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Abstract—The general solution to constrained linear and (half-spaces separated by hyper-planes)
piecewise linear model predictive control (MPC) has recently
been explicitly characterized in terms of piecewise linear (PWL) X, = {zeR"Ax <b;} (2
state feedback control. This means that a PWL controller can
be precomputed using parametric programming, and the exact for i = 1,..., N. Such a partition may be assumed to satisfy
explicit MEC implementation amounts to the evaluation of a intX; N intx; = ¢ for i # j (they intersect only at the
PWL function in the control unit. It has recently been shown boundary), where idt; denotes the open interior of the closed

that PWL function evaluation can be accelerated by searching a . .
binary tree data structure, leading to highly efficient, accurate setX;. The PWL controller is completely characterized by the

and verifiable software implementation in low-cost embedded following data: { K, gi, A, bi}iL .
control units. In this work we report hardware synthesis results The controller output will be given by the PWL function
for this type of PWL control, and show that explicit MPC 4 — k(x) and the argument: will typically change at

solutions can be implemented in an application specific integrated everv sampling instant based on measurements. user inout
circuit (ASIC) with about 20,000 gates, leading to computation y ping ’ put,

times in the microsecond scale. This opens the way for the use,":md Slgnalslfrom G hlghgr level con.trol system. Contro!ler
of highly advanced control designs such as constrained MPC in implementation thus requires evaluation of a PWL function
small-scale industrial and consumer electronics application areas (1)-(2) at each sampling instant in the control unit.

that are characterized by fast sampling or low cost, including In some variations of approximate explicit MPC, such as

mechatronics, MEMS, automotive control, power electronics, and 10]. the polvhedral set¥: are represented by vertices
acoustics. The main limitation of the approach is that the memory [10], poly ‘ P y

requirements increase rapidly with the problem dimensions. X, = conv(v»l v2 U.L) ©)
K3 - 77 [ AR IR 1
where conv() denotes the convex hull. These representations
I. INTRODUCTION are equivalent, but require some modification of the algorithms
Recently, several control design and synthesis methd ed for evaluation. In other varlan'st of approximate explicit
| C, such as [6], [11], the partition has an orthogonal

resulting in piecewise linear (PWL) state feedback contr
structures have been developed. These include exact expﬁgiycture (quad-tree ok — d-tree [12], [13]) that may reduce

PWL solutions to constrained linear model predictive Contrgpmputtatmlnal complexity since the partition consists of hy-
(MPC) [1], [2], [3], MPC of piecewise linear systems [4],perrec angies

approximate explicit PWL solutions to nonlinear constrained X, = {zeR"b <z <b} (4)
MPC [5], [6], hybrid MPC [7], in addition to optimal con-
strained control allocation problems [8], [9]. rather than general polyhedra.
These control design methods result in PWL controller A binary search tree representation of arbitrary polyhedral
functionsk : R — R™ represented as PWL functions (1)-(2) was suggested in [14], [15]. It leads
) to very low requirements for processing in the control unit,
Kz + g1, !f re X, but requires additional memory to store a precomputed binary
K(z) = Koz + gs, if 2 € Xy B search tree data structure. In this work we report some results
: on digital hardware synthesis for PWL function evaluation
K];[I toy, fzeXy logic based on such a data structure.

Compared to conventional MPC, which relies on extensive
wherez is the input to the controller functiom, is the dimen- numerical optimization in real time, the benefits of explicit
sion of this vectorm is the output dimension of the functidn PWL evaluation include simpler verification, low computa-
and K; € R™*™ andg; € R™ are gain matrices and vectorstional complexity, no recursive numerical computations, and
The polyhedral setsX; c R™ of the polyhedral partition deterministic execution. The main limitation of the explicit
P = {Xi,....,Xn} are represented by linear inequalitie$/PC approach is that the offline computational load (dur-

