
 1

Hardware/software Interface for High-performance

Space Computing with FPGA Coprocessors

James Greco, Grzegorz Cieslewski, Adam Jacobs, Ian A. Troxel, and Alan D. George
{greco, cieslewski, jacobs, troxel, george}@hcs.ufl.edu

High-performance Computing and Simulation (HCS) Research Laboratory
Department of Electrical and Computer Engineering, University of Florida

Gainesville, Florida 32611-6200

Abstract—Complex real-time signal and image processing
applications require low-latency and high-performance
hardware to achieve optimal performance. Building such a
high-performance platform for space deployment is
hampered by hostile environmental conditions and power
constraints. Custom space-based FPGA coprocessors help
alleviate these constraints, but their use is typically
restricted by the need for TMR or radiation-hardened
components. This paper12 explores a framework that allows
earth and space scientists to use FPGA resources through an
abstraction layer. A synthetic aperture radar application is
used to demonstrate the power of the system architecture.
The performance of the application is shown to achieve a
speedup of 19 when compared to a software solution and is
able to maintain comparable data reliability. Projected
speedups, for the same case study executing on the proposed
flight system architecture, are several times better and also
discussed. This work supports the Dependable
Multiprocessor project at Honeywell and the University of
Florida, a mission for the Space Technology 8 (ST-8)
satellite of NASA’s New Millennium Program.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. THE USURP FRAMEWORK...................................2
3. SYNTHETIC APERTURE RADAR.............................4
4. EXPERIMENTAL SETUP ...5
5. EXPERIMENTAL RESULTS6
6. FLIGHT ARCHITECTURE7
7. CONCLUSIONS ...9
ACKNOWLEDGEMENTS ...9
REFERENCES ...9
BIOGRAPHIES ..9

1. INTRODUCTION

Through the New Millennium Program (NMP) at NASA
[1], advanced space technologies are being investigated and
developed at lower cost and in less time than ever before.
Among its many goals, NMP seeks to meet NASA’s

1
 0-7803-9546-8/06/$20.00© 2006 IEEE

2
 IEEEAC paper #1648, Version 3, Updated Jan, 19 2006

challenge to have a sustained "virtual presence" in terms of
COTS-based high-performance computing in space and
related areas for future science missions. Maintaining such
a presence requires the development of inexpensive
spacecraft and rovers to explore all parts of our solar system
and beyond to gather information. To achieve this
objective, NASA seeks technologies enabling spacecraft to
control themselves autonomously or semi-autonomously,
support powerful and versatile in-situ processing
requirements, and yet be relatively simple and inexpensive
to build and of course reliable in operation.

The Dependable Multiprocessor (DM) project (formerly
known as the Environmentally Adaptive Fault-Tolerant
Computer or EAFTC project [2]) seeks to provide a reliable
in-situ processing platform in space with the ability for
autonomous self-healing. In addition, the focus of the DM
system is to provide a projected order of magnitude speedup
for scientific applications over contemporary space systems
while doing so in a cost-effective manner by leveraging the
latest in Commercial-Off-The-Shelf (COTS) technology.
The vision for this project is to provide as powerful a
supercomputer as possible in space given the mission’s
power and environmental constraints. In so doing, scientists
will be presented with all of the familiar job management,
interface, and middleware facilities they have come to
expect in a ground-based, high-performance cluster but with
the level of system reliability and availability the space
environment demands.

Along with a robust management, middleware, and
communication system incorporating COTS software and
hardware components such as Linux, Message-Passing
Interface, Gigabit Ethernet, and high-availability
middleware among other technologies, Field-Programmable
Gate Arrays (FPGAs) augment traditional microprocessors
to enhance the DM’s performance and flexibility.
Reconfigurable Computing (RC) technology using FPGA
accelerators is key to achieving the DM’s performance
goals. However, deploying scientific applications on
systems with reconfigurable coprocessors is a relatively new
technology with only a few early adopters. Nevertheless,
this technology has shown promise of late in accelerating
key application kernels and will likely become a common
tool in the future as standards and the industry continues to
mature. The advantages of using FPGAs in space

 2

electronics have been recognized for some time [3-5];
several companies are using FPGAs beyond their traditional
hardware prototyping role and plan to include them in next-
generation satellite systems as adaptive processing elements.
An overview of RC technology has been extensively
presented in previous publications such as [6].

