRR to return to the interrupted process. 

Besides the support for the user-level exception 
handling mechanism, we propose two new instructions 
(PL-begin and PL-end) and one new control status 
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register (PL-S). PL-begin and PL-end are inserted to 
enclose the cryptographic operations that need to be 
protected. The status register PL-S indicates the state of 
locking and preloading. 

The whole procedure works as follows: 
1) The user-level exception handling mechanism registers 
the entry address of the user-level exception handler 
during program initialization. 
2) When the crypto process comes to the cryptographic 
operation, PL-begin sets the status register (PL-S) to 
indicate that the PLcache locking mechanism and 
preloading become effective for this crypto process. In the 
meanwhile, it triggers the exception handler, which pre-
loads and locks all the critical data. 
3) During program execution, if a context switch happens, 
the status register PL-S will be saved along with other 
states of the process. The PLcache locking mechanism 
becomes ineffective for the switched-out process, by 
comparing every cache access with an Active Process 
register. When the process is switched back, the status 
register PL-S is examined. If PL-S indicates that the 
critical data needs to be loaded and locked, a user-level 
exception is raised and the same exception handler will 
reload and lock the critical data to the cache. 
4) When the protected cryptographic operations are 
completed, the PL-end instruction resets the status 
register, indicating that the critical data are no longer 
needed. The PLcache locking mechanism becomes 
ineffective for the process. 

4.2 Securing the RPcache with Informing Loads 

4.2.1 The idea  
With cache-based attacks taking advantage of cache 

hit/miss behavior of crypto processes, we argue that the 
crypto process itself can leverage the same information to 
defend against the attacks. Informing loads, originally 
proposed as a lightweight architectural support for 
memory optimization [13], enable the crypto process to 
gain the control once an access to critical data misses in 
the cache. This way, flexible software defense 
mechanisms can be deployed. In this section, we show 
that informing loads can be used to effectively address the 
security vulnerability of the RPcache. Because of its 
flexibility, our approach can be further extended to protect 
regular caches (Section 4.3). 

As explained in Section 3.2, the RPcache defeats 
access-driven attacks by randomizing cache line mapping. 
However, it is vulnerable to cache collision attacks since 
not all critical data are guaranteed to reside in the cache. 
Therefore, the fundamental assumption behind collision 
attacks still holds. In other words, a higher number of 
collisions still results in lower encryption time. To protect 
the RPcache, we propose to use informing loads to access 
the critical data. In the case of AES, it means that all the 
table lookups are implemented using informing loads 
while other data accesses use regular load instructions. 
The informing loads detect whether the critical data is in 

the cache. If not, they will redirect the PC to a user-level 
exception handler. Note that preloading alone can’t 
provide sufficient security support against cache collision 
attacks as preloaded data can still be replaced.  Such a 
case could be that during the execution, internal data of 
the victim process may replace the preloaded data, which 
is identified as internal interference in [23]. 

In this paper, we devise an exception handler to load 
all the critical data (or the tables T0-T4, in AES) into the 
cache. The objective is that after the exception handling, 
subsequent accesses to the critical data will hit in the 
cache, thereby eliminating time variations. Note that, such 
data loading is just one possible solution. The key 
advantage of using informing loads over pure hardware-
based defense mechanisms such as the RPcache is that the 
exception handler can be easily updated to defend/detect 
future cache-based attacks or to incorporate a better 
crafted defense algorithm. 
4.2.2 Proposed implementation 

Informing loads are special load instructions that 
“inform” the software when the load misses in the cache. 
There are three ways of implementing informing loads 
[13]. The first is to use a cache outcome condition code 
and branch-and-link instructions. The second is a branch 
operation with a slot that is squashed if there is a hit. The 
third one is a low-overhead user-level cache miss trap. 
We choose to use the low-overhead cache-miss trap for its 
low hardware complexity.  