ing synthesis) and control unit memory requirements usually
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problem of implementing explicit MPC efficiently on micro-of a binary search tree to organize the search is a more efficient
processors and microcontrollers in practical applicétibas strategy [15], and will be used here.
been given much attention [21], [22], [23], [24], [25].
A different approach to a computationally efficient im- Binary search tree representation
plementation of MPC is to make the core computations é“ y P
a numerical online solver as fast as possible. SuboptimalThe PWL evaluation strategy described in [15] is to build a
and simplified MPC strategies, [26], [27], [28], [29], allowbinary search tree data structure that supports efficient search
computational complexity to be reduced at the cost of pder the polyhedral regiorX; that satisfies: € X; for any given
formance loss. A genera| purpose processor is used in [go]The overall idea is based on the observation that evaluation
for the efficient implementation of MPC, while in [31] aof a linear expression z — d; corresponding to a single hy-
parallel processing real-time architecture for MPC is invegerplane cut! z—d; = 0 may significantly reduce the number
tigated, and in [32] an FPGA implementation of an iterativef candidate polyhedral regions. This is illustrated in Figure
numeric quadratic programming solver is proposed and testdéd.where the partition? = {Xi, Xo, X3, X4, X5, Xg, X7}
Dynamically reconfigurable analog/digital hardware capabf@ntains 7 polyhedra. Consider the pointnear the center
of handling MPC computation requirements was proposed @h the area. In order to determine which polyhedron this
[33], dynamic scheduling of real-time MPC was considered ppint belongs to, the linear expressiefiz — d; may be
[34], while [35], [36] describes a methods for reducing the pr&valuated. This hyperplane cuts the partition into two parts:
cision of a microprocessor to the minimum while maintainingX1, X2, X3} (below the hyperplane) anfiXy, X5, X6, X7}
close to optimal control performance. A Logarithmic Numbef@bove the hyperplane). With the given the sign of the
System (LNS) based microprocessor was proposed in [37] ®f@luated expressioff = — d; shows that: is located above
computational cost savings. Compared to explicit MPC sudfe hyperplane, and one can infer that XU X5UXsUX7.
approaches are expected to scale much better with respedfitedther words, 3 out of 7 polyhedral regions has been
memory use as the dimensions of the problem increases. excluded, and the remaining problem is greatly reduced. This
The main contribution of the present paper is to considgfocedure can be repeated, as shown in the 2nd part of
the option of direct hardware synthesis efplicit piecewise Figure 1. By evaluating the linear expressiofi: — d» one
linear MPC controllers using a high-level hardware synthegi@n infer thatz € X, U X;. In other words, 2 out of 4
tool [38]. It may prove to be beneficial or cost-efficient in somgemaining regions have been eliminated and the problem is
applications where an ASIC or FPGA implementation woul@dain greatly reduced. Sinc¥, and X; are separated by

be preferable to a microprocessor based implementation. & single hyperplane, one can easily detect that X5 by
evaluating this third linear expression. In summary, evaluation

of three linear expressions is sufficient to determine which
polyhedral regionz belongs to in this case. We observe that
. . . each region is characterized by 3 or 4 linear inequalities, such
tion solving an MPC problem contams. several _hundred at an exhaustive search may require the evaluation of more
thousands of polyhedra, even if complexny reductlpn methofs,n 20 linear expressions in this case. For general algorithms
such as [39], [40] are used. Often, neighboring regions CoNtai construct such a binary search tree, we refer to [15] and

the same Imga_r mapping such that_ th_e f?%”"ber of line@lmark that the computational benefits are relatively much
mapping coefficient matrices to store is significantly less th?ﬂ

X , . hore significant in larger examples.
the polyhedral regions that must be stored as linear inequalityr, o procedure illustrated above is completely general, and
coefficient matrices. ’

Evaluati PWL f . 1) . . ¢ corresponds to the construction and traversal of a binary
valuating a unction (1) for a givem consists o search tree where at each node there is a linear expression

Il. POLYHEDRAL PARTITION BINARY SEARCH
A typical polyhedral partition used to define a PWL func

two steps: corresponding to a hyperplane that cuts the remaining partition
« Identify the polyhedral region indexsuch that: € Xi, into three parts: Polyhedra that are completely on one side of
and the hyperplane, polyhedra that are completely on the other

« Evaluate the corresponding linear functiéhz + g;. side of the hyperplane, and polyhedra that are cut by the

The second step is completely straightforward, while the firsyperplane. Estimating that each of these parts are of similar
step can be implemented in at least two ways, as descrilsze, each node in the search tree will exclude approximately
below (see also [41] for a third way). Direct implementation of/3 of the polyhedral regions. This leads to a search tree depth
the first step by sequentially searching through each polyhedral

region X; in order to determine the one that satisfies X;

is a simple, but computationally inefficient strategy. In the D~ 1T7log, N (®)
worst case,]\{' matrix op-era.tlons of the. formd;z — b, S O, that is estimated to be logarithmic itV the number of
must be carried out, which is computationally expensive S'”ﬁ%lyhedra in the partition, [15].

