
Hardware / Software Partitioning
of embedded system in OCAPI-xl

G. Vanmeerbeeck P. Schaumont S. Vernalde M. Engels I. Bolsens
IMEC vzw

Kapeldreef 75, 3001 Leuven, BELGIUM

ABSTRACT
The implementation of embedded networked appliances re-
quires a mix of processor cores and HW accelerators on a
single chip. When designing such complex and heterogeneous
SoCs, the HW / SW partitioning decision needs to be made
prior to refining the system description. With OCAPI-xl, we
developed a methodology in which the partitioning decision
can be made anywhere in the design flow, even just prior to
doing code-generation for both HW and SW. This is made
possible thanks to a refinable, implementable, architecture
independent system description. The OCAPI-xl model was
used to develop a stand alone, networked camera, with on-
board GIF engine and network layer.

1. INTRODUCTION
State-of-the-art digital platforms use a mix of processor cores
and HW accelerators. The design process for such (deeply)
embedded SoC devices today starts with a partitioning into
chips or chipsets, decided by an architectural guru, and lets
hardware and software design teams solve their part of the
problem independently [3]. Other design environments doing
hardware / software co-design [6], [7], [8], [9], [10], [11],
[12], are indeed following this flow. They all do some high
level exploration, partitioning and refinement in that particu-
lar order. The resulting system performance however is often
greatly depending on this partitioning decision. But none of
the current tools is giving exploration possibilities for system
partitioning with system performance feedback on an imple-
mentable system description. So whenever a certain parti-
tioning turns out to fail performance specifications, a com-
plete new, time consuming, design iteration with another
partitioning decision is needed. Most of the current design
tools are concentrating on co-verification instead of real co-
design. They provide the means to test whether your synthe-
sizable partitioning meets the specifications, rather than
shifting the partitioning decision to a later stage in the design
flow.
We developed a C++ class library, called OCAPI-xl, as a sec-
ond-generation version of the OCAPI [2] concept that offers
this partitioning exploration possibility to the designer. In the
OCAPI-xl model, a system is described in a set of concurrent

processes, but the partitioning decision on these processes
does not need to be made in advance, it can be made any-
where in the design flow. This can be done early in the flow,
based on performance analysis results using timing estimates,
or later on, on the refined and implementable system descrip-
tion using more accurate performance results. Useful feed-
back can be obtained throughout the design flow from system
simulations. This to evaluate functionality or the chosen
hardware/software partitioning decisions and the conse-
quences on system performance.
In our unified model, every block is refined in the same, im-
plementation-independent way. Refinement can be done in a
gradual and incremental way, since refined and unrefined
blocks can be simulated together. The refinement process
itself consists of partitioning a design into a number of con-
current processes that communicate with a well-defined set of
communication primitives (being messages, semaphores, and
shared variables) and describe functionality using OCAPI-xl
objects. The communication primitives can all be imple-
mented in a software way (cfr. messages, semaphores, and
shared memory on an OS [4]) or in a particular hardware
implementation (with automatic protocol and bus expansion
on the HDL process entities).
The OCAPI-xl model is providing a complete path down to
implementation, featuring code generation for hardware and
software. This is possible thanks to the chosen communica-
tion primitive semantics that can target both HW and SW.
This is also realized thanks to a way to automatically extract
the definition of each process based on the implementation
decision made on the process and the process's communication
scheme and its internal functionality. Also, a mechanism is
provided to model accesses to other system components and
their behavior via Foreign Language Interface approach (FLI)
into the system description.
The OCAPI-xl model was used to develop a stand-alone
webcam including an interface to a digital CMOS image sen-
sor, a GIF engine, a network layer and an interface to a
10BaseT ethernet PHY+MAC controller. The synthesized
model for this NetCam (with raw-IP sockets) consisted out of
25 concurrent processes, described in about 2Klines of C++
code (taking about 25Kgates on an ASIC), designed from
scratch in 14 man-months.
The remainder of this paper is organized as follows: Section 2
describes the OCAPI-xl model. In this section is presented:
the design flow, the communication primitives, the timed data
model, the way process definitions are extracted upon code
generation and the way to include other system functionality
via FLI calls. Section 3 describes the NetCam, being the
driver application for this methodology. Finally in section 4
some conclusions are drawn.