 
Fig 3. Code of the informing load exception handler 

Using AES as an example, the proposed procedure 
works as following. In the cryptographic operations, those 
protected tables are loaded with informing load 
instructions. These informing load instructions work as 
normal loads with no extra overhead when they hit in the 
cache. Whenever an informing load misses in the cache, a 
user-level exception will be generated and the exception 
handler, shown in Figure 3, will be executed. As shown in 
Figure 3, the exception handler loads the critical tables in 
a random order. The reason is due to an artifact of the 
RPcache, in which cache lines may be invalidated when a 
cache line index is randomized. As a result, if the 
exception handler loads the tables in a determined order, 
the elements that are loaded earlier have higher chances to 
be invalidated than those loaded later. The random order 
(achieved by XORing a random number r in Figure 3) in 
the exception handler eliminates the determinism. 

Combining informing loads with the RPcache defeats 
software cache-based attacks. The RPcache itself is 

r = random_number;  
// from hardware random number generator (i.e. the one  
// used by the RPcache) 
 i_max = number_of_tables; 
 j_max = table_size / table_element_size; 
 for (i=0; i < i_max; i++)  //  Fetch each protected table 
   for (j=0; j < j_max; j += 
                                  cache_line_size/table_element_size)   
        Prefetch( T[(i XOR r) % i_max][(j XOR r) % j_max] );  
       // Fetch each protected cache line in a random order
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effective against access-driven attacks and the informing 
load exception handling provides a defense mechanism 
against time-driven attacks. Due to the invalidation effect 
of the RPcache, in theory we still can not guarantee that 
all the table access hit in the RPcache since some critical 
data may be invalidated during the permutation process. 
As a result, there may still be access latency variations 
among different table elements, although the randomized 
loading order in our exception handler already makes 
such variations non-deterministic. To completely 
overcome the problem, we can change the RPcache to let 
it selectively swap the cache lines instead of invalidating 
them during the permutation process. In other words, if a 
cache line to be invalidated contains some critical data, 
the content will be copied to the new location instead of 
being invalidated. Such a change increases the complexity 
of the RPcache but may further improve the security. 
With such implementation, the randomized loading order 
in the informing load exception handler can be removed. 

4.3 Securing Regular Caches with Informing 
Loads 

4.3.1 The idea  
To protect regular caches, we first use software 

random permutation to randomize the crypto process’ 
cache footprint against access-driven attacks. However, as 
discussed in Section 3.1, fixed permutation leaks 
information and frequent updates of permutation may 
incur unnecessary performance overheads. To overcome 
these problems, we propose to change the permutation 
only when it is necessary. As discussed in Section 2, 
cache attacks rely on cache misses to identify whether a 
cache line is used by the victim process. Therefore, we 
choose to change the permutation whenever there is a 
cache miss of the critical data, which is supported by 
informing loads. In other words, we integrate permutation 
update in the exception handler of informing loads. Such 
informing loads assisted software permutation can also be 
viewed as a replacement of the permutation logic in the 
RPcache so that the security protection can be provided 
with no need for hardware changes for the RPcache.  

To defeat time-driven attacks, loading of all critical 
data is also performed in the exception handler upon 
cache misses detected by informing loads, similar to the 
way to further secure the RPcache.  
4.3.2 Proposed implementation  

The key of software permutation is to use one level of 
indirection to randomize the address mapping between the 
table lookup values and their memory addresses. Using 
the critical tables of AES as an example, we use an 
indirection table to produce the actual address of one 
protected unit, i.e. a cache line in our implementation, as 
shown in Figure. 4.  

In Figure 4, one dimension table T with N elements is 
converted into a two-dimension K x L array T ’, where K x 

L = N and L is the number of elements in one cache line, 
i.e. L = Cache line size / size of each table element. 
Compared to T, which occupies a continuous region of 
memory, the data in T ’ are distributed in memory and are 
accessed through pointer indirection.  

 
Fig. 4. Converting a one-dimension table into a two-
dimension array. 