the number of polyhedral region§ may amount to several

thousands (see [2] for worst case complexity results). The use
B. Binary tree search algorithm

1see also ParOS website http://www.parostech.com/ParOS.html, and J. A_I_h PWL f . | . bl . f .
Mandler et al. Parametric model predictive control of air separation. Ip Com | N€ unction evaluation problem consists of executing

prior art database. at each sample two sets of nested loops



Number of input variables (parameters), idém(z) = n
Number of output variables, i.elim(u) = m

Number of polyhedral regions in partition

Number of nodes in search tree

Depth of search tree (maximum number of nodes that
must be traversed to reach a leaf node)

Number of hyperplanes

TABLE |
KEY PARAMETERS OF THEPWL FUNCTION EVALUATION PROBLEM.

T Ug=z3S

X1

errors in the representation of the polyhedra. This means
that the polyhedra will be extended to cover the small gaps.
Likewise, overlapping regions will be uniquely resolved, and

the boundary linear functions will be extrapolated outside

the original partition ifz happens to be located outside the

partition.

Numerical round-off errors cannot accumulate in the tree
search loop since the only information carried from one
iteration to the next is the binary branching decision. The
resulting insensitivity to numerical errors means that fixed
point arithmetics may be utilized as an alternative to floating-

= point arithmetics without any complications. Consequently,
the accuracy of implementation will degrade gracefully as the
number of bits used to represent the numerical data decreases
(roundoff errors), in the sense that numerical instability will
not occur. The hardware synthesis tests that we performed
used 32-bit integer arithmetic to represent the PWL function
parameters and 16-bit integers for array indices. Less costly
circuits may be achievable if shorter integers can be used, but
scaling and accuracy becomes an issue.

Fig. 1. Hyperplane cuts of polyhedral partition.

« Tree search loop: Starting at the root node of the binary Il. 'HARDWARE SYNTHESIS
search tree the loop iterates through the nodes until aln this section we consider digital hardware synthesis of
leaf node is reached. At each loop iteration, an inndéne binary tree search algorithm in section II-B, and how the
loop evaluates the hyperplane atftz — d;. A binary complexity of the resulting hardware design scales with the
tree branch is based on the sign of this expression. Thmblem parameters. The key parameters characterizing the
leaf node identifies the linear expression to be evaluatBdlVL function complexity are defined in Table I.
to compute the PWL function value.

. Cpntrol evaluation loop: Evaluatipn of the linear expresy  Hardware synthesis approach
sion k(z) = K;x + g; where the index corresponds to .
the leaf node. This is a nested loop corresponding to aThe hardware design program PICO-Express (a product of
matrix multiplication operation. Synfora Inc.), based on the HP Labs PICO research [38] takes

._the C source code of the PWL function evaluation algorithm,
Together the two loops form a control block. The total tlm(g‘S described in section II-B, as an input along with some

Iﬁre ?C(vicggﬁg of a control block is the sum of the times fo&SSUI’nptiOﬂS about the memory bandwidth. This program then

computes an efficient hardware architecture including cache
size, functional register assignments, and ALUs. It also gen-
erates estimates of performance, execution time, and memory
Due to round-off errors in numerical computations that leadsquirements. PICO produces the hardware design expressed
to the polyhedral representation of the PWL function, see [At the register-transfer level (RTL) in a hardware design
[3], the mathematical partition property Xt NintX;, = (0 language, either VHDL or Verilog. The RTL design is tested
for i # j and X; U X, U ..U Xy = X (X is the and verified by PICO as well. This design can be implemented
whole region of interest) will hold only approximately due tan an FPGA or an ASIC. In either case, routing and placement
numerical errors. This means that some regions may slightbols, as well as libraries of parameterized macrocells (for the
overlap, and there may be small gaps between some regidREL level components such as adders and registers) are used
The binary search procedure will automatically complete tlie generate the FPGA or ASIC implementation. The main
partition since when a leaf node is reached, the corresponddtifferences between ASIC and FPGA implementations are as
linear function will be evaluated without regard to numericdbllows. ASICs can be faster, can include analogue as well

