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Abstract—Complex real-time signal and image processing 
applications require low-latency and high-performance 
hardware to achieve optimal performance.  Building such a 
high-performance platform for space deployment is 
hampered by hostile environmental conditions and power 
constraints.  Custom space-based FPGA coprocessors help 
alleviate these constraints, but their use is typically 
restricted by the need for TMR or radiation-hardened 
components.  This paper12 explores a framework that allows 
earth and space scientists to use FPGA resources through an 
abstraction layer.  A synthetic aperture radar application is 
used to demonstrate the power of the system architecture. 
The performance of the application is shown to achieve a 
speedup of 19 when compared to a software solution and is 
able to maintain comparable data reliability.  Projected 
speedups, for the same case study executing on the proposed 
flight system architecture, are several times better and also 
discussed.  This work supports the Dependable 
Multiprocessor project at Honeywell and the University of 
Florida, a mission for the Space Technology 8 (ST-8) 
satellite of NASA’s New Millennium Program. 
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1. INTRODUCTION 

Through the New Millennium Program (NMP) at NASA 
[1], advanced space technologies are being investigated and 
developed at lower cost and in less time than ever before.  
Among its many goals, NMP seeks to meet NASA’s 
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challenge to have a sustained "virtual presence" in terms of 
COTS-based high-performance computing in space and 
related areas for future science missions.  Maintaining such 
a presence requires the development of inexpensive 
spacecraft and rovers to explore all parts of our solar system 
and beyond to gather information.  To achieve this 
objective, NASA seeks technologies enabling spacecraft to 
control themselves autonomously or semi-autonomously, 
support powerful and versatile in-situ processing 
requirements, and yet be relatively simple and inexpensive 
to build and of course reliable in operation. 

The Dependable Multiprocessor (DM) project (formerly 
known as the Environmentally Adaptive Fault-Tolerant 
Computer or EAFTC project [2]) seeks to provide a reliable 
in-situ processing platform in space with the ability for 
autonomous self-healing.  In addition, the focus of the DM 
system is to provide a projected order of magnitude speedup 
for scientific applications over contemporary space systems 
while doing so in a cost-effective manner by leveraging the 
latest in Commercial-Off-The-Shelf (COTS) technology.  
The vision for this project is to provide as powerful a 
supercomputer as possible in space given the mission’s 
power and environmental constraints.  In so doing, scientists 
will be presented with all of the familiar job management, 
interface, and middleware facilities they have come to 
expect in a ground-based, high-performance cluster but with 
the level of system reliability and availability the space 
environment demands. 

Along with a robust management, middleware, and 
communication system incorporating COTS software and 
hardware components such as Linux, Message-Passing 
Interface, Gigabit Ethernet, and high-availability 
middleware among other technologies, Field-Programmable 
Gate Arrays (FPGAs) augment traditional microprocessors 
to enhance the DM’s performance and flexibility.  
Reconfigurable Computing (RC) technology using FPGA 
accelerators is key to achieving the DM’s performance 
goals.  However, deploying scientific applications on 
systems with reconfigurable coprocessors is a relatively new 
technology with only a few early adopters.  Nevertheless, 
this technology has shown promise of late in accelerating 
key application kernels and will likely become a common 
tool in the future as standards and the industry continues to 
mature.  The advantages of using FPGAs in space 
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electronics have been recognized for some time [3-5]; 
several companies are using FPGAs beyond their traditional 
hardware prototyping role and plan to include them in next-
generation satellite systems as adaptive processing elements.  
An overview of RC technology has been extensively 
presented in previous publications such as [6]. 

In order to achieve NASA’s goal of maximal user 
transparency while still incorporating RC technology, a 
standard infrastructure and middleware has been augmented 
for the DM to allow scientists to seamlessly move FPGA-
accelerated science applications from a ground-based, high-
performance cluster outfitted with COTS FPGA boards to 
the DM prototype system.  This paper focuses on the design, 
development, and analysis of the hardware/software 
interface for the DM prototype as well as projections for 
how this interface will perform in the final spacecraft design 
with a select case-study application. 