2. THE OCAPI-XL MODEL
OCAPI-xl, a C++ class library for refinement and implemen-
tation of embedded HW/SW systems, is a second-generation
version of the OCAPI [2] concept. The main differences with
regards to the previous OCAPI tools are:

(a) the system semantics have been revised from data
flow to a more general communicating multi-threaded
model,

(b) the refinement principle has been reworked from a
computational model refinement (Data-Flow à finite
state machines+datapaths) into a timed communicat-
ing process refinement (functional C à communicat-
ing processes).

(c) the integration mechanism has been revised to better
support existing architectural resources such as Vir-
tual Component (VC) cores [2].

In this section the following topics of the OCAPI-xl methodol-
ogy will be presented: the design flow (2.1), the set of com-
munication primitives (2.2), the timed data model (2.3), use
based process interfaces, or the way process definitions are
extracted upon code generation (2.4) and the FLI call ap-
proach (2.5).

2.1 Design Flow
The overall principle of design by programming is that one
constructs an executable simulation of both the system and its
environment. In order to write the programs in a comfortable
way, we use data models, which are commonly used abstrac-
tions in the design process. The benefit of designing in an
object-oriented language is that it is easy to create those data
models, as they can directly be expressed by new objects (e.g.
fixed-point number, a finite state machine, a data-flow graph).
The design flow of OCAPI-xl starts with an executable system
specification (see figure 1). This is a set of C routines, matlab
code or any high level description that expresses the actual
task to perform without taking into account architecture,
concurrency or timing.
The first major step in the flow is to decompose this func-
tional model into a concurrent timed model. This means that
a set of concurrent OCAPI-xl processes is to be created. The
functionality of each process can be copied and pasted into an
FLI object, a calling mechanism allowing external C or C++
functions (see §2.5), that enables maximum code reuse when
going from a functional model to the concurrent timed model.
These FLI objects can also be used to express high level
communications on this concurrent model. This yields in an
OCAPI-xl system framework that includes the complete sys-
tem functionality in several concurrent processes, that can be
time annotated for performance analysis, and that acts as a
sceleton for further refinement and elaboration.
The next step in the design flow is to refine the concurrent
processes into an implementable concurrent model. This is
done through integration and mapping of the functionality
from the copied user code (C or C++) into OCAPI-xl objects.
These objects are expressions on specified length integers, as
well as control flow statements like loop objects and ifthen
objects. All timing information inside processes also needs to
be refined into timing semantics, which indicate boundaries
for quantum of computations (see §2.3). All communications

must be done using a well-defined set of communication
primitives. These primitives are shared variables, messages
and semaphores. For more complex communication schemes,
these can off coarse be combined into any communication
pattern required by the designer (see §2.2). The final result of
this step is an implementable concurrent model, consisting of
several concurrent OCAPI-xl processes, communicating with
OCAPI-xl communication primitives and using FLI calls as
interfaces to other system resources.

User Code
(C/C++)

Decomposition and
Analysis

OCAPI-xl
System
Model

Performance
Analysis

System
Link

VHDL/
Verilog C

Integration and
Mapping

Decomposition and
Analysis

User Code
(C/C++)

OCAPI-xl
System
Model

OCAPI-xl
Models

VC
Models

C
on

cu
rr

en
t

Ti
m

ed
 M

od
el

Im
pl

em
en

ta
bl

e
C

on
cu

rr
en

t M
od

el
E

xe
cu

ta
bl

e
Sy

st
em

Sp
ec

ifi
ca

tio
n

User Code
(C/C++)

Performance
Analysis

Figure 1: the OCAPI-xl design flow

As a last step in the design flow, we run the code generators
on the fully refined model. This creates 'synthesizable code',
i.e. code that can be fed into a standard tool chain. For hard-
ware targets, this is a tool suite that performs technology
mapping of RT-code (described in VHDL or Verilog). For
software targets, this is a C-compiler for the specific target
core. Additional system link information can be included
during code generation also. This can be an FPGA user con-
straint file for example, when targeting an FPGA for the
hardware part of the system implementation.
Throughout the design flow, verification is performed by
simulating the system description. To make simulation re-
sults more comprehensive for the designer print and trace
statements are allowed to send internal process information
back to the designer. However, since the system expresses
parallelism but simulation results will appear sequentially,
OCAPI-xl offers the possibility to generate value change
dump (VCD) files. VCD is a format that is used to observe
the output of HDL simulations. It allows you to get an overall

view of a complex simulation, with a reasonable amount of
output file size. When using waveform viewers supporting
the VCD format, a graphical view on the system behavior can
be obtained. This simplifies the debugging task for the de-
signer when using the OCAPI-xl model.

