
Hardware Support for Safety-Critical Java Scope Checks

Juan Ricardo Rios
Department of Informatics and Mathematical Modeling

Technical University of Denmark
Lyngby, Denmark

Email: jrri@imm.dtu.dk

Martin Schoeberl
Department of Informatics and Mathematical Modeling

Technical University of Denmark
Lyngby, Denmark

Email: masca@imm.dtu.dk

Abstract—Memory management in Safety-Critical Java
(SCJ) is based on time bounded, non garbage collected scoped
memory regions used to store temporary objects. Scoped
memory regions may have different life times during the
execution of a program and hence, to avoid leaving dangling
pointers, it is necessary to check that reference assignments are
performed only from objects in shorter lived scopes to objects
in longer lived scopes (or between objects in the same scoped
memory area). SCJ offers, compared to the RTSJ, a simplified
memory model where only the immortal and mission memory
scoped areas are shared between threads and any other scoped
region is thread private. In this paper we present how, due
to this simplified model, a single scope nesting level can be
used to check the legality of every reference assignment. We
also show that with simple hardware extensions a processor
can see some improvement in terms of execution time for
applications where cross-scope references are frequent. Our
proposal was implemented and tested on the Java Optimized
Processor (JOP).

Keywords-Certification, Safety-Critical Java, Scoped Mem-
ory, Reference Assignment Checks, Java Optimized Processor

I. INTRODUCTION

In order to take advantage of the benefits of an object
oriented programming language such as Java into the context
of real-time systems, the main sources of indeterminism
introduced by standard Java implementations should be
avoided. Operating-system scheduling, priority inversions,
class operations (loading, initialization and compilation), the
garbage collector (GC), and the use of shared resources
affect the execution time of an application.

Automatic garbage collection is one of the primary
sources of unpredictability because it can introduce inac-
curate time bounds that tasks with hard deadlines may not
be able to tolerate [1]. The Real-Time Specification for Java
(RTSJ) [2] provides a framework intended to cope with such
sources of indeterminism by introducing features like new
types of threads and memory management models. RTSJ
programs can avoid GC delays by using two memory regions
which are not garbage collected: Immortal Memory and
Scoped Memory. Objects allocated in Immortal Memory will
be reclaimed only when the Java Virtual Machine (JVM) ter-
minates. Scoped Memory regions are created and reclaimed
at run time and objects allocated into them are collected

when the scope is no longer active. A scoped memory
region is no longer active when it has no schedulable objects
executing in it.

Despite it’s restricted memory model as well as other new
characteristics, RTSJ was not intended to be used in safety-
critical applications, as some features are too complex and
thus hard to certify under standards such as the DO-178B.
Safety-critical Java (SCJ) [3] on the other hand, built as a
more restricted subset of RTSJ, introduces a programming
and memory model aimed at simplifying the process of
certification.

SCJ introduces the concept of missions. A mission con-
sists of a bounded set of schedulable objects or handlers.
SCJ defines three levels with varying complexity. They
are referred in [3] as Level 0 (L0), Level 1 (L1) and
Level 2 (L2). For a L0 application, a single mission with
a cyclic executive is used (periodic handlers), L1 uses a
single mission where handlers can be executed concurrently
(periodic and aperiodic), and L2 extends the model by
allowing nested missions.

In the memory model of SCJ, immortal memory is kept
and two additional scoped memories are introduced: mission
memory, shared between all schedulable objects whose life-
times should cover the whole mission’s life time and private
memories, used to hold any object created by the schedulable
objects. One important restriction in SCJ is that, in contrast
to RTSJ, private memories can be entered only by a single
schedulable object.

Even though the simplifications that SCJ provides to the
memory model, the development of applications is not a
trivial task. Programmers have to be aware of where objects
are allocated [4], thus increasing the potential for memory
leaks and dangling pointers. Referential integrity has also
to be guaranteed by following a set of assignment rules,
simpler than those for RTSJ. In this paper, we examine
how, given the simplified memory model of SCJ, a single
scope nesting level can be used to check the legality of
every reference assignment. We also show that with simple
hardware extensions we can check reference assignments
without the overhead of a software based solution and
improve the execution time of applications with frequent
cross-scope references. Our proposal was implemented and

tested on the Java Optimized Processor (JOP) described
in [5].