Synthetic Aperture Radar (SAR) is a common technique of 
acquiring high-resolution radar images, independent of 
illumination or atmospheric conditions.  This method has 
been in use on satellite systems since 1978 when NASA 
first launched a satellite equipped with a SAR sensor in 
earth’s orbit [9].  SAR is used in a variety of applications 
including ground and ocean floor topography, target 
detection and tracking, detection of buried objects, and 
many other applications. Timely processing of SAR data 
requires either a specialized SAR processor system or a 
high-performance computer which are difficult to achieve in 
a space-based platform.  By using FPGA acceleration the 
DM platform can perform key SAR computations at much 
higher speeds while preserving the ability to use the 
processor for other applications or system needs. 

The remaining sections of this paper are organized as 
follows.  Section 2 describes the hardware/software 
interface used in the reconfigurable portion of the DM 
project.  The SAR application used to demonstrate the 
performance and flexibility of the interface is described in 
Section 3 followed by a description of the DM prototype 
system and experimental setup provided in Section 4.  
Section 5 describes the experimental results and Section 6 
describes the flight system architecture and projected 
performance.  Section 7 summarizes the conclusions of the 
paper. 
 

2. THE USURP FRAMEWORK 

Using FPGAs to accelerate scientific applications is still a 
relatively new technology that has not gained a strong 
foothold outside the computer engineering field.  Like the 
early computer industry, the reconfigurable computing 
industry is fragmented and proprietary.  RC application 
development is missing key features that are prevalent in the 
software industry including standard compile-time libraries, 
a universal run-time environment, and reliable middleware. 

Vendors such as Nallatech, Cray, and Alpha Data have 
released reconfigurable coprocessors and systems that are 
based around proprietary interfaces and closed-source 
Application Program Interfaces (APIs).  Vendor APIs are 
incompatible with each other and there has been little 
attempt to reconcile the differences.  Developing a 
hardware-accelerated application for a vendor’s RC 
platform requires using that company's API, as the vendor’s 
driver is closed-source and the hardware interface is 
proprietary.  In addition to API incompatibility, there is no 
standard hardware configuration, so features can be vastly 
different from platform to platform.  RC application 
developers must usually target a specific platform first 
before beginning development (which is alien to the 
software industry).  Often, porting an application to another 
vendor’s platform is not a trivial task, as substantial portions 
of the hardware and software need to be rewritten. 
 
The internal workings of FPGAs also remain proprietary.  
The tools to transfer a netlist description of an application to 
hardware, often referred to as Mapping and Place & Route, 
are only provided by the FPGA vendor.  The major FPGA 
vendors, Xilinx and Altera among others, have unique 
programming interfaces and internal composition.  As with 
the RC vendor boards, feature incompatibility is a problem 
when moving a design to a different FPGA vendor. 
 
 
2.1 Overview of the USURP Framework 

The USURP (USURP’s Standard for Unified 
Reconfigurable Platforms) framework (Fig. 1) is being 
developed by researchers at the University of Florida as a 
compile-time hardware/software interface and run-time 
communication standard for RC in high-performance 
computing.  The compile-time hardware/software interface 
is responsible for unifying vendor software APIs, 
standardizing the hardware interface to external components 
and the communications bus, organization of data for the 
user application core, and exposing the developer to 
common FPGA resources.  The run-time communication 
standard handles determining whether the resources meet 
the application's requirements, configuring the FPGA, 
detecting/handling hardware faults and interrupts, and 
transferring data between the host PC and FPGA. 
 
The USURP framework is particularly applicable in space 
platforms, which are typically characterized as being low-
volume and costly.  The USURP framework allows 
hardware developers to design application cores on COTS 
RC boards and then seamlessly transition to the DM 
platform (with a one-time recompile for the space 
platform’s FPGA).  With the same hardware/software 
interface and run-time communication standard, no 
additional test harness is required.  Further overview and 
analysis of the USURP framework is beyond the scope of 
this paper, but is the subject of [7]. 
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Fig. 1.  A block diagram of the USURP framework.  The 
Hardware Abstraction API, an extension of the framework, allows 
earth and space scientists to harness the power of reconfigurable 
computing without a background in FPGA development.   