In order to achieve NASA’s goal of maximal user
transparency while still incorporating RC technology, a
standard infrastructure and middleware has been augmented
for the DM to allow scientists to seamlessly move FPGA-
accelerated science applications from a ground-based, high-
performance cluster outfitted with COTS FPGA boards to
the DM prototype system. This paper focuses on the design,
development, and analysis of the hardware/software
interface for the DM prototype as well as projections for
how this interface will perform in the final spacecraft design
with a select case-study application.

Synthetic Aperture Radar (SAR) is a common technique of
acquiring high-resolution radar images, independent of
illumination or atmospheric conditions. This method has
been in use on satellite systems since 1978 when NASA
first launched a satellite equipped with a SAR sensor in
earth’s orbit [9]. SAR is used in a variety of applications
including ground and ocean floor topography, target
detection and tracking, detection of buried objects, and
many other applications. Timely processing of SAR data
requires either a specialized SAR processor system or a
high-performance computer which are difficult to achieve in
a space-based platform. By using FPGA acceleration the
DM platform can perform key SAR computations at much
higher speeds while preserving the ability to use the
processor for other applications or system needs.

The remaining sections of this paper are organized as
follows. Section 2 describes the hardware/software
interface used in the reconfigurable portion of the DM
project. The SAR application used to demonstrate the
performance and flexibility of the interface is described in
Section 3 followed by a description of the DM prototype
system and experimental setup provided in Section 4.
Section 5 describes the experimental results and Section 6
describes the flight system architecture and projected
performance. Section 7 summarizes the conclusions of the
paper.

2. THE USURP FRAMEWORK

Using FPGAs to accelerate scientific applications is still a
relatively new technology that has not gained a strong
foothold outside the computer engineering field. Like the
early computer industry, the reconfigurable computing
industry is fragmented and proprietary. RC application
development is missing key features that are prevalent in the
software industry including standard compile-time libraries,
a universal run-time environment, and reliable middleware.

Vendors such as Nallatech, Cray, and Alpha Data have
released reconfigurable coprocessors and systems that are
based around proprietary interfaces and closed-source
Application Program Interfaces (APIs). Vendor APIs are
incompatible with each other and there has been little
attempt to reconcile the differences. Developing a
hardware-accelerated application for a vendor’s RC
platform requires using that company's API, as the vendor’s
driver is closed-source and the hardware interface is
proprietary. In addition to API incompatibility, there is no
standard hardware configuration, so features can be vastly
different from platform to platform. RC application
developers must usually target a specific platform first
before beginning development (which is alien to the
software industry). Often, porting an application to another
vendor’s platform is not a trivial task, as substantial portions
of the hardware and software need to be rewritten.

The internal workings of FPGAs also remain proprietary.
The tools to transfer a netlist description of an application to
hardware, often referred to as Mapping and Place & Route,
are only provided by the FPGA vendor. The major FPGA
vendors, Xilinx and Altera among others, have unique
programming interfaces and internal composition. As with
the RC vendor boards, feature incompatibility is a problem
when moving a design to a different FPGA vendor.

2.1 Overview of the USURP Framework

The USURP (USURP’s Standard for Unified
Reconfigurable Platforms) framework (Fig. 1) is being
developed by researchers at the University of Florida as a
compile-time hardware/software interface and run-time
communication standard for RC in high-performance
computing. The compile-time hardware/software interface
is responsible for unifying vendor software APIs,
standardizing the hardware interface to external components
and the communications bus, organization of data for the
user application core, and exposing the developer to
common FPGA resources. The run-time communication
standard handles determining whether the resources meet
the application's requirements, configuring the FPGA,
detecting/handling hardware faults and interrupts, and
transferring data between the host PC and FPGA.