With the critical data organized in a two-dimension 
array, we can easily perform address permutation. As 
illustrated in Figure 5, assuming that the address of table 
element T[0] (i.e., &T[0] or T ’[0]) is 0x40, address 
permutation upon T ’[0] proceeds as follows. First, one 
entry among T ’[1, … K-1] is randomly selected 
(assuming T ’[1] is selected and T ’[1] = 0x80). Second, 
both the indirection pointers (T ’[0] and T ’[1]) and the 
data pointed to (*T ’[0] and *T ’[1]) are swapped. After 
permutation, the new address of T[0] becomes 0x80. The 
data value of T[0] (or T ’[0][0]) is unchanged due to the 
data swapping between *T ’[0] and *T ’[1].  

...

T’[0, …, K-1]

Addr: 0x80

Addr: 0x40

Address permutation
by pointer & data ...

T’[0, …, K-1]

Addr: 0x80

Addr: 0x40   
Fig. 5. Address permutation by swapping both the 
pointers and the data. 

With the proposed way to perform permutation, we 
devise the exception handler for informing loads to defeat 
the cache attacks. The scheme works as follows. In the 
crypto algorithm (e.g., AES) implementation, two-
dimension arrays are used to store the critical data (each 
of T0-T4 in AES). The table lookups use informing loads 
while other data accesses use regular load instructions. 
Once a critical data access misses in the cache, the 
exception handler for informing loads will be triggered. 
The exception handler prefetches all critical data to the 
cache and meanwhile performs the permutation change 
upon the missing table entry, as illustrated with the 
pseudo code in Figure. 6.  

Fig. 6. Pseudo code of the exception handler for 
informing loads, which prefetches all critical data to 
the cache and randomly permutes the cache lines. 

0. The cache line of T[i] is missing in the cache 
1. Prefetch from addresses T’[0],T’[1],…,T’[K-1] 
2. Find the corresponding T’[p] that points to T[i] 
3. Randomly select a target entry T’[q] for permutation 
4. Swap *T’[p] and *T’[q]; swap T’[p] and T’[q] 
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5. Experiments 

5.1 Methodology 
Our experiments are conducted using a detailed timing 

simulator developed from the SimpleScalar toolset [8]. 
The underlying processor model is MIPS R10000 and the 
default configuration is listed in Table 1. We implemented 
both the PLcache and RPcache in the simulator. Proper 
architectural support for informing loads is included in the 
simulator. The detailed user-level exception handling 
including pipeline squashing, control flow transfer to and 
from the user-level handler is implemented to faithfully 
measure the performance of our proposed approaches. 

Table 1. Default processor configuration 
Branch 

Predictor 
64K-entry g-share, 4K-entry direct  
mapped Branch Target Buffer (BTB) 
7-stage pipeline: 
Fetch/Dispatch/Issue/RegisterRead/EXE 
/WriteBack/Retire, Pipeline bandwidth:4                 
Fully-symmetric Function Units: 4 
Reorder Buffer (ROB) size: 128 
Issue Queue (IQ) size: 64 
Load Store Queue (LSQ) size: 64 

 
 

Superscalar 
Core 

Fetch Policy for SMT: round-robin 
 

Execution 
Latencies 

Address Generation: 1 cycle 
Memory Access: 2 cycles (hit in data cache) 
Integer ALU ops: 1 cycle 
Complex ops:MIPS R10000 latencies 

Instruction 
Cache 

32KB 2-way, Block size 64B  
10-cycle miss penalty 

L1 Data 
Cache 

32KB 2-way, Block Size 64B  
10-cycle miss penalty 
8 Miss Status Handling Registers (MSHRs) 

L2 Unified 
Cache 

2MB 16-way Block size: 64B  
300-cycle miss penalty 

Our AES code is extracted from the OpenSSL 0.9.7c 
implementation. The key size is 16 bytes. For 
performance evaluation, the OpenSSL speed test program, 
a standard microbenchmark program included in 
OpenSSL [24], is used as our benchmark program. In the 
program, AES runs in the cipher-block chaining (CBC) 
mode. We use the message size of 8KB in our 
experiments. In terms of the performance metric for AES, 
we use cycles per byte instead of instructions per cycle. 
The reason is that different hardware/software approaches 
have different implementations, different lookup tables or 
different number of instructions. Cycles per byte, in 
contrast, directly reflects the throughput of AES: the 
number of bytes encrypted per time unit. 

