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Abstract 

Partitioning an embedded system application among a 

microprocessor and custom hardware has been shown to 

improve the performance, power or energy of numerous 

examples. The advent of single-chip microprocessor/FPGA 

platforms makes such partitioning even more attractive. 

Previous partitioning approaches have partitioned sequential 

program source code, such as C or C++. We introduce a new 

approach that partitions at the software binary level. Although 

source code partitioning is preferable from a purely technical 

viewpoint, binary-level partitioning provides several very 

practical benefits for commercial acceptance. We demonstrate 

that binary-level partitioning yields competitive speedup results 

compared to source-level partitioning, achieving an average 

speedup of 1.4 compared to 1.5 for eight benchmarks 

partitioned on a single-chip microprocessor/FPGA device. 
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Hardware/software partitioning, synthesis, binary translation, 
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1. Introduction 

Much previous work has shown the advantages of 

hardware/software partitioning in embedded system design. 

Hardware/software partitioning divides an application into 

software running on a microprocessor and some number of 

coprocessors implemented in custom hardware. The custom 

hardware may be implemented as a new application-specific 

integrated circuit, but could instead be mapped to configurable 

logic, such as a field-programmable gate array (FPGA). 

Advantages of such partitioning include order-of-magnitude 

improvements in performance (e.g., [18][19]), as well as 

reductions in power or energy [21][22][37]. 

The advent of single chip microprocessor/configurable-logic 

platforms makes such partitioning even more attractive 

[2][4][19][31][33][38]. Embedded systems developers can thus 

gain the same time-to-market, cost and single-chip board-size 

advantages previously only possible with software-only 

implementations, while now also gaining the performance and 

energy advantages possible through hardware/software 

partitioning. 

Nearly all hardware/software partitioning approaches 

partition at the source code level. In particular, they partition 

during or even before compilation of the source program. From 

a purely technical point of view, the source code level is 

probably the best place to perform partitioning. However, 

successful technologies are not always based on the best 

technical solution alone. Other considerations can play a critical 

role.  

In this paper, we highlight previous work in traditional 

hardware/software partitioning, and we describe tool flow 

problems that cause resistance to the adoption of such 

partitioning in commercial environments.  We propose software 

binary partitioning as a solution to those problems. We show 

that binary partitioning can achieve results competitive with 

source code partitioning, by drawing on previous work in 

decompilation. We point to future work needed to make binary 

partitioning even more competitive. 

2. Previous Work 

Hardware/software partitioning techniques have been proposed 

over the last decade, and several automated commercial 

products have recently appeared.  

Early work by Gupta [30] focused on taking a behavioral 

hardware specification and moving non-critical regions to 

software, to reduce hardware cost. The behavioral specification 

was read into a synthesis internal format of a hierarchical 

control/dataflow graph, and then partitioned using automated 

heuristics coupled with size and performance estimators. Henkel 

[14] proposed instead to start with a software program, moving 

pieces to hardware to improve speed. They read the software 

into a source statement-level internal format that was then 

partitioned. TOSCA [6] read in a software program that was 

then converted to a generic assembly-level format and 

partitioned. The assembly-level format enabled good estimates 

of software performance and size for a variety of processors. 

SpecSyn [15] partitioned at a coarser level, reading a behavioral 

specification (from a software source or a hardware description 

language) into a procedure-level internal format, and 

partitioning processes and procedures among hardware and 

software. For software estimation, they also compiled 

procedures into a generic assembly-level. Kalavade [24] also 

partitioned behavior at a coarse level of tasks.  Eles [13] and 

Henkel [20] investigated partitioning at various levels of 

granularity, ranging from statements to blocks to procedures. 

OCAPI [34] focuses on supporting partitioning of a software 

program at various stages of design refinement, from the early 

system level, to just before software and hardware code 

generation. Dozens of other efforts in the hardware/software 

codesign community have focused on similar partitioning at 

various levels of granularity.  

Partitioning has also been addressed by the reconfigurable 

computing community, seeking to speedup software by using 

FPGA coprocessors. PRISM [3] was an early effort targeting a 



Figure 1: Hardware/software partitioning approaches: (a) traditional source-based approach (b) proposed binary-based approach and (c) 

typical structure of a hardware/software partitioner. 

