

Hardware Support for Enforcing Isolation in Lock-Based Parallel Programs

Paruj Ratanaworabhan
Faculty of Engineering
Kasetsart University

paruj.r@ku.ac.th

Martin Burtscher
Texas State University
burtscher@txstate.edu

Darko Kirovski
Microsoft Research

darkok@microsoft.com

Benjamin Zorn
Microsoft Research

zorn@microsoft.com

Abstract
When lock-based parallel programs execute on conventional multi-
core hardware, faulty software can cause hard-to-debug race condi-
tions in critical sections that violate the contract between locks and
their protected shared variables. This paper proposes new hardware
support for enforcing isolation of critical section execution. It can
detect and tolerate races, allowing programs to execute race-free.
Our hardware scheme targets the existing large code base of locked-
based parallel programs written in type unsafe languages such as C
and C++. Our approach works directly on unmodified executables.
An evaluation of 13 programs from the SPLASH2 and PARSEC
suites shows that the cost of the additional hardware and the impact
on the overall execution time is minimal for these applications. Our
mechanism is complementary to hardware transactional memory in
that it uses similar structures but focuses on enhancing the reliability
of existing lock-based programs.

Categories and Subject Descriptors B.8.1 [Reliability, Testing, and
Fault-Tolerance]

General Terms Reliability, performance, experimentation

Keywords Race detection and toleration, hardware support for relia-
bility, transactional memory

1. Introduction
The advent of multicore hardware puts parallel programming in the
spotlight. As single-threaded performance has saturated, parallel
programs are the new hope for the continued performance im-
provement in computing and are expected to increasingly become
the norm. Traditional lock-based parallel programming, however, is
a difficult undertaking. It does not compose well, suffers from all
the problems of sequential programming, and introduces additional
sources of errors, e.g., deadlock, atomicity violation, and data races.
Researchers have therefore proposed a new paradigm called transac-
tional memory (TM) [1] to tame parallel programming. Although it
is a promising technology, TM has not yet matured enough to be
widely adopted. At present, parallel programmers still use lock-
based synchronization, and there exists a large installed code base
of lock-based parallel programs, particularly those written in unsafe
languages such as C or C++ with add-on libraries for threading and
synchronization. Microsoft is reported to have over 50 million lines
of source code in its repository written in this fashion.

This paper focuses on enhancing the reliability of lock-based pa-
rallel programs. It proposes a hardware extension to enforce isola-
tion of critical section execution. Normally, when lock-based pro-
grams execute, they are vulnerable to race conditions. When a criti-
cal section executes, accesses to its protected shared variables may
not be mutually exclusive as intended. There may be buggy threads
that acquire no locks or the wrong locks, thus concurrently access-
ing the same “protected” shared variables, which may lead to a race
condition. Our proposed scheme, which enforces isolation of critical
section execution, can allow a racy program that would otherwise
suffer from an isolation violation to execute race-free.

Isolation is a desirable property because it allows programmers to
reason about parallel program execution with semantics that match
their intuition. With guaranteed isolation, program execution always
preserves the data-race-free model (DRF0 to be precise) semantics
[2]. This model observes sequentially consistent execution for all
synchronization operations while allowing the underlying hardware
to be weakly ordered. Violation of isolation can give rise to unex-
pected behavior. Consider the example in Figure 1. A programmer
would expect the value of baseScript to be either default or
gScript after the critical section execution. However, Thread 2
can reset gScript to NULL after Thread 1 has evaluated the if
condition comparing gScript with NULL but before executing the
else body. This unexpected behavior (referred to as Nonrepeatable
Read) results from a data race and can crash the program when
Thread 1 passes NULL to the compile function. With guaranteed
isolation, the system forces the resetting of gScript to NULL to
either happen before or after the critical section execution, thus
restoring the expected behavior and allowing the execution to pro-
ceed correctly. Other unexpected behaviors that could result from
isolation violation due to data races in lock-based programs include
Intermediate Lost Updates and Intermediate Dirty Reads [3].

Figure 1: Isolation violation resulting in a nonrepeatable read

This paper makes the following contributions.
1. We propose a hardware extension to enforce isolation of critical

section execution. This mechanism builds on top of existing pri-
vate caches in multicore chips. Preexisting lock-based execu-
tables can run on this hardware without modification.

2. We evaluate the proposed hardware on parallel applications tak-
en from the SPLASH2 and PARSEC suites and show that the
additional hardware cost is minimal for these programs.

3. We describe how hardware TM can readily be retrofitted to sup-
port our mechanism, thus making hardware TM useful not only

Thread 1:

CSEnter(mutex_A)

if (gScript == NULL)

baseScript = default

else

baseScript = gScript

CSExit(mutex_A)

compile(baseScript)

Thread 2:

gScript = NULL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’12, June 25–29, 2012, Venice, Italy.
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

for new transaction-based code but also for conventional lock-
based programs.

2. Theoretical Framework
This section investigates the theoretical framework for handling
isolation violations. We first consider harmful interleavings between
accesses to shared variables of safe threads and those of non-safe
threads. A safe thread only accesses shared variables inside of criti-
cal sections that are guarded by the correct locks whereas a non-safe
thread might access the same shared variables outside of any critical
section or use the wrong lock to guard them. Then, we present a
mechanism that enforces isolation by preventing all harmful inter-
leavings. We first consider cases where a single variable is pro-
tected and accessed in a non-nested critical section. Then, we extend
this theoretical framework to cover cases involving multiple va-
riables and overlapped critical sections. The proposed framework is
based on ToleRace [4], a software tool and runtime environment
that prevents asymmetric data races.

Let r, w, and x denote read, write, and don’t-care operations, re-
spectively, and let lower case letters represent accesses of non-safe
threads and upper case letters represent accesses of safe threads. r+
denotes a sequence of at least one read and r* indicates zero or more
reads. The operators + and * are equally defined for writes and
don’t-cares. We note that there are only three ways in which a se-
quence of operations from a single thread can interact with a single
variable: by reading it only (r+), by setting its value regardless of its
prior (wx*), and by setting its value based upon its prior (r+wx*).
For the r+wx* sequence, we assume that w is dependent upon the
value retrieved by r.

Suppose that one of the three possible sequences of operations
from a non-safe thread slices the operations of a safe thread into two
parts. This results in 27 possible interleavings among the three se-
quences from both threads, i.e., three possible sequences for the first
part of the safe thread, times three sequences for the non-safe
thread, times three sequences for the second part of the safe thread.
Some of these interleavings are harmful and result in an isolation
violation. We classify them in terms of race cases in the first two
columns of Table 1. Note that the sequences in capital letters
represent the safe thread operations and are combinations of two or
more of the three sequences mentioned above. For example, R+X*
in race case I corresponds to either an R+ or an R+WX* sequence.
The notation used for the sequences in race case VI is slightly over-
loaded; it denotes the set of interleavings that can result from an
r+wx* intervening sequence from the non-safe thread that does not
already belong to cases IV and V.