The USURP framework is particularly applicable in space
platforms, which are typically characterized as being low-
volume and costly. The USURP framework allows
hardware developers to design application cores on COTS
RC boards and then seamlessly transition to the DM
platform (with a one-time recompile for the space
platform’s FPGA). With the same hardware/software
interface and run-time communication standard, no
additional test harness is required. Further overview and
analysis of the USURP framework is beyond the scope of
this paper, but is the subject of [7].

 3

Fig. 1. A block diagram of the USURP framework. The
Hardware Abstraction API, an extension of the framework, allows
earth and space scientists to harness the power of reconfigurable
computing without a background in FPGA development.

2.2 Hardware Abstraction API

The USURP framework solves the problem of being tied to
proprietary hardware and software, but still requires a
reasonable level of hardware design knowledge. Without
widespread adoption from our target audience, earth and
space scientists, using the hardware-accelerated resources
on the DM platform will remain out of reach. We propose
an additional level to the USURP framework to completely
abstract away the FPGA from the application developer.
The FPGA becomes merely another computing resource for
the application developer in this model. The abstraction is
accomplished by encapsulating the USURP framework into
a library of commonly used linear algebra and signal
processing kernels.

The GNU Scientific Library (GSL) [8] is used as the
foundation for the Hardware Abstraction API. GSL is an
open-source library of numerical routines for scientific
computing and remains popular in the science and
engineering community due to its highly portable nature.
RCGSL, our hardware-accelerated version of GSL, uses the
same structures and syntax as GSL. For example, the
following code fragment is an abbreviated version of the 1-
D FFT core implemented with the USURP-RCGSL

framework. A top-level function (for an example, see the
following page), with an identical function call to the GSL
FFT function, handles the FPGA initialization and
configuration.

void rcgsl_fft_hw(int fpga_handle,
 int* v, int n, int sign) {
 /* acquire register file pointer */
reg =
 USURP_Get_reg_pointer(fpga_handle);

 /* acquire FPGA SRAM pointer */
ram =
 USURP_Get_ram_pointer(fpga_handle);

 /* set FFT size */
 reg[REG_N] = n;
 /* set FFT direction */
 reg[REG_SIGN] = sign;
 /* copy array v to FPGA SRAM */
USURP_Memcpy(fpga_handle, ram, v, n);

/* Use the register file to
 communicate the start of the
 FFT computation and to wait
 until its completion */

 /* copy FPGA SRAM to array v */
USURP_Memcpy(fpga_handle, v, ram, n);

}

In the example above, reg and ram are pointers to a register
file and SRAM, respectively, memory mapped inside the
FPGA. All control parameters in the RCGSL library are
passed through the register file. The USURP_Memcpy()
function copies the vector v to the FPGA’s external SRAM
using a DMA transfer.

In a multi-task system, such as the DM platform, there may
be multiple applications competing for the same resources.
While an intelligent job scheduler can efficiently manage
resources for software applications, such a run-time
environment does not exist to allow two or more
applications to actively share the FPGA. To switch an
FPGA’s context, there must be a mechanism for saving the
FPGA’s current state (i.e. all actively used registers and
RAM). Currently, saving an FPGA’s state is accomplished
on an application-by-application basis. In addition to the
problems with saving the application’s state, FPGA
configurations (bitfiles) can be several megabytes in size
and reconfiguration typically takes 25-100 ms. For a space
platform, reconfiguration severely affects availability.

The number of FPGA reconfigurations is minimized to
effectively manage overall system performance. To prevent
conflicts between hardware-accelerated applications, there
is typically a software counterpart. GSL conveniently
provides many scientific kernels (including the 1-D FFT).
The top-level FPGA initialization and configuration are
handled on the initialization of the RCGSL library or the

 4

first function call. The following code fragment is an
example of the latter:

void rcgsl_fft_complex_radix2_transform(
 int* v, int stride, int n, int sign) {
 if(USURP_Available()) {
 fpga_handle = FPGA_Init();
 USURP_Load(fpga_handle, fft_bitfile)
 rcgsl_fft_hw(fpga_handle,
 v, n, sign)
 }
 else {
 if(USURP_Own(fft_bitfile))
 rcgsl_fft_hw(fpga_handle,
 v, n, sign)
 else /* software FFT */
 gsl_fft_complex_radix2_transform(
 v, stride, n, sign);
 }
}