Motorola 68010 processor and four Xilinx 3090 FPGAs.  The 

Berkeley BRASS project [9] extended a C compiler to partition 

among the Garp [19] architecture, which combines a MIPS with 

reconfigurable logic. The NAPA C compiler [18] allows the 

user to provide pragma directives to specify where computation 

is to occur or where data is to reside on a micprocessor/FPGA 

platform. The Nimble compiler [16][26] was to compile C code 

to an architecture consisting of a general-purpose processor with 

a reconfigurable-datapath coprocessor.  Proceler’s product [29] 

compiles C code to a processor and an FPGA coprocessor.  

Both used profiling information to detect and move critical 

software regions to the FPGA. DEFACTO [8] partitions an 

application based on the intermediate format of the SUIF 

compiler [1]. The Cameron project [7][10] uses a variation of C 

and maps to a platform consisting of a PC and a multi-million 

gate FPGA board. They use a compiler to extract massive 

parallelism of the critical loops and obtain speedups of several 

hundred times.  

Most partitioning work focuses on the performance benefits 

of such partitioning. Recent research has emphasized energy 

benefits also [21][22][32][37], achieved by using the 

performance speedup to put the system in a low power idle state 

for a longer period, or to scale down the system operating 

voltage while still meeting timing constraints. 

3. Source versus Assembly Level 

Partitioning 

All work mentioned above partitions either before software 

compilation (e.g., [15][24]), or more commonly, as part of 

compilation. Partitioning during compilation is illustrated in 

Figure 1(a). A compiler front-end reads the source code into an 

intermediate format, such as SUIF [1]. This intermediate format 

is annotated with profiling data. The critical regions are 

detected, and those parts are examined for potential 

implementation in hardware. The regions destined for software 

are then fed through a compiler back-end to generate assembly 

code for a processor, while the parts intended for hardware are 

fed to a synthesis tool (typically by first generating hardware 

description language code) for hardware implementation.  

Binary-level hardware/software partitioning, in contrast, 

would operate on binaries, as illustrated in Figure 1(b). This 

approach would require that source code first be compiled to 

binaries. The partitioning tool would then read the binaries, 

partition, and generate an updated binary for the software part 

and hardware source for the hardware part. As binaries can be 

straightforwardly disassembled into assembly code, we refer to 

the binary level and assembly level interchangeably. 

At first glance, a binary-level approach may seem 

undesirable for several reasons. First, high-level information 

about the program, such as high-level loop constructs, multi-

dimensional array data, arithmetic expressions, etc., are harder 

to see. Second, the binary level is processor specific.  

However, traditional source-level hardware/software 

partitioning has a major practical problem that severely restricts 

its adoptability in real commercial environments: traditional 

source-level hardware/software partitioning does not fit well 

with standard tool flows. Tool flow has always been and will 

likely continue to be a major issue in commercial environments. 

One reason such partitioning doesn’t fit well is because such 
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partitioning requires a compiler that is able to partition. 

However, companies typically already have stable and trusted 

compilers for their embedded processors, often coupled with 

sophisticated integrated development environments (IDEs) that 

include graphical debug and analysis tools. The vast majority of 

users of those compilers will not be performing 

hardware/software partitioning, and thus incorporating such 

partitioning into those compilers is not likely to be a priority. 

Furthermore, even companies doing partitioning would like to 

be able to move to a new compiler without having to give up 

their ability to partition. Using a combined compiler/partitioner 

is thus a high-risk proposition. 

A second major problem with source-level partitioning is 

that there is often much code that is not written at the source 

level. Some code may be written at the assembly level – in fact, 

critical code loops are rather likely candidates for such a level. 

Furthermore, some code may exist as object code in libraries 

that are linked in at the final stages before binary generation 

(e.g., math libraries, I/O libraries, and operating system code). 

Such code never gets read into most compilers, and thus is 

never part of the internal format that is partitioned. Yet, the 

assembly code and library code are prime candidates for critical 

kernels that should be considered for partitioning onto 

hardware.  

Furthermore, software may come from several different 

source languages, even for the same product – a single product 

may have code written in C, C++, and even Java (compiled 

using a native compiler). Multiple source files do not require a 

single compiler in current tool flows – they are instead linked at 

the object level.  