Table 1: Data races that result in an isolation violation and the
outcome of the resolution function f (see below), attempting to

guarantee isolation in the presence of each type of race

Column 3 of Table 1 provides a short-hand notation for each race

case. It only includes the access operations that matter. For exam-
ple, in race case II, isolation violation occurs because the read oper-
ations from the non-safe thread observe the “dirty” value produced
by the first write instead of the second. Operations that are relevant
in this case are the read from the non-safe thread and the two writes
from the safe thread that sandwich the read (hence the WrW short-
hand notation). The motivation for these short-hand notations will
become apparent when we explore the mechanism for ensuring
isolation next.

Note that our theoretical framework needs to be concerned only
with race condition involving 2 threads. Any race condition among
K threads where K is greater than 2 can always be reduced to one of
the above race cases between two threads shown in Table 1 [4].

2.1 Idealized Mechanism for Ensuring Isolation
The core approach to guaranteeing isolation of critical section ex-
ecution is to replicate the protected shared state so that the thread
that acquires a lock on the shared state has an exclusive copy. This
thread continues reading from and writing to this copy until it re-
leases the lock. When the lock is released, the system determines
which, if any, isolation violation occurred and decides whether to
propagate the value of the local (exclusive) copy or the global copy
upon releasing the lock. Isolation can be guaranteed as long as the
access operations involved in a race are serializable. If they are not,
our system is still able to detect the isolation violation and functions
as a race detector in this case. The idealized mechanism for enforc-
ing isolation is described below and shown diagrammatically in
Figure 2. Our mechanism is only concerned with enforcing serializ-
able execution and, therefore, cannot fully handle parallel programs
that require “stronger” semantics such as linearizability.

Figure 2: Ensuring isolation by replicating shared state and
propagating appropriate copies using the resolution function f

Initialization and Finalization: Assume that the binding of lock xV

to shared variable V is known before the critical section in the safe
thread T1 is entered and that storage for two additional copies (V',
V'') of variable V is available. This assumption is only valid with the
idealized mechanism. Our implementation relaxes this assumption a
great deal.

Lock (Entry): When lock xV is acquired by T1, copying V to V' and
V'' (V''=V'=V) is performed atomically. Note that the copying and
the lock acquire may not be performed atomically.

Reads and Writes inside the Critical Section: All instructions in
the critical section of T1 use V' instead of V. V' is the local copy of V
for T1 that cannot be accessed by other threads, not even due to a
race. All other threads T2 are unchanged and continue using V for
all accesses. Copy V'' is not accessed by any thread until T1 exits the
critical section.

Unlock (Exit): When T1 exits the critical section by releasing the
acquired lock, the system analyzes the content of V', the original
value V'', and the value V that could have been altered by other
threads as a consequence of a race. Depending on the relationship of
the values in {V, V', V''} and knowledge about the specific race case
from Table 1 that has occurred, the resolution function V = f(V, V',
V'') defines the value of V after T1 finishes its critical section. The
resolution function is executed atomically.

Combining the mechanism outlined above and the knowledge of
each race case in Table 1, we can reason about which cases the sys-

race type short-hand serializable f (V, V', V'') schedule
I X+ wx* R+X* XwR Yes V XRw
II R*WX* r+ R*WX* WrW Yes V' rWW
III R+X* wx* WX* RwW Yes V RWw
IV R+ r+wx* R+ RrwR Yes V RRrw
V WX* r+wx* X+ WrwX Yes V' rwWX
VI X+ r+wx* X+ - {IV + V} RrwW No N.A. N.A.

tem can handle and enforce isolation. The last two columns of Table
1 summarize the definition of f and indicate the resulting serializa-
ble schedule of operations for cases where isolation can be en-
forced. We see that a system with this type of resolution function
can guarantee isolation in all race cases except the RrwW case.
Here, the safe thread and the interleaved part of the non-safe thread
both read the value of the shared variable after the safe thread has
entered the critical section, and then they execute in parallel. Both
threads see the same value returned by the read, which would not be
possible if the safe thread had executed its critical section in isola-
tion. This case is, therefore, not serializable under our theoretical
framework. (Section 6 discusses the possibility of tolerating this
case with re-execution.)

2.2 Multiple Variables and Nested Critical Sections
So far, we have only considered multithreaded, single-variable, non-
nested critical section contexts. We now extend our framework to
handle all cases, including multiple variables and nested critical
sections. Local copies and the resolution function need to be made
and executed atomically for multiple variables. Nested critical sec-
tions share their local copies with the outermost critical section.
However, they have their own resolution function to resolve races
for their protected variables.

In general, this mechanism to ensure isolation may lead to incon-
sistent execution. If it does, the system cannot enforce isolation and
reverts to isolation violation detection mode instead. Inconsistent
execution arises when the system reorders operations of a non-safe
thread such that the operations do not follow their original program
order and there are dependencies among the operations that must be
observed. This can occur because the proposed mechanism resolves
races to each variable independently. Here, dependencies refer to
data dependences, i.e., when a write to a given variable depends on
a read of another variable.

To understand the general cases involving multiple variables and
overlapped critical sections, it suffices to consider a race involving
two variables P and Q. Here we provide a summary of the actions
involved in each race case. More detailed explanation can be found
elsewhere [4].

Let a non-nested critical section protect both variables in a safe
thread. In a non-safe thread, let an intervening sequence to P come
before an intervening sequence to Q in program order, but the two
may overlap each other. Table 2 enumerates all possible P and Q
intervening combinations from the non-safe thread. The third col-
umn indicates whether the system reorders the intervening opera-
tions to P and Q.

Table 2: Enumeration of intervening sequences to P and Q;

trailing x* and r+ of P sequence may overlap with Q sequence

Note that the presented framework does not disallow orderings
that violate sequential memory consistency (SC). If a programmer
wants SC to be honored on weakly-ordered hardware, he or she has

to use explicit synchronization operations to restrict the ordering of
operations.

3. HEI Implementation
Given the ubiquity of multicore chips, it seems expedient to imple-
ment our proposed Hardware for Enforcing Isolation (HEI) with
this microprocessor trend in mind. As we shall see, not much new
hardware is needed to realize HEI in a multicore setting. Preexisting
multicore components lend themselves well to embrace HEI’s func-
tionality. Recall that the mechanism presented in Section 2 involves
making thread-local copies of shared variables and operating on
those copies. The private data cache in each core naturally serves as
thread-local storage. Thus, the central idea behind the design of HEI
is to use existing cache components in multicore chips and leverage
the already present coherence mechanism that maintains coherency
among the private caches of the individual cores. In addition, we
want the underlying hardware to be transparent to the running pro-
gram. The program’s executable should be able to run on top of HEI
without any modification or user intervention.