2.2 Communication primitives
In OCAPI-xl, system behavior is described in a set of concur-
rent processes. A process can be in three different states: it
can be active (running), it can be active but waiting for
something to happen (sleeping), or it can be terminated
(dead). A process is a collection of actions. An action is a
piece of code within a single process that can run without
interruption and without interaction with the environment.
Actions are described in a specific variable-length integer type
(supporting all binary, unary, bit-wise and logical operations)
and control objects (supporting loops, conditional control flow
and jumps). Processes can communicate with each other,
using a well-defined set of communication primitives. These
communications can be data based, control based or a combi-
nation of both.
Communication between processes can be done in different
ways, depending on the nature of the communication. We
distinguish three basic characteristics to describe communica-
tion from one process to another. These are the flow, the
synchronization and the content:

• The flow characteristic describes the overall nature of
the communication. The flow can be token based or
state based.

• The synchronization characteristic describes the be-
havior of an individual process when participating in
a communication. A process can be synchronized on
the communication or not (cf. blocking, non-
blocking).

• The content characteristic describes the kind of in-
formation passed between processes.

The communication primitives used in OCAPI-xl are soft-
ware-like, i.e. messages, semaphores and shared variables.
They are defined as follows:

• A message is a data-pipe that feeds data from sending
processes to receiving processes. The data-pipe can
have multiple senders and multiple receivers (broad-
cast, multi-point to multi-point). A message also has
a control aspect in the sense that it blocks the receiv-
ing process when there is no data in the pipe.

• A semaphore is a control primitive that allows ex-
pressing resource control in an abstract way. The
semaphore of OCAPI-xl is of the binary type, and can
be in a locked or in an unlocked state.

• A shared variable is a data variable that can be read
and written by different processes. It is typically
managed as a shared resource by means of a sema-
phore.

An overview of the communication primitives and their char-
acteristics is given in Table 1. There also the dangers are
stated when designing with these communication primitives.
This is something the designer should be aware of, but it is
also provided as feedback during system simulation when race
conditions or deadlock really occur. It is however up to the

designer to solve these problems, since they are a result of
poor system modeling.

Table 1: OCAPI-xl overview IPC

Type Flow Synchronization Content Dangers
Shared

Variable
State
Based

Non Blocking Read
Non Blocking Write Data Race

Condition

Message Token
Based

Blocking Receive
Non Blocking Send Data Deadlock

Sema-
phore

Token
Based

Blocking Wait
Non Blocking Post Control Deadlock

Since this model is able to target both hardware and software,
these primitives are not exactly equal to their software coun-
terparts. The main differences are:

• A message is multi-point to multi-point, so broad-
casting a message to a bunch of processes is possible
inside an OCAPI-xl system.

• Due to hardware limitations, a message acts like a
single slot FIFO queue. Whenever a message is send
when the previous was not yet received, the first one
will be lost. (during simulation only a warning will be
issued when messages queue up)

• Also due to hardware limitations the size of each
message send over the same message queue needs to
be identical in size every time. In software any mes-
sage length can be send over the same queue.

• The OCAPI-xl semaphore is also multi-point to multi-
point. This means it can be locked and released by
multiple processes, however it is not of the counting
type but of the binary type. So the state of the sema-
phore is either locked of unlocked.

• A variable can be shared by multiple processes
(shared variable), or can be a local variable of a single
process. This is similar to multithreaded software
code. In multi-process software, a variable can only
be shared when they reside in shared memory.

If a more complex communication is needed when designing a
system, these primitives can be combined to create any com-
munication scheme the designer wants. Here design patterns
can be applied. A design pattern conveys the essence of a
proven solution to a recurring problem. We apply this concept
to describe the Inter Process Communication (IPC) problem in
our model. By agreeing on design patterns for communica-
tion, designers can work on subparts of a system in parallel,
without having to know the internals of the other subparts
with whom they will communicate.
An example of such a design pattern for communication is a
resource manager. In this pattern, one process (the resource
manager process) manages all access requests from different
processes to that resource. Any number of reading/writing
processes can issue requests to the resource manager. In case
of parallel access requests to the central resource, accesses are
serialized according to process priorities. In figure 2 this
design pattern is shown in a communication sequence flow
graph. A 'bubble' in the graph represents a combination of
actions and one system communication (using a communica-
tion primitive or via a FLI object). An octagonal sign repre-

sents a semaphore. A message is represented as an envelope
sign. The arrows indicate the direction of flow or the way of
communicating (e.g. for a semaphore: post or wait operation,
for a message send or receive).

