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Abstract

One of the key problems in hardware/software codesign
is hardware/software partitioning. This paper describes
a new approach to hardware/software partitioning using
integer programming (IP). The advantage of using IP is
that optimal results are calculated respective to the chosen
objective function. The partitioning approach works fully
automatic and supports multi-processor systems, interfa-
cing and hardware sharing. In contrast to other approaches
where special estimators are used, we use compilation and
synthesis tools for cost estimation. The increased time for
calculating the cost metrics is compensated by an improved
quality of the estimations compared to the results of estim-
ators. Therefore, fewer iteration steps of partitioning will
be needed. The paper will show that using integer program-
ming to solve the hardware/software partitioning problem
is feasible and leads to promising results.

1 Introduction

Embedded systems typically consist of application specific
hardware parts and programmable parts, i.e., processors
like DSPs, core processors or ASIPs. In comparison to
the hardware parts, the software parts can be developed
and modified much easier. Thus, software is less expens-
ive in terms of costs and development time. Hardware
however, provides better performance. For this reason, a
system designer’s goal is a system which fulfills all per-
formance constraints by using as few as possible hard-
ware. Hardware/software codesign deals with the problem
of designing embedded systems, where automatic partition-
ing is one key issue. This paper describes a new approach
in hardware/software partitioning for multi-processor sys-
tems working fully automatic. The approach is based on
integer programming (IP) to solve the partitioning problem
optimally. A formulation of the IP-model will be intro-
duced in detail. The drawback of solving IP-models often
is a high computation time. To reduce the computation
time, a second approach has been developed which splits

the partitioning approach in two phases. In a first phase, a
mapping of nodes to hardware or software is calculated by
estimating the schedule times for each node with heuristics.
During the second phase a correct schedule is calculated for
the resulting HW/SW-mapping of the first phase. It will be
shown that this heuristic scheduling approach strongly re-
duces the computation time while the results are nearly
optimal for the chosen objective function.

Another new feature of our approach is the cost estima-
tion technique. The cost model is not calculated by estimat-
ors like other approaches, because the quality of estimations
is often bad and estimators do not concern compiler effects.
In our approach the tools (a compiler for the software parts
and a high-level synthesis tool for the hardware parts) are
used instead of special estimators. The disadvantage of an
increased runtime for calculating the cost metrics is com-
pensated by a better quality of the cost metrics compared to
the results of estimators. Furthermore, better cost metrics
lead to fewer partitioning iterations.

The outline of the paper is as follows: Section 2 gives an
overview of related work in the field of hardware/software
partitioning. In section 3 our own approach to partitioning
is presented. A formulation of the hardware/software par-
titioning problem follows in section 4. Section 5 describes
the problem by an IP-model. After experimental results of
solving these IP-models have been presented in section 6,
a conclusion is given in section 7 .

2 Related Work

There are only few approaches considering hard-
ware/software partitioning. One of these is the COSYMA
system [EHB93], where hardware/software partitioning is
based on simulated annealing using estimated costs. The
partitioning algorithm is software-oriented,because it starts
with a first non-feasible solution consisting only of software
components. In an inner loop partitioning (ILP) software
parts of the system are iteratively realized in hardware until
all timing constraints are fulfilled. To handle discrepan-
cies between estimated and real execution time, an outer



loop partitioning (OLP) restarts the ILP with adapted costs
[HE94]. The OLP is repeated until all performance con-
straints are fulfilled. Another hardware/software partition-
ing approach is realized in the VULCAN system [GCM92].
This approach is hardware-oriented. It starts with a com-
plete hardware solution and iteratively moves parts of the
system to the software as long as the performance con-
straints are fulfilled. In this approach performance satis-
fiability is not part of the cost function. For this reason,
the algorithm will easily trap in a local minimum. The
approach of Vahid [VGG94] uses a relaxed cost function
to satisfy performance in an inner partitioning loop and
to handle hardware minimization in an outer loop. The
cost function consists of a very heavily weighted term for
performance and a second term for minimizing hardware.
The authors present a binary-constraint search algorithm
which determines the smallest size constraint (by binary
search) for which a performance satisfying solution can
be found. The partitioning algorithm minimizes hardware,
but not execution time. Kalavade and Lee [KL94] present
an algorithm (GCLP) that determines for each node iter-
atively the mapping to hardware or software. The GCLP
algorithm does not use a hardwired objective function, but
it selects an appropriate objective according a global time-
criticality measure and another measure for local optimum.
The results are close to optimal and the runtime grows
quadratically to the number of nodes. This approach has
been extended to solve the extended partitioning problem
[KL95] including the implementation selection problem.