The proposed design assumes write-back caches and leverages the
MSI snoopy invalidation-based cache coherence protocol. To sup-
port the HEI functionality, the cache coherence protocol is aug-
mented with extra states and transitions. We believe that invalida-
tion-based protocols are preferred over update-based protocols and
write-back caches are favorable to write-through caches in a multi-
core environment because both require markedly less inter-core
communication bandwidth relative to their counterparts. Hence, we
propose the design of HEI per the above assumptions. As the HEI
mechanism is tied to bus-based multicore architectures, the scalabil-
ity of HEI will be limited by it. At present, we target HEI for pro-
cessors with up to 16 cores.

Figure 3: Basic structures of the proposed hardware for
enforcing isolation (HEI)

3.1 Basic Design and Operation
The basic structure of the proposed HEI is shown in Figure 3. The
main components represent the safe memory region. This safe
memory extends the private cache and is placed at the cache level
that handles coherence traffic from other cores. Its structure is simi-
lar to that of a victim cache [5]. The design leaves the existing pri-

P Q reorderd by system dependency
from P to Q enforcing isolation

r+ r+ No No Yes
wx* r+ Yes No Yes

r+wx* r+ If race IV to P No Yes
r+ wx* No maybe Yes
wx* wx* No maybe Yes

r+wx* wx* No maybe Yes
r+ r+wx* No maybe Yes

wx* r+wx* If race V to Q maybe No if reordered,
Yes otherwise

r+wx* r+wx* If race IV to P and
V to Q maybe No if reordered,

Yes otherwise

Tags Cache blocks

Private cache region

Access bit
vectors

Evicted shared memory blocks

Safe memory region

RT

WT

RO

WO

FRAT

FRAO

Active

Valid

State
bits

vate cache unaltered, but the coherence protocol needs to be aug-
mented.

There are four basic components in the safe memory: the evicted
cache block region, the active bit, sets of Access Bit Vectors
(ABV), and two status bits.

Evicted cache block region: The general structure of this compo-
nent is the same as the private cache. The key difference is that an
entry is searched associatively. Basically, a block is transferred
from the private cache to this evicted region in the safe memory
whenever the CPU of the core in consideration accesses potentially
shared memory locations that reside in this block.

Active Bit: The active bit specifies whether there are valid entries
in the safe memory. When this bit is set, HEI signals to the cache
controller to also look for cache entries in this region. Whenever the
controller receives a request from the CPU or from the bus, it first
searches the private cache area. If a miss occurs, it continues the
search in the safe memory before proceeding to the lower levels of
the memory hierarchy. For performance reasons, searches may be
launched simultaneously in multiple levels.

Access Bit Vectors (ABV): There are six cache block bit vectors
that serve as bookkeeping mechanism for the types of accesses to
each byte in an evicted cache block. They are called: Read This
(RT), Write This (WT), Read Others (RO), Write Others (WO),
First This Access Read (FTAR), and First Others Access Read
(FOAR). The width in bits of each ABV is equal to the size of the
cache block in bytes. The purpose of each ABV is explained in
Table 3. “This” refers to this core, “Others” to all other cores.

State Bits: The two state bits of each entry reflect the state of the
corresponding cache block in the private caches of other cores.

Table 3: Description of each Access Bit Vector

3.1.1 Modifications to the Standard MSI Cache Cohe-
rence Protocol
The modification depicted in Figure 4 involves (1) adding a new
Modified (M) and a new Shared (S) state called Critical Section
Modified (CSM) and Critical Section Shared (CSS), which are al-
most exact replica of the M and S states, (2) modifying some state
transition actions between and within the original M and S states,
and (3) adding a new set of state transition actions between the
CSM and CSS states that are analogous to those of the M and S
states. The details pertaining to the standard MSI protocol are omit-
ted for clarity. Interested readers are referred to, e.g., Culler et al.
[6]. The underlined actions in Figure 4 relate directly to HEI’s func-
tionality. The key points in this augmented protocol are:
1. It adds the two new states CSS and CSM, as mentioned above.
2. It adds transitions from the Invalid (I) state to the two new states,

CSS and CSM (transitions 10 and 12 in Figure 4).
3. It dictates that a read hit while in the CSS state needs to propa-

gate a read message on the shared bus (transition 5). In the S
state, a read hit does not generate additional bus traffic and is
confined to the private cache of the core in consideration.

4. It requires that a read hit and a write hit while in the CSM state
place corresponding read and invalidation messages on the bus

(transitions 1 and 2). The corresponding transitions in the M state
do not propagate such read and invalidation messages.

The changes noted in items 3 and 4 above allow the safe memory

in a given cache to snoop for intervening reads or writes that would
otherwise be confined to the private caches of the other cores. Note
that the cache coherence engine only runs in the private cache re-
gion, never in the safe memory region.

Figure 4: Augmenting the MSI protocol to enable HEI; bus

requests are in bold; CPU requests in normal font; underlined
actions are the key differences from the MSI protocol

3.1.2 Basic Operation
Initially, the safe memory in each core is not active; all the ABVs
and the valid bit for each block in the evicted cache region are
cleared. When a core detects that:
1. the program starts to execute a critical section, i.e., acquires a

lock, and
2. accesses possibly shared memory locations, i.e., non-stack loca-

tions,
the hardware evicts the cache block being accessed from the private
cache region and sends the block to an entry in the evicted cache
region in the safe memory. Detecting the first condition requires
hardware that recognizes, for example, the test&test&set lock idiom
similar to that used in SLE [7]. Detecting the second condition re-
quires hardware that filters out instructions whose addressing mode
is indirect off the stack and frame pointers. We assume that shared
variables are accessed via registers other than these two registers.

Once the block is in the safe memory, HEI broadcasts an invalida-
tion message to nullify all other copies of this block in this and all
other cores. It also sets the Active Bit in the safe memory.

When the Active Bit is on, there are two cases to consider:
1. subsequent accesses to this block coming from this core, and
2. subsequent accesses to this block coming from another core.

In the first case, the following happens:
1. The accesses never bring the block back into the private cache;

they always take a miss in the private cache and use the block in
the safe memory. As a consequence, whenever the Active Bit is

Access Bit Vectors (ABV) Descriptions

Read This (RT)
Bit i of RT is set when a read access from this core
touches the ith byte

Write This (WT)
Bit i of WT is set when a write access from this core
touches the ith byte

Read Others (RO)
Bit i of RO is set when a read access from the other
cores touches the ith byte

Write Others (WO)
Bit i of WO is set when a write access from the
other cores touches the ith byte

First This Access Read (FTAR)
Bit i of FTAR is set when the first access that
touches the ith byte from this core is a read

First Others Access Read (FOAR)
Bit i of FOAR is set when the first access that
touches the ith byte from the other cores is a read

Modified

Invalid Shared

CS
Modified

CS
Shared

1

2

4

5

3

6

7
8

9

Standard MSI protocol
(Details omitted)

1: CPU read hit; place read message on bus
2: CPU write hit; place invalidation message on bus
3: CPU write miss; place write miss on bus and write back
4: CPU read miss; place read miss on bus and write back
5: CPU read hit; place read message on bus
6: CPU read miss; place read message on bus
7: CPU write miss; place write miss on bus
8: Read miss for block received; write back; place read message on bus
9: CPU write hit; place invalidation message on bus
10: CPU write miss and block found in safe memory; place write miss on bus
11: Write miss for block received; write back
12: CPU read miss and block found in safe memory; place read miss on bus
13: Write miss for block received
14: Invalidation for block received

Invalid10

11

12 13

14

(Same invalid state in
standard MSI protocol)

on, any misses in the private cache need to search the safe mem-
ory for a matching entry before going to the next level of the
memory hierarchy.