5.2 Security Analysis 

5.2.1 Microarchitectural effects on cache collision 
time-driven attacks 

We first investigate the microarchitectural effects on 
cache-collision time-driven attacks against AES. The 
reason is that both instruction-level parallelism (ILP) and 
memory-level parallelism (MLP) affect the encryption 
time. With a high degree of parallelism, many cache 
misses can be overlapped, thereby reducing the impact 

from cache collisions. In this experiment, we use five 
processor configurations as shown in Table 2 and 
examine the relationship between the encryption time and 
the number of cache collisions. In the experiment, a clean 
cache state is established before the 128-bit-key standard 
OpenSSL AES encryption and 16-million samples are 
collected for each processor configuration. Since different 
processor configurations lead to different encryption 
times, we report the relative encryption times in Figure 7, 
in which the encryption times are normalized to the mean 
encryption time with the same configuration. For 
reference, we also include the results from a real Pentium 
4 machine in Figure 7. 
Table 2. Different processor configurations to 
evaluate cache collision effects 

Configuration 1 In order issue, 1way-issue, 1MSHR 
Configuration 2 In order issue, 4way-issue, 4MSHRs 
Configuration 3 Out-of-order execution, 4way-issue  

4MSHRs,  64ROB/32IQ/32/LSQ 
Default 
Configuration 

Out-of-order execution, 4way-issue  
8MSHRs,  128ROB/64IQ/64/LSQ 

Configuration 4 Out-of-order execution, 8way-issue 
32MSHRs, 256ROB/128IQ/128/LSQ 
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Fig. 7. The relationship between the number of 
collisions in the final round and the normalized 
encryption time on various processor 
configurations.  

From Figure 7, it can be seen that the collision attacks 
are most effective against single issue, in-order processors 
with limited MLP. Both out-of-order (OOO) execution 
and high degrees of MLP reduce the effect of cache 
collisions. Furthermore, we perform AES final-round 
collision attacks on those samples. The analysis tool that 
we used is from [6], which performs collision attack 
analysis (i.e., key search) on AES encryption samples 
using a number of artificial intelligence techniques and 
reports the number of samples required to recover the 
complete key. The results, which are shown in Table 3, 
validate our observations. For processor configuration 1, 
around 4k samples are enough to break the key. In 
comparison, it takes around 400k samples to break the 
key for processor configuration 4. Our experiments on 
these processor configurations with the RPcache also 
show similar results for the different processor 
configurations, confirming that the RPcache is still 
vulnerable to collision attacks. From this experiment, it 
can also be seen that encryption times of modern high 
performance processors is less correlated to the number of 
cache collisions (or the number of cache misses) than in-
order processors. This is due to the effect of OOO 
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execution and MLP. However the vulnerability to 
collision attacks remains since the number of samples 
required to reveal the correlation is still in feasible ranges. 
Table 3. Required numbers of samples for key 
recovery on various processor configurations. 
(based on 25 random keys with random input plaintext) 

 min median max 
Configuration 1 3k 4k 5k 
Configuration 2 6k 10k 13k 
Configuration 3 7k 11k 13k 
A real Pentium 4 12k 20k 27k 

Default Configuration 17k 24k 29k 
Configuration 4 328k 393k 459k 

5.2.2 Security evaluation of the proposed schemes 
The PLcache with preloading (PLcache+PL) As 

discussed in Section 4.1, the PLcache with preloading 
ensures that all critical data reside in the cache throughout 
the crypto process' lifetime. It defeats access-driven 
attacks since the only information that a spy 
process/thread can obtain is that all the critical data are 
used. It defeats time-driven attacks as any access to the 
critical data will hit in cache, thereby no timing variations. 

