
Hardware Synthesis from C/C++ Models

Giovanni De Micheli
CSL - Stanford University

Stanford, CA 94305

Abstract

Software programming languages, such as C/C++, have
been used as means for specifying hardware for quite a
while. Different design methodologies have exploited the
advantages of flexibility and fast simulation of models de-
scribed with programming languages. At the same time, the
mismatch (of software languages) in expressing power (for
hardware systems) has caused several difficulties. In the
recent past, novel approaches have helped in reducing the
semantic gap, and in easing the creation of design flows that
support system-level specifications in C/C++.

Hardware Synthesis from C/C++ Models

The current and future design of electronic circuits and
systems is characterized by several features and constraints.
First, the system complexity is increasing, and at the same
time the design time has to shrink. Thus, design method-
ologies and tool flows must support synthesis from high-
level specifications and fast means of verification. Second,
most electronic design will target embedded systems, with
an increasingly larger component of software. Efficient de-
sign and optimal implementation require exploiting hard-
ware/software co-design strategies. Balancing the hardware
and software components in the search of on optimal im-
plementation may require themigrationof software blocks
to hardware or vice versa. Third, design of complex cir-
cuits and systems will leverage more and more there-use
of existing hardware and software components. Efficient
component re-use requires specification at a high-level of
abstraction as well as the ability of mapping the specifica-
tions to different targets. Programming language models
in C/C++ can be compiled into object code for several ar-
chitectures, and it is highly desirable to be able to compile
them into hardware as well.

Within this context, it is clearly obvious why designers
write functional models of hardware/software systems, as
well as of hardware circuits, using familiar programming
languages. Functional models can be evaluated quickly by
simulation, and can be directly compiled when a software
solution is sought. At the same time,legacymodels of soft-
ware functions written in programming languages can be

used as part of a new system design.
The drawbacks of using programming languages for

hardware design are a few. I shall outline the most im-
portant ones. First, hardware circuits can execute opera-
tions with a wide degree of concurrency. Conversely, soft-
ware programming languages like C/C++, were conceived
for uni-processor sequential execution. Second, the specifi-
cations of hardware circuits entail some structural informa-
tion. For example, the interface of a circuit with the envi-
ronment (and/or internal blocks) may require the definition
of the input/output ports and the data formats across these
ports. In addition, a designer may want to express hints (or
constraints) on some partitions of the circuit. Such struc-
tural information and constraints are missing from program-
ming languages. Third, detailed timing of the operations is
very important in hardware, because of performance and in-
terface requirements of the circuit being described. On the
other hand, most programming languages do not support
timing constructs.

As a result, it is common practice that designers model
circuits and systems using C/C++, perform functional sim-
ulation, and then translate the portion of the model to be
implemented in hardware in a suitable subset of ahard-
ware description language(HDL), such as Verilog HDL or
VHDL, that can be synthesized into logic gates. Needless
to say, this manual translation is a time-consuming, error-
prone and tedious task.

Over the last decade, a few research groups have tried to
ease the mapping of hardware models in programming lan-
guages into corresponding HDL models. Most approaches
both extended and restricted programming language con-
structs. Extensions are needed to express concurrency,
structural information (partitions, I/Os, data formats) and
various types of constraints. Restrictions were motivated by
avoiding constructs with no hardware meaning (e.g., print
statements), as well as avoiding constructs whose transla-
tion into hardware is difficult (e.g., pointers).

Whereas extending a software model with annotations to
support hardware synthesis is a task usually acceptable by a
designer, because he just adds information to steer a partic-
ular implementation, the restriction on the usable constructs
is problematic. For example, a designer who has a legacy
model in the C language that uses pointers, and who has a
design system that does not support pointers, has to re-write



the model. Sometimes, model re-writing is more time con-
suming than generating a new model from scratch. As a
result, the research trend in this area has been to extend the
subset of C/C++ that can be synthesized into hardware as
much as possible. At the same time, an important research
objective is to insure that the mapping of C/C++ models to
hardware is efficient, i.e., not wasteful of silicon area, mem-
ory space and performance.

I shall briefly summarize the research trajectory in this
area over the last decade. For the sake of conciseness, I shall
report on the major contribution that differentiate modeling
and synthesis approaches. In addition, I shall concentrate
on the use of C/C++ for hardware modeling and synthesis.
A very large body of work exists in modeling hardware with
programming languages with only simulation support; this
will not be reported here.

Stroud et al. [8] developed the design system CONESat
AT&T in the late eighties. As the name suggests, a cone is
a block of combinational logic, whose output (cone vertex)
is either a primary output or an input to a register. Cones
of combinational logic were modeled in the C program-
ming language, using assignment, branching and iterative
constraints. Such cone models were expanded intosum of
products, and then minimized.