 
2.2 Hardware Abstraction API 

The USURP framework solves the problem of being tied to 
proprietary hardware and software, but still requires a 
reasonable level of hardware design knowledge.  Without 
widespread adoption from our target audience, earth and 
space scientists, using the hardware-accelerated resources 
on the DM platform will remain out of reach.  We propose 
an additional level to the USURP framework to completely 
abstract away the FPGA from the application developer.  
The FPGA becomes merely another computing resource for 
the application developer in this model.  The abstraction is 
accomplished by encapsulating the USURP framework into 
a library of commonly used linear algebra and signal 
processing kernels.   
 
The GNU Scientific Library (GSL) [8] is used as the 
foundation for the Hardware Abstraction API.  GSL is an 
open-source library of numerical routines for scientific 
computing and remains popular in the science and 
engineering community due to its highly portable nature.  
RCGSL, our hardware-accelerated version of GSL, uses the 
same structures and syntax as GSL.  For example, the 
following code fragment is an abbreviated version of the 1-
D FFT core implemented with the USURP-RCGSL 

framework.  A top-level function (for an example, see the 
following page), with an identical function call to the GSL 
FFT function, handles the FPGA initialization and 
configuration. 
 
void rcgsl_fft_hw(int fpga_handle,  
  int* v, int n, int sign) { 
  /* acquire register file pointer */ 
reg =  
  USURP_Get_reg_pointer(fpga_handle);   

  /* acquire FPGA SRAM pointer */ 
ram =   
  USURP_Get_ram_pointer(fpga_handle);  

 
  /* set FFT size */ 
  reg[REG_N] = n;  
  /* set FFT direction */ 
  reg[REG_SIGN] = sign;  
  /* copy array v to FPGA SRAM */ 
USURP_Memcpy(fpga_handle, ram, v, n);   

  
/* Use the register file to  
   communicate the start of the  
   FFT computation and to wait  
   until its completion */ 

  
  /* copy FPGA SRAM to array v */ 
USURP_Memcpy(fpga_handle, v, ram, n);          

} 
 
In the example above, reg and ram are pointers to a register 
file and SRAM, respectively, memory mapped inside the 
FPGA.  All control parameters in the RCGSL library are 
passed through the register file.  The USURP_Memcpy() 
function copies the vector v to the FPGA’s external SRAM 
using a DMA transfer. 
 
In a multi-task system, such as the DM platform, there may 
be multiple applications competing for the same resources.  
While an intelligent job scheduler can efficiently manage 
resources for software applications, such a run-time 
environment does not exist to allow two or more 
applications to actively share the FPGA.  To switch an 
FPGA’s context, there must be a mechanism for saving the 
FPGA’s current state (i.e. all actively used registers and 
RAM).  Currently, saving an FPGA’s state is accomplished 
on an application-by-application basis.  In addition to the 
problems with saving the application’s state, FPGA 
configurations (bitfiles) can be several megabytes in size 
and reconfiguration typically takes 25-100 ms.  For a space 
platform, reconfiguration severely affects availability. 
 
The number of FPGA reconfigurations is minimized to 
effectively manage overall system performance.  To prevent 
conflicts between hardware-accelerated applications, there 
is typically a software counterpart.  GSL conveniently 
provides many scientific kernels (including the 1-D FFT).   
The top-level FPGA initialization and configuration are 
handled on the initialization of the RCGSL library or the 
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first function call.   The following code fragment is an 
example of the latter: 
 
void rcgsl_fft_complex_radix2_transform(    
  int* v, int stride, int n, int sign) { 
  if(USURP_Available()) { 
    fpga_handle = FPGA_Init(); 
    USURP_Load(fpga_handle, fft_bitfile) 
    rcgsl_fft_hw(fpga_handle,  
                 v, n, sign) 
  } 
 else {   
    if(USURP_Own(fft_bitfile))  
      rcgsl_fft_hw(fpga_handle, 
                   v, n, sign) 
    else /* software FFT */ 
      gsl_fft_complex_radix2_transform( 
        v, stride, n, sign); 
  } 
} 
 