3 Hardware/Software Partitioning
Approach

Our hardware/software partitioning approach is depicted
in figure 1. The designer has to specify the target archi-
tecture by defining the set of processors for the software
parts and the component library to synthesize the hardware
parts. The system has to be defined in VHDL as a set
of interconnected instances of VHDL-entities. Moreover,
the designer has to determine the design constraints, con-
taining performance constraints (timing) and resource con-
straints (area, memory). Then, the VHDL specification is
compiled into an internal syntax graph model. For each
entity of this model, software source code (C or DFL) and
hardware source code (VHDL) is generated. The software
parts are compiled and the hardware parts are synthesized
by a high-level synthesis tool (OSCAR [LMD94]). The
results are software cost metrics (software execution time,
memory usage) and hardware cost metrics (hardware ex-
ecution time, area) for the entities. The disadvantage of
an increased runtime for calculating the cost metrics is
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Figure 1: Hardware/Software Partitioning

compensated by a better quality compared to the results of
estimators. Moreover, better cost metrics lead to fewer par-
titioning iterations. After the compilation/synthesis phase
a partitioning graph is generated. Nodes represent the in-
stances of VHDL-entities of the system and edges rep-
resent the interconnections between them. The nodes are
weighted with the hardware and software costs, the edges
are weighted with interface costs which occur if an interface
is used between the nodes of the edge. The interface costs
are approximated by the number and type of data flowing
between both nodes. The user-defined design constraints
are also matched to the graph. Thus, the partitioning graph
includes all information needed for partitioning. The parti-
tioning graph is then transformed into an IP-model, which
is the key issue of this paper. Afterwards, the model is
solved by an IP-solver. The calculated design is optimal
for the generated cost model, but nevertheless it is possible
to improve the design, because sharing between different
instances of same entities is considered, but not sharing ef-
fects between different entities. This disadvantage can be
removed by an iterative partitioning approach. We use a
software oriented approach, because compilation is faster
than synthesis and software oriented approaches seem to be
superior to hardware oriented approaches (see [VGG94]).
Sets of nodes which have been mapped on the same pro-
cessor are clustered. For each cluster a new cost metric is
calculated by compiling all nodes of the cluster together.
Then, the partitioning graph is transformed by replacing
each cluster by a new node attached with the new cost



metric. Finally, the redefined graph is repartitioned. This
iteration will be repeated until no solution is found. The
last valid partitioning represents the resulting design. The
clustering technique is illustrated in figure 2.
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Figure 2: Partitioning refinement

4 Formulation of the HW/SW Parti-
tioning Problem

This section introduces a formulation of the hard-
ware/software partitioning problem. This formulation is
necessary to simplify the description of the problem with
the help of an IP-model. We have to define the target ar-
chitecture used to realize the system and the system itself
which has to be partitioned.

Definition 4.1 The target architecture consists of an
ASIC h, a set of processors P = fp1; : : : ; pnPg, external
memory and busses between them. The set of target archi-
tecture components is defined as: T A = fhg [ P.

To simplify the notations in the following chapters, let the
ASIC be the first element of T A with index 0, followed by
the processors: ta0 := h; tak := pk; 8k 2 f1; : : : ; nPg.

Definition 4.2 A system is defined as a tuple S =
(E ; V; E; I) with the following definitions:
E = fen1; : : : ; ennEg defines the set of entities. The set
of nodes V = fv1; : : : ; vnV g consists of instances of entit-
ies, defined by the function I : V ! E . The set of edges
E � V �V represents the interconnections between nodes.