WAIT()

WAIT()

WAIT()

POST()

POST()

RECEIVE() SEND(RD,
ADDR)

SEND(WR,
ADDR)

MEM
Sa

Sb

WRITE

READ

mem_manager
reader_proc

writer_proc

b) resource manager
Figure 2: design pattern for communication

Each reader or writer pocess willing to issue a request, must
first wait on a sema, which is granted to the process that's
being served. That process can then send its request as a
message. Each request contains the requested operation (read
or write) and the address it should be acted on. After sending
the request the issuing process waits on another sema to indi-
cate the termination of the resource access.

2.3 Timed Data Model
The data model in OCAPI-xl is based on timed, communicat-
ing processes. The way this timing information is taken into
account during simulation of the system model is based on a
parallel virtual time model. The advanced time of every indi-
vidual process is kept private in that process. Supplementary
to all these local times there is one global time in the system
simulator that serves as a reference to align all the local times.
While simulating, performance parameters are obtained from
comparing the local times of processes or from comparing
local times to the global system time. Performance parame-
ters can be the total simulation time or the amount of time a
process was blocked. This way the designer can have an idea
on system performance or on the amount of parallelism in the
system.
The communication behavior is expressed by the use of a
well-defined set of communication primitives. When taking
timing aspects into account during refinement of the system
model, some additional primitives are needed to express this
kind of behavior. The way time is modeled in the system is
similar to the way it is done in TIPSY [5] and POLIS [10].
This is a locally synchronous, globally asynchronous time
model; meaning time is supported by having a local time in
each process, and a scheduler that synchronizes the advance-
ment of time in the system. This scheduler is non-preemptive.
For high-level processes and hardware processes, it acts like a
Round Robin scheduler. For software processes, the designer
can decide on the scheduling himself.
Already in the first system description model, time can be
included in the system by annotating timing estimates. The
annotation of time is done by the idle()-call. These can be
based on either the number of clock cycles for a hardware
implementation, or the number of instructions for a software
implementation. The idle()-call will actually increase the

local process time by the amount of idle time specified. In
this way the process will wait until it is aligned again with the
global system time, which results in true process idle time. A
computational action takes zero system execution time during
simulation. That is why timing annotations are needed for
accurate analysis. Otherwise, local process time will only
evolve when the process is waiting on a semaphore or on the
reception of a message.
When further refining the process descriptions, timing se-
mantics need to be incorporated, similar to those used in
TIPSY [5]. The sync()-call depicts the boundary for a
quantum of computation (QoC). The consequences for the
timing behavior of this sync()-call is depending on the
implementation target:
• Hardware implementation: a sync() marks the edges

of a single clock cycle. Hence, everything between two
syncs will be executed within one clock cycle. The
amount of time that elapses between two syncs is there-
fore fixed and is a constant throughout simulation or op-
eration. The actual time of the clock period only depends
on the clock frequency used by the hardware. Note how-
ever that the use of communication primitives in a hard-
ware implementation can implicitly insert additional
clock cycles to the process.

• Software implementation: a sync() marks the bounda-
ries of a piece of code that is executed without context
switching to any other process. In software terms, this
corresponds to code between two yield calls in a non-
preemptive multithreaded or multi process application.
The actual time between syncs depends on the processor
used (number of cycles per instruction, pipelining…), the
clock frequency used by the processor and the amount of
time needed for an actual context switch.

Hardware
Target

sync();

sync();

sync();

sync();

sync();

sync();

Software
Target

T=Cte
T=

QoC

T=Var.

QoC

Figure 3 Meaning of time and sync()

Other timing information that can be obtained from system
simulation with this virtual parallel time model is the so-
called backlog and forwardlog. This can easily be explained
with the example where a message is sent from the sender
process to a receiver process. If the local time of the receiving
process is larger than the local time of the sending process,
the message has to travel some time units 'into the future' to
be received. We call this a backlog. When backlog occurs
upon receiving a message, the sender could write the message
into a buffer and immediately continue. The message then

would live in the buffer for the amount of backlog time, after
which the receiver will pick it up.
If, on the other hand, the local time of the receiving process is
smaller than the local time of the sending process, the mes-
sage then has to travel 'into the past', which we call a for-
wardlog. When forwardlog occurs, we might consider putting
the receiver process asleep, until the sender process is ready
to transmit the message. No extra storage would be needed in
that case.
Process activity (computation) and buffering are interchange-
able commodities at system level. The value of backlog and
forwardlog is that they are giving feedback at high level, be-
fore computation versus buffering decisions need to be made.