An application is given exclusive access to the DM
platform’s FPGA; an API call is provided to see if the
FPGA resources are free (USURP_Available()). If the
FPGA is available, the 1-D FFT configuration file is loaded
into the FPGA (USURP_Load()) and the FFT is computed
using the FPGA resources (rcgsl_fft_hw()). Otherwise, we
must verify that the process owns the FPGA and the FFT
configuration file is loaded (USURP_Own()). A GSL
software implementation is provided as a fallback in case it
is not possible to use the hardware implementation.

3. SYNTHETIC APERTURE RADAR

The SAR processing system emits a high-frequency
electromagnetic pulse and then receives its echoes as
reflected by numerous individual scatterers (or targets)
located within given scene. This basic principle is shown in
Fig. 2. Data is collected, digitized, and stored in a two-
dimensional matrix. The data stored along the first
dimension corresponds to the range, which is the orthogonal
distance to the scatterer. The second dimension corresponds
to the azimuth, which is the location of the scatterer along
the trajectory of the SAR platform.

One of the most common SAR processing algorithms [9-11]
is Range-Doppler Processor (RDP) and its numerous
variations. This method is efficient and in principle solves
the problems of range and azimuth resolution by performing
filtering in the frequency domain. The processing of data
obtained from SAR could be viewed as a 2-D convolution
and thus implemented with a linear filter, although to
perform the processing in the time domain a specific filter
would have to be designed for each range cell [10], which
results in a computationally inefficient algorithm. Since
range and azimuth time scales are nearly orthogonal, the
range and azimuth directions can be computed
independently during the processing in the frequency
domain. The core steps of RDP are shown in Fig. 3 [11].

Fig. 2. Geometry of SAR and data acquisition.

.

Fig. 3. A typical Range Doppler Processing algorithm [11].

The RDP algorithm consists of multiple FFTs along the
range and azimuth directions. Range Compression and
Secondary Range Compression are implemented using a
complex-array multiply along the range direction. Azimuth

Compression is similar, but performed along the azimuth
direction. Range Cell Correction is implemented by
interpolation and shift operations. A breakdown of the
algorithm (Table 1) reveals a computation complexity of

O[3 N2 + 5 N2 log2(N)] for an N × N matrix (where N is the

number of rows/columns in the matrix). For a 512 × 512
pixel image, fixed-point SAR processing requires 12.6
million integer operations.

 5

Table 1
Computation Complexity of the RDP Algorithm

Function Operations

Range FFT 5 N2 log2(N)

Range Compression N2

Secondary Range Compression N2

Range IFFT 5 N2 log2(N)

Azimuth FFT 5 N2 log2(N)

Azimuth Compression N2

Azimuth IFFT 5 N2 log2(N)

Total 3 N
2
 + 5 N

2
 log2(N)

4. EXPERIMENTAL SETUP

A prototype for the USURP framework and the SAR
application has been implemented on the DM testbed. The
DM cluster computer is a prototype for the DM flight
system that is being developed by researchers at Honeywell
and the University of Florida.

4.1 DM Testbed

The DM testbed is configured with seven Orion CPC7510
single-board computers in a CompactPCI chassis
interconnected by a redundant pair of Gigabit Ethernet
switches. The seven PowerPC nodes are configured as two
System Controllers, four Data Processors, and one Mass
Data Store. Two of the Data Processor nodes are
augmented with ADM-XRC-II FPGA coprocessors [12].

4.2 SAR Processing

According to [11, 13] the majority (over 85%) of RDP
computation is focused in the FFT and complex multiply
operations required for application of the matched range and
azimuth filters. The other computations needed include

matched azimuth filter generation and interpolation
operation for Range Cell Correction. For the purpose of the
experiment, the Range Cell Correction and the generation of
azimuth filter are forgone to focus on the most
computationally demanding portions of the algorithm,
leaving a system that performs only the FFT and complex
multiply operations.