The following cost metrics are defined for each entity
enl: ca(enl) represents the hardware area, cth(enl) the
hardware execution time, cdm(enl) the used software data
memory, cpm(enl) the used software program memory and
cts(enl) the software execution time. The costs ca(vj),

cth(vj), cdm(vj), cpm(vj) and cts(vj) for the instances vj
of an entity enl are equal to the costs of enl:

I(vj) = enl ) cx(enl) = cx(vj) (1)

The following interface costs for an edge e = (v1; v2)
are considered: cia(e) defines the additional hardware area
and cit(e) defines the communication time for e.

A design represents the realization of a system S

on a target architecture T A. The design quality can
be expressed by the following design metrics: Ca(S)
represents the hardware area, Cpm(S) the used soft-
ware program memory, Cdm(S) the used software data
memory and Ct(S) the total execution time of S. The
set of design constraints C consists of MAXa(S),
MAXpm(S), MAXdm(S) and MAXt(S) according to
the design metrics of S.

Definition 4.3 The hardware/software par-
titioning problem is the problem of finding a mapping
map : V ! T A in such a way that all performance
and resource constraints are fulfilled and the design costs
are minimized.

The definitions will be used in the following example:
Example 1:
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Figure 3: Unpartitioned system

In figure 3 a system is specified consisting of 2 entities en1
(circle), en2 (box) and 7 instances v1; : : : ; v7 of these entit-
ies. This system will be partitioned for a target architecture
containing one ASIC, one DSP, memory and a bus connecting
these components.

5 The IP-Model

Linear optimization problems can be solved optimally by
using integer programming (IP). This paper will show that
our IP-model is able to solve the hardware/software par-
titioning problem with the following characteristics: mul-
tiprocessor systems are supported, timing constraints are
guaranteed, interface costs are included, sharing effects
between different instances of the same entity are con-
sidered, and user constraints can be adapted easily. To
describe the IP-model the following notations are neces-
sary:



Definition 5.1 Let J = f1; : : : ; nV g represent the indices
of vj 2 V , K = f0; : : : ; nPg the indices of elements
tak 2 T A and L = f1; : : : ; nEg the indices of elements
enl 2 E .
Let cxl;k be the cost metric cx(enl) for entity enl and cxj;k
the cost metric cx(vj) for node vj on target architecture
component tak.
Let Cx

k be the system cost Cx(S) on tak of system S and
MAXx

k the according maximum of Cx
k .

Let TS
j be the execution starting time of node vj .

Let TD
j be the execution time of node vj.

Let TE
j be the execution ending time of node vj .

5.1 The Decision Variables

Our IP-model uses the following 0/1-variables:

Definition 5.2 Let the following 0/1-variables be defined
as:

xj;0 =

�
1 : vj is not shared on ta0;
0 : otherwise:

yj;k =

8<
:

1 : vj is shared on hardware ta0;
1 : processor tak(k � 1) executes vj ;
0 : otherwise:

shl;k =

8<
:

1 : enl is shared on hardware ta0;
1 : processor tak(k � 1) executes enl;
0 : otherwise:

ij1;j2 =

�
1 : vj1 and vj2 need an interface;
0 : otherwise:

bj1;j2;k =

8>><
>>:

1 : vj1 ; vj2 are executed on
: di�erent components;

1 : vj1 ends before vj2 starts on tak;
0 : otherwise:

Example 2:
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Figure 4: Partitioned system

The result of hardware/software partitioning of the system
depicted in figure 3 is shown in figure 4. Gray shaded nodes

are realized in hardware. Shared nodes are enclosed by a
dashed line. The following table shows the 0/1-variables for
executing nodes shared or not shared on hardware or soft-
ware.

vj !

HW/SW var v1 v2 v3 v4 v5 v6 v7

unshared HW xj;0 0 0 1 0 0 0 0
shared HW yj;0 0 0 0 1 1 1 1

SW yj;1 1 1 0 0 0 0 0

The nodes v1 and v2 are executed on the processor ta1
(y1;1 = y2;1 = 1). Therefore, sh1;1 = sh2;1 = 1, be-
cause v1 is of entity type en1 and v2 is of entity type en2 . v3
is executed unshared on the hardware (x3;0 = 1). The other
four nodes v4; : : : ; v7 are executed shared on the hardware.
In total, 2 interfaces are needed: i2;4 = i1;3 = 1. The tim-
ing diagram shows that unshared nodes in hardware (v3) can
be executed in parallel to instances of the same entity (v4).
Shared nodes (v5; v6) have to be sequentialized, but result in
less hardware area as shown in the resource diagram.