We see that the assembly language (or more precisely, the 

machine language) for a given processor represents a sort of 

universal language for that processor. All source languages 

must be converted to the assembly level. Furthermore, the 

instruction set is very resistant to change, and any changes that 

do occur are typically small extensions. 

The binary-level drawback of losing high-level information 

can fortunately be largely overcome today thanks to decades of 

work in decompilation, e.g., [11][12]. Decompilation methods 

are able to extract much high-level information. We will 

describe this in more detail later. 

The second drawback of being processor specific is not a 

major problem in commercial environments. Although some 

research partitioners explore the use of different processors, in 

commercial practice, the decision as to which processor to use 

is made based on many non-technical factors – such as the 

roadmap of future generations of the processor, the stability of 

the processor manufacturer, the quality and stability of the 

software environment supporting the processor, and the past 

experiences with the processor. Thus, having a processor-

specific partitioner is quite reasonable.  

Furthermore, porting an existing binary-level 

hardware/software partitioner to a new processor is not very 

difficult. Decompilation first reads a binary into a processor-

neutral control/dataflow graph. The tool that converts a binary 

to that graph is relatively simple. Thus, a CAD vendor 

supplying a binary-level hardware/software partitioner would be 

able to easily support a wide variety of processors. 

An additional advantage of binary-level partitioning is that 

software performance and size estimation is extremely accurate.  

Looking to the future, we note several successes in dynamic 

binary optimization [5][25]. Conceivably, binary-level 

partitioning could eventually be done dynamically and hence 

completely transparently to a designer, resulting in completely 

transparent software speedup and energy reduction on platforms 

having on-chip FPGAs. This is a long ways off, but binary-level 

partitioning is the first step. 

Thus, while source-level partitioning does have technical 

advantages, binary-level partitioning has numerous practical 

advantages, motivating us to begin development of such a 

partitioner. 

4. Evaluating Improvement Potential for 

Microprocessor/Configurable-Logic Chips 

We first sought to determine the speedup possible by mapping 

critical loops of embedded applications onto configurable logic 

of a modern single-chip microprocessor/configurable-logic 

device. Many programs spend much of their time in small loops. 

Such loops would be excellent candidates for re-mapping to 

hardware, since speeding them up can have a big impact on 

overall performance, and since they may not require too much 

hardware. We sought to determine the potential improvements 

that could be obtained by re-mapping frequently executed small 

loops from software to on-chip configurable logic.  

4.1 Benchmarks and Loop Analysis 
We examined several examples from Motorola’s Powerstone 

[27] benchmark suite: a voice encoder (adpcm), a cyclic 

redundancy check (crc), a data encryption standard (des), an 

engine controller (engine), a fax decoder (g3fax), a JPEG 

decoder (jpeg), a handwriting recognizer (summin), and a 

modem encoder/decoder (v42). We executed each example, 

using the input vectors in Powerstone, on an instruction set 

simulator for a MIPS microprocessor, augmented to output 

instruction traces. We wrote an additional tool to then parse the 

traces and gather loop statistics. 

Complete results of the loop study appear in [35].  The main 

results were that the programs running on the MIPS spent 66% 

of their time in loops with a static size of 256 instructions or 

less. Furthermore, 77% of time spent in loops (or 51% of total 

time) was spent in loops whose static size was 32 instructions or 

less.  More importantly, many of the examples contained just a 

few small loops that dominated the execution time, and 

generally iterated many times per execution.  For example, 

g3fax contains two loops that represent 62% of total execution 

time and consist of only six assembly instructions each.  In 

addition, one of these loops iterates 1,729 times for each 

execution. On average, for all of the tested examples, the two 

most frequent loops accounted for approximately 40% of total 

execution time.  

The implication of this loop analysis is that by remapping 

just a small amount of code to configurable logic, we have the 

potential to achieve significant overall performance and power 

improvements.  

4.2 Partitioning Method 
Our general method of using the configurable logic for 

improvement consisted of moving as much of the software 

execution as possible onto the logic. Thus, based on the analysis 



Figure 2: Target architecture: single chip microprocessor and 

configurable logic. 
Table 1: Benchmark loop information. 