2.4 Processes with Use-Based Interfaces
When writing HDL modules or software functions, interfaces
always need explicit declaration. For HDL this means the
number of ports, their type and width, whether they are in- or
output and the name of the ports. For software it is similar, a
function needs a declaration and a definition, with number of
parameters, each with a certain name, and with a certain type.
In OCAPI-xl, process interfaces do not need explicit declara-
tion by the designer. Instead, the interface needed for imple-
mentation is use-based, meaning that it depends on the func-
tionality as is described in the process model and its commu-
nications. This spares the designer from specifying obvious
process declarations or definitions and allows to speed up
switching the implementation decision on a process.

mysema.wait();

Ocapi-xl process

semaphore mysema;

CODE
GENERATION

mysema_req
mysema_ack

sem_t mysema;
sem_init(&mysema,0,1);

sem_wait(&mysema);

HWSW

Figure 4: use-based interface for a semaphore

Since interfaces are the result of communication, and commu-
nication can only be done using semaphores, messages and
shared variables, the process's interface is depending on the
communication primitives used inside the process itself. Ad-
ditionally, for accessing external ports to the system (like VC-
cores or external components such as memory), the FLI call is
used to give the number of external ports, their names and the
directions (see §2.5). When doing code-generation, the decla-

ration needed for the desired target implementation is figured
out by the system, so the code generator uses a lazy declara-
tion approach to generate an explicit declaration for processes
and system interfaces.
If for example a process has to wait on a semaphore before it
can continue, only the wait on the semaphore is explicitly
described, since it's part of the process's behavior. After soft-
ware code generation, the wait on the semaphore will be
translated and expanded to the declaration and initialization
of the semaphore, and the wait-call will be the one of the
operating system the target will be run on. When doing
hardware synthesis, the wait on the semaphore will result in a
protocol expansion on the hardware block of the process with
a request and an acknowledge line for the semaphore. (see
figure 4) and a library block to implement the semaphore
itself in hardware. The same goes for the implementation of
messages and shared variables.

2.5 The FLI call approach
The FLI call has a bit of a misleading name. It is not a way to
embed other languages like HDL or assembly into the execu-
table model, but it turned out so powerful that it may indi-
rectly be used to do exactly those kind of things.
The basic idea behind an FLI call is that a use-based interface
will be created upon implementation to an internal or external
component in the system. These components can be memory,
a processor, a dedicated HW block or any other interface. The
FLI object representing the interface has a method that exe-
cutes an interface model (see figure 5). This to be able to
simulate its behavior together with the system. It also defines
the number of ports on the interface, and whether they are
incoming or outgoing in relation to the FLI-object itself. In
this way abstraction can be made of the physical properties of
the interface by applying object oriented techniques.

call(myipblock,
fliIn(a),
fliIn(b),
fliOut(c));

arg[0]

arg[1]

arg[2]

My_IP_block

class myipblock : public fli {
 public:
 void run() {
 cout << ”in_port A = " << var[0] << "\n";
 cout << ”in_port B = " << var[1] << "\n";
 // operation
 var[2] = var[0] + var[1];
 cout << "out_port C = " << var[2] << "\n";
 }
};

Ocapi-xl process

Stack
frame

A

B
C

Figure 5: Foreign Language Interface call example

Since the run method is not to be synthesized (only the inter-
face to it), it only serves as a model for verification. There-
fore the code here can be quite complex and does not need to
follow OCAPI-xl semantcs. The model could access device

drivers or network sockets for example, or even access an
instruction set simulator (ISS) for a processor. So, this is a
very powerful way of making the degree of accuracy of the
model very realistic.
For a hardware implementation of an interface, this approach
results in the declaration of the specified number of ports in
the system top-level entity (VHDL) or module (Verilog). For
a software implementation an FLI call results in a simple
function call passing the specified parameters. The designer
has to complete this call with the implementation specific
code (C or assembly) to access the interface as intended.