At the same time, Ku et al. [4] developed a language
called HARDWAREC, with a much larger expressing power
than CONES and that could be fully synthesized. Never-
theless, HardwareC is not just annotated C: it differs in
semantics and in the available constructs (e.g., it does not
support pointers, but supports send/receive). HARDWAREC
has a C-like syntax, and a cycle-based hardware semantics.
It supports concurrency, structural and timing constraints,
and has an unambiguous hardware semantics, thus making
it a suitable front-end for synthesis. The major drawback
of HARDWAREC is just being yet another hardware design
language, because translation from C to HARDWAREC is
not trivial, even though possible with limited effort.

A strong interest of system and vendor industries in C-
based hardware design surfaced in the last few years. Most
efforts were devoted to embedding the support of C/C++
models into existing design flows, that are compatible with
other language models (e.g., Verilog HDL, VHDL). Thus
most commercial product focus on design language interop-
erability and support for interface design. Notable examples
are the SCENIC design environment from Synopsys [5], the
CYBER design system from NEC, the COWAREN2C toolset
from Coware [11], ARTBUILDER from Frontier design [9]
and C2VERILOG from C Level Design (formerly Compi-
logic) [10]. The first three environments and toolsets are
described in detail in subsequent papers in this volume.

At the same time, some research groups have explored
alternative design paths using C/C++ based model. For ex-
ample, Ernst et al. [3] developed a design system, called
COSYMA that extracts a computational kernel from a C
model, and implements it as a hardware co-processor for
accelerating software execution. Some groups looked at

mapping (part of) a C-model to field-programmable gate ar-
rays, again with the purpose of achieving execution speed-
ups, and thus achievingre-configurableco-processors. Re-
searchers at IMEC have developed the OCAPI design en-
vironment, that supports C++ based design [6].

Despite all these efforts, providing a synthesis path from
an ANSI C model to hardware is still a formidable task. Dy-
namic memory allocation and recursion require the use of
dynamically-changing storage structures, which cannot be
cast into hard-wired circuits, as typically done in hardware
synthesis. Solutions may come from incorporating mem-
ory synthesis techniques [2] into hardware synthesis. The
next generation hardware circuits, and corresponding de-
sign tools, will probably benefit from having large, local
embedded DRAM arrays.

Pointer resolution for hardware synthesis has been
though of as a hard problem for a long time. The SPC
toolset has demonstrated that most pointers can be resolved
at synthesis time [7]. Moreover, pointer resolution and en-
coding may be done in a way to generate efficient hardware
circuits.

In summary, we are now at a stage in which C/C++ mod-
els can be synthesized in hardware, thus making it easier to
migrate software models into hardware and to avoid HDL-
level hardware specification. There are still a few unre-
solved technical problems to be solved, and present tech-
niques need to be perfected. But examples of C/C++ mod-
els that have already been mapped (with synthesis tools)
into product-level industrial designs prove that the concept
of C/C++ based design is viable and convenient.

References

[1] A. Cataldo, “NEC spins C variant to ease Logic synthesis,”EE
Times, July 10, 1998.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele
and A. Vandecappelle, “Custom Memory Management Methodol-
ogy Exploration of Memory Organisation for Embedded Multime-
dia System Design,”Kluwer, 1998.

[3] R.Ernst, J.Henkel and T. Benner, “Hardware-Software Co-synthesis
for micro-controllers,”IEEE Design & Test, pp. 64-75, December
1993.

[4] D. Ku and G. De Micheli,High-Level Synthesis of ASICs Under
Timing and Synchronization Constraints, Kluwer Academic Pub-
lishers, 1992.

[5] S. Liao, S. Tjiang and R. Gupta, “An Efficient Implementation of
Reactivity for Modeling Hardware in the Scenic Design Environ-
ment,”Design Automation Conference, pp. 70-75, 1997.

[6] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens,.
“A Programming Environment for the Design of Complex High
Speed ASICs,”Design Automation Conference, pp. 315-320, 1998.

[7] L. Sèmèria and G. De Micheli, “SpC: Synthesis of Pointers in C,
Application of Pointer Analysis to the Behavioral Synthesis from
C,” ICCAD, Proceedings of the International Conference on Com-
puter Aided Design,San Jose, CA, November 1998, pp. 340-346.

[8] C. Stroud, R. Munoz and D. Pierce, “Behavioral Model Synthesis
with Cones,” IEEE Design & Test of Computers, June 1988, pp.
22-30.

[9] www.frontierd.com/artbuilder.htm
[10] www.compilogic.com/c2v.htm
[11] www.coware.com/n2c.html