Example

Size 

(instr)

Loop 

Instr

Loop 

Time

CSL 

Size Gates

g3fax 1,094 12 62% 225 4,265

adpcm 1,910 38 30% 469 8,075

crc 1,060 17 65% 46 770

des 1,529 90 52% 516 9,031

engine 1,108 16 28% 133 2,074

jpeg 1,490 29 10% 157 3,161

summin 1,034 25 48% 212 4,191

v42 1,597 15 23% 233 3,319

Average: 30 40% 249 4,361
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of the loop regions of a given program, we tried to move the 

most time-dominating software regions onto the logic. Such 

partitioning was limited by the size of the logic, so we 

sometimes had to instead move the second most time-

dominating region. Since our estimations were done for a 

hypothetical single-chip MIPS/FPGA device, we needed to use 

area and power characteristics of real FPGAs.  We chose to use 

the Xilinx VirtexE systems for this purpose.   We used the area 

and power of the XCV50E, XCV100E, and XCV200E.  For 

each example, we used the smallest FPGA that the example 

could fit in, in order to reduce quiescent power.  The Xilinx 

VirtexE devices are not single-chip microprocessor/FPGA 

designs.  We are simply using the Xilinx devices in order to 

estimate characteristics of the FPGA in our hypothetical system, 

which is based on the architecture of the Triscend single-chip 

microprocessor/configurable-logic devices [33].  We have 

previously investigated partitioning [32] on the Triscend E5 and 

A7 chips.  We plan to test binary-level partitioning on these 

systems in the near future. 

Our target architecture is shown in Figure 2, which is based 

on the architecture found in Triscend’s products.  The main 

difference between our architecture and the Triscend 

architecture is the absence of a DMA.  We exclude a DMA from 

our architecture because the execution of the software and 

hardware is mutually exclusive.  Communication between the 

microprocessor and configurable system logic (CSL) takes place 

via shared memory and several direct signals. 

We implemented each partitioning by replacing the selected 

software regions with handshaking behavior. The software 

would activate the CSL using a start signal, and then wait for 

the CSL to set a done signal. The microprocessor enters a low-

power state while waiting for the CSL to finish executing, and 

the CSL enters a low-power state by not executing while 

waiting for the microprocessor. Our results could be further 

improved by considering executing the CSL and microprocessor 

in parallel when data dependencies allow this. 

Table 1 summarizes the relevant loop data for our 

benchmarks. Size indicates the total number of instructions in 

the program, while Loop Instr is the number of instructions in 

the region(s) moved to hardware. Loop Time is the percentage 

of total execution time taken by the region(s). CSL Size is the 

number of configurable logic blocks required by those regions. 

Gates is the equivalent number of gates. 

4.3 Performance and Power Evaluation 
We used the testbenches that come with the Powerstone 

benchmarks to generate dynamic power and performance data 

for the benchmarks. 

We used a simulation-based approach for performance and 

power evaluation. We ran each example on a MIPS architectural 

simulator [17] that outputs the number of cycles that a program 

executes, taking into account pipelining and stalls (average 

cycle-per-instruction for the benchmarks was 1.6). The 

configurable logic cycles were determined by creating 

synthesizable VHDL code and then analyzing that code, 

pessimistically assuming a region always executed its longest 

path (meaning improvements would actually be better than 

those we report).  

In order to determine microprocessor power, we used the 

power of a typical MIPS core [28] that is fabricated using 0.18 

micron technology.  We assume a clock speed for the MIPS of 

100 MHz at a supply voltage of 1.8 V.  We used Xilinx’s Virtex 

Power Estimator [36] to estimate power for each example, also 

utilizing a 0.18 micron FPGA technology (in particular, the 

XCV50E, XCV100E, and XCV200E).  

We estimated total power in the following way: by 

analyzing the Triscend E5 device [33], we estimated for the 

MIPS-based system that the interconnect power, namely the 

power consumed by the system buses and shared memory, 

would be about 0.1 W.  Furthermore, we are assuming a low-

power state of 25% of the active state on the microprocessor 

[23], and the CSL’s low-power state consisted only of quiescent 

power, and we thus used the following equation to compute 

total power:  

 
Total power = %Sw * PSw + %CSL* (PCSL + .25*PSw) +               

Interconnect Power + Quiescent Power 

 

where %Sw is the percent of time spent in software, %CSL the 

percent time spent in the CSL, PSw is the power of the software 

when the microprocessor is active, and PCSL is the power of the 

CSL when active. 