An application is given exclusive access to the DM 
platform’s FPGA; an API call is provided to see if the 
FPGA resources are free (USURP_Available()).  If the 
FPGA is available, the 1-D FFT configuration file is loaded 
into the FPGA (USURP_Load()) and the FFT is computed 
using the FPGA resources (rcgsl_fft_hw()).  Otherwise, we 
must verify that the process owns the FPGA and the FFT 
configuration file is loaded (USURP_Own()).   A GSL 
software implementation is provided as a fallback in case it 
is not possible to use the hardware implementation.  

3. SYNTHETIC APERTURE RADAR 

The SAR processing system emits a high-frequency 
electromagnetic pulse and then receives its echoes as 
reflected by numerous individual scatterers (or targets) 
located within given scene.  This basic principle is shown in 
Fig. 2.  Data is collected, digitized, and stored in a two-
dimensional matrix.  The data stored along the first 
dimension corresponds to the range, which is the orthogonal 
distance to the scatterer.  The second dimension corresponds 
to the azimuth, which is the location of the scatterer along 
the trajectory of the SAR platform. 
 
One of the most common SAR processing algorithms [9-11] 
is Range-Doppler Processor (RDP) and its numerous 
variations.  This method is efficient and in principle solves 
the problems of range and azimuth resolution by performing 
filtering in the frequency domain.  The processing of data 
obtained from SAR could be viewed as a 2-D convolution 
and thus implemented with a linear filter, although to 
perform the processing in the time domain a specific filter 
would have to be designed for each range cell [10], which 
results in a computationally inefficient algorithm.  Since         
range and azimuth time scales are nearly orthogonal, the 
range and azimuth directions can be computed 
independently during the processing in the frequency 
domain.  The core steps of RDP are shown in Fig. 3 [11]. 

 
Fig. 2.  Geometry of SAR and data acquisition. 

 
.     

 
Fig. 3.  A typical Range Doppler Processing algorithm [11]. 

 
The RDP algorithm consists of multiple FFTs along the 
range and azimuth directions.  Range Compression and 
Secondary Range Compression are implemented using a 
complex-array multiply along the range direction.  Azimuth 

Compression is similar, but performed along the azimuth 
direction.  Range Cell Correction is implemented by 
interpolation and shift operations.  A breakdown of the 
algorithm (Table 1) reveals a computation complexity of 

O[3 N2 + 5 N2 log2(N)] for an N × N matrix (where N is the 

number of rows/columns in the matrix).  For a 512 × 512 
pixel image, fixed-point SAR processing requires 12.6 
million integer operations.   
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Table 1 
Computation Complexity of the RDP Algorithm 

 

Function Operations 

Range FFT 5 N2 log2(N) 

Range Compression N2 

Secondary Range Compression N2 

Range IFFT 5 N2 log2(N) 

Azimuth FFT 5 N2 log2(N) 

Azimuth Compression N2 

Azimuth IFFT 5 N2 log2(N) 

Total 3 N
2
 + 5 N

2
 log2(N) 

4. EXPERIMENTAL SETUP 

A prototype for the USURP framework and the SAR 
application has been implemented on the DM testbed.  The 
DM cluster computer is a prototype for the DM flight 
system that is being developed by researchers at Honeywell 
and the University of Florida.   
 
4.1 DM Testbed 

The DM testbed is configured with seven Orion CPC7510 
single-board computers in a CompactPCI chassis 
interconnected by a redundant pair of Gigabit Ethernet 
switches.  The seven PowerPC nodes are configured as two 
System Controllers, four Data Processors, and one Mass 
Data Store.  Two of the Data Processor nodes are 
augmented with ADM-XRC-II FPGA coprocessors [12].    
 