The rest of this paper is organized as follows. Section II
presents previous work related to illegal assignment checks
for scoped memory regions, both from software and hard-
ware based solutions. Section III explains the simplifications
of the memory model in SCJ; our concrete implementation
is presented in Section IV. Evaluation results are presented
in Section V and the paper is concluded by Section VI.

II. RELATED WORK

The method we used to check for the legality of a refer-
ence assignment is based on the execution of write barriers
whenever reference assignment instructions are executed [6],
[7] .

In [6], as part of the write barrier, the scope stack of
a thread is scanned to check that the memory area of
the destination of a reference assignment is deeper nested
than the memory area of the source of the reference. In
this implementation, the time it takes to scan the stack
is proportional to the number of nested scoped levels. To
bound the execution time of the check, the authors limit
the levels of nested scopes and in a latter work [7], the
performance is improved with the aid of the write barrier
support provided by the picoJava-II microprocessor as well
as with specialized hardware. The scope stack is stored in
an associative memory which allows a faster scanning of the
hierarchy of nested scopes.

SCJ is very recent and the work presented in [8] describes
a reference implementation of SCJ at Level 0. As part of
this implementation, the write barrier works by locating and
comparing the memory areas where objects are stored. The
memory is organized as a continuous region that starts with
the Immortal Memory then continues with Mission Memory
followed by any private memory or stack of private mem-
ories. Lower memory addresses correspond to longer lived
memory regions. The check is performed by determining the
block of memory where both objects involved in a reference
assignment are allocated. A second step might be needed to
recover scope information of each object as both objects may
reside in the same scope. We do not use the address value
of each object itself because that would involve checking
that the objects are allocated within a certain range, and
that would be more time consuming as the boundaries of
the memory region where the objects are allocated need to
be known.

In [4], the authors give an analysis algorithm that statically
guarantee that no illegal reference assignments can happen.
The authors introduce the concept of Scoped Types as
a way to encapsulate scoped objects. Scoped and Portal
classes are defined and associated to their defining packages.
Nested scopes are in turn associated with nested packages.
Accessibility of a scoped class is restricted to instances of
classes allocated in the same or nested scopes.

Verifying SCJ memory safety can be done statically by
correctly using the annotation model defined by SCJ in [3].
For example, in [9], annotations are used as part of a two
step verification process. In the first step, the scope tree is
constructed and checked for errors and in the second step,
the tree constructed in the previous step is used to check a
set of rules for annotated and unannotated classes.

III. SCOPE CHECKS IN SAFETY-CRITICAL JAVA

SCJ uses the scoped memory model as introduced by
RTSJ to allow creation and reclamation of objects during
the mission phase without the help of a garbage collector.
In SCJ, use of the heap has been abandoned and three
different memory areas are defined: the immortal memory,
the mission memory, and private scopes. Immortal and
mission memory are shared between the concurrent handlers
and private scopes are handler local. Any private scoped
memory region can only be entered by a single handler and
it can only be entered from the memory area where it was
created. Objects allocated in immortal memory remain valid
until the VM finishes, objects in mission memory remain
valid for the duration of the mission and objects in private
scopes are reclaimed when the handler finishes execution.

A. Memory Areas and the Scope Stack

The restricted scope model of SCJ significantly reduces
the complexity of the assignment checks. In SCJ L0 and
L1, where no nested missions exist, the hierarchy of nested
scopes can grow only in a linear shape. This is because
scopes are private to each schedulable object and the
enter() method is not available, as SCJ applications have
to be prevented from explicitly entering a memory area [10].
Restricting the use of the enter() method avoids break-
ing the linear scope hierarchy because this eliminates the
creation of branches in the parenting relationship between
scopes if it is used after the executeInArea() method.

Furthermore, the shared memory areas (immortal and
mission memory) are at a fixed nesting level within this
stack and it is not possible that two handlers see the same
scope at different levels.

