
 Open access Proceedings Article DOI:10.1145/1084834.1084905

Hardware/software partitioning of software binaries: a case study of H.264 decode
— Source link

Gordon McGregor, Brian W. Einloth, Frank Vahid, Greg Stitt

Institutions: Freescale Semiconductor, University of California, Riverside

Published on: 19 Sep 2005 - International Conference on Hardware/Software Codesign and System Synthesis

Topics: Source code, Decoding methods, Application software, Embedded software and Software

Related papers:

 MediaBench: a tool for evaluating and synthesizing multimedia and communications systems

 System Level Hardware/Software Partitioning Based on Simulated Annealing and Tabu Search

 Warp Processors

 Mapping a Single Assignment Programming Language to Reconfigurable Systems

 Dynamic hardware/software partitioning: a first approach

Share this paper:

View more about this paper here: https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-
40granbgq6

https://typeset.io/
https://www.doi.org/10.1145/1084834.1084905
https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-40granbgq6
https://typeset.io/authors/gordon-mcgregor-4x9x1j7wsp
https://typeset.io/authors/brian-w-einloth-3ela7r6vrt
https://typeset.io/authors/frank-vahid-5d4yx982gf
https://typeset.io/authors/greg-stitt-5fevm1utz4
https://typeset.io/institutions/freescale-semiconductor-y9xp9acu
https://typeset.io/institutions/university-of-california-riverside-c4zp8d5a
https://typeset.io/conferences/international-conference-on-hardware-software-codesign-and-3nij6s0q
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/topics/decoding-methods-ifn58ous
https://typeset.io/topics/application-software-rtpf67xb
https://typeset.io/topics/embedded-software-2d8jahdy
https://typeset.io/topics/software-2ejyxl2f
https://typeset.io/papers/mediabench-a-tool-for-evaluating-and-synthesizing-multimedia-160r74yg95
https://typeset.io/papers/system-level-hardware-software-partitioning-based-on-wwl1rzq7j3
https://typeset.io/papers/warp-processors-3wpfykcxda
https://typeset.io/papers/mapping-a-single-assignment-programming-language-to-5bglgi8qrg
https://typeset.io/papers/dynamic-hardware-software-partitioning-a-first-approach-3usngyurox
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-40granbgq6
https://twitter.com/intent/tweet?text=Hardware/software%20partitioning%20of%20software%20binaries:%20a%20case%20study%20of%20H.264%20decode&url=https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-40granbgq6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-40granbgq6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-40granbgq6
https://typeset.io/papers/hardware-software-partitioning-of-software-binaries-a-case-40granbgq6

Hardware/Software Partitioning of Software Binaries

Greg Stitt and Frank Vahid
*

Department of Computer Science and Engineering

University of California, Riverside

{gstitt | vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid

 * Also with the Center for Embedded Computer Systems at UC Irvine

Abstract

Partitioning an embedded system application among a

microprocessor and custom hardware has been shown to

improve the performance, power or energy of numerous

examples. The advent of single-chip microprocessor/FPGA

platforms makes such partitioning even more attractive.

Previous partitioning approaches have partitioned sequential

program source code, such as C or C++. We introduce a new

approach that partitions at the software binary level. Although

source code partitioning is preferable from a purely technical

viewpoint, binary-level partitioning provides several very

practical benefits for commercial acceptance. We demonstrate

that binary-level partitioning yields competitive speedup results

compared to source-level partitioning, achieving an average

speedup of 1.4 compared to 1.5 for eight benchmarks

partitioned on a single-chip microprocessor/FPGA device.

Keywords

Hardware/software partitioning, synthesis, binary translation,

decompilation, low power, assembly language, FPGA,

codesign, synthesis.

1. Introduction

Much previous work has shown the advantages of

hardware/software partitioning in embedded system design.

Hardware/software partitioning divides an application into

software running on a microprocessor and some number of

coprocessors implemented in custom hardware. The custom

hardware may be implemented as a new application-specific

integrated circuit, but could instead be mapped to configurable

logic, such as a field-programmable gate array (FPGA).

Advantages of such partitioning include order-of-magnitude

improvements in performance (e.g., [18][19]), as well as

reductions in power or energy [21][22][37].

The advent of single chip microprocessor/configurable-logic

platforms makes such partitioning even more attractive

[2][4][19][31][33][38]. Embedded systems developers can thus

gain the same time-to-market, cost and single-chip board-size

advantages previously only possible with software-only

implementations, while now also gaining the performance and

energy advantages possible through hardware/software

partitioning.