4.2 SAR Processing 

According to [11, 13] the majority (over 85%) of RDP 
computation is focused in the FFT and complex multiply 
operations required for application of the matched range and 
azimuth filters.  The other computations needed include 

matched azimuth filter generation and interpolation 
operation for Range Cell Correction.  For the purpose of the 
experiment, the Range Cell Correction and the generation of 
azimuth filter are forgone to focus on the most 
computationally demanding portions of the algorithm, 
leaving a system that performs only the FFT and complex 
multiply operations. 
 
4.3 FPGA Architecture 

Fig. 4 is a graphical description of the USURP software 
architecture as implemented for the SAR algorithm.  Image 
data is acquired by the Mass Data Store through a camera or 
is the previous result of a Data Processor node.  Further 
discussion on data acquisition is beyond the scope of this 
paper, as the image source is presented as a black box 
through the Mass Data Store.  The image data is retrieved 
from the Mass Data Store in an uncompressed format by the 
Data Processor.   
 
All data preparation can be done using the traditional GSL 
framework.  The Hardware Abstraction API, with the 
RCGSL extensions, is the application developer’s 
transparent interface with the FPGA accelerator.  The 
RCGSL function calls use the Universal FPGA Software 
API to offload the image data to the FPGA.  After 
completing the calculation, the image data is retrieved by 
the host processor and transferred back to the Mass Data 
Store. 
 
The USURP software architecture is designed in a modular 
fashion.  Only one component of the software architecture 
has to be replaced (the Universal FPGA Software API) 
when transitioning between the terrestrial testbed and the 
spacecraft.  The Universal FPGA Software API is also 
dynamically linked at run-time to prevent the need to 
recompile applications (assuming compatible binary). 

 

 

 
Fig. 4.  Software architecture of the SAR application implemented with the USURP framework.  
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Fig. 5.  Hardware architecture of the SAR application implemented with the USURP framework. 

 
The USURP hardware architecture (Fig. 5) exposes the 
application developer to common FPGA resources including 

a 32 × 32 register file, 4 kB of internal block RAM, and 
external SRAM in a unified fashion that is compatible 
across many different reconfigurable computing platforms. 
The application core uses these resources to compute the 
SAR algorithm.  The host processor interfaces with the 
register file to store the SAR parameters and the internal 
block RAM to store the complex multiply coefficients 
during the algorithm’s computation.  The SAR image data 
and temporary calculations are stored in external SRAM. 

5. EXPERIMENTAL RESULTS 

The USURP implementation of the SAR algorithm is 
compared against a software baseline written using GSL.  
Fig. 6 shows the execution time for five images ranging in 

size from 32 × 32 pixels to 512 × 512 pixels.  The image 
size is limited solely by the amount of SRAM on the ADM-
XRC-II board and it is expected the flight system will be 
able to support much larger image sizes.    As expected, the 
execution time increases exponentially with the increase in 
image size due to the algorithm’s exponential complexity. 
 
The speedup of the hardware core over the software 
implementation (Fig. 7) increases with image size.  The 
fully pipelined hardware 1-D FFT can compute an N-length 
transform every N clock cycles.  As the problem size 
increases linearly, the length of time computing the 
transform increases linearly for the hardware core and 
exponentially for the software implementation (some 
matrices can be more/less efficiently computed due do the 

cache architecture - as we experienced with a 256 × 256 
image).  In addition, the effect of the communication latency 
is lessened for larger images.  A speedup of 19 is obtained 

for the largest tested image size, 512 × 512, and is likely to 
further increase with larger images, provided sufficient 
memory resources are available. 
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Fig. 6.  Execution time (lower is better) for the SAR algorithm 
implemented using the GSL and USURP frameworks.  