4.3 FPGA Architecture

Fig. 4 is a graphical description of the USURP software
architecture as implemented for the SAR algorithm. Image
data is acquired by the Mass Data Store through a camera or
is the previous result of a Data Processor node. Further
discussion on data acquisition is beyond the scope of this
paper, as the image source is presented as a black box
through the Mass Data Store. The image data is retrieved
from the Mass Data Store in an uncompressed format by the
Data Processor.

All data preparation can be done using the traditional GSL
framework. The Hardware Abstraction API, with the
RCGSL extensions, is the application developer’s
transparent interface with the FPGA accelerator. The
RCGSL function calls use the Universal FPGA Software
API to offload the image data to the FPGA. After
completing the calculation, the image data is retrieved by
the host processor and transferred back to the Mass Data
Store.

The USURP software architecture is designed in a modular
fashion. Only one component of the software architecture
has to be replaced (the Universal FPGA Software API)
when transitioning between the terrestrial testbed and the
spacecraft. The Universal FPGA Software API is also
dynamically linked at run-time to prevent the need to
recompile applications (assuming compatible binary).

Fig. 4. Software architecture of the SAR application implemented with the USURP framework.

 6

Fig. 5. Hardware architecture of the SAR application implemented with the USURP framework.

The USURP hardware architecture (Fig. 5) exposes the
application developer to common FPGA resources including

a 32 × 32 register file, 4 kB of internal block RAM, and
external SRAM in a unified fashion that is compatible
across many different reconfigurable computing platforms.
The application core uses these resources to compute the
SAR algorithm. The host processor interfaces with the
register file to store the SAR parameters and the internal
block RAM to store the complex multiply coefficients
during the algorithm’s computation. The SAR image data
and temporary calculations are stored in external SRAM.

5. EXPERIMENTAL RESULTS

The USURP implementation of the SAR algorithm is
compared against a software baseline written using GSL.
Fig. 6 shows the execution time for five images ranging in

size from 32 × 32 pixels to 512 × 512 pixels. The image
size is limited solely by the amount of SRAM on the ADM-
XRC-II board and it is expected the flight system will be
able to support much larger image sizes. As expected, the
execution time increases exponentially with the increase in
image size due to the algorithm’s exponential complexity.

The speedup of the hardware core over the software
implementation (Fig. 7) increases with image size. The
fully pipelined hardware 1-D FFT can compute an N-length
transform every N clock cycles. As the problem size
increases linearly, the length of time computing the
transform increases linearly for the hardware core and
exponentially for the software implementation (some
matrices can be more/less efficiently computed due do the

cache architecture - as we experienced with a 256 × 256
image). In addition, the effect of the communication latency
is lessened for larger images. A speedup of 19 is obtained

for the largest tested image size, 512 × 512, and is likely to
further increase with larger images, provided sufficient
memory resources are available.

0.1

1

10

100

1000

32 64 128 256 512

Size of Image (N × N)

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

GSL

USURP

Fig. 6. Execution time (lower is better) for the SAR algorithm
implemented using the GSL and USURP frameworks.

0

4

8

12

16

20

32 64 128 256 512
Size of Image (N × N)

S
p

ee
d

u
p

Speedup

Fig. 7. Speedup of the SAR algorithm implemented using the
USURP framework as compared to GSL.

 7

0.1

1

10

32 64 128 256 512

Size of Image (N × N)

D
a

ta
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

GSL

USURP

Fig. 8. Data throughput (higher is better) for the SAR algorithm
implemented using the GSL and USURP frameworks.

0.1

1

10

100

1000

10000

32 64 128 256 512

Size of Image (N × N)

F
ra

m
es

 /
 s

GSL

USURP

Fig. 9. Frames per second (higher is better) for the SAR algorithm
implemented using the GSL and USURP frameworks.

The data throughput for GSL and USURP (Fig. 8) have
opposite trends. As the image size increases, the software
implementation loses 28% of its potential data throughput
due to the increasing computational complexity. The
hardware throughput increases because larger DMA
transfers mask the overhead latency. The experimental
results show that DMA transfers above 16 kB (equivalent to

a 128 × 128 image) have minimal improvement in data
throughput.