The RPcache with informing loads (RPcache+IL) 
Through random permutation, the RPcache is effective 
against access-driven attacks (see [23] for the theoretical 
proof). With informing loads, any access to the critical 
data, if it misses in the cache, will invoke the exception 
handler to load all the critical data. Next, we examine how 
well this approach mitigates cache-collision attacks. 
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Fig. 8. The effect of our informing loads approaches 
on the relationship between the number of 
collisions in the final round and the normalized 
encryption time.   

We first examine the relationship between the 
encryption time and the number of cache collisions as 
shown in the Figure 8. As analyzed in Section 5.2.1, 
processor configuration 1 is most vulnerable to collision 
attacks. Therefore, we use this processor configuration to 
evaluate various cache designs. For the RPcache 
enhanced by informing loads (Config. 1 with 
RPcache+IL), we observed no evident correlation 
between the encryption time and the number of cache 
collisions compared to the RPcache case (Config. 1 with 
RPcache). Then, we repeated the key recovery 
experiments. Compared to the RPcache, upon which 8K 
samples are enough for a complete key recovery, the 
attack fails on the RPcache+IL when presented with 16-
million samples. More samples have not been tried due to 
the required simulation time as it takes 16 days to 
simulate one 16-million encryption run. Attacks on other 

processor configurations equipped with the RPcache+IL 
also failed when presented with 16-million samples. 

From the experiments, we can conclude that using 
informing loads with the proposed exception handler can 
greatly enhance the security of the RPcache. However, as 
discussed in Section 4.2.2, if further cache security is 
desired, one can choose to selectively swap cache lines 
instead of invalidating them. This way, the cache collision 
attacks upon uniprocessors can be completely defeated 
since all the tables reside in the cache and all the access to 
those tables are cache hits. For more complex cache-
collision attacks upon multi-threaded processors, further 
exploration is necessary and left as our future work. 

Regular caches with informing loads (Regular 
cache+IL) For access-driven attacks, our solution is to 
use software permutation to randomize the mapping of the 
cache lines that contain critical data. Every time if the 
adversary tries to exploit a cache miss to observe the 
cache usage, the permutation varies. In fact, the 
permutation with updates on cache misses can be viewed 
as a software implementation of the RPcache design, 
which is already proven to be secure from access-driven 
attacks from the information theory perspective [23]. 

For time-driven attacks against AES, again we 
examine the relationship between the encryption time and 
the number of cache collisions as in the previous sections 
and the results are also in Figure 8. From Figure 8, it can 
be seen that for processor configuration 1, there exists no 
evident correlation between the encryption time and the 
number of cache collisions in our informing loads 
approach (Config. 1 with Regular cache+IL) compared to 
the regular cache case (Config. 1 with Regular cache). 
Next, we repeat the cache-collision attacks to evaluate the 
effectiveness of our approach against time-driven attacks 
on the processor configuration 1. For the regular cache the 
tool successfully retrieves the key with less than 8K 
samples. For the cache protected by our approach, the tool 
fails on 16-million samples, demonstrating our approach’s 
effectiveness. Attacks on other configurations equipped 
our regular cache+IL also failed on 16-million samples. 
This is similar to what we observed from the RPcache+IL, 
as both use reloading of all the critical data as the 
countermeasure against collision attacks. 

5.3 Performance Evaluation 

In this section, we study the performance impact of our 
proposed approaches, i.e., preloading on top of the 
PLcache (PLcache+PL), informing loads combined with 
the RPcache (RPcache+IL) and informing loads combined 
with the regular cache (Regular cache+IL), upon AES, 
which represents the code to be protected. The baseline is 
the standard OpenSSL AES implementation which uses 5 
precomputed lookup tables with the total size of 5KB. 
5.3.1 Performance impact on AES 

In this experiment, we analyze the performance impact 
of different protection schemes on AES using various L1 
data cache configurations. We vary the L1 data cache 
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sizes from 8KB to 32KB and the set associativity from 1-
way to 4-way. The throughputs normalized to the baseline 
results (i.e., regular cache) are shown in Figure. 9. Among 
different cache designs, the PLcache and PLcache+PL 
have almost the same performance since all critical data 
are locked in both designs after the short warm-up phase. 
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Fig. 9. Performance impacts of different protection 
schemes over various cache configurations. 