C. Numerical round-off errors



i ; : ,Problem n m N M D H
as digital signals, can demonstratg lower power consumptieny; - niegrator = 1 o = 3 7 o
and are less expensive for large unit volumes. FPGAs are morgouble integrator: = 5 2 1 25 87 7 86
flexible during design time, less expensive for small lots, andgoug:e !ntegratoz = }(5) g i 2?155 gig 191 ?éig

H H ouble integratoih =
require less lead time. Quadruple integratoh = 2 4 1 3 5 2 14

The tree search loop and control evaluation loop are pro-Quadruple integratoh=6 4 1 31 215 8 268

cessed in a pipeline. It consists of a pipe-fill phase, the prologasﬁ‘cdéggfh'”ie%ram =10 g ; 2% ;;? ﬁ 1;38
where iterations are initiated at regular intervals. The initiationyejicoptern — 2 6 2 152 15395 19 1107

interval is the number of clock cycles between sequential TABLE ||
starts of the inner loop. No iterations are complete during . . oo CHARACTERISTICS WHERE /i IS THE MPC
the prolog. Next, the loop enters the steady-state where for

L. . . . . HORIZON.
every initiation interval one iteration is completed and one
new iteration is initiated. When the loop nears termination, it
enters the pipe-drain state, known as the epilog, in which théroblem Gates ~ Memory Clock Loop time
pipeline is drained by allowing iterations to complete without : (kGates) (kBytes) cycles k)
. . . - . Double integrh =1 19.3 0.7 33 1.65
new iterations being initiated. PICO synthesizes a hardwargoypie integri = 5 19.6 31 48 2.40
design with the requested initiation interval using heuristics tdouble integr.h = 10 19.7 452 58 2.90
reduce the hardware cost. (If an unachievable initiation interv 3:2';{';";‘3%{29215’ e PR 34
is requested, PICO reports that the requested throughput &yadruple integrs = 6 20.2 235 73 365
impossible using its library of functional elements.) Quadruple integrh = 10 20.4 3414 94 4.70
Both the t hi dth trol luation | Helicopterh = 1 21.7 202 129 6.45
0 e tree search loop and the control evaluation l00p arfigjicopterh — 2 229 62873 201 105

doubly nested loops. In the tree se_arch loop, whose syr_1thesis TABLE Il

we report on here., the OUter.|00p ISa |00p 0\{er depth In thaARDWARE SYNTHESIS RESULT SUMMARY WITH A CLOCK FREQUENCY
search tree. The inner loop is a loop wfiterations for the
evaluation of the dot product of the input vectorwith one
hyperplane normal vectat;. An initiation interval equal to
one can be achieved by PICO, since the inner loop recurrence

(evaluation ofc!'z) is through an addition, and PICO can

generate designs using an one-cycle adder. There is also an

important dependence of larger latency. At the end of the inner Number of clock cycles per control blocks

loop, the dot product; z is first compared with a constaitf, e total number of clock cycles required to execute one

then a branch is taken to select one of two possible child nocL‘?)%trol block is summarized in Table Il and illustrated in
in the search tree, then the index of the selected node is “Se%ﬁre 2. The number of clock cycles does not explicitly
start the lookup of the parameters of the next hyperplane frQfilnend on the number of parameters but rather on the search

memory. To accommodate the latency of these operations "i'ﬂe%th of the tree. The number of clock cycles, NClock, is
still achieve an initiation interval equal to one, the inner loonproximately given by

is padded with a few "slack” iterations at the front. These do

no work, but they increase the number of inner-loop iterationNClock ~  D(n + 1 4+ SLACK) + m(n + 1 + SLACK)
between the completion of one dot product and the start of the (6)
next one, so that there are enough cycles to cover this Iatenc%. ) o )
For the case studies, all the tables of hyperplane norsaisd Where SLACK is the number of padding iterations needed,
pointer arrays that define the search tree structure are assuftiedliScussed above. It is 2 at 10 - 20 MHz clock speeds
to be stored in fast SRAM in the accelerator device. PICO c&Rd 4 for 200 MHz clock speeds. This variable represents

also synthesize designs in which data arrays are kept in miiff time it takes to set up the inner loop and the number
memory. of clock cycles for memory access. The first term is the

number of clock cycles for the tree search; the second is the

number of clock cycles needed for evaluationidf:) once

the appropriate polyhedron has been determined. Because the
B. Benchmark problems search depth increases kg, (M), the execution time also

