
1

Hardware Synthesis of Explicit Model Predictive
Controllers

Tor A. Johansen, Warren Jackson, Robert Schreiber, Petter Tøndel

Abstract— The general solution to constrained linear and
piecewise linear model predictive control (MPC) has recently
been explicitly characterized in terms of piecewise linear (PWL)
state feedback control. This means that a PWL controller can
be precomputed using parametric programming, and the exact
explicit MPC implementation amounts to the evaluation of a
PWL function in the control unit. It has recently been shown
that PWL function evaluation can be accelerated by searching a
binary tree data structure, leading to highly efficient, accurate,
and verifiable software implementation in low-cost embedded
control units. In this work we report hardware synthesis results
for this type of PWL control, and show that explicit MPC
solutions can be implemented in an application specific integrated
circuit (ASIC) with about 20,000 gates, leading to computation
times in the microsecond scale. This opens the way for the use
of highly advanced control designs such as constrained MPC in
small-scale industrial and consumer electronics application areas
that are characterized by fast sampling or low cost, including
mechatronics, MEMS, automotive control, power electronics, and
acoustics. The main limitation of the approach is that the memory
requirements increase rapidly with the problem dimensions.

I. I NTRODUCTION

Recently, several control design and synthesis methods
resulting in piecewise linear (PWL) state feedback control
structures have been developed. These include exact explicit
PWL solutions to constrained linear model predictive control
(MPC) [1], [2], [3], MPC of piecewise linear systems [4],
approximate explicit PWL solutions to nonlinear constrained
MPC [5], [6], hybrid MPC [7], in addition to optimal con-
strained control allocation problems [8], [9].

These control design methods result in PWL controller
functionsk : Rn → Rm represented as

k(x) =





K1x + g1, if x ∈ X1

K2x + g2, if x ∈ X2

...
KNx + gN , if x ∈ XN

(1)

wherex is the input to the controller function,n is the dimen-
sion of this vector,m is the output dimension of the functionk,
andKi ∈ Rm×n andgi ∈ Rm are gain matrices and vectors.
The polyhedral setsXi ⊂ Rn of the polyhedral partition
P = {X1,, XN} are represented by linear inequalities

Tor A. Johansen and Petter Tøndel are with the Department of Engineering
Cybernetics, Norwegian University of Science and Technology, Trondheim,
Norway. Their work was in supported by the Research Council of Norway.

Warren Jackson and Robert Schreiber are with Hewlett-Packard Laborato-
ries, Palo Alto, California 94304-1126, USA

Petter Tøndel is currently with SINTEF Applied Cybernetics, Trondheim,
Norway.

Manuscript received

(half-spaces separated by hyper-planes)

Xi = {x ∈ Rn|Aix ≤ bi} (2)

for i = 1, ..., N . Such a partition may be assumed to satisfy
intXi ∩ intXj = ∅ for i 6= j (they intersect only at the
boundary), where intXi denotes the open interior of the closed
setXi. The PWL controller is completely characterized by the
following data:{Ki, gi, Ai, bi}N

i=1.
The controller output will be given by the PWL function

u = k(x) and the argumentx will typically change at
every sampling instant based on measurements, user input,
and signals from a higher level control system. Controller
implementation thus requires evaluation of a PWL function
(1)-(2) at each sampling instant in the control unit.

In some variations of approximate explicit MPC, such as
[10], the polyhedral setsXi are represented by vertices

Xi = conv(v1
i , v2

i ,, vL
i) (3)

where conv() denotes the convex hull. These representations
are equivalent, but require some modification of the algorithms
used for evaluation. In other variants of approximate explicit
MPC, such as [6], [11], the partition has an orthogonal
structure (quad-tree ork − d-tree [12], [13]) that may reduce
computational complexity since the partition consists of hy-
perrectangles

Xi = {x ∈ Rn|bi ≤ x ≤ bi} (4)

rather than general polyhedra.
A binary search tree representation of arbitrary polyhedral

PWL functions (1)-(2) was suggested in [14], [15]. It leads
to very low requirements for processing in the control unit,
but requires additional memory to store a precomputed binary
search tree data structure. In this work we report some results
on digital hardware synthesis for PWL function evaluation
logic based on such a data structure.