5.2 The Constraints

The following constraints have to be fulfilled:

1. General Constraints: Each node vj is executed ex-
actly on one target architecture component tak.

8j 2 J : xj;0 +
X
k2K

yj;k = 1 (2)

2. Resource Constraints: The values for used data
memory Cdm

k (eq. 3) and program memory C
pm
k

(eq. 4) on each processor tak may not exceed a given
maximum. The used hardware area Ca

0
(eq. 5) is the

sum of hardware area of unshared instances, shared
entities, and the total interface area CIa

0
(eq. 14). Ca

0

may not exceed a given maximum.

8k 2Knf0g : Cdm
k =

X
l2L

shl;k � c
dm
l;k �MAXdm

k (3)

8k 2Knf0g : C
pm

k
=
X
l2L

shl;k � c
pm

l;k
�MAX

pm

k
(4)

Ca
0
=
X
j2J

xj;0 � c
a
j;0 +

X
l2L

shl;0 � c
a
l;0 + CIa

0
�MAXa

0
(5)

3. Timing Constraints:
The timing costs cannot be calculated by accumulat-
ing the execution time of the nodes, because nodes,
that are not shared on the ASIC can be executed in
parallel. To determine the starting time and ending
time for each node, scheduling has to be performed.
The execution time TD

j (eq. 6) of vj is either the



hardware or the software execution time. The end-
ing time TE

j (eq. 7) is the sum of starting time TS
j

and execution time TD
j . The starting times TS

j (eq.
9) of nodes have to be in their ASAP/ALAP-range
which can be calculated in a preprocessing step. Data
dependencies (eq. 10) have to be considered for all
edges e = (vj1 ; vj2) including interface communica-
tion time T I

j1;j2
of equation 12. The system execution

time Ct (eq. 11) is the maximum of all ending times
and may not violate the constraint.

8j 2 J : 8e = (vj1 ; vj2 ) 2 E :

TDj = xj;0 � c
th
j;0 + yj;0 � c

th
j;0 +

X
k2Knf0g

yj;k � c
ts
j;k (6)

TEj = TSj + TDj (7)

(8)

ASAP (vj ) � TSj � ALAP (vj) (9)

TSj2 � TEj1 + T Ij1;j2 (10)

TEj � Ct
� MAXt (11)

5.3 Interfacing

An interface has to be realized for an edge e = (vj1 ; vj2),
if vj1 and vj2 are realized on different target architecture
components. This fact is formulated with help of addi-
tional constraints for the interface 0/1-variable ij1;j2 (see
[NM95]). Then, the following interface costs can be cal-
culated: interface execution time T I

j1;j2
(eq. 12), interface

hardware area AI
j1;j2

(eq. 13), and the area of all interfaces
CIa

0
(eq. 14).

8e = (vj1 ; vj2) 2 E :

T Ij1;j2 = ij1;j2 � ci
t
j1;j2

(12)

AIj1 ;j2
= ij1;j2 � ci

a
j1;j2

(13)

CIa
0
=

X
e=(vj1 ;vj2 )2E

AIj1 ;j2
(14)

5.4 Sharing

An entity enl is shared on hardware ta0 (eq. 15), if at
least two nodes vj1 ; vj2 which are instances of entity enl
are executed shared on ta0. An entity enl is shared on
processor tak (eq. 16), if at least one instance of entity enl
is executed on tak.