Thus, a unique nesting level can be assigned to each
scope and the assignment check is reduced to a comparison
between the nesting levels of the source and destination
objects in a reference assignment. For a SCJ implementation,
the following scope levels can be assigned to each memory
area: immortal memory is level 0, mission memory level
1, the initial private scope of a handler level 2, and nested
memories increase the level by 1.

B. Scope Checks

Our approach to detect illegal assignments is similar to the
approach described in [7] that consists in taking actions upon
the execution of instructions that store an object’s reference
pointer into another object’s field or array element. To this

end, we need to know two things: the instructions which
cause references between objects, and the location (scope
level) of each object within the memory hierarchy (for SCJ,
a linear stack).

Field assignment instructions are the putfield and
putstatic bytecodes. We also have to consider the
aastore bytecode since an illegal assignment may result
from storing a reference to an object into an array. When
these bytecodes are executed, the stack has the following
information [11]:

putfield : ...objectref, value

putstatic : ...value

aastore : ...arrayref, index, value

Note that for putfield and putstatic, value can be
any data type allowed by the JVM that matches the type of
the destination field pointed by objectref. Nevertheless, ille-
gal assignments can be produced only when value contains
a reference to another object. That means we do not need
to check every field access.

At object creation, whenever the new and newarray
bytecodes are executed, every object is associated with the
level of the memory region where it was created (the current
allocation context). This information can be stored in the
objects auxiliary data (e.g., in the object header).

As mentioned before, compared to RTSJ, the memory
model of SCJ allows for enforcing simpler assignment rules.
In our case, depending on which of the previously mentioned
bytecodes is executed, one of three simple rules have to
be checked to detect illegal memory references. Recall that
shorter lived scopes are deeper nested in the stack hierarchy,
and so they are associated with higher level numbers. These
rules are described below and summarized in Table I:

1) The putfield bytecode stores value into a field of
an object whose reference is objectref. The reference
check has to verify that the level of value is less than
or equal to the level of objectref.

2) For putstatic, value cannot be in a scoped region,
hence the level of value (pointer to the object) needs
to be checked against level 0, as all static fields reside
in immortal memory.

3) The reference check for aastore is similar to the test
for putfiled but using the level of arrayref instead
of the level of objectref.

C. Header Based Scope Checks

Since the JVM specification does not require any par-
ticular internal structure for objects [11], the additional
information needed can be stored as part of the header of
the object itself. Following the idea exposed in the previous
section, at creation time a particular field of the object’s
or array’s header is associated with the scope level, and

Table I
REFERENCE ASSIGNMENT CHECK RULES

Bytecode Scope check rule

putfield Level(value) ≤ Level(objectref)

putstatic Level(value) = 0

aastore Level(value) ≤ Level(arrayref)

whenever a reference assignment instruction is executed, this
value can be extracted from the object’s header.

The advantage of this approach is that it can be used by
any JVM implementation and is not restricted to be used
just in JOP.

D. Pointer Based Scope Checks

In an embedded application the maximum memory is
usually less than 2 GB and references are aligned to at least
32-bit word boundaries. Therefore, some bits of an object
or array reference are unused and the scope level can be
encoded in those unused bits. Having the scope level already
in the reference saves at least two additional memory reads
on the assignment check.

Similar to the object header based approach, the pointer
based scope checks can be used in a software JVM when
the maximum memory is restricted.

E. Hardware Based Scope Checks

The two methods described in the previous sections are
suitable for any JVM, as the data structures required are
not implementation specific. However, a hardware based
implementation of the scope checks implies certain knowl-
edge of the underlying construction of the VM and will
be implementation specific (e.g. [7] for the picoJava-II
microprocessor). For our JOP based implementation, we will
use the pointer based scope check. Since JOP implements
most of the VM in hardware, we have an easy access to
the scope level information encoded in the reference to an
object.

IV. IMPLEMENTATION

For an evaluation of the concept, we have implemented
the software and hardware based scope checks in the Java
processor JOP [5]. The hardware based scope checking is
clearly only an option for a Java processor. However, the
scope level encoding in the reference can also be used on a
software JVM.