Compared to conventional MPC, which relies on extensive
numerical optimization in real time, the benefits of explicit
PWL evaluation include simpler verification, low computa-
tional complexity, no recursive numerical computations, and
deterministic execution. The main limitation of the explicit
MPC approach is that the offline computational load (dur-
ing synthesis) and control unit memory requirements usually
increase quickly with the dimension and complexity of the
problem, making it useful mainly for small scale problems.
Still, this may not be prohibitive in some applications from
areas such as automotive [16], [17], [18], biomedical systems,
aerospace, power electronics [19], microelectronics/MEMS
[20], acoustics, and rotating machinery [5]. Recently, the

2

problem of implementing explicit MPC efficiently on micro-
processors and microcontrollers in practical application1 has
been given much attention [21], [22], [23], [24], [25].

A different approach to a computationally efficient im-
plementation of MPC is to make the core computations of
a numerical online solver as fast as possible. Suboptimal
and simplified MPC strategies, [26], [27], [28], [29], allow
computational complexity to be reduced at the cost of per-
formance loss. A general purpose processor is used in [30]
for the efficient implementation of MPC, while in [31] a
parallel processing real-time architecture for MPC is inves-
tigated, and in [32] an FPGA implementation of an iterative
numeric quadratic programming solver is proposed and tested.
Dynamically reconfigurable analog/digital hardware capable
of handling MPC computation requirements was proposed in
[33], dynamic scheduling of real-time MPC was considered in
[34], while [35], [36] describes a methods for reducing the pre-
cision of a microprocessor to the minimum while maintaining
close to optimal control performance. A Logarithmic Number
System (LNS) based microprocessor was proposed in [37] for
computational cost savings. Compared to explicit MPC such
approaches are expected to scale much better with respect to
memory use as the dimensions of the problem increases.

The main contribution of the present paper is to consider
the option of direct hardware synthesis ofexplicit piecewise
linear MPC controllers using a high-level hardware synthesis
tool [38]. It may prove to be beneficial or cost-efficient in some
applications where an ASIC or FPGA implementation would
be preferable to a microprocessor based implementation.

II. POLYHEDRAL PARTITION BINARY SEARCH

A typical polyhedral partition used to define a PWL func-
tion solving an MPC problem contains several hundred or
thousands of polyhedra, even if complexity reduction methods
such as [39], [40] are used. Often, neighboring regions contain
the same linear mapping such that the number of linear
mapping coefficient matrices to store is significantly less than
the polyhedral regions that must be stored as linear inequality
coefficient matrices.

Evaluating a PWL function (1) for a givenx consists of
two steps:

• Identify the polyhedral region indexi such thatx ∈ Xi,
and

• Evaluate the corresponding linear functionKix + gi.

The second step is completely straightforward, while the first
step can be implemented in at least two ways, as described
below (see also [41] for a third way). Direct implementation of
the first step by sequentially searching through each polyhedral
regionXi in order to determine the one that satisfiesx ∈ Xi

is a simple, but computationally inefficient strategy. In the
worst case,N matrix operations of the formAix − bi ≤ 0
must be carried out, which is computationally expensive since
the number of polyhedral regionsN may amount to several
thousands (see [2] for worst case complexity results). The use

1See also ParOS website http://www.parostech.com/ParOS.html, and J. A.
Mandler et al. Parametric model predictive control of air separation. Ip Com
prior art database.

of a binary search tree to organize the search is a more efficient
strategy [15], and will be used here.

A. Binary search tree representation

The PWL evaluation strategy described in [15] is to build a
binary search tree data structure that supports efficient search
for the polyhedral regionXi that satisfiesx ∈ Xi for any given
x. The overall idea is based on the observation that evaluation
of a linear expressioncT

i x− di corresponding to a single hy-
perplane cutcT

i x−di = 0 may significantly reduce the number
of candidate polyhedral regions. This is illustrated in Figure
1, where the partitionP = {X1, X2, X3, X4, X5, X6, X7}
contains 7 polyhedra. Consider the pointx near the center
of the area. In order to determine which polyhedron this
point belongs to, the linear expressioncT

1 x − d1 may be
evaluated. This hyperplane cuts the partition into two parts:
{X1, X2, X3} (below the hyperplane) and{X4, X5, X6, X7}
(above the hyperplane). With the givenx, the sign of the
evaluated expressioncT

i x − di shows thatx is located above
the hyperplane, and one can infer thatx ∈ X4∪X5∪X6∪X7.
In other words, 3 out of 7 polyhedral regions has been
excluded, and the remaining problem is greatly reduced. This
procedure can be repeated, as shown in the 2nd part of
Figure 1. By evaluating the linear expressioncT