2. The accesses set the appropriate bits in each of the RT, WT, and
FTAR bit vectors. Recall that these sets of ABVs are for this
core and are updated based on this core’s requests.

In the second case, we may potentially have a race. The following
happens:
1. The accesses are subject to the augmented cache coherence pro-

tocol described above as they are accessing the private cache.
2. The (active) safe memory in each core snoops on the bus for

messages that may be relevant and sets the appropriate bits in
each of the RO, WO, and FOAR vectors.

Upon exiting from a critical section, HEI resolves races according
to the table in Figure 5, which is based on Table 1 in Section 2.
Races are resolved at byte granularity using the information from
the six Access Bit Vectors. The information from the RT, WT, RO,
and WO bit vectors are sufficient to infer some race types. Howev-
er, for the entries labeled A, B, and C in Figure 5, we need the in-
formation stored in the FOAR and FTAR bit vectors to pin down
the exact race type. To resolve the race correctly, HEI retrieves the
latest block copy that resides outside of the safe memory. This block
should be in one of the three states I, CSS, or CSM. To do so, the
hardware consults the state bits. If the block is in either the I or CSS
state, it obtains the latest copy from the main memory; otherwise, it
requests the block from the core that has the block in the CSM state.
Upon receiving the latest copy, the hardware inspects the block byte
by byte. Based on the race resolution in Figure 5, it determines for
each byte whether to pass on the value from the block in the safe
memory or from the outside block.

After successfully resolving any possible races for each byte in a
block, HEI processes the next valid block in the safe memory until
all valid blocks in the evicted cache region have been processed.
Then, it resets the valid bits, the ABVs, and the Active Bit. Note
that the hardware needs to ensure that this process happens atomi-
cally. A straightforward way of ensuring this is to lock the bus so
that only bus transactions from the core that is resolving the race are
allowed during this time period. As we will show in the next sec-
tion, critical section memory accesses constitute only a very small
fraction of the total memory accesses, so this simple but seemingly
costly way of ensuring atomicity should work well in practice. Fur-
thermore, for most critical sections, the number of entries in the
evicted cache region is small.

When encountering the RrwW race case that HEI cannot tolerate,
the hardware reverts to detection mode and terminates program
execution. The HEI hardware allows logging of quite detailed in-
formation including addresses, type, and sequence of accesses in-
volved in the race. Such information can be a helpful debugging aid
to identify the cause of the data race offline.

3.1.3 Nested and Overlapped Critical Sections
The HEI mechanism described thus far is designed to handle non-
nested non-overlapped critical sections. It may seem like the sim-
plest way to extend the basic hardware to cope with nested critical
sections is to flatten them and to add a counter that keeps track of
the nesting level. Unfortunately, this simple scheme does not faith-
fully preserve the original lock-based program semantics (see the
example in Section 7) and does not correctly handle overlapped
critical sections.

To remedy this situation, we need the ability to perform race reso-
lution at every critical section exit. Thus, we have to associate a
lock variable with each access (the term lock variable here refers to
the memory location used in the test&test&set operation, which
marks the start of a critical section). Since HEI resolves races at
byte granularity, having a lock variable associated with each byte in

a cache block is potentially costly. If we take a slightly less ambi-
tious approach and decide not to support arbitrary levels of nesting
or overlapping, we can scale back the hardware considerably. Based
on the benchmark programs we studied, nesting levels greater than
two occur rarely. Hence, we believe supporting up to four nesting
levels will accommodate the majority of lock-based programs.

Figure 5: HEI resolution table based on Access Bit Vectors

3.1.4 Fallback Mechanism
If the HEI resources are exhausted while the program is inside of a
critical section, there are two possibilities to consider: (1) a race has
already been detected, or (2) a race has not yet occurred. In the for-
mer case, the fallback is simply to stop program execution and re-
port the race. Resolving the race in the middle of a critical section is
not defined in HEI. The focus of the fallback mechanism, therefore,
is on the second case where program execution must be allowed to
continue. Abruptly stopping the program is not an acceptable solu-
tion in this case. After all, the introduction of HEI should not inter-
fere with legitimate race-free runs of programs. The basic idea be-
hind the recovery is to reconcile the copies of each of the active
cache blocks in the safe memory region and to update the shared
memory before program execution resumes. Consider each cache
block residing in the safe memory region. Instances of these cache
blocks may exist in (1) one other processor in the CSM state or (2)
one or more other processors in the CSS or invalid state. The recov-
ery machinery needs to flush all instances of these cache blocks to
memory and make sure that each byte in the blocks holds the latest
value from the last write to this byte. To do this correctly, the ma-
chinery only needs to consult the two write access bit vectors, WT
and WO, associated with each cache block in the safe memory re-
gion. To ensure atomicity of the recovery process, the shared bus is
locked until the flushing is completed.

4. Discussion
This section compares and contrasts the two other isolation en-
forcement techniques most closely related to ours, transactional
memory (TM) and PACMAN [8]; the former is a well-studied tech-
nique whereas the latter is quite new.

General approach: Pacman is a hardware technique that tolerates
races by stalling the unsafe threads whose accesses interfere with
those in the safe thread that is executing in a critical section. At the
heart of Pacman is a centralized piece of hardware (which can be
made distributed) called SigTable. An entry in the SigTable stores
the signature of the addresses being touched by the safe thread as
well as its PID. Pacman monitors accesses from all other threads

WT RO WO Race type (if any)
Serializable execution enforced By

HEI
0 0 0 No race None
0 0 1 No race None
0 1 0 No race None
0 1 1 No race None
1 0 0 No race None
1 0 1 No race None
1 1 0 WrW rWW
1 1 1 WrwX, No race rwWX, None A
0 0 0 No race None
0 0 1 XwR XRw
0 1 0 No race None
0 1 1 RrwR, XwR RRrw, XRw B
1 0 0 No race None
1 0 1 XwR XRw
1 1 0 WrW rWW
1 1 1 WrwX, RrwW, XwR, RwW rwWX, Not serializable, XRw, RWw C
Case A: Case B: Case C:

FOAR Race type FOAR Race type FTAR FOAR Race type
0 No race 0 XwR 0 0 XwR
1 WrwX 1 RrwR 0 1 WrwX

1 0 RwW
1 1 RrwW

through coherence transactions to check whether their addresses are
in the stored signature. If so, there is a potential race and the access
requests from other threads are nacked, thus effectively stalling
those threads. Pacman’s hardware is placed at the network level so
it is unintrusive in the sense that it minimally interferes with the
normal processor-cache operations. Pacman could also be used as a
race detector, but it is not designed for this purpose as the SigTable
holds limited access information and the use of signatures may alias
addresses that could result in false positives.