Nearly all hardware/software partitioning approaches

partition at the source code level. In particular, they partition

during or even before compilation of the source program. From

a purely technical point of view, the source code level is

probably the best place to perform partitioning. However,

successful technologies are not always based on the best

technical solution alone. Other considerations can play a critical

role.

In this paper, we highlight previous work in traditional

hardware/software partitioning, and we describe tool flow

problems that cause resistance to the adoption of such

partitioning in commercial environments. We propose software

binary partitioning as a solution to those problems. We show

that binary partitioning can achieve results competitive with

source code partitioning, by drawing on previous work in

decompilation. We point to future work needed to make binary

partitioning even more competitive.

2. Previous Work

Hardware/software partitioning techniques have been proposed

over the last decade, and several automated commercial

products have recently appeared.

Early work by Gupta [30] focused on taking a behavioral

hardware specification and moving non-critical regions to

software, to reduce hardware cost. The behavioral specification

was read into a synthesis internal format of a hierarchical

control/dataflow graph, and then partitioned using automated

heuristics coupled with size and performance estimators. Henkel

[14] proposed instead to start with a software program, moving

pieces to hardware to improve speed. They read the software

into a source statement-level internal format that was then

partitioned. TOSCA [6] read in a software program that was

then converted to a generic assembly-level format and

partitioned. The assembly-level format enabled good estimates

of software performance and size for a variety of processors.

SpecSyn [15] partitioned at a coarser level, reading a behavioral

specification (from a software source or a hardware description

language) into a procedure-level internal format, and

partitioning processes and procedures among hardware and

software. For software estimation, they also compiled

procedures into a generic assembly-level. Kalavade [24] also

partitioned behavior at a coarse level of tasks. Eles [13] and

Henkel [20] investigated partitioning at various levels of

granularity, ranging from statements to blocks to procedures.

OCAPI [34] focuses on supporting partitioning of a software

program at various stages of design refinement, from the early

system level, to just before software and hardware code

generation. Dozens of other efforts in the hardware/software

codesign community have focused on similar partitioning at

various levels of granularity.

Partitioning has also been addressed by the reconfigurable

computing community, seeking to speedup software by using

FPGA coprocessors. PRISM [3] was an early effort targeting a

Figure 1: Hardware/software partitioning approaches: (a) traditional source-based approach (b) proposed binary-based approach and (c)

typical structure of a hardware/software partitioner.

Motorola 68010 processor and four Xilinx 3090 FPGAs. The

Berkeley BRASS project [9] extended a C compiler to partition

among the Garp [19] architecture, which combines a MIPS with

reconfigurable logic. The NAPA C compiler [18] allows the

user to provide pragma directives to specify where computation

is to occur or where data is to reside on a micprocessor/FPGA

platform. The Nimble compiler [16][26] was to compile C code

to an architecture consisting of a general-purpose processor with

a reconfigurable-datapath coprocessor. Proceler’s product [29]

compiles C code to a processor and an FPGA coprocessor.

Both used profiling information to detect and move critical

software regions to the FPGA. DEFACTO [8] partitions an

application based on the intermediate format of the SUIF

compiler [1]. The Cameron project [7][10] uses a variation of C

and maps to a platform consisting of a PC and a multi-million

gate FPGA board. They use a compiler to extract massive

parallelism of the critical loops and obtain speedups of several

hundred times.

Most partitioning work focuses on the performance benefits

of such partitioning. Recent research has emphasized energy

benefits also [21][22][32][37], achieved by using the

performance speedup to put the system in a low power idle state

for a longer period, or to scale down the system operating

voltage while still meeting timing constraints.

3. Source versus Assembly Level

Partitioning

All work mentioned above partitions either before software

compilation (e.g., [15][24]), or more commonly, as part of

compilation. Partitioning during compilation is illustrated in

Figure 1(a). A compiler front-end reads the source code into an

intermediate format, such as SUIF [1]. This intermediate format

is annotated with profiling data. The critical regions are

detected, and those parts are examined for potential

implementation in hardware. The regions destined for software

are then fed through a compiler back-end to generate assembly

code for a processor, while the parts intended for hardware are

fed to a synthesis tool (typically by first generating hardware

description language code) for hardware implementation.