From Figure 9, we make the following observations. 
First, for the 8KB direct-mapped cache, the PLcache (and 
PLcache+PL) incurs non-trivial performance overhead 
(26%). It is because locking introduces extra cache 
conflict misses over the protected cache lines. With larger 
caches and higher associativities, the number of conflict 
misses is reduced, resulting in smaller performance 
overhead (e.g. 15% of the baseline for 16KB direct 
mapped cache and almost 0% of the baseline for 16KB 2-
way). Second, the RPcache has almost no performance 
difference compared to the baseline results. This is 
because the performance impact caused by random 
invalidation is small. These results also agree to that 
reported with the original PLcache and RPcache [23]. 
Third, the RPcache+IL has substantial performance 
overhead for 8KB direct mapped cache (63%). The reason 
is that because of frequent conflict misses, informing 
loads exception handler is invoked frequently, wasting 
lots of cycles. With larger caches and higher 
associativities, the cache is able to hold the working data 
set of AES and the RPcache+IL has low performance 
overhead (only 8% overhead for the 8KB 2-way cache 
and almost 0% overhead for the 8KB 4-way cache).  

For our informing loads with the regular cache 
(Regular cache+IL), we also compare it to the software-
based hybrid protection schemes (v1, v2 and v3 in Section 
3.1). Since v1 and v3 always cause more than 6X 
slowdown to the baseline in our experiments, Figure 9 
only includes the results for v2. From Figure 9, it can be 
seen that due to extra instructions (pointer indirection in 
our approach and S-box-based computation as well as 
permutation in v2), both v2 and Regular cache+IL have 
non-trivial performance overhead compared to the 
protection schemes with special cache designs. For 8KB 
direct mapped, 8KB 2-way, 16KB direct mapped and 
32KB direct mapped caches, our scheme incurs higher 
performance overhead than v2. This is due to the large 
number of conflict cache misses over the protected cache 
lines, which lead to frequent invocation of the exception 
handler. As the cache size and set-associativity increase, 
such performance overhead quickly diminishes. The L1 

data caches in modern commodity processors often have 
capacity bigger than 8KB and/or set associativity higher 
than one-way (as indicated in Intel® 64 and IA-32 
Architectures Software Developer's Manuals). With those 
configurations, our approach incurs much smaller 
performance overhead compared to v2. For example, for 
the 16KB 2-way cache, our scheme incurs 40% overhead 
while v2 has 67%. For the 32KB 2-way cache, our 
scheme has 37% overhead and v2 has 67%. The main 
reason is that our proposed approach only responds to the 
potential dangerous event (i.e., cache miss over critical 
data), during which permutation updates and loading of 
all critical data are performed. In comparison, pure 
software approaches such as v2 have to perform these 
operations no matter whether there is a potential 
information leakage event or not. Furthermore, v2 offers 
relatively lower security levels because of its treatment of 
the inner rounds of AES as discussed in Section 3.1. 
5.3.2 Performance impact on an SMT processor 

In this experiment, we examine the performance 
impact of the protection schemes on SMT processors. We 
use two-way SMT processors and have AES run together 
with one of the ten SPEC2000 INT benchmarks (bzip2, 
gap, gcc, gzip, mcf, parser, perl, twolf, vortex and vpr). 
For each benchmark, SimPoint [20] is used to select a 
simulation phase of 300-million instructions. We vary the 
L1 data cache configurations from 8KB direct-mapped to 
16KB, 32KB and 64KB 4-way set-associative. The results 
are shown in Figure 10. We report two metrics for each 
cache configuration, the overall instructions per cycle 
(IPC) for throughput and the Hmean metric (Harmonic 
mean of the IPC speedup/slowdown of each separate 
thread [9]) for fairness. Note that although here we use 
instructions per cycle as the performance metric for AES 
implementations, these IPCs are relatively normalized to 
the baseline’s IPC in terms of AES throughput (cycles per 
byte) to ensure fair overall IPC comparison. Here, the 
baseline is the standard OpenSSL AES implementation 
and assume that it takes N instructions to encrypt a 
message. Due to added defense mechanisms, a software 
approach, e.g., v2, may require a different number of 
instructions (e.g., M) to encrypt the same message. To 
ensure fair comparison, the IPC of v2 is computed using 
the baseline instruction count, N. Our results exclude the 
instructions for the user-level exception handler. 