HEI is more intrusive as it is placed directly at the cache level that
handles coherence transactions. HEI is distributed among each
core’s private cache. There is no explicit stalling of threads in HEI;
race toleration occurs only at the exit of safe threads’ critical sec-
tions. HEI readily supports detection and toleration modes as the
safe memory contains more access information down to byte granu-
larity and uses full addresses. If it is desirable to have Pacman’s
style stall-based tolerance, HEI can be modified to emulate it by
nacking all external requests that hit in the safe memory.

The HEI mechanism is similar to TM with a lazy versioning poli-
cy and lazily detecting conflicts among transactions. However, it is
not based on optimistic synchronization as TM is; there is no notion
of abort-and-rollback, nor is there a need for contention manage-
ment. Whereas handling side effect operations and nested transac-
tions are still open issues with TM, HEI handles all I/O operations
as well as overlapped critical sections transparently, preserving the
semantics of the original lock-based program.

Pacman can also be viewed as pessimistic TM that has no notion
of versioning or resolving conflicts (as it prevents them in the first
place). Hence, the TM issues mentioned above become non-issues
in Pacman as well.

Isolation enforcement capability: there exist TM mechanisms that
guarantee isolation among transactions and between transactions
and non-transactions [9]. Pacman, being a pessimistic TM, can also
fully enforce isolation in lock-based code. HEI, on the other hand,
fails to enforce isolation when it encounters RrwW race cases. In
Section 6, we outline a modification to the standard HEI implemen-
tation that can tolerate RrwW races.

Speculative execution: TM has this at heart, and, hence, it needs
sophisticated techniques to deal with rollback and contention man-
agement. In addition, there are open issues with I/O operations.
Pacman and HEI never perform speculative execution, so both nev-
er have non-undoable actions like I/Os. Encountering of conflicting
accesses result in a thread stall in Pacman whereas HEI allows all
threads involved in a conflict to progress if it can tolerate the race or
terminates the execution and reports the race otherwise.

Starvation and deadlock: this is a major issue in TM that often
needs sophisticated contention management to resolve. It is also an
issue in Pacman. A simple deadlock case involves two threads using
different locks to guard the same protected shared variables, nack-
ing each other while both execute inside of the critical sections.
Pacman requires a rather elaborated scheme to deal with this situa-
tion. HEI, on the other hand, never encounters such an issue. It al-
ways makes forward progress when it can tolerate the race or termi-
nates program execution and reports the race if it cannot. Even
when multiple threads exhaust their HEI hardware and need to per-
form flushing, deadlock cannot occur in HEI as the only resource
each thread needs is the bus, which acts as a serialization point that
each thread needs to acquire through arbitration before flushing.
Once a thread acquires the bus, it does not need to wait for any oth-
er resources to perform flushing.

Hardware complexity: it is clear that optimistic concurrency,
which needs to satisfy both performance and isolation goals in TM,
requires more complex hardware than both Pacman and HEI. The
major components in Pacman and HEI, the safe memory and the
SigTable, are both regular, table-like structures. The SigTable is a

bit more complicated as it works with encoded addresses. However,
it is the control logic that makes Pacman more complex than HEI.
Pacman’s control logic needs to handle deadlock and requires some
intrusive hardware addition to be made to the cache hierarchy. In
addition, placing the SigTable at the network level makes it tricky to
reason about atomicity.

Scalability: HEI has limited scalability as its mechanism is tied to
bus-based schemes. Pacman can be made more scalable with a dis-
tributed SigTable. Scalable TM has been demonstrated by, for ex-
ample, Chafi et al. [10].

Executables: Pacman and HEI operate largely on unmodified
lock-based executables. They can run code that uses lock-free data
structures that contain intentional races and treat them as harmless
since these races involve accesses to shared data only outside of
lock regions. TM, on the other hand, operates on transactional code.
Lock-based code can run on TM hardware, but it first needs to be
transactified, i.e., converted from lock-based to transaction-based
code. This conversion, however, is not trivial [11].

5. Evaluation
5.1 Benchmarks
We use 13 applications from the SPLASH2 [12] and PARSEC [13]
benchmark suites for our evaluation. The eight programs from the
SPLASH2 suite were chosen per the minimum set recommended by
the suite’s guidelines. They are cholesky, fft, lu, radix, barnes,
ocean, radiosity, and water. We replaced the SPLASH2 suite’s
PARMAC macros with a pthreads library implementation. For each
of the eight programs, the default inputs were used. We selected the
five programs from the PARSEC suite that use the pthreads library.
They are dedup, facesim, ferret, fluidanimate, and x264. The PAR-
SEC suite aims to provide up-to-date multithreaded programs that
focus on workloads in recognition, mining, and synthesis. They are
run with the simlarge inputs.

5.2 System and Compiler
All benchmarks are compiled and run on a 32-bit system with a
four-core 2.8 GHz Xeon CPU with 16 kB L1 data cache per core, a
2 MB unified L2 cache, and 2 GB of main memory. The operating
system is Red Hat Enterprise Linux Release 4 and the compiler is
gcc version 3.4.6. We compiled the SPLASH2 and PARSEC pro-
grams per each suite’s guideline.

5.3 Quantitative Assessment of HEI
This subsection investigates quantitatively the characteristics of the
safe memory and the potential overhead when running the bench-
mark applications under HEI. We first focus on the amount of
hardware required to protect the critical sections. Then, we look at
the frequency of critical section executions and the effect on the
execution time of each application given certain overheads incurred
by HEI.

Figure 6 shows, for each application, the fraction of critical sec-
tion executions that are fully covered by HEI when the block size is
64 bytes and the number of safe memory entries is 32, 64, or 128.
HEI fully covers a critical section execution when, for a given
amount of hardware, it does not cause overflow in the safe memory.
For 64 entries, over 93% of the critical section executions in each
application are covered. When doubling the number of entries to
128, the coverage increases to 99%. Figure 7 shows, for varying
block sizes, the average number of safe memory entries each appli-
cation operates on. For a 64-byte block, all applications except de-
dup and ferret often process less than 8 entries. To obtain the result
in Figures 6 and 7, we use our in-house cache simulator that imple-
ments the modified MSI protocol as described in the previous sec-
tion. The simulator is implemented as a Pintool plug-in [14] that
runs with the Pin dynamic binary instrumentor.

Figure 6: HEI coverage of critical section execution for 64-byte

blocks (y-axis not zero based)

Figure 7: Median number of entries in the evicted cache of the

safe memory required by HEI for different block sizes

Table 4: Critical section execution characteristics of each
benchmark application

From the simulation result in Figures 6 and 7, we see that cover-
ing the majority of critical section execution does not require an
excessive amount of hardware. In addition, most critical section
executions exercise only a small fraction of the hardware.