4.4 Potential Improvements 
In order to determine potential improvements, we manually 

converted the C code for the frequent loops into VHDL.  This 

was done by manually extracting parallelism from the C code 



Table 2: Comparison of source-level and binary-level partitioning approaches. 

and then creating the appropriate hardware.  We modified the 

hardware until the longest delay allowed for a clock frequency 

of 100 MHz.  Since the implemented loops were generally very 

small, reaching the desired clock frequency was not difficult.      

Greater speedup could be achieved by performing optimizations 

such as loop unrolling, pipelining, etc. 

The left half of Table 2 shows the performance, power and 

energy data for partitioning the examples at the source level. 

The Sw column represents the total cycles required by an all 

software solution. Loop in sw indicates how many cycles were 

required by the regions that we planned to move to the 

configurable logic. Loop in CSL indicates the cycles required 

when the regions were moved to configurable logic, and 

Sw/CSL represents the total cycles after partitioning.  A is the 

area in gates of the custom hardware for the loop.  P is the 

overall power of the system in Watts. %E is the percentage 

energy improvement.  S is the speedup.  The average speedup 

achieved through source-level partitioning was 1.5. 1 

The energy savings are a modest 27%, due to the power 

increase of using configurable logic. However, as low-power 

configurable logic finds its way onto these devices, and voltage 

scaling becomes more common, those energy savings will likely 

increase tremendously.  

Note that the speedup was achieved by moving less than 3% 

of software to configurable logic (as seen in Table 1) – an 

average of just 30 lines of assembly code. 

5. Initial Studies using a Decompilation-

Based Approach 

In order for binary-level partitioning to achieve acceptable 

results, there are a number of issues that must be dealt with.  

One of the largest problems is that much high-level information 

is lost during the compilation process.  For example, all control 

statements, such as loops and if statements, are implemented 

using jumps and branches.  Also, high-level data structures, 

such as arrays and structures, do not exist at the assembly level.  

Another major problem is that regions of code that contain 

jumps whose target is determined at runtime cannot be 

implemented efficiently in hardware.  Assembly code also tends 

to use many temporary registers in order to implement a high-

level expression.  These registers must be removed in order to 

produce efficient hardware. 

                                                                 

1 The best possible case (assuming the loops were implemented 

in zero time) is 1.84.  

A major issue with binary-level partitioning is that the 

results are dependent on the assembly code produced by a 

compiler or assembly programmer.  For example, a compiler 

may choose to implement a typical move instruction by using 

an add with an immediate value of zero.  This implies that 

constant propagation must be performed, otherwise an adder 

would be included unnecessarily.  Also, since code and data are 

impossible to distinguish at the binary level, a partitioning tool 

must assume that the code is completely separated from data, or 

must determine dynamically if a location is actually an 

instruction. 

As a first attempt at hardware generation from assembly 

code, we tried binary translation techniques, converting each 

assembly instruction into a corresponding state in a VHDL state 

machine.  There was little performance to gain from this 

approach, since most high performance processors have a CPI 

(cycles per instruction) close to 1.  For slower processors, such 

as an 8051, which have a CPI typically ranging from 4 to 12, 

this technique may be more effective.  The largest disadvantage 

of this approach is that each time the hardware partition 

executes, the values of all required registers need to be read by 

the custom logic.  This can add much overhead that in some 

cases causes performance to decrease.  In addition, the area of 

designs based on binary translation was much larger than a 

high-level approach. 

We see that the standard binary translation method imposes 

much overhead. The main problem with this approach is that 

translation is done per instruction, and no high level-

information is used to optimize the hardware.  Alternatively, we 

can use decompilation to recover as much high-level 

information as possible and thus produce a more efficient 

hardware implementation. 