increases adog,(M). This scaling can continue until the

The characteristics of the benchmark problems used in owrmber of nodes is so large that the data can no longer be

case study are given in Table Il. The double integrator ametld in scratch SRAM memory and must be added as general
helicopter examples are described in more detail in [14], asgstem memory. The limits depend on the technology of the
the quadruple integrator example in [41]. The MPC horizochip but roughly 20MB of SRAM is put on current Intel chips
h is the number of samples the MPC looks into the futurso this represents a break point. In the future this number will
when optimizing the control input in order not to violatego up. Beyond this limit, the access time jumps to roughly
the constraints at some future point in time. Please see th&8ensec. For clock speeds of 10 and 20 MHz, this is not a
references for a description of the control design, performangepblem but for 200 MHz clock speeds, this transition can lead
and additional details. to slower performance requiring a larger value for SLACK. In

ON 20 MHz. THE SYMBOL h DENOTES THEMPC HORIZON. THE TIMES
WILL BE NEARLY A FACTOR OF 10 FASTER FOR A CLOCK FREQUENCY OF
200 MHz. DATA ARE THOSE PROVIDED BYPICO EXPRESS1.3.
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Figure 3 the dependence of the tree search clock cycles a@Sga4. The number of gates (diamonds) for the tree search and memory
function of clock speed and number of nodes is shown. Tkguares) for the benchmark problems.

dependence of the tree search on clock speed is not strong up

to 200 MHz indicating that for these problems clock speed

translates directly into improved control loop speed. It shoutbis cost is by far the dominant one for implementing the chip
be mentioned that for 200 MHz clock speeds, even the slowasid may be prohibitive for some applications.

benchmark problem can execute in about sl PICO’s output is a hardware design expressed in Verilog,
which is an industry-standard hardware design language. In
D. Number of gates and chip circuit area order to generate an ASIC implementation, the Verilog speci-

gation (combined with the rest of the specification of an entire

The number of gates as a function of problem dimensioﬂ ; : . : :
are given in Table Ill and Figure 4. Basically, the number gystem-on-chip design, normally) is input to a logic-synthesis
' , Which in turn creates a netlist, input to a place-and-route

gates (20 kGates) for the tree search does not depend stror ; .
on the problem parameters. The number of gates for t p. We used a_standard logic s_ynthe5|s tool, Synopsys DC
tra, on the Helicoptefh = 2 design. The process targeted

function evaluation also does not increase much with proble TSMC at 0.13 mi S . i
complexity. This result occurs because, in all cases, we haVas at ©.15 microns. Synopsys gives a process-specitic
timate of chip area for an ASIC implementation. For this

fixed the performance at one loop iteration per clock cycle, a gumate . . : ] :

PICO has produced the least costly hardware that it can, wi Sign, |t25 estimate Is 91,0@@ (S‘?'“""Te microns); of this total,

achieving this fixed (independent of parameters) throughp .’OOO” was for sequential circuit elements (the_ memory
H%ed for the hyperplace normals take up most of this in this, a

Total latency, as indicated above, depends strongly on t S
parameters. If we were to change the performance requiremg}?tmory'heavy case) and 38,000 was for the combinational

up or down, we would see an increase or a decrease in ﬁ%@un elements, the gates.
gate count. . )

The size of the embedded SRAMs does not change, hdw- Discussion
ever, with performance, and these may dominate the chip costlf the clock frequency is assumed to be 200 MHz, then
However, the number of SRAM cells scales directly with théhe control loop execution time would range from Q.2
number of search tree nodes, see Figure 4. For larger probletas1.1 us for the benchmark problems, see Table Il and
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Figure 5. This result is rather important in that it indicates
that control for mechanical, thermal, and acoustic time scaldgl
can be handled by these controllers with speed to spare,
e.g. [16], [17], [18]. In particular, lower level constrainedio
multidimensional controls in mechanical systems may readily
be implemented using hardware implementation of expliﬁ'htl]
MPC. Because the complexity of the problem grows with the
dimension of the parameter vectorand the MPC horizon

h, [2], [14] these numbers should be minimized in order t32]
improve the performance. The biggest cost factor appears 19
be the memory needed for storing the hyperplane norma[ls;
reducing the complexity of the PWL function representatiold4l
is in fact an active area of research [42], [14], [4], [39], [40]P15]
[11]. Moreover, a tradeoff between computational and memory
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