3. THE NETCAM DRIVER APPLICATION
The driver application and showcase for this unified model is
a networked camera, or NetCam. The application consists of
several layers (see Figure 6). Network connectivity is pro-
vided by the LINK, IP and TCP socket layers [1]. The GIF
encoder turns the retrieved images into GIF format and the
EEprogrammer enables network reconfiguration. From the
client side an image request packet is send over the network.
The reply is a GIF-encoded image send back over the network
to the client.
The implementation platform consists of a 600Kgates FPGA,
2x512K external SRAM memory, a 10BaseT ethernet
PHY+MAC controller and an interface to a CMOS image
sensor demonstrator board.
Thanks to the OCAPI-xl methodology, this application could
be designed in only 14 man-months. It is described in 25
concurrent processes that are communicating with each other
using 32 semaphores, 32 messages and are sharing 45 vari-
ables. FLI' s are used for every interface to external system
components. These are two 512Kbyte SRAM memories, the
image sensor demo-board interface, the ethernet controller
interface and the configuration memories for reconfiguring
purposes. The interface descriptions were abstracted from the
system description during the design in a Board Abstraction
Library. They where included during simulation for verifica-
tion reasons, and resulted in the required pin-assignments
upon implementation.

Netscape

10 Base T

App SW/CGI

 OS TCP/IP sock

GIF enco

10 Base T

grab request

image

IP layer

network

EE packet
ack

TCP/sock layer

EE prog

LINK layer

Camera app
EE

PROM

CLIENT

Figure 6: Application structure

The initial implementation was a stand-alone all hardware
implementation on the FPGA, and thanks to the unified de-
scription the implementation is now being migrated to a proc-
essor based platform to optimize the resource usage in the
system.

4. CONCLUSIONS
In this paper OCAPI-xl, a C++ class library for true unified
Hardware / Software modeling that allows taking partitioning
decisions anywhere in the design flow was presented. This is
achieved by describing the system model in a refinable, a
target implementation independent way. Communication is
expressed using a software-like approach, using messages,
semaphores and shared variables. To keep processes target
independent, it uses a lazy definition approach, or generates
use-based interfaces, depending on the chosen implementation
target. To model external system components, and to get
system ports to these components, a powerful FLI method was
introduced. It also provides code generation possibilities to
get synthesizable code out of your system model both for
hardware and software.
As a proof of concept for the OCAPI-xl methodology, a
standalone NetCam was designed implementing an interface
to a digital CMOS image sensor, a GIF engine, a network
layer and an interface to an off-the-shelf ethernet controller.
This was achieved in only 14 man-months, thanks to our
methodology.

REFERENCES
[1] Stevens, R.: TCP/IP Illustrated: Volume 1 & 3.

Addisson-Wesley, 1994 & 1996.
[2] Schaumont, P.; Vernalde, S.; Rijnders, L.; Engels, M.;

Bolsens, I.: A Programming Environment for the Design
of Complex High Speed ASICs. Proceedings Design Auto-
mation Conference 1998.

[3] Chang,H.;Cooke,L.;Hunt,M.;Martin,G.;McNelly,A.;Todd,
L.: Surviving the SOC Revolution, A Guide to Platform-
Based Design. Kluwer Academic Publishers, 1999

[4] Stevens, R.: Advanced programming in the UNIX
environment. Addisson-Wesley, 1999.

[5] Verkest, D.; Cockx, J.; Potargent, F.: On the use of C++
for system-on-chip design. Proceedings of the IEEE Work-
shop on VLSI (IWV), 1999.

[6] SpecC Technology Open Consort. : www.specc.org
[7] The Open SystemC Initiative: www.systemc.org
[8] Cadence VCC : HW/SW Co-design environment:

www.cadence.com/datasheets/vcc_environment.html
[9] Arnout,G.: C for System Level Design. Proceedings De-

sign, Automation and Test in Europe Conference, 1999

[10] Balarin, F. et al.: Hardware-Software Co-design of Em-
bedded Systems – The POLIS experience. Kluwer Aca-
demic Publishers, 1997.

[11] EECS UCBerkeley: Heterogeneous Modeling and De-
sign:Ptolemy Project: http://ptolemy.eecs.berkeley.edu

[12] Jersak, M.; Ziegenbein, D.; Wolf, F.; Richter, K.; Ernst,
R.; Cieslok, F.; Teich, J.; Strehl, K.; Thiele, L.: Embed-
ded System Design using the SPI Workbench. Proceed-
ings 3rd International Forum on Design Languages, 2000.

[13] Lavagno, L.; Sentovich, E.M.: ECL: A Specification En-
vironment for System-Level Design. Proceedings Design
Automation Conference 1999.

[14] Virtual Socket Interface Alliance (VSIA): www.vsi.org