Binary-level hardware/software partitioning, in contrast,

would operate on binaries, as illustrated in Figure 1(b). This

approach would require that source code first be compiled to

binaries. The partitioning tool would then read the binaries,

partition, and generate an updated binary for the software part

and hardware source for the hardware part. As binaries can be

straightforwardly disassembled into assembly code, we refer to

the binary level and assembly level interchangeably.

At first glance, a binary-level approach may seem

undesirable for several reasons. First, high-level information

about the program, such as high-level loop constructs, multi-

dimensional array data, arithmetic expressions, etc., are harder

to see. Second, the binary level is processor specific.

However, traditional source-level hardware/software

partitioning has a major practical problem that severely restricts

its adoptability in real commercial environments: traditional

source-level hardware/software partitioning does not fit well

with standard tool flows. Tool flow has always been and will

likely continue to be a major issue in commercial environments.

One reason such partitioning doesn’t fit well is because such

Compiler Front-End

Sw source

Compiler

Back-End

Sw source

Compilation

Binaries

Hw/sw partitioning

Binaries

Hw source

Synthesis

Netlists

Hw/sw partitioning

Internal format creation

Internal format Profiling

Sw estimation

Hw estimation

Exploration

Sw

generation

Hw

generation

Hw/sw partitioning

Binaries Netlists

(a) (b) (c)

Assembler &

Linker

Assembly

&

object files

Assembly

& Assembler &

Linker object files

Hw source

Synthesis

partitioning requires a compiler that is able to partition.

However, companies typically already have stable and trusted

compilers for their embedded processors, often coupled with

sophisticated integrated development environments (IDEs) that

include graphical debug and analysis tools. The vast majority of

users of those compilers will not be performing

hardware/software partitioning, and thus incorporating such

partitioning into those compilers is not likely to be a priority.

Furthermore, even companies doing partitioning would like to

be able to move to a new compiler without having to give up

their ability to partition. Using a combined compiler/partitioner

is thus a high-risk proposition.

A second major problem with source-level partitioning is

that there is often much code that is not written at the source

level. Some code may be written at the assembly level – in fact,

critical code loops are rather likely candidates for such a level.

Furthermore, some code may exist as object code in libraries

that are linked in at the final stages before binary generation

(e.g., math libraries, I/O libraries, and operating system code).

Such code never gets read into most compilers, and thus is

never part of the internal format that is partitioned. Yet, the

assembly code and library code are prime candidates for critical

kernels that should be considered for partitioning onto

hardware.

Furthermore, software may come from several different

source languages, even for the same product – a single product

may have code written in C, C++, and even Java (compiled

using a native compiler). Multiple source files do not require a

single compiler in current tool flows – they are instead linked at

the object level.

We see that the assembly language (or more precisely, the

machine language) for a given processor represents a sort of

universal language for that processor. All source languages

must be converted to the assembly level. Furthermore, the

instruction set is very resistant to change, and any changes that

do occur are typically small extensions.

The binary-level drawback of losing high-level information

can fortunately be largely overcome today thanks to decades of

work in decompilation, e.g., [11][12]. Decompilation methods

are able to extract much high-level information. We will

describe this in more detail later.

The second drawback of being processor specific is not a

major problem in commercial environments. Although some

research partitioners explore the use of different processors, in

commercial practice, the decision as to which processor to use

is made based on many non-technical factors – such as the

roadmap of future generations of the processor, the stability of

the processor manufacturer, the quality and stability of the

software environment supporting the processor, and the past

experiences with the processor. Thus, having a processor-

specific partitioner is quite reasonable.

Furthermore, porting an existing binary-level

hardware/software partitioner to a new processor is not very

difficult. Decompilation first reads a binary into a processor-

neutral control/dataflow graph. The tool that converts a binary

to that graph is relatively simple. Thus, a CAD vendor

supplying a binary-level hardware/software partitioner would be

able to easily support a wide variety of processors.

An additional advantage of binary-level partitioning is that

software performance and size estimation is extremely accurate.

Looking to the future, we note several successes in dynamic

binary optimization [5][25]. Conceivably, binary-level

partitioning could eventually be done dynamically and hence

completely transparently to a designer, resulting in completely

transparent software speedup and energy reduction on platforms

having on-chip FPGAs. This is a long ways off, but binary-level

partitioning is the first step.