A. JOP Architecture

JOP is an implementation of the JVM in hardware. The
JVM bytecodes are the instruction set of JOP. However, as
some bytecodes are quite complex, the effective execution
is in microcode. Bytecode instructions are translated to
microcode sequences. For the affected bytecodes for scope

Instance variable 1

Instance variable 2

.

.

.

Instance variable n

Handle

Method vector base

Handle

Array length

Element[0]

Element[1]

.

.

.

Element[n]

HANDLE AREA HEAP / SCOPED MEMORY

Object

Array

Object reference
(32-bit address)

Array
reference

(32-bit address)

Figure 1. Object and Array format

PHYSICAL MEMORY ADDRESSSCOPE LEVELRES.

1 (32 – n – 1) n

Figure 2. Object reference pointer

checks, most of the logic is actually in the memory manage-
ment unit (MMU), which is triggered by short sequences of
microcode instructions.

The object and array layout of JOP uses an indirection,
called a handle. This indirection simplifies a compacting
garbage collector, as only one word in memory needs to be
updated on an object or array copy. Furthermore, the handle
area also holds information, which is usually part of the
object header, e.g., type information, GC information, size,
etc. When an object is created, a reference to the object or
array handler is obtained. The reference is pushed into the
stack before an instruction can operate on it. Fig. 1 illustrates
this concept.

Since SCJ does not allow the use of a GC, the use of
the handler indirection for the method described in Section
IV-B1 can introduce inefficiency in the field access due to
the extra memory access through the handler indirection.
Nevertheless, the layout is kept since JOP also allows the
execution of non SCJ applications that need a GC.

JOP’s application build tool provides an optimiza-
tion that substitutes putfield bytecodes of references
with the special bytecode versions putfield_ref and
putstatic_ref. Therefore, scope checks are only exe-
cuted in these special bytecodes and field access of primitive
values have no additional overhead.

Addresses in JOP are 32-bit wide and memory is ad-
dressed as 32-bit data. This combination allows a maximum
heap size of 16 GB of memory, which is more than what
an embedded application will probably require. We can
take advantage of this and use some of the upper bits of
the address field, which is also the reference pointer to

private static void f putfield ref (int ref , int value,
int index) {

int ref level = Native.rdMem(ref + GC.OFF SCOPE);
int val level = Native.rdMem(value + GC.OFF SCOPE);
if (val level > ref level){

IllegalAssignmentError ();
}
}

Figure 3. Handle based scope check in JOP

an object’s handler (see Fig. 1), to store the scope level
information of each object. We do this at creation time (new
and newarray). The resulting reference pointer is shown
in Fig. 2.

B. Software Based Scope Checks

Following the strategy described in Section III-B, we
implemented two versions of the reference assignment in
software. One version uses the handler of an object/array and
the other uses the reference pointer of the object’s handler.
The following sections describe both implementations.

1) Using the Object Handle: The scope level can be
stored in a field of the object’s header. Within the SCJ
implementation on JOP, the GC is disabled and therefore,
we can reuse one of the handle fields used by the GC in the
handle based object layout (see Figure 1) to store the scope
level.

When performing a reference assignment check at run
time, we can read the scope level information by reading
from memory the location pointed by the handler’s reference
pointer plus an offset. This offset will be the position of the
field in the handler that was used to store the scope level.
A simple arithmetic comparison is then needed to check the
validity of the assignment. Fig. 3 shows the scope check
based on the scope level in the object handle.

2) Using the Object Reference: An additional software
version of the reference assignment check was imple-
mented with the aid of Java functions called every time
the putfield, putstatic and aastore bytecodes are
executed. These functions take the references to the objects
(objref/arrayref and value in Table I) as arguments and test
the legality of the assignment based on the scope level of the
arguments. For this particular implementation, we used 7 of
the 32 bits of the object’s reference pointer to encode the
scope level. This allows for the use of 128 levels of nested
scopes. The code for this implementation is shown in Fig. 4.