From Figure 10, we can make the following 
observations on PLcache+PL and RPcache+IL. First, for 
the 8KB direct-mapped cache, the PLcache (and 
PLcache+PL) incurs performance degradation in 
throughput (8% on average) because locking introduces 
extra cache misses. When measuring Hmean, however, 
the PLcache reports 6% improvement. The reason is due 
to the memory-intensive benchmark mcf, which 
dominates the cache usage and significantly affects the 
performance of AES. With the PLcache, the AES lookup 
tables are locked, thereby reducing such negative impact 
from mcf upon AES. With mcf excluded, PLcache reports 
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a 4% loss on Hmean. The RPcache improves both the 
throughput (7%) and Hmean (7%) because the cache line 
relocation alleviates the cache conflict problem associated 
with the direct mapped cache. Second, for 16KB, 32KB 
and 64KB 4-way set-associative caches, the PLcache 
achieves very small throughput improvement. This is 
because those cache configurations have enough capacity 
for the working sets of both AES encryption and the 
SPEC CINT benchmarks and locking helps to avoid cache 
misses on the protected tables. The RPcache has a little 
degradation in IPC (1% for 16KB) because of the effect 
of invalidations from cache line relocation. This effect 
tends to diminish for large caches such as 32KB (almost 
0%) caches due to their higher number of cache sets. 
These results also agree to that reported with the original 
PLcache and RPcache [23]. In terms of Hmean, the 
PLcache (PLcache+PL) and RPcache have very limited 
impact compared to the baseline caches. Third, the 
RPcache+IL incurs higher overhead compared to the 
original RPcache. The reason is due to user-level 
exception handling. For 8KB directed mapped and 16KB 
4-way caches, the AES lookup tables are frequently 
replaced with the data from SPEC benchmarks. Therefore, 
the exception handler is invoked frequently, resulting in 
49% and 45% losses in IPC and 19% and 57% losses in 
Hmean for those two cache configurations, respectively. 
The low Hmean results for the RPcache+IL are due to 
inherently unfair usage of informing loads. Since only the 
AES code uses the informing loads, the performance loss 
due to invocations of the exception handler is mainly 
upon AES rather than the SPEC workloads, thereby 
indeed being unfair. Such performance loss is recovered 
when the cache size is increased to 32KB (12% loss in 
IPC and 12% loss in Hmean) and 64KB (5% loss in IPC 
and 4% loss in Hmean) as the lookup tables will reside in 
the cache for much longer time. 
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Fig. 10. Performance impacts of various protection 
schemes over various cache configurations in two-
way SMT processors. 

In Figure 10, we also show the performance on the 
most efficient software hybrid approach (Software v2) 
and the regular cache with informing loads scheme 
(Regular cache+IL) for two-way SMT processors. The 
results of v1 and v3 are not shown since both are much 
worse than v2. For throughput, both v2 and Regular 
cache+IL have significant throughput degradation for all 

cache configurations. In the meantime, Regular cache+IL 
gains higher throughput over v2 except for the 8KB 
direct-mapped cache. This is due to the diminishing 
number of conflict misses as the cache can hold the 
working sets of both threads. Therefore it results in a 
small number of invocations of the exception handler, 
which lead to small performance overhead. For fairness, 
v2 reports similar results to the baseline as v2 makes no 
use of informing loads, thereby is not affected. Regular 
cache + IL reports lower fairness results. The reason is 
due to the unfair usage of informing loads: informing 
loads are only used in AES but not in the other thread. 
Therefore, when an informing load exception happens, it 
only affects AES and does not affect the co-running 
thread. The fairness of Regular cache + IL improves 
quickly when the cache goes from 8KB up to 64KB as a 
result of the reducing number of invocations of the 
exception handler.  