Thus, while source-level partitioning does have technical

advantages, binary-level partitioning has numerous practical

advantages, motivating us to begin development of such a

partitioner.

4. Evaluating Improvement Potential for

Microprocessor/Configurable-Logic Chips

We first sought to determine the speedup possible by mapping

critical loops of embedded applications onto configurable logic

of a modern single-chip microprocessor/configurable-logic

device. Many programs spend much of their time in small loops.

Such loops would be excellent candidates for re-mapping to

hardware, since speeding them up can have a big impact on

overall performance, and since they may not require too much

hardware. We sought to determine the potential improvements

that could be obtained by re-mapping frequently executed small

loops from software to on-chip configurable logic.

4.1 Benchmarks and Loop Analysis
We examined several examples from Motorola’s Powerstone

[27] benchmark suite: a voice encoder (adpcm), a cyclic

redundancy check (crc), a data encryption standard (des), an

engine controller (engine), a fax decoder (g3fax), a JPEG

decoder (jpeg), a handwriting recognizer (summin), and a

modem encoder/decoder (v42). We executed each example,

using the input vectors in Powerstone, on an instruction set

simulator for a MIPS microprocessor, augmented to output

instruction traces. We wrote an additional tool to then parse the

traces and gather loop statistics.

Complete results of the loop study appear in [35]. The main

results were that the programs running on the MIPS spent 66%

of their time in loops with a static size of 256 instructions or

less. Furthermore, 77% of time spent in loops (or 51% of total

time) was spent in loops whose static size was 32 instructions or

less. More importantly, many of the examples contained just a

few small loops that dominated the execution time, and

generally iterated many times per execution. For example,

g3fax contains two loops that represent 62% of total execution

time and consist of only six assembly instructions each. In

addition, one of these loops iterates 1,729 times for each

execution. On average, for all of the tested examples, the two

most frequent loops accounted for approximately 40% of total

execution time.

The implication of this loop analysis is that by remapping

just a small amount of code to configurable logic, we have the

potential to achieve significant overall performance and power

improvements.

4.2 Partitioning Method
Our general method of using the configurable logic for

improvement consisted of moving as much of the software

execution as possible onto the logic. Thus, based on the analysis

Figure 2: Target architecture: single chip microprocessor and

configurable logic.
Table 1: Benchmark loop information.

Example

Size

(instr)

Loop

Instr

Loop

Time

CSL

Size Gates

g3fax 1,094 12 62% 225 4,265

adpcm 1,910 38 30% 469 8,075

crc 1,060 17 65% 46 770

des 1,529 90 52% 516 9,031

engine 1,108 16 28% 133 2,074

jpeg 1,490 29 10% 157 3,161

summin 1,034 25 48% 212 4,191

v42 1,597 15 23% 233 3,319

Average: 30 40% 249 4,361

Microprocessor

Configurable

System Logic

(CSL)

UART

TIMERS

A
d

d
re

ss

System RAM

D
at

a

of the loop regions of a given program, we tried to move the

most time-dominating software regions onto the logic. Such

partitioning was limited by the size of the logic, so we

sometimes had to instead move the second most time-

dominating region. Since our estimations were done for a

hypothetical single-chip MIPS/FPGA device, we needed to use

area and power characteristics of real FPGAs. We chose to use

the Xilinx VirtexE systems for this purpose. We used the area

and power of the XCV50E, XCV100E, and XCV200E. For

each example, we used the smallest FPGA that the example

could fit in, in order to reduce quiescent power. The Xilinx

VirtexE devices are not single-chip microprocessor/FPGA

designs. We are simply using the Xilinx devices in order to

estimate characteristics of the FPGA in our hypothetical system,

which is based on the architecture of the Triscend single-chip

microprocessor/configurable-logic devices [33]. We have

previously investigated partitioning [32] on the Triscend E5 and

A7 chips. We plan to test binary-level partitioning on these

systems in the near future.

Our target architecture is shown in Figure 2, which is based

on the architecture found in Triscend’s products. The main

difference between our architecture and the Triscend

architecture is the absence of a DMA. We exclude a DMA from

our architecture because the execution of the software and

hardware is mutually exclusive. Communication between the

microprocessor and configurable system logic (CSL) takes place

via shared memory and several direct signals.