0

4

8

12

16

20

32 64 128 256 512
Size of Image (N  × N ) 

S
p

ee
d

u
p

Speedup

 
Fig. 7.  Speedup of the SAR algorithm implemented using the 
USURP framework as compared to GSL. 
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Fig. 8.  Data throughput (higher is better) for the SAR algorithm 
implemented using the GSL and USURP frameworks. 
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Fig. 9.  Frames per second (higher is better) for the SAR algorithm 
implemented using the GSL and USURP frameworks. 
 
 
The data throughput for GSL and USURP (Fig. 8) have 
opposite trends.  As the image size increases, the software 
implementation loses 28% of its potential data throughput 
due to the increasing computational complexity.  The 
hardware throughput increases because larger DMA 
transfers mask the overhead latency.  The experimental 
results show that DMA transfers above 16 kB (equivalent to 

a 128 × 128 image) have minimal improvement in data 
throughput. 
 

A 512 × 512 complex matrix (16-bit fixed-point) allows for 
only 0.45 frames/s to be processed (Fig. 9).  As with the 
software implementation, the hardware algorithm’s frame 
rate decreases exponentially with the image size due to the 
increase in throughput requirements.    

6. FLIGHT ARCHITECTURE 

Due to the physical requirements of the flight system, the 
PCI Mezzanine Card (PMC) RC board used in the prototype 
system must be replaced with an embedded solution.  While 
this integrated design may add to the total cost of the board, 
it will remove potential performance bottlenecks.  However, 
the extended design will be functionally compatible with the 
COTS version because of the USURP framework. 
 
 
6.1 Proposed Architecture 

 
The main components of the proposed flight system include 
the CPU, the system controller, SDRAM, dual-port SRAM, 
and the FPGA.  The system controller can provide DMA 
functionality, which will alleviate the processor’s 
responsibility during memory transfers.  The CPU has 
access to system SDRAM as well as the dual-port SRAM.  
The dual-port SRAM will be assigned a small section of the 
processor’s memory-map.  The processor, an IBM 
PPC750fx, will be separated from the FPGA, a Virtex 
series, by using several banks of dual-port SRAM.  Fig. 10 
shows the planned board architecture. 
 
 
 

 
 

Fig. 10.  Proposed Flight Board Architecture. 

 
 
The CPU and the FPGA will be located in separate clock 
domains, reducing board design constraints.  Additionally, 
separate clock domains will allow the FPGA to run at any 
necessary speed, instead of forcing a design to run at a 
specific frequency to match the communication bus clock 
domain.  Communication between the CPU and the FPGA 
is accomplished by writing and reading to the SRAM.  The 
SRAM has hardware interrupts that can notify the devices 
when new data is written (eliminating the need for polling).  
Additionally, the FPGA may have extra SRAM on the 
backside of the device.  This SRAM can be used for 
temporary data storage and intermediate calculations needed 
by the FPGA design.  Additionally, there is circuitry to 
support FPGA reconfiguration using either Xilinx’s 
SelectMAP protocol or JTAG. 
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6.2 Dependable FPGA Services 

Extra attention must be made to the effects of single-event 
upsets (SEUs) on the FPGA due to radiation.  In addition to 
normal transient effects that will occur in all non-radiation-
hardened electronics, SRAM-based FPGA’s can have 
persistent faults caused by an SEU-modified configuration 
memory.  These types of errors will persist until the FPGA 
configuration memory is reconfigured.  There are several 
methods that can be used to handle these faults. 
 
One approach that will be used is known as scrubbing.  In 
this approach, the configuration of the FPGA is 
reconfigured at a specified rate (much higher than the 
expected SEU rate).  While this approach will correct any 
configuration memory errors, it does not guarantee that data 
errors that have already occurred will not propagate further. 
 
While the previous approach can help to mitigate errors, it 
does nothing to correct errors that do occur.  A second fault-
mitigation technique is the use of process-level replication.  
Essentially, every job that is run on the FPGA will be run 
multiple times.  Between runs, the FPGA will be 
reconfigured in order to avoid the accumulation of errors in 
the FPGA configuration memory.  The results of the runs 
will be compared to ensure correct results. 
 