5.4 Summary 

Protecting computer systems is often about selecting 
the tradeoff between security and efficiency. A stronger 
level of security protection usually comes at extra cost. 
Here we use performance overhead, hardware complexity, 
flexibility, compatibility with legacy programs and 
software change complexity as the factors for 
consideration and present a comparison among various 
protection schemes against software cache-based side 
channel attacks, as shown in Table 4. For security, 
although the PLcache and RPcache designs are effective 
against the two cache attacks analyzed in [23], they are 
still vulnerable to other cache attacks [14]. Our proposed 
hardware-software integrated approaches address the 
source of information leakage and are able to mitigate the 
latest cache attacks. Software hybrid approaches are also 
able to provide certain resistance against cache attacks but 
may trade security for performance, such as v2. From the 
perspective of performance overhead, the special 
hardware designs reduce the performance cost, while our 
informing loads with regular cache approach incurs non-
trivial performance degradation because of extra pointer 
indirection. PLcache+PL and RPcache+IL pose a small to 
medium performance overhead upon the original cache 
designs, while pure software approaches usually incur the 
highest performance overhead. In terms of the ability to 
evolve when better software countermeasures are crafted 
or new attacks are developed, pure hardware designs lack 
the flexibility compared to software approaches, as 
evidenced by the vulnerabilities of the original RPcache 
designs to some timing-based attacks. Our proposed 
hardware-software integrated approaches combine some 
of the performance advantage of the hardware design with 
the flexibility of the software defense. Among them, the 
PLcache+PL and RPcache+IL provide performance 
efficiency at the cost of extra hardware and complexity 
and our approach for regular caches has smaller 
performance overhead compared to the pure software
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Table 4. A comparison between various protection schemes 
 PLcache RPcache PLcache+PL RPcache+IL Regular cache +IL Software v1,v2,v3 

Mitigation against  
access-driven attacks? 

Yes, with SW  
preloading 

Yes Yes Yes Yes Yes 

Mitigation against 
time-driven attacks? 

Yes, with SW  
preloading 

No Yes Yes Yes Yes 

Performance overhead None-Small None+ Small-Medium* Small-Medium* Medium-High* High 

Hardware changes Trivial Non-trivial Non-trivial Non-trivial Light-weight None 
SW flexibility in  
handling misses 

No No Yes Yes Yes Yes 

Compatibility  
with legacy programs 

Yes with OS  
change 

Yes No No No No 

Software change complexity Small None Medium Medium High High 
          * Note: for small size and low-associativity caches, the performance overhead would be high 

 +Note: Performance can increase for RPcache for small cache size and direct-mapped caches 

approach, for caches larger than 16 KB, while requiring 
only minor architectural support for informing loads. For 
compatibility with legacy programs, RPcache is able to 
provide protection without requiring any software 
changes. In terms of the complexity of software changes 
PLcache requires relatively small change in order to 
provide fine-grain locking control of cache lines and 
RPcache requires no software changes, while 
PLcache+PL and RPcache+IL need the user-level 
exception handler. In comparison, regular cache+IL and 
software v1, v2, v3 introduce software random 
permutation and other changes to the target programs. 

6. Conclusions 
Software cache-based side channel attacks pose 

serious threats to the security of computer systems. In this 
paper, we review current cache attacks and identify the 
weakness of existing hardware/software countermeasures. 
We then propose integrated hardware-software 
approaches to provide stronger security protection. We 
use preloading to protect the PLcache from the initial 
loading exposure. A light-weight hardware support, 
informing loads, is used to detect the sign of potential 
danger - cache misses of critical data and then to deploy 
flexible software countermeasures. We propose to use 
informing loads combined with simple yet effective 
software countermeasures to protect both the RPcache and 
regular caches. Experimental results show that our 
approaches achieve strong security protection at relatively 
low performance overheads. 
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