We implemented each partitioning by replacing the selected

software regions with handshaking behavior. The software

would activate the CSL using a start signal, and then wait for

the CSL to set a done signal. The microprocessor enters a low-

power state while waiting for the CSL to finish executing, and

the CSL enters a low-power state by not executing while

waiting for the microprocessor. Our results could be further

improved by considering executing the CSL and microprocessor

in parallel when data dependencies allow this.

Table 1 summarizes the relevant loop data for our

benchmarks. Size indicates the total number of instructions in

the program, while Loop Instr is the number of instructions in

the region(s) moved to hardware. Loop Time is the percentage

of total execution time taken by the region(s). CSL Size is the

number of configurable logic blocks required by those regions.

Gates is the equivalent number of gates.

4.3 Performance and Power Evaluation
We used the testbenches that come with the Powerstone

benchmarks to generate dynamic power and performance data

for the benchmarks.

We used a simulation-based approach for performance and

power evaluation. We ran each example on a MIPS architectural

simulator [17] that outputs the number of cycles that a program

executes, taking into account pipelining and stalls (average

cycle-per-instruction for the benchmarks was 1.6). The

configurable logic cycles were determined by creating

synthesizable VHDL code and then analyzing that code,

pessimistically assuming a region always executed its longest

path (meaning improvements would actually be better than

those we report).

In order to determine microprocessor power, we used the

power of a typical MIPS core [28] that is fabricated using 0.18

micron technology. We assume a clock speed for the MIPS of

100 MHz at a supply voltage of 1.8 V. We used Xilinx’s Virtex

Power Estimator [36] to estimate power for each example, also

utilizing a 0.18 micron FPGA technology (in particular, the

XCV50E, XCV100E, and XCV200E).

We estimated total power in the following way: by

analyzing the Triscend E5 device [33], we estimated for the

MIPS-based system that the interconnect power, namely the

power consumed by the system buses and shared memory,

would be about 0.1 W. Furthermore, we are assuming a low-

power state of 25% of the active state on the microprocessor

[23], and the CSL’s low-power state consisted only of quiescent

power, and we thus used the following equation to compute

total power:

Total power = %Sw * PSw + %CSL* (PCSL + .25*PSw) +

Interconnect Power + Quiescent Power

where %Sw is the percent of time spent in software, %CSL the

percent time spent in the CSL, PSw is the power of the software

when the microprocessor is active, and PCSL is the power of the

CSL when active.

4.4 Potential Improvements
In order to determine potential improvements, we manually

converted the C code for the frequent loops into VHDL. This

was done by manually extracting parallelism from the C code

Table 2: Comparison of source-level and binary-level partitioning approaches.

and then creating the appropriate hardware. We modified the

hardware until the longest delay allowed for a clock frequency

of 100 MHz. Since the implemented loops were generally very

small, reaching the desired clock frequency was not difficult.

Greater speedup could be achieved by performing optimizations

such as loop unrolling, pipelining, etc.

The left half of Table 2 shows the performance, power and

energy data for partitioning the examples at the source level.

The Sw column represents the total cycles required by an all

software solution. Loop in sw indicates how many cycles were

required by the regions that we planned to move to the

configurable logic. Loop in CSL indicates the cycles required

when the regions were moved to configurable logic, and

Sw/CSL represents the total cycles after partitioning. A is the

area in gates of the custom hardware for the loop. P is the

overall power of the system in Watts. %E is the percentage

energy improvement. S is the speedup. The average speedup

achieved through source-level partitioning was 1.5. 1

The energy savings are a modest 27%, due to the power

increase of using configurable logic. However, as low-power

configurable logic finds its way onto these devices, and voltage

scaling becomes more common, those energy savings will likely

increase tremendously.

Note that the speedup was achieved by moving less than 3%

of software to configurable logic (as seen in Table 1) – an

average of just 30 lines of assembly code.

5. Initial Studies using a Decompilation-

Based Approach

In order for binary-level partitioning to achieve acceptable

results, there are a number of issues that must be dealt with.

One of the largest problems is that much high-level information

is lost during the compilation process. For example, all control

statements, such as loops and if statements, are implemented

using jumps and branches. Also, high-level data structures,

such as arrays and structures, do not exist at the assembly level.

Another major problem is that regions of code that contain

jumps whose target is determined at runtime cannot be

implemented efficiently in hardware. Assembly code also tends

to use many temporary registers in order to implement a high-

level expression. These registers must be removed in order to

produce efficient hardware.

1 The best possible case (assuming the loops were implemented

in zero time) is 1.84.