C. Hardware Based Scope Checks

Since in JOP most of the JVM is implemented in hard-
ware, all the information to perform the scope checks is now
available directly in hardware. By adding the scope level
value in the reference pointer, the level of objectref/arrayref

private static void f putfield ref (int ref , int value,
int index) {

if ((value >>> 25) > (ref >>> 25)) {
IllegalAssignmentError ();
}
}

Figure 4. Reference based scope check in JOP

and value can be easily recovered by taking the upper bits
from the internal registers that hold the values of the top of
the stack (TOS) and the next of the stack (NOS) during the
execution of the relevant bytecodes.

Reference assignment checks can now be efficiently per-
formed since this is reduced to a simple arithmetic com-
parison between scope levels, which can be implemented in
dedicated and simple hardware. In addition, because we have
all the information available during bytecode execution, the
check itself can be included as part of the bytecode execution
performed in the Memory Management Unit (MMU). Recall
that the check shall only be done when it is an assignment of
a reference, so the hardware needs to know if it is a reference
or a primitive data. That information is already available
in the putfield_ref, putstatic_ref and aastore
bytecodes and we only need a new microcode instruction to
signal the memory controller that whenever the mentioned
instructions are executed a reference assignment will take
place and thus the levels need to be checked.

As the check is performed as part of the bytecode execu-
tion, there is only a minimal overhead of one clock cycle,
which is the time needed to indicate a reference assignment
bytecode to the MMU. There is also the extra cost of
adding the scope level information at object creation time.
Nevertheless, besides being an operation with low frequency
of execution [12], it can be performed in constant time so
it does not complicate WCET calculations.

To indicate that an illegal assignment has occurred, a flag
is raised inside the memory controller which can be used to
throw an IllegalAssignmentError as defined in [3].

For our pointer and hardware based solution, using some
bits of the reference pointer does not affect the behavior of
the system because internally, a memory address is trimmed
to the width of the memory bus attached to the system.
Therefore the scope level information is not used when
accessing objects in memory. On the other hand, the 32 bits
are fully stored in memory so we are saving the scope level
together with the object’s reference pointer.

The number of nested scopes that can be used will be
limited by the number of bits we use to encode the scope
level. Using more bits for the encoding of the level will result
in a reduced amount of memory that can be addressed by
the system.

Table II
EXECUTION TIME (IN CLOCK CYCLES) OF THE THREE BYTECODES
IMPLEMENTING THE SCOPE CHECK METHODS DESCRIBED IN THIS

PAPER.

Bytecode Execution Time

Handle Reference Hardware None

putfield_ref 185 169 13 12

putstatic_ref 163 157 8 7

aastore 179 163 15 14

V. EVALUATION

Our proposal was tested by implementing in JOP the three
scope check methods described in this paper. The scope
check was implemented as part of the special bytecode in-
structions putfield_ref, putstatic_ref mentioned
in Section IV-A and on the aastore bytecode. According
to [2], an IllegalAssignmentError should be thrown
if there is an illegal reference assignment, hence taking the
branch of a failed test is not considered as part of the
overhead in any of the software checks.The cost in hardware
of adding the scope checks is practically negligible as it adds
around 32 look up tables and 10 registers when implemented
in an Altera DE2-70 FPGA board. This is an increase in
about 4% of the Memory Management Unit (MMU) where
most of the logic is implemented.

In our implementation, scope checks are executed as part
of the reference assignment bytecodes. Each bytecode has a
different individual implementation and therefore a different
individual execution time. Table II shows the execution times
in clock cycles of each of the three bytecodes with the
different options to perform the scope checks. The values
were obtained using ModelSim by performing a hardware
simulation of JOP running a micro benchmark with different
types of reference assignments. From the table it can be seen
that the hardware version is around 10 times faster than the
two software versions.

To evaluate the improvement within an application, two
benchmarks were used. The first is an application inspired
in one of the examples presented in [13], where a probe
containing certain sensors is used to scan the walls of
a well. For our example, we have an application that
periodically checks a set of artificial sensors simulated in
hardware using hardware objects as described in [14]. The
application creates an array of objects to hold the sensor’s
results in a scoped memory. It then enters a nested scope
where the actual sensor objects are created, each sensor
performs readings and basic calculations and stores back
the results into the array of objects located in the parent
scope. The second application is a scoped version of an
N-body simulation (gravitational force). It uses a ”brute-
force” algorithm, where the resulting force on each body is
computed as the result of the field interaction of each body.