8l 2 L : 8j1; j2 2 J : I(vj1) = I(vj2) = enl :

shl;0 � yj1;0 + yj2 ;0 � 1 (15)

8k 2Knf0g : 8l 2 L : 8j 2 J : I(vj) = enl :

shl;k � yj;k (16)

5.5 Scheduling

If two nodes vj1 ; vj2 should be sequentialized, then the
scheduling variables bj1;j2;k and bj2;j1;k have to be dif-
ferent, otherwise both have to be 1. The additional con-
straints for bj1;j2;k and bj2;j1;k are defined in [NM95]. With
bj1;j2;k,bj2;j1;k nodes can be sequentialized (eq. 17,18) by:

8k 2K : TSj1 � TEj2 �1 � bj1;j2;k (17)

TSj2
� TEj1

�1 � bj2;j1;k (18)

5.6 Heuristic Scheduling

Optimal scheduling of the nodes is a complex problem,
because the number of the 0/1-variables bj1;j2;k can grow
quadratically in the number of nodes. An idea to solve
this problem is to execute partitioning while iterating the
following steps:

1. Solve an IP-model for the hardware/software mapping
with help of approximated time values.

2. Solve an IP-model for calculating an exact schedule
with nodes mapped to hardware or software.

3. If the resulting total time violates the timing constraint,
repeat the first two steps with a timing constraint that
is tighter than the approximated total time of step 1.
(see figure 5).

Approximation

1. Iteration 2.Iteration

new Constraint
Approximation

Exact
CONSTRAINT

Exact

t t

Figure 5: Heuristic scheduling

The following constraints are used additionally to the equa-
tions 6-11 to approximate time values:



� The starting time TS
j of a node vj is equal or greater

than the accumulated software execution times of all
predecessor nodes vj.

� TS
j is equal or greater than the accumulated hardware

execution times of all shared predecessor nodes of vj .

� TS
j is equal or greater than the sum of the ending

time of each dominator node vi of vj and the software
execution times on processor tak of all nodes on the
paths between vi and vj .

� TS
j is equal or greater than the sum of the ending time

of each dominator node vi of vj and the hardware exe-
cution times of all shared nodes on the paths between
vi and vj.

The correct constraints can be found in [NM95].

6 Results

The interesting parameter for partitioning is the number
of nodes n which have to be partitioned. For this reason,
we have developed some examples containing a lot of in-
stances of small VHDL-entities. The target architecture for
all examples consists of a processor, an ASIC, memory and
a bus connecting all components. All calculated partition-
ings concern interface costs and sharing effects between
nodes. The computation times of the examples represent
CPU seconds on a Sun SPARCstation20.

The heuristic partitioning approach can be evaluated by
examining

� the quality and

� the computation time

compared to the optimal result.
The quality of the heuristic approach can be evaluated

by determining the deviation between the exact and the ap-
proximated solution. If the heuristic partitioning approach
does not consider interfacing, then the results are always
exact, and therefore optimal. If interfacing is considered
however, then the approximated system execution time may
differ from the exact value. Therefore, we have partitioned
6 different systems (see figures 6,8) with the optimal and the
heuristic approach. For each system, solutions have been
calculated for a set of constraints. In figure 6 it is shown that
the approximated execution time is equal or very close to
the exact value. The maximal deviation between the exact
and the approximated execution time is 5:13%, the average
deviation is smaller than 1% for all examined systems.

In contrast to the partitioning quality, the computation
times are very different. Figure 7 depicts the computation
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times of both approaches for a system, which consists of 7
nodes. This system has been partitioned for 8 different sys-
tem execution time constraints. The maximal computation
time is 246 seconds for the optimal partitioning approach
and 2 seconds for the heuristic one, i.e., computation time
is drastically decreased. In figure 8 the computation time
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Figure 8: Computation times of the heuristic approach

of the heuristic approach is depicted for 6 different sys-
tems. For all of these systems several different designs
have been calculated with help of a set of system execution
time constraints for each system.

It becomes clear, that the heuristic approach is super-
ior to the optimal approach, because the results are always
nearly optimal and the computation times have been drastic-
ally reduced.



7 Conclusion

This paper presents a new approach of full-automated hard-
ware/software partitioning supporting multi-processor sys-
tems, interfacing and hardware sharing. The partitioning
approach itself is based on integer programming leading
to optimal results. In contrast to other approaches, where
hardware and software costs are estimated, our approach
follows the idea of ’using the tools’ for cost estimation.
The disadvantage of an increased calculation time is com-
pensated by better metrics and therefore fewer iteration
steps. The presented results are very promising, because
nearly optimal results are calculated in short time. Fu-
ture work will deal with design studies of real system level
examples.
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