A major issue with binary-level partitioning is that the

results are dependent on the assembly code produced by a

compiler or assembly programmer. For example, a compiler

may choose to implement a typical move instruction by using

an add with an immediate value of zero. This implies that

constant propagation must be performed, otherwise an adder

would be included unnecessarily. Also, since code and data are

impossible to distinguish at the binary level, a partitioning tool

must assume that the code is completely separated from data, or

must determine dynamically if a location is actually an

instruction.

As a first attempt at hardware generation from assembly

code, we tried binary translation techniques, converting each

assembly instruction into a corresponding state in a VHDL state

machine. There was little performance to gain from this

approach, since most high performance processors have a CPI

(cycles per instruction) close to 1. For slower processors, such

as an 8051, which have a CPI typically ranging from 4 to 12,

this technique may be more effective. The largest disadvantage

of this approach is that each time the hardware partition

executes, the values of all required registers need to be read by

the custom logic. This can add much overhead that in some

cases causes performance to decrease. In addition, the area of

designs based on binary translation was much larger than a

high-level approach.

We see that the standard binary translation method imposes

much overhead. The main problem with this approach is that

translation is done per instruction, and no high level-

information is used to optimize the hardware. Alternatively, we

can use decompilation to recover as much high-level

information as possible and thus produce a more efficient

hardware implementation.

Our hardware generation approach using decompilation is

illustrated in Figure 3. This corresponds to the hardware

Eg Sw

Loop

in

sw

Loop

in

CSL

Sw /

CSL A P %E S Sw

Loop

in

sw

Loop

in

CSL

Sw /

CSL A P %E S

g3fax 1,550 947 135 738 4,265 0.20 49% 2.1 1,550 947 262 865 6,428 0.21 35% 1.8

adpcm 113 29 5 89 8,075 0.19 18% 1.3 113 29 7 91 25,936 0.24 2% 1.2

crc 53 34 5 24 770 0.18 56% 2.3 53 34 10 29 3,752 0.20 41% 1.9

des 142 70 15 87 9,031 0.20 31% 1.6 142 70 22 94 18,531 0.32 -5% 1.5

engine 915 145 28 798 2,074 0.18 12% 1.2 915 145 81 851 3,303 0.18 5% 1.1

jpeg 7,900 646 171 7,425 3,161 0.18 6% 1.1 7,900 646 182 7,436 10,082 0.19 4% 1.1

summin 2,920 1,270 266 1,916 4,191 0.19 32% 1.5 2,920 1,270 426 2,076 10,156 0.22 16% 1.4

v42 3,850 846 216 3,220 3,319 0.18 15% 1.2 3,850 846 455 3,459 4,414 0.19 6% 1.1

Avg: 4,361 0.19 27% 1.5 Avg: 10,325 0.22 13% 1.4

Performance (kilo-cycles)

Source-level Partitioning

Performance (kilo-cycles)

Binary-level Partitioning

generation component in Figure 1(c). One of the first steps in

decompilation is performing data-flow analysis on the assembly

in order to remove hardware references (such as registers) and

to determine high-level expressions. Data flow analysis is

performed through the use of definition-use and use-definition

chains. Further details can be found in [11].

Figure 3: Hardware generation from assembly using

decompilation.

HW Generation

Control flow-analysis is generally performed during

decompilation in order to recover high-level control statements,

such as if statements and loops. At this point, our control-flow

analysis consists of only basic block determination. Eventually,

we will extend this to detect loops with fixed bounds, so that we

can perform loop unrolling and other optimizations.

FSM (finite-state machine) scheduling is performed

following data-flow and control-flow analysis. We describe the

HDL of the region as a FSMD (FSM with data) model.

Therefore, FSM scheduling consists of mapping groups of high-

level statements into states in a finite state machine. The most

basic example of FSM scheduling is mapping basic blocks into

a single state. Scheduling basic blocks to states simplifies the

decompilation process because recovery of high-level control

statements is unnecessary. Since all control statements jump to

basic blocks, they can simply be implemented as state

transitions. After FSM scheduling has been performed, the

HDL is passed to an RTL (register-transfer level) synthesis tool

that creates a netlist.

We could simplify the process of hardware generation by

converting the assembly to high-level HDL (hardware

description language) code and using behavioral synthesis.