Next, we look at the characteristics of critical section executions
with a focus on memory accesses. Table 4 summarizes the results.
In the first data column, we show the average number of memory
locations touched within a critical section. These are the possibly
shared locations accessed by each thread. Recall from the previous
section that we exclude all stack accesses via frame and stack poin-
ters. Most applications access no more than 20 locations on average.
The number for radix is slightly above 20 and for barnes it is 43.
ferret and dedup perform significantly more accesses than the other
applications. These two benchmarks execute loops inside of critical
sections whereas all the other programs loop over their critical sec-
tions. This access information is in line with the results for the
amount of hardware and the coverage shown in Figure 6.

The second column of Table 4 shows the fraction of memory ac-
cesses inside critical sections as a percentage of all memory ac-
cesses. As we can see, accesses inside of critical sections are rela-
tively infrequent events. The percentage for all the benchmarks
except ferret and fluidanimate is less than 1%. After all, parallel
programs try to avoid serial execution, the part where Amdahl’s law
limits performance. The quantities in the first and second columns
are obtained from dynamic program analysis using Pin; we dynami-
cally instrumented all machine instructions – inside and outside of
critical sections – that have at least one memory operand not ac-
cessed via the stack or frame pointer.

The third, fourth, and fifth columns show the fraction of total ex-
ecution time spent in critical sections for 4, 8, and 16-core ma-
chines. We set the limit at 16 cores as we do not project HEI to be
applicable beyond this point. To measure the time, we inserted a
call to the clock_gettime() function at each critical section entry and
exit point. In case of nested critical sections, we flatten them and
measure the time for the outermost critical section. clock_gettime()
provides an interface to a high-resolution timer with roughly nano-
second accuracy. To get accurate timing measurement, we configure
all the programs to execute with only a single thread. Then, we es-
timate the time spent outside of the critical sections by assuming
that those portions can be fully parallelized. Hence, if each program
is to run on an n-core machine, this portion of time is divided by n.
The fraction of time spent in the critical sections is calculated as:

We see that only radiosity, barnes, dedup, ferret, and fluidanimate
have a noticeable fraction of time in critical sections, ranging from
around 4% to 55%. All the other applications spend less than 1% of
their execution time in critical sections. As expected, when the
number of cores increases, the fraction of time inside of critical
sections becomes more significant, especially when we assume that
the code outside of critical sections can be fully parallelized.

The results obtained so far seem to suggest that the HEI overhead
should not be significant. The safe memory hardware is small and
most of the time only a small fraction of it is exercised. In addition,
memory accesses in critical sections are relatively infrequent and
most parallel applications spend little time in critical sections.

5.4 Qualitative Argument for HEI Overhead
This subsection offers qualitative arguments as to why the HEI
overhead is unlikely to be excessive. We focus on two factors: the
HEI memory bandwidth requirement and the HEI overhead when
executing inside of critical sections.

To understand the bandwidth requirement, we need to look at the
modified MSI protocol in Figure 4. The bottom line is that a system
with HEI consumes about as much bandwidth as a system without
it. The only time that a system with HEI generates extra coherence
messages from cores not executing in critical sections is when the
other cores have cache blocks in either CS modified or CS shared
states (Figure 4 messages 1, 2, and 5). Since this usually signals a
race, it should occur rarely.

Next we look at HEI’s critical section execution overhead. The
performance penalty of HEI comes primarily from two sources,
accessing safe memory and resolving races. As the result in Section
5.3 indicates, the majority of critical section executions exercises
fewer than 8 entries in the safe memory. Therefore, the associative
search associated with each safe memory access should require only
a couple of cycles more than a normal L1 access. This may be a
significant overhead for accesses that would have hit in the L1.
However, such an access is more likely to first miss in the L1 (after
all, it is a shared variable), in which case the overhead becomes
insignificant.

85%
86%
87%
88%
89%
90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

ch
ole

sk
y fft lu

radix

ba
rne

s
oc

ea
n

ra
dio

sit
y

water-s
pa

tia
l

de
du

p

fac
esim fer

ret

flu
ida

nim
ate x2

64

HG
I c

ov
er

ag
e

32 entries 64 entries 128 entries

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

ch
ole

sk
y fft lu

ra
dix

ba
rne

s
oc

ea
n

radio
sit

y

water-s
pa

tia
l

de
du

p

fac
esim fer

ret

flu
ida

nim
ate x2

64

M
ed

ia
n

nu
m

be
r

of
 e

vi
ct

ed
 li

ne
s

in
 th

e
sa

fe
 m

em
or

y 32 bytes 64 bytes 128 bytes

Avg. Uniq.
Mem. Loc.
Touched

% Mem.
Access

% Time 4-
core

% Time 8-
core

% Time 16-
core

cholesky 14.34 0.06% 0.22% 0.44% 0.88%
fft 6.83 < 0.001% 0.004% 0.007% 0.014%
lu 20.93 < 0.001% 0.02% 0.03% 0.06%
radix 22.57 < 0.001% 0.001% 0.003% 0.006%
barnes 43.05 0.43% 10.94% 19.72% 32.95%
ocean 20.99 < 0.01% 0.03% 0.06% 0.12%
radiosity 4.92 0.49% 23.62% 38.21% 55.30%
water-spatial 15.70 < 0.01% 0.02% 0.03% 0.07%
dedup 121.30 0.73% 4.47% 8.55% 15.76%
facesim 15.40 < 0.01% 0.07% 0.15% 0.29%
ferret 92.76 1.22% 6.93% 12.96% 22.94%
fluidanimate 15.00 1.36% 4.32% 8.29% 15.30%
x264 6.47 < 0.01% 0.01% 0.02% 0.03%

The resolution hardware is made of combinational logic that re-
quires only simple AND gates followed by OR gates to process the
access bit vector and “filter” bytes in a safe memory entry to pass
on. It should take less than one cycle per resolution. If we need
faster race resolution, more hardware can be added to resolve races
in parallel.

6. Enforcing Isolation for the RrwW Race with
Re-execution
As described, HEI is not able to guarantee isolation for the race case
RrwW. However, this case can be serialized as rwRW if we have
the ability to re-execute the RW operations in the safe thread after
having seen the intervening rw operations from the non-safe thread.
Assuming we have a mechanism for re-execution, guaranteeing
isolation for this race case becomes viable. This section quantifies
the potential to enhance HEI through critical section re-execution on
the benchmark programs.

Figure 8: Worst-case measurement for fraction of shared

accesses where isolation can be guaranteed

First, consider the re-execution capability of a particular critical
section execution. We consider three categories: non-reexecutable,
lightweight re-executable, and heavyweight re-executable. A non-
re-executable critical section always involves interactive I/O opera-
tions that cannot be undone or repeated. A lightweight re-executable
critical section does not have calls to library functions that invoke
operating system services. Therefore, it can be re-executed by
checkpointing the register and memory reads in the critical sections
in user code and address space. A heavyweight re-executable criti-
cal section contains calls that invoke operating systems services that
can potentially be undone by checkpointing the full memory state in
both user and OS space, including calls to threading and synchroni-
zation operations in the pthread library.