Another mitigation technique, triple modular redundancy 
(TMR), can be used internally by the FPGA to ensure that a 
single SEU will not produce invalid data.  A tool to produce 
TMR code from a pre-existing design is available from 
Xilinx under the name TMRtool.  This approach works well 
if the FPGA is under utilized.  However, if the FPGA is 
close to capacity, the design will be too large for the FPGA 
after being triplicated. 
 
 

 
 

Fig. 11.  Example of Chip-level TMR 

 
Another approach to FPGA fault-mitigation is the use of 
chip-level TMR.  Instead of a single FPGA, three FPGAs 
are used and their outputs are compared using rad-hard 

voting logic (Fig. 11).  However, due to the power budget of 
the flight board, this approach may not be practical. 
 

 
6.3 Performance Comparisons 

In the prototype DM system, the CPU can only 
communicate with the FPGA by using the PCI bus.  The 
PCI bus limits the theoretical throughput of any FPGA 
design to 264 MB/s (at 66 MHz).  In practice, due to 
protocol overhead and other issues, the theoretical 
throughout is not achieved.  The peak throughput 
performance measured on the prototype system is 198.5 
MB/s for DMA reads and 95.8 MB/s for DMA writes.   
 
The CPU-to-FPGA throughput of the flight system is 
limited by the memory controller’s nominal DMA transfer 
rate, the speed of the dual-port SRAM, and the speed of 
FPGA design.  Most FPGA designs are not capable of 
reaching much higher than 200 MHz and the dual-port 
SRAM will be capable of 200 MHz operation.   
 
The CPU will be able to access SRAM data at a rate of 800 
MB/s using 32-bit reads and writes.  Using the DMA 
capabilities of the memory controller, data can be 
transferred from main memory to the dual-port SRAM with 
only minimal CPU intervention.  As a worst-case scenario, 
we provide the following flight system predictions (Table 2)  
based on the same overhead ratios as the PCI bus observed 
in the testbed.   Transferring data to the dual-port SRAM 
should be more efficient than transferring data to the PCI 
bus due to less communication overhead; we are in the 
process of building simulation models to verify the 
throughput of the flight system. 
 
 

Table 2 
Predicted Flight System Speedup 

 

Operation 
 

Testbed 
(ms) 

Flight  
(ms) 

Speedup 
 

DMA Write 5.04 1.66 3.03

Execution 
 

15.92 
(66 MHz) 

8.49
(125 MHz)

1.87

DMA Read 10.44 3.44 3.03

Total 31.40 13.60 2.31

 
 
The FPGA’s execution on the testbed is limited to 66 MHz 
due to the core sharing the clock domain with the PCI bus.  
The flight system separates the clock domains and will 
allow the core to execute at its maximum possible 
frequency, currently 125 MHz.  The flight system can 

expect at least a 2.31× speedup of the accelerated SAR 

algorithm, which is a 43× speedup over the GSL software 
implementation.   Additional speedups can come from 
efficient use of the dual-port SRAM, as part of the 
communication and execution can be overlapped. 
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7. CONCLUSIONS 

This paper presented an extension to the USURP framework 
that abstracts hardware resources from the application 
developer.  The Hardware Abstraction API allows earth and 
space scientists to use accelerated resources without needing 
to understand FPGA development.  The API is based around 
a familiar framework (GSL) and allows application 
developers to seamlessly transition between terrestrial 
system and the spacecraft’s embedded system. 
 
A Synthetic Aperture Radar hardware-accelerated core was 
developed as a case study.  The core is interfaced through 
the FPGA Software Interface API to the RCGSL 
framework.  Using the FPGA as a SAR coprocessor, we can 
achieve a speedup of 19 when compared to a software 
implementation developed with GSL on the testbed.   
 
The speedup trend is expected to rise in the final flight 
system.  The DM spacecraft will remove the PCI bottleneck 
to allow for a greater data throughput; a worst-case speedup 
of 43 over the GSL implementation is estimated.  A greater 
amount of FPGA-accessible SRAM will allow us to process 
larger image sizes. 
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