Our hardware generation approach using decompilation is 

illustrated in Figure 3.  This corresponds to the hardware 
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g3fax 1,550 947 135 738 4,265 0.20 49% 2.1 1,550 947 262 865 6,428 0.21 35% 1.8

adpcm 113 29 5 89 8,075 0.19 18% 1.3 113 29 7 91 25,936 0.24 2% 1.2

crc 53 34 5 24 770 0.18 56% 2.3 53 34 10 29 3,752 0.20 41% 1.9

des 142 70 15 87 9,031 0.20 31% 1.6 142 70 22 94 18,531 0.32 -5% 1.5

engine 915 145 28 798 2,074 0.18 12% 1.2 915 145 81 851 3,303 0.18 5% 1.1

jpeg 7,900 646 171 7,425 3,161 0.18 6% 1.1 7,900 646 182 7,436 10,082 0.19 4% 1.1

summin 2,920 1,270 266 1,916 4,191 0.19 32% 1.5 2,920 1,270 426 2,076 10,156 0.22 16% 1.4

v42 3,850 846 216 3,220 3,319 0.18 15% 1.2 3,850 846 455 3,459 4,414 0.19 6% 1.1

Avg: 4,361 0.19 27% 1.5 Avg: 10,325 0.22 13% 1.4
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generation component in Figure 1(c).  One of the first steps in 

decompilation is performing data-flow analysis on the assembly 

in order to remove hardware references (such as registers) and 

to determine high-level expressions.  Data flow analysis is 

performed through the use of definition-use and use-definition 

chains.  Further details can be found in [11].   

Figure 3: Hardware generation from assembly using 

decompilation. 

HW Generation 

Control flow-analysis is generally performed during 

decompilation in order to recover high-level control statements, 

such as if statements and loops.  At this point,  our control-flow 

analysis consists of only basic block determination.  Eventually, 

we will extend this to detect loops with fixed bounds, so that we 

can perform loop unrolling and other optimizations. 

FSM (finite-state machine) scheduling is performed 

following data-flow and control-flow analysis.   We describe the 

HDL of the region as a FSMD (FSM with data) model.  

Therefore, FSM scheduling consists of mapping groups of high-

level statements into states in a finite state machine.  The most 

basic example of FSM scheduling is mapping basic blocks into 

a single state.  Scheduling basic blocks to states simplifies the 

decompilation process because recovery of high-level control 

statements is unnecessary.  Since all control statements jump to 

basic blocks, they can simply be implemented as state 

transitions.  After FSM scheduling has been performed, the 

HDL is passed to an RTL (register-transfer level) synthesis tool 

that creates a netlist.  

We could simplify the process of hardware generation by 

converting the assembly to high-level HDL (hardware 

description language) code and using behavioral synthesis.  

Since one of the main tasks of behavioral synthesis is to create a 

finite state machine for the high-level description, this would 

completely eliminate the need to perform FSM scheduling.  

However, using behavioral synthesis would require more 

detailed control-flow analysis in order to recover high-level 

control statements such as if statements and loops.  We have 

recently begun performing the decompilation process described 

in [11], converting assembly into high-level VHDL.  At this 

point, the behavioral synthesis tool we use is unable to schedule 

the loops at the desired clock frequency without having to add 

extra clock cycles. 

Type analysis is also generally associated with 

decompilation.  However, since high-level types have no effect 

on the HDL code, our approach is greatly simplified by ignoring 

type analysis. 

Results from the decompilation approach are shown in the 

right half of Table 2.  The most interesting result is that the 

average speedup is 1.4, nearly the same as the 1.5 speedup from 

the high-level approach.  This is significant because it implies 

that decompilation-based binary translation can achieve similar 

speedup as partitioning at a higher level.   

The energy savings are lower than the high-level approach, 

averaging 13% savings. The main reason that the energy 

savings are less than a high-level approach is because of the 

increased power consumption.  This results from a less efficient 

implementation of the loops in the CSL. When the application is 

compiled, high-level operations may be transformed into 

different types of assembly operations and high-level 

information may be lost.   Therefore, when decompilation 

occurs, the recovered high-level operations may look different 

than the original code and may be less efficient in hardware.  

This can result in larger hardware partitions.  The hardware for 

the assembly-level partitioning is more than twice the size of 

high-level partitioning.  One area of future work is to transform 

these high-level operations to achieve a more power-efficient 

hardware implementation. 

6. Conclusions 

Hardware/software partitioning at the software binary level has 

many practical advantages important for commercial adoption 

of the technology. We have shown that such partitioning can 

compete with traditional source-level hardware/software 

partitioning in terms of software speedup, thanks to the use of 

basic decompilation methods. Future work includes using more 

sophisticated decompilation methods to reduce hardware area 

and power, to use more aggressive parallelizing techniques 

found in a few partitioners to achieve more dramatic speedups, 

and to eventually investigate transparent dynamic 

hardware/software partitioning. 
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