We then measure the fraction of shared accesses where HEI can
guarantee isolation in each benchmark application. The results of
this experiment for all critical section executions are shown in Fig-
ure 8. This is the worst-case measurement, i.e., at least this fraction
can be guaranteed. The reading at 50% means that, on average, for a
given memory location accessed inside of critical sections, at least
half of the accesses can be guaranteed isolation, i.e., they can be
serialized with racing accesses.

The first bar in Figure 8 shows, for each application, the mea-
surement without any re-execution. In essence, this bar indicates the
fraction of all accesses to a given shared memory location inside of
critical sections that do not start with a read that is later followed by
a write (which is indicative of RW operations). Recall that when
this is the case, it guarantees that race case RrwW cannot happen,
and, hence, isolation can always be guaranteed. We find two ex-
treme cases. fluidanimate has zero potential whereas x264 has
100%. barnes hovers just above 50% and most of the benchmarks
have less than 50% potential. When considering lightweight re-
execution, the potential shoots up dramatically in a number of ap-

plications, particularly in fluidanimate where it jumps from 0% to
100%. Other benchmarks with large improvements are cholesky,
barnes, radiosity, and facesim. Expectedly, when considering hea-
vyweight re-execution, we see 100% potential in all benchmark
applications except those that contain non-reexecutable critical sec-
tions, i.e., fft, radix, dedup, and ferret.

7. Enabling HEI with Hardware TM
Anticipating the arrival of hardware TM [15], it seems expedient to
fit the HEI mechanism into this framework. This section investi-
gates how to accommodate the HEI functionality in this way. A
related work albeit with a different focus by Gupta et al. [16] leve-
rages the conflict detection in TM to detect data races.

Because piggybacking on hardware TM requires a minimal in-
crease in hardware budget and complexity, processor manufacturers
may be inclined to support both HEI and TM at the same time with
the former geared towards enhancing reliability of existing lock-
based programs and the latter towards transaction-based parallel
applications.

As HEI is designed to work transparently with existing lock-based
program binaries, a pre-processing system is needed to “transactify”
lock-based programs into transaction-based programs where lock-
based critical sections are transformed into atomic blocks marked
by transaction constructs recognized by the hardware TM. Note that
essentially all this system does is replace lock-based constructs with
some constructs recognized by the TM hardware. No knowledge
about HEI or TM semantics is incorporated at this point. An exam-
ple of such a system is HyTM [17]. The following are some neces-
sary conditions for HEI to function on top of hardware TM.

1. Use deferred (a.k.a. lazy) update: To be compatible with HEI,
the hardware TM must not modify the shared data directly. Most
proposed hardware TMs that buffer updates in private caches satisfy
this requirement. However, there exist hardware TM systems such
as Wisconsin’s LogTM [9] that do not. LogTM uses an eager update
protocol that is not compatible with HEI.

2. Support open-nested semantics: To accommodate nested criti-
cal sections and follow their lock-based
program semantics faithfully, the hardware
TM needs to provide support for open
nesting. Simple flattening is not sufficient
to embrace nested critical sections as it
may prevent forward progress in the origi-
nal lock-based program. To make this
more concrete, consider the following
(somewhat contrived) example.

In this example, the lock variable mu-
tex_X protects the update to variable Q
whereas mutex_Y protects the update to

variable P. The mutex_Y critical section is nested in the outer mu-
tex_X critical section and, just before exiting from the outer critical
section, there is a do-while loop that spins on the condition (P < 5).
If the underlying hardware TM uses a deferred update protocol and
flattens nested transactions, when the example code is “transacti-
fied”, it will keep spinning on the do-while loop after executing the
inner critical section as the updated value of the shared variable P
will not be made visible until the outer critical section completes.

Unfortunately, recently proposed hardware TM systems handle
nested transactions by flattening them. Therefore, for the current
generation of TM hardware to accommodate nested critical sections
in the way HEI requires, it may need assistance from special hard-
ware as outlined in Section 3.1.3.

3. Disable concurrent transactions: For HEI, there is no notion of
concurrent execution of critical sections. To enforce this condition,
the hardware TM must disallow concurrent transactions that origi-
nate from the same mutex variable. Disabling a given transaction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ch
ole

sk
y fft lu

radix

ba
rne

s
oc

ea
n

ra
dio

sit
y

water-s
pa

tia
l

de
du

p

fac
esim fer

ret

flu
ida

nim
ate x2

64

w/o reexecution w/ lightweight reexecution w/ heavyweight reexecution

 P = 4;

Lock(mutex_X);

Q++;

Lock(mutex_Y);

P++;

Unlock(mutex_Y);

do {} while (P < 5);

Unlock(mutex_X);

should not be hard to accomplish as the TM hardware already con-
tains structures to track a new transaction that is about to execute in
the middle of an outstanding transaction. However, recognizing
which transaction to disable requires special treatment. During the
“transactification”, an atomic block derived from a corresponding
critical section needs to be augmented with the mutex variable that
is associated with the critical section. When the TM hardware
processes a given atomic block, it checks whether the atomic block
is generic, i.e., coming from purely transaction-based code, or de-
rived, i.e., coming from lock-based code. It imposes no restriction
on the concurrent execution of the former, but prohibits concurrent
execution of the latter.

4. Detect conflicts from non-transaction executions: If the hard-
ware TM is only concerned with conflicts among transactions, it
needs to be augmented to detect conflicts from non-transaction ex-
ecution to support HEI. The contention management hardware is not
needed when in HEI mode because HEI always guarantees forward
progress. However, additional resolution hardware is needed. This
is simple hardware whose primary function is to propagate memory
writes based on the type of conflict detected.

8. Related Work

8.1 Race Toleration

Krena et al. [18] propose two schemes to dynamically heal data
races for Java programs. In one scheme, they reduce the probability
of races happening by forcing threads that are about to cause racy
accesses to yield. This is done at the byte-code level through yield()
calls. In the other scheme, they add extra locks to some common
code patterns that are likely to result in races. Rajamani et al. [19]
propose a run-time system called Isolator that enforces isolation
through page protection. The idea is to protect the pages containing
shared variables (that are protected by a lock) so that accesses to
them can be intercepted. Then, accesses to those variables that ob-
serve the proper locking discipline are redirected to a local copy of
the corresponding page. Any improper access will be to the original
page and hence raise a page protection fault. Similarly, Abadi et al.
[20] use page-level protection to guarantee strong atomicity in soft-
ware transactional memory. Lucia et al. [21] tolerate some degree of
atomicity violation with implicit atomicity by grouping consecutive
memory operations into atomic blocks. To avoid concurrency bugs,
Yu and Narayanasamy [22] constrain thread interleavings in pro-
duction runs with Lifeguard Transactions (LifeTx). Legitimate in-
terleavings are determined during the testing phase and LifeTx
avoids untested interleavings, which are the sources of concurrency
bugs.