A 512 × 512 complex matrix (16-bit fixed-point) allows for
only 0.45 frames/s to be processed (Fig. 9). As with the
software implementation, the hardware algorithm’s frame
rate decreases exponentially with the image size due to the
increase in throughput requirements.

6. FLIGHT ARCHITECTURE

Due to the physical requirements of the flight system, the
PCI Mezzanine Card (PMC) RC board used in the prototype
system must be replaced with an embedded solution. While
this integrated design may add to the total cost of the board,
it will remove potential performance bottlenecks. However,
the extended design will be functionally compatible with the
COTS version because of the USURP framework.

6.1 Proposed Architecture

The main components of the proposed flight system include
the CPU, the system controller, SDRAM, dual-port SRAM,
and the FPGA. The system controller can provide DMA
functionality, which will alleviate the processor’s
responsibility during memory transfers. The CPU has
access to system SDRAM as well as the dual-port SRAM.
The dual-port SRAM will be assigned a small section of the
processor’s memory-map. The processor, an IBM
PPC750fx, will be separated from the FPGA, a Virtex
series, by using several banks of dual-port SRAM. Fig. 10
shows the planned board architecture.

Fig. 10. Proposed Flight Board Architecture.

The CPU and the FPGA will be located in separate clock
domains, reducing board design constraints. Additionally,
separate clock domains will allow the FPGA to run at any
necessary speed, instead of forcing a design to run at a
specific frequency to match the communication bus clock
domain. Communication between the CPU and the FPGA
is accomplished by writing and reading to the SRAM. The
SRAM has hardware interrupts that can notify the devices
when new data is written (eliminating the need for polling).
Additionally, the FPGA may have extra SRAM on the
backside of the device. This SRAM can be used for
temporary data storage and intermediate calculations needed
by the FPGA design. Additionally, there is circuitry to
support FPGA reconfiguration using either Xilinx’s
SelectMAP protocol or JTAG.

 8

6.2 Dependable FPGA Services

Extra attention must be made to the effects of single-event
upsets (SEUs) on the FPGA due to radiation. In addition to
normal transient effects that will occur in all non-radiation-
hardened electronics, SRAM-based FPGA’s can have
persistent faults caused by an SEU-modified configuration
memory. These types of errors will persist until the FPGA
configuration memory is reconfigured. There are several
methods that can be used to handle these faults.

One approach that will be used is known as scrubbing. In
this approach, the configuration of the FPGA is
reconfigured at a specified rate (much higher than the
expected SEU rate). While this approach will correct any
configuration memory errors, it does not guarantee that data
errors that have already occurred will not propagate further.

While the previous approach can help to mitigate errors, it
does nothing to correct errors that do occur. A second fault-
mitigation technique is the use of process-level replication.
Essentially, every job that is run on the FPGA will be run
multiple times. Between runs, the FPGA will be
reconfigured in order to avoid the accumulation of errors in
the FPGA configuration memory. The results of the runs
will be compared to ensure correct results.

Another mitigation technique, triple modular redundancy
(TMR), can be used internally by the FPGA to ensure that a
single SEU will not produce invalid data. A tool to produce
TMR code from a pre-existing design is available from
Xilinx under the name TMRtool. This approach works well
if the FPGA is under utilized. However, if the FPGA is
close to capacity, the design will be too large for the FPGA
after being triplicated.

Fig. 11. Example of Chip-level TMR

Another approach to FPGA fault-mitigation is the use of
chip-level TMR. Instead of a single FPGA, three FPGAs
are used and their outputs are compared using rad-hard

voting logic (Fig. 11). However, due to the power budget of
the flight board, this approach may not be practical.

6.3 Performance Comparisons

In the prototype DM system, the CPU can only
communicate with the FPGA by using the PCI bus. The
PCI bus limits the theoretical throughput of any FPGA
design to 264 MB/s (at 66 MHz). In practice, due to
protocol overhead and other issues, the theoretical
throughout is not achieved. The peak throughput
performance measured on the prototype system is 198.5
MB/s for DMA reads and 95.8 MB/s for DMA writes.