Table III
SENSOR APPLICATION EXECUTION TIME INCLUDING THE THREE VERSIONS OF THE SCOPE CHECKS.

Sensors Reference count Execution time (ms) Improvement
Handle Reference Hardware

50 864 14.05 13.90 11.35 18.35%

100 1714 28.00 27.60 22.65 17.93%

150 2564 42.15 41.40 33.85 18.24%

200 3414 56.10 55.15 45.10 18.22%

250 4264 70.20 68.90 56.45 18.07%

average 18.16%
std. dev. 0.16%

Table IV
N-BODY SIMULATION APPLICATION EXECUTION TIME INCLUDING THE THREE VERSIONS OF THE SCOPE CHECKS.

Bodies Reference count Execution time (s) Improvement
Handle Reference Hardware

2 619 1.635 1.635 1.634 0.10 %

3 1219 4.045 4.045 4.042 0.08 %

4 2019 7.519 7.516 7.511 0.07 %

5 3019 12.050 12.052 12.040 0.10 %

6 4219 17.648 17.648 17.634 0.08 %

average 0.09 %
std. dev. 0.01 %

This application was adjusted to have a number of cross-
scope references proportional to the number of bodies and
the total time steps used for the simulation.

The detailed results of the two benchmarks are sum-
marized in Tables III and IV. The improvement gain on
both tables is the difference in execution times of the
hardware based implementation and the object reference
software implementation (the reference based implemen-
tation is slightly faster than the handler based). Table III
shows an improvement gain of around 18% for the Sensor
application while Table IV shows that the improvement gain
is roughly 0.09% for the N-Body simulation (see Section
V-A). Fig. 5 presents a comparison of the overall execution
time of both applications.

A. Discussion

The focus of this paper was to evaluate the benefits of
providing hardware support for time critical operations such
as reference scope checks in the context of Safety Critical
Java. We found that our hardware implementation adds
basically no timing overhead at a negligible hardware cost
to this operation because the execution of the write barrier
is part of the execution of the bytecode itself.

Nevertheless, cross-scope references between objects may
not be so frequent in a real application and hence the
hardware scope check will not make a major improvement
in the execution time. In the two examples provided, the

execution time was measured with different number of cross-
scope references. For the Sensor application, increasing
the number of sensors increases the number of references
and in the N-Body simulation increasing the number of
bodies and/or the time steps for the simulation increases
the reference count. For the sensor application, it doesn’t
make too much sense to have hundreds of sensors since a
real application most likely wont need that much. In the N-
body simulation it does make sense to have many bodies
and hence many reference assignments but their overhead is
clouded by the execution time of the other operations.

In the Sensor application we can see an improvement gain
of around 18% because it does not have heavy computations,
it only reads data from the simulated sensors and then
performs simple calculations on the sampled sensor data.
With the N-Body simulation application the improvement is
very small as most execution time is spent in floating point
operations, which are slow on JOP.

It is also important to mention that the methods described
in this paper were considered for SCJ L0 and L1 applications
where the nested scope hierarchy can grow only in a linear
shape. However, for an SCJ L2 application this hierarchy
will have a tree shaped form because of the nested missions.
Nevertheless, when the inner mission memory cannot be
leaked to an outer mission handler, the level check is still an
option for L2. In addition, one should be able to guarantee
that parallel missions cannot reference one another.

Sheet3

Page 1

2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

N-body simulation execution time
handle reference hardware

No. of bodies

Ex
ec

ut
io

n
tim

e
(s

)

50 100 150 200 250

10

20

30

40

50

60

70

80

Sensor application execution time
handle reference hardware

No. of sensors

Ex
ec

ut
io

n
tim

e
(m

s)

Figure 5. Execution times of the two applications used to test the implementation

VI. CONCLUSION

The scoped memory model in Safety-Critical Java is
restricted to only allow sharing of objects between threads in
immortal and mission memory. Dynamically created scopes
during the mission phase are thread private. In SCJ L0
and L1, where no nested missions exist, the hierarchy of
nested scopes can grow only in a linear shape thus allowing
for simpler illegal reference assignment checks between
memory regions.