8.2 Hardware Transactional Memory

HEI is analogous to hardware TM, which was first proposed by
Herlihy and Moss [1]. Their scheme works on a fully associative
transaction cache and leverages the cache coherence protocol to
detect conflicts. Rajwar and Goodman proposed Speculative Lock
Elision (SLE) [7], a form of optimistic synchronization that elides
locks in parallel programs and, thus, allows multiple critical sec-
tions that were mutually exclusive to execute concurrently. Their
follow-up work, Transactional Lock Removal (TLR) [23], extends
SLE to address issues with starvation as well as transactional se-
mantics. The broad introduction of multicore chips around the year
2004 reinvigorated research in hardware transactional memory.
Transactional Coherence and Consistency (TCC) from Stanford
[24] is a hardware TM scheme that provides strong isolation and
employs deferred policies for both update operations and conflict

detections. In contrast to TCC, LogTM [9] from Wisconsin uses
eager update and eager conflict detection protocols. LogTM’s au-
thors argue that commits happen more often than aborts so adopting
all eager policies make the common cases fast. Ceze et al. [25] de-
scribes a hardware TM that does not rely on cache coherence to
track and detect conflicting memory accesses. All the hardware TM
schemes described thus far are bounded hardware TM. Cases for
unbounded TMs have been described by Ananian et al. [26] and
Rajwar et al. [27].

9. Conclusions

This paper presents HEI, a hardware technique for enforcing isola-
tion in lock-based parallel programs that leverages existing multi-
core chip components and the cache coherence protocol. We espe-
cially target programs written in type unsafe languages, which are
prevalent in today’s parallel programming world. HEI runs the orig-
inal, unmodified executables and allows a racy program to execute
race-free whenever it can enforce isolation; in the cases where it
cannot, it reverts to detecting isolation violations. We evaluate HEI
on 13 programs from the SPLASH2 and PARSEC suites and show
the additional hardware cost and the overhead to be small. With
increasing silicon real estate on a chip, we believe HEI to be a good
hardware investment to enhance reliability of lock-based parallel
program execution.

10. Acknowledgement

We would like to thank the anonymous reviewers for their insightful
comments on this paper. The Computer Systems Laboratory at Cor-
nell University provided some of the computing resources used to
obtain the results for this work. Martin Burtscher is supported by
grants and gifts from NVIDIA and Intel. Paruj Ratanaworabhan is
supported by grants from the Faculty of Engineering, Kasetsart
University as well as a gift from the KSIP laboratory.

11. References

[1] M. Herlihy and J. E. B. Moss, "Transactional Memory:
Architectural Support for Lock-Free Data Structures"
International Symposium on Computer Architecture, 1993.

[2] S. V. Adve and M. D. Hill, "Weak Ordering - A New
Definition" International Symposium on Computer
Architecture, 1990.

[3] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S.
Balensiefer, D. Grossman, R. Hudson, K. Moore, and B.
Saha, "Enforcing Isolation and Ordering in STM" ACM
SIGPLAN Conference on Programming Language Design
and Implementation, 2007.

[4] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R.
Nagpal, and K. Pattabiraman, "Detecting and Tolerating
Asymmetric Races" ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2009.

[5] N. Jouppi, "Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers" International Symposium on Computer Architecture,
1990.

[6] D. Culler, J. P. Singh, and A. Gupta, Eds., Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1998.

[7] R. Rajwar and J. R. Goodman, "Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution"
International Symposium on Microarchitecture, 2001.

[8] S. Qi, N. Otsuki, N. Nogueira, A. Muzahid, and J. Torrellas,
"Pacman: Tolerating Asymmetric Data Races with
Unintrusive Hardware" International Symposium on High
Performance Computer Architecture, 2012.

[9] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood, "LogTM: Log-Based Transactional Memory"
International Symposium on High-Performance Computer
Architecture, 2006.

[10] H. Chafi, J. Casper, B. Carlstrom, A. McDonald, C. Minh, W.
Baek, C. Kozyrakis, and K. Olukotun, "A Scalable, Non-
Blocking Approach to Transactional Memory" International
Symposium on High Performance Computer Architecture,
2007.

[11] C. Blundell, C. Lewis, and M. Martin, "Deconstructing
Transactional Semantics: The Subtleties of Atomicity" Fourth
Annual Workshop on Duplicating, Deconstructing, and
Debunking, 2005.

[12] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, "The
SPLASH-2 Programs: Characterization and Methodological
Considerations" International Symposium on Computer
Architecture, 1995.

[13] C. Bienia, S. Kumar, J. Singh, and K. Li, "The PARSEC
Benchmark Suite: Characterization and Architectural
Implications" International Conference on Parallel
Architectures and Compilation Techniques, 2008.

[14] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, "Pin: Building
Customized Program Analysis Tools with Dynamic
Instrumentation" ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2005.

[15] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, "Early
Experience with a Commercial Hardware Transactional
Memory Implementation" International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2009.

[16] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rotteler,
"Using Hardware Transactional Memory for Data Race
Detection," International Parallel & Distributed Processing
Symposium, 2009.

[17] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,
and D. Nussbaum, "Hybrid Transactional Memory"

International Conference on Architectural Support for
Programming Languages and Operating Systems, 2006.

[18] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar, "Healing
Data Races On-The-Fly" ACM Workshop on Parallel and
Distributed Systems: Testing and Debugging, 2007.

[19] S. Rajamani, G. Ramalingam, V. Ranganath, and K. Vaswani,
"ISOLATOR: Dynamically Ensuring Isolation in Concurrent
Programs" International Conference on Architectural Support
for Programming Languages and Operating Systems, 2009.

[20] M. Abadi, T. Harris, and M. Mehrara, "Transactional Memory
with Strong Atomicity using Off-the-Shelf Memory
Protection Hardware" ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2009.

[21] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, "Atom-Aid:
Detecting and Surviving Atomicity Violations" International
Symposium on Computer Architecture, 2008.

[22] J. Yu and N. S., "Tolerating Concurrency Bugs Using
Transactions as Lifeguards" International Symposium on
Microarchitecture, 2010.

[23] R. Rajwar and J. R. R. Goodman, "Transactional Lock-Free
Execution of Lock-Based Programs" International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2002.

[24] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun, "Transactional Memory Coherence and
Consistency" International Symposium on Computer
Architecture, 2004.

[25] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, "Bulk
Disambiguation of Speculative Threads in Multiprocessors"
International Symposium on Computer Architecture, 2006.

[26] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie, "Unbounded Transactional Memory" International
Symposium on High Performance Computer Architecture,
2005.

[27] R. Rajwar, M. Herlihy, and K. Lai, "Virtualizing
Transactional Memory" International Symposium on
Computer Architecture, 2005.