The CPU-to-FPGA throughput of the flight system is
limited by the memory controller’s nominal DMA transfer
rate, the speed of the dual-port SRAM, and the speed of
FPGA design. Most FPGA designs are not capable of
reaching much higher than 200 MHz and the dual-port
SRAM will be capable of 200 MHz operation.

The CPU will be able to access SRAM data at a rate of 800
MB/s using 32-bit reads and writes. Using the DMA
capabilities of the memory controller, data can be
transferred from main memory to the dual-port SRAM with
only minimal CPU intervention. As a worst-case scenario,
we provide the following flight system predictions (Table 2)
based on the same overhead ratios as the PCI bus observed
in the testbed. Transferring data to the dual-port SRAM
should be more efficient than transferring data to the PCI
bus due to less communication overhead; we are in the
process of building simulation models to verify the
throughput of the flight system.

Table 2
Predicted Flight System Speedup

Operation

Testbed
(ms)

Flight
(ms)

Speedup

DMA Write 5.04 1.66 3.03

Execution

15.92
(66 MHz)

8.49
(125 MHz)

1.87

DMA Read 10.44 3.44 3.03

Total 31.40 13.60 2.31

The FPGA’s execution on the testbed is limited to 66 MHz
due to the core sharing the clock domain with the PCI bus.
The flight system separates the clock domains and will
allow the core to execute at its maximum possible
frequency, currently 125 MHz. The flight system can

expect at least a 2.31× speedup of the accelerated SAR

algorithm, which is a 43× speedup over the GSL software
implementation. Additional speedups can come from
efficient use of the dual-port SRAM, as part of the
communication and execution can be overlapped.

 9

7. CONCLUSIONS

This paper presented an extension to the USURP framework
that abstracts hardware resources from the application
developer. The Hardware Abstraction API allows earth and
space scientists to use accelerated resources without needing
to understand FPGA development. The API is based around
a familiar framework (GSL) and allows application
developers to seamlessly transition between terrestrial
system and the spacecraft’s embedded system.

A Synthetic Aperture Radar hardware-accelerated core was
developed as a case study. The core is interfaced through
the FPGA Software Interface API to the RCGSL
framework. Using the FPGA as a SAR coprocessor, we can
achieve a speedup of 19 when compared to a software
implementation developed with GSL on the testbed.

The speedup trend is expected to rise in the final flight
system. The DM spacecraft will remove the PCI bottleneck
to allow for a greater data throughput; a worst-case speedup
of 43 over the GSL implementation is estimated. A greater
amount of FPGA-accessible SRAM will allow us to process
larger image sizes.

ACKNOWLEDGEMENTS

This work was supported in part by the NMP Program at
NASA, our Dependable Multiprocessor project partners at
Honeywell Inc., and the Florida High-Technology Corridor
Council.

REFERENCES

[1] Home page of NASA’s New Millennium Program,
nmp.jpl.nasa.gov.

[2] J. Ramos, R. Sowada, and D. Lupia, “Scientific
Computing in Space Using COTS Processors,” Proc. of

International Conference on Military and Aerospace

Programmable Logic Devices (MAPLD), Washington, DC,
Sep 7-9, 2005.

[3] N. Bergmann, and P. Sutton, “A High-Performance
Computing Module for a Low Earth Orbit Satellite Using
Reconfigurable Logic,” Proc. of International Conference

on Military and Aerospace Applications of Programmable

Logic Devices (MAPLD), Greenbelt, MD, Sep 15-16, 1998.

[4] E. Wells and S. Loo, “On the Use of Distributed
Reconfigurable Hardware in Launch Control Avionics,”
Proc. of Digital Avionics Systems Conference, Daytona
Beach, FL, Oct 14-18, 2001.

[5] A. Dawood, S. Visser, and J. Williams, “Reconfigurable
FPGAs for Real Time Image Processing in Space, ” in Proc.

of International Conference on Digital Signal Processing,
Santorini, Greece, Jul 1-3, 2002.

[6] K. Compton and S. Hauck, “Reconfigurable Computing:
A Survey of Systems and Software,” ACM Computing

Surveys, 34(2), Jun 2002, pp. 171-210.