Since one of the main tasks of behavioral synthesis is to create a

finite state machine for the high-level description, this would

completely eliminate the need to perform FSM scheduling.

However, using behavioral synthesis would require more

detailed control-flow analysis in order to recover high-level

control statements such as if statements and loops. We have

recently begun performing the decompilation process described

in [11], converting assembly into high-level VHDL. At this

point, the behavioral synthesis tool we use is unable to schedule

the loops at the desired clock frequency without having to add

extra clock cycles.

Type analysis is also generally associated with

decompilation. However, since high-level types have no effect

on the HDL code, our approach is greatly simplified by ignoring

type analysis.

Results from the decompilation approach are shown in the

right half of Table 2. The most interesting result is that the

average speedup is 1.4, nearly the same as the 1.5 speedup from

the high-level approach. This is significant because it implies

that decompilation-based binary translation can achieve similar

speedup as partitioning at a higher level.

The energy savings are lower than the high-level approach,

averaging 13% savings. The main reason that the energy

savings are less than a high-level approach is because of the

increased power consumption. This results from a less efficient

implementation of the loops in the CSL. When the application is

compiled, high-level operations may be transformed into

different types of assembly operations and high-level

information may be lost. Therefore, when decompilation

occurs, the recovered high-level operations may look different

than the original code and may be less efficient in hardware.

This can result in larger hardware partitions. The hardware for

the assembly-level partitioning is more than twice the size of

high-level partitioning. One area of future work is to transform

these high-level operations to achieve a more power-efficient

hardware implementation.

6. Conclusions

Hardware/software partitioning at the software binary level has

many practical advantages important for commercial adoption

of the technology. We have shown that such partitioning can

compete with traditional source-level hardware/software

partitioning in terms of software speedup, thanks to the use of

basic decompilation methods. Future work includes using more

sophisticated decompilation methods to reduce hardware area

and power, to use more aggressive parallelizing techniques

found in a few partitioners to achieve more dramatic speedups,

and to eventually investigate transparent dynamic

hardware/software partitioning.

7. Acknowledgements

This work was supported in part by the National Science

Foundation (CCR-9876006), UC MICRO, and a Department of

Education GAANN fellowship. We thank Jason Villarreal for

developing the loop analysis tools.

References

[1] G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B.

Murphy, C. Sapuntzakis. An Overview of the SUIF2

Compiler Infrastructure. Computer Systems Laboratory,

Standford University.

[2] Altera Corporation, ARM-Based Embedded Processor

PLDs, August, 2001.

Data-Flow

Analysis

Assembly Code

Control-Flow

Analysis

FSM Scheduling

FSMD-based VHDL Code

RTL Synthesis

Netlist

*Shaded items refer to decompilation process.

[3] P. Athanas, H. Silverman: Processor Reconfiguration

Through Instruction-Set Metamorphosis. IEEE Computer,

March 1993.

[4] Atmel FPSLIC,

http://www.atmel.com/atmel/products/prod39.htm.

[5] V. Bala, E. Duesterwald, S. Banerjia. Dynamo: A

Transparent Dynamic Optimization System. Proc. of the

ACM SIGPLAN '00 Conference on Programming

Language Design and Implementation, 2000, pp. 1-12.

[6] A. Balboni, W. Fornaciari and D. Sciuto. Partitioning and

Exploration in the TOSCA Co-Design Flow. International

Workshop on Hardware/Software Codesign, pp. 62-69,

1996.

[7] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross,

R. Rinker, and W. Najjar. Mapping a Single Assignment

Programming Language to Reconfigurable Systems. The

Journal of Supercomputing, vol. 21, pp. 117-130, 2002.

[8] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall,

R. Jain, and H. Ziegler. DEFACTO: A Design

Environment for Adaptive Computing Technology. In

Reconfigurable Architectures Workshop, RAW’99, April

1999.

[9] BRASS Research Group, http://brass.cs.berkeley.edu/.

[10] The Cameron Project,

http://www.cs.colostate.edu/cameron/.

[11] C. Cifuentes, D. Simon, A. Fraboulet. Assembly to High-

Level Language Translation. Department of Compter

Science and Electrical Engineering, University of

Queensland. Technical Report 439, August 1998.

[12] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T.

Waddington. Preliminary Experiences with the Use of the

UQBT Binary Translation Framework. Proceedings of the

Workshop on Binary Translation, Newport Beach, USA,

October 1999.