In this paper we presented how, due to the linear hierarchy
of scopes, assignment checks can be performed by simply
comparing scope levels. For a restricted nesting level of
scopes, these levels can be encoded in the object references.
Moreover, on a hardware implementation of a JVM, this
check can be done in the memory unit.

Our hardware implementation of the scope checks adds
a minimal timing overhead (1 clock cycle) at a negligible
hardware cost (4% increase in the MMU). The results show
that those bytecodes execute about 10 times faster when
checks are performed in hardware than in software. This
improvement may not be dominant if cross-scope references
between objects are not so frequent or if most of the time
is spent in other operations (e.g. floating point).

Since the cost of having the scope checks in hardware is
negligible and scope checks are mandatory, this implementa-
tion can be used to gain a small performance improvement.

VII. ACKNOWLEDGMENTS

We would like to thank Anders Ravn for discussions on
scope checks and the memory model of SCJ in general.
This work is part of the project CJ4ES and received partial
funding from The Danish Research Council for Technology
and Production Sciences under contract 10-083159.

REFERENCES

[1] E. Bruno and G. Bollella, Real-Time Java programming with
Java RTS, ser. Java (Prentice Hall). Prentice Hall, 2009.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull, “The real-time specification for Java 1.0.2.”

[3] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties,
J. J. Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Tokar,
J. Vitek, and A. Wellings, Safety-Critical Java Technology
Specification, Public draft, Java Community Process Std.,
2011.

[4] T. Zhao, J. Noble, and J. Vitek, “Scoped types for real-time
Java,” in Proceedings of the 25th IEEE International Real-
Time Systems Symposium (RTSS’04). Washington, DC, USA:
IEEE Computer Society, 2004, pp. 241–251.

[5] M. Schoeberl, “A Java processor architecture for embedded
real-time systems,” Journal of Systems Architecture, vol.
54/1–2, pp. 265–286, 2008.

[6] M. T. Higuera-Toledano and M. A. de Miguel-Cabello, “Dy-
namic detection of access errors and illegal references in
RTSJ,” in Proceedings of the Eighth IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’02),
ser. RTAS ’02. Washington, DC, USA: IEEE Computer
Society, 2002.

[7] M. T. Higuera-toledano, “Hardware-based solution detecting
illegal references in real-time java,” in Euromicro Conference
on Real-Time Systems, 2003, pp. 229–237.

[8] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and
J. Vitek, “Developing safety critical Java applications with
oscj/l0,” in Proceedings of the 8th International Workshop on
Java Technologies for Real-Time and Embedded Systems, ser.
JTRES ’10. New York, NY, USA: ACM, 2010, pp. 95–101.

[9] D. Tang, A. Plsek, and J. Vitek, “Static checking of safety
critical Java annotations,” in Proceedings of the 8th Inter-
national Workshop on Java Technologies for Real-Time and
Embedded Systems, ser. JTRES ’10. New York, NY, USA:
ACM, 2010, pp. 148–154.

[10] M. Schoeberl, “Memory management for safety-critical java,”
in Proceedings of the 9th International Workshop on Java
Technologies for Real-Time and Embedded Systems, ser.
JTRES ’11. New York, NY, USA: ACM, 2011, pp. 47–53.

[11] T. Lindholm and F. Yellin, The Java Virtual Machine Specifi-
cation, 2nd ed. Reading, MA, USA: Addison-Wesley, 1999.

[12] M. Schoeberl, “Jop: A java optimized processor for embedded
real-time systems,” Ph.D. dissertation, Vienna University of
Technology, 2005.

[13] J. Cooling, Software Engineering for Real-Time Systems,
1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2000.

[14] M. Schoeberl, S. Korsholm, T. Kalibera, and A. P. Ravn,
“A hardware abstraction layer in Java,” ACM Trans. Embed.
Comput. Syst., vol. accepted 2009, 2011.