[7] J. Greco, B. Holland, I. Troxel, G. Barfield, V.
Aggarwal, and A. George, “USURP: A Standard for Design
Portability in Reconfigurable Computing,” submitted to
IEEE Symp. on Field-programmable Custom Computing

Machines (FCCM), Napa Valley, CA, Apr 24-26, 2006.

[8] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, and F. Rossi, GNU Scientific Library Reference

Manual - Revised Second Edition, United Kingdom:
Network Theory Limited, 2005.

[9] A. Hein, Processing of SAR data: fundamentals, signal

processing, interferometry, Berlin: Springer-Verlag, 2004

[10] R. Raney, H. Runge, R. Balmer, I. Cumming, and F.
Wong, “Precision SAR Processing Using Chirp Scaling,”
IEEE Trans. on GeoScience and Remote Sensing, 32(4), Jul
1994, pp. 786-799.

[11] P. G. Meisl, M. R. Ito, I. G. Cumming, “Parallel
Synthetic Aperture Radar Processing on Workstation
Networks,” Proc. of 10th International Parallel Processing

Symp. (IPPS), Washington, DC, Apr 15-19, 1996.

[12] J. Samson, J. Ramos, I. Troxel, R. Subramaniyan, A.
Jacobs, J. Greco, G. Cieslewski, J. Curreri, M. Fischer, A.
George, V. Aggarwal, M. Patel, and R. Some, “High-
Performance, Dependable Multiprocessor,” Proc. of

IEEE/AIAA Aerospace, Big Sky, MT, Mar 4-11, 2006 (to
appear).

[13] F. E. Ortiz, J. P. Durbano, J. R. Humphrey, P. F. Curt,
and D. W. Prather, “A FPGA-Based Architecture for In-
Flight SAR Motion Compensation in UAVs,” in Proc. of

International Conference on Military and Aerospace

Programmable Logic Devices (MAPLD), Washington, DC,
Sep 7-9, 2005.

BIOGRAPHIES

James Greco is a Ph.D. student in the
Electrical & Computer Engineering
Department at the University of Florida.
He is a research assistant and member of
the Advanced Space Computing and

Reconfigurable Computing groups at the High-performance
Computing & Simulation Research Laboratory. His
research interests include reconfigurable computing in HPC
and the acceleration of signal processing applications. He is
a student member of IEEE.

 10

Grzegorz Cieslewski is a graduate student
at the University of Florida where he is
currently pursuing a Ph.D. degree in
Electrical and Computer Engineering. As a
research assistant he is a member of

Advanced Space Computing and Reconfigurable
Computing groups at High-performance Computing &
Simulation Research Laboratory. His research interests
include computer architecture, reconfigurable, fault-tolerant
and distributed computing as applied to linear algebra
problems and signal processing. He is a student member of
IEEE.

Adam Jacobs is a Ph.D. student in
Electrical and Computer Engineering at the
University of Florida. He is a research
assistant in the Advanced Space Computing
and Reconfigurable Computing groups at

the High-Performance Computing and Simulation Research
Laboratory. His research interests include fault-tolerant
FPGA architectures and high-performance computing. He
is a student member of the IEEE.

Ian Troxel is a Ph.D. candidate in
Electrical and Computer Engineering at the
University Florida. He is a research
assistant who co-leads the advanced space
computing and the reconfigurable

computing research groups at the High-performance
Computing and Simulation Research Laboratory. His
research interests include reconfigurable and embedded
computing and he is a student member of the IEEE.

Alan D. George is Professor of Electrical
and Computer Engineering at the
University of Florida, where he serves as
Director and Founder of the HCS Research
Laboratory. He received the B.S. degree in

Computer Science and the M.S. in Electrical and Computer
Engineering from the University of Central Florida, and the
Ph.D. in Computer Science from the Florida State
University. Dr. George's research interests focus on high-
performance architectures, networks, services, and systems
for parallel, reconfigurable, distributed, and fault-tolerant
computing. He is a senior member of IEEE and SCS, and
can be reached by e-mail at george@hcs.ufl.edu.