[13] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System

Level Hardware/Software Partitioning Based on Simulated

Annealing and Tabu Search. Kluwer's Design Automation

for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[14] R. Ernst, J. Henkel, T. Benner. Hardware-Software

Cosynthesis for Microcontrollers. IEEE Design & Test of

Computers, pages 64-75, October/December 1993.

[15] D.D. Gajski, F. Vahid, S. Narayan and J. Gong. SpecSyn:

An Environment Supporting the Specify-Explore-Refine

Paradigm for Hardware/Software System Design. IEEE

Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100,

1998.

[16] R. Goering. Compiler project marks Synopsys' step into

post-ASIC world. EE Times, August 28, 2000,

http://www.eedesign.com/story/OEG20000828S0020.

[17] T. Givargis and F. Vahid, The Platune Platform Tuning

Environment, http://www.cs.ucr.edu/~dalton/Platune/,

2002.

[18] M. Gokhale, J. Stone. NAPA C: Compiling for hybrid

RISC/FPGA architectures. IEEE Symposium on FPGAs

for Custom Computing Machines, FCCM '98.

[19] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a

reconfigurable coprocessor. IEEE Symposium on FPGAs

for Custom Computing Machines, pages 12-21, Napa

Valley, CA, April 1997.

[20] J. Henkel and R. Ernst. A Hardware/Software Partitioner

using a Dynamically Determined Granularity. Design

Automation Conference, 1997.

[21] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of

embedded systems: A Case Study on an MPEG-2 Encoder.

Proceedings of Sixth International Workshop on

Hardware/Software Codesign, March 1998, pp. 23-27.

[22] J. Henkel. A low power hardware/software partitioning

approach for core-based embedded systems. Proceedings

of the 36th ACM/IEEE conference on Design automation

conference, pp. 122 – 127,1999.

[23] Intel StrongArm 1110 Processor,

http://developer.intel.com/design/strong.

[24] A. Kalavade and E. Lee. A Global Criticality/Local Phase

Driven Algorithm for the Constrained Hardware/Software

Partitioning Problem. International Workshop on

Hardware/Software Codesign, 1994, pp. 42-48.

[25] A. Klaiber. The Technology Behind Crusoe Processors.

Transmeta Corporation White Paper, January 2000.

[26] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.

Stockwood, Hardware-Software Co-Design of Embedded

Reconfigurable Architectures. Proceedings of Design

Automation Conf. (DAC), 1999.

[27] A. Malik, B. Moyer, D. Cermak. A Low Power Unified

Cache Architecture Providing Power and Performance

Flexibility. International Symposium on Low Power

Electronics and Design. June 2000.

[28] MIPS Technologies, Inc., http://www.mips.com.

[29] Proceler, http://www.proceler.com.

[30] R. Gupta, G. De Micheli. Hardware-Software Cosynthesis

for Digital Systems. IEEE Design & Test of Computers,

pages 29-41, September 1993.

[31] C. Snyder. FPGA Processors Ready for Takeoff.

Microprocessor Report, Novemeber 2000, pp. 25-29.

[32] G. Stitt, B. Grattan, J. Villarreall and F. Vahid. Using On-

Chip Configurable Logic to Reduce Embedded System

Software Energy. IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), 2002.

[33] Triscend Corporation, http://www.triscend.com/. 2002.

[34] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels

and I. Bolsens. Hardware/Software Partitioning of

Embedded System in OCAPI-xl. International Symposium

on Hardware/Software Codesign, pp. 30-35, 2001.

[35] J. Villarreal, R. Lysecky, S. Cotterell, K. Miller and F.

Vahid. Loop Analysis of Embedded Applications. UC

Riverside Technical Report UCR-CSE-01-03, 2001.

[36] Virtex Power Estimator, http://support.xilinx.com/cgi-

bin/powerweb.pl.

[37] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey. An energy

conscious methodology for early design exploration of

heterogeneous DSPs. Proceedings of the IEEE 1998

Custom Integrated Circuits Conference, p.111-117, Santa

Clara, May 1998.

[38] Xilinx Corporation, Virtex-II Pro Platform FPGA

Handbook, January 31, 2002.

http://www.atmel.com/atmel/products/prod39.htm
http://developer.intel.com/design/strong
http://www.proceler.com/
http://support.xilinx.com/cgi-bin/powerweb.pl
http://support.xilinx.com/cgi-bin/powerweb.pl