2 x − d2 one
can infer thatx ∈ X4 ∪ X5. In other words, 2 out of 4
remaining regions have been eliminated and the problem is
again greatly reduced. SinceX4 and X5 are separated by
a single hyperplane, one can easily detect thatx ∈ X5 by
evaluating this third linear expression. In summary, evaluation
of three linear expressions is sufficient to determine which
polyhedral regionx belongs to in this case. We observe that
each region is characterized by 3 or 4 linear inequalities, such
that an exhaustive search may require the evaluation of more
than 20 linear expressions in this case. For general algorithms
to construct such a binary search tree, we refer to [15] and
remark that the computational benefits are relatively much
more significant in larger examples.

The procedure illustrated above is completely general, and
corresponds to the construction and traversal of a binary
search tree where at each node there is a linear expression
corresponding to a hyperplane that cuts the remaining partition
into three parts: Polyhedra that are completely on one side of
the hyperplane, polyhedra that are completely on the other
side of the hyperplane, and polyhedra that are cut by the
hyperplane. Estimating that each of these parts are of similar
size, each node in the search tree will exclude approximately
1/3 of the polyhedral regions. This leads to a search tree depth
D

D ≈ 1.7 log2 N (5)

that is estimated to be logarithmic inN the number of
polyhedra in the partition, [15].

B. Binary tree search algorithm

The PWL function evaluation problem consists of executing
at each sample two sets of nested loops

3

X7

X4

X2

c1x− d1 = 0

X1 X3

X5 X6

x

X7

X4

X2

c1x− d1 = 0

X1 X3 c2x− d2 = 0

X5 X6

x

Fig. 1. Hyperplane cuts of polyhedral partition.

• Tree search loop: Starting at the root node of the binary
search tree the loop iterates through the nodes until a
leaf node is reached. At each loop iteration, an inner
loop evaluates the hyperplane cutcT

i x − di. A binary
tree branch is based on the sign of this expression. The
leaf node identifies the linear expression to be evaluated
to compute the PWL function value.

• Control evaluation loop: Evaluation of the linear expres-
sion k(x) = Kix + gi where the indexi corresponds to
the leaf node. This is a nested loop corresponding to a
matrix multiplication operation.

Together the two loops form a control block. The total time
for execution of a control block is the sum of the times for
the two parts.

C. Numerical round-off errors

Due to round-off errors in numerical computations that leads
to the polyhedral representation of the PWL function, see [2],
[3], the mathematical partition property intXi ∩ intXj = ∅
for i 6= j and X1 ∪ X2 ∪ ... ∪ XN = X (X is the
whole region of interest) will hold only approximately due to
numerical errors. This means that some regions may slightly
overlap, and there may be small gaps between some regions.
The binary search procedure will automatically complete the
partition since when a leaf node is reached, the corresponding
linear function will be evaluated without regard to numerical

n Number of input variables (parameters), i.e.dim(x) = n
m Number of output variables, i.e.dim(u) = m
N Number of polyhedral regions in partition
M Number of nodes in search tree
D Depth of search tree (maximum number of nodes that

must be traversed to reach a leaf node)
H Number of hyperplanes

TABLE I

KEY PARAMETERS OF THEPWL FUNCTION EVALUATION PROBLEM.

errors in the representation of the polyhedra. This means
that the polyhedra will be extended to cover the small gaps.
Likewise, overlapping regions will be uniquely resolved, and
the boundary linear functions will be extrapolated outside
the original partition ifx happens to be located outside the
partition.

Numerical round-off errors cannot accumulate in the tree
search loop since the only information carried from one
iteration to the next is the binary branching decision. The
resulting insensitivity to numerical errors means that fixed
point arithmetics may be utilized as an alternative to floating-
point arithmetics without any complications. Consequently,
the accuracy of implementation will degrade gracefully as the
number of bits used to represent the numerical data decreases
(roundoff errors), in the sense that numerical instability will
not occur. The hardware synthesis tests that we performed
used 32-bit integer arithmetic to represent the PWL function
parameters and 16-bit integers for array indices. Less costly
circuits may be achievable if shorter integers can be used, but
scaling and accuracy becomes an issue.

III. H ARDWARE SYNTHESIS

In this section we consider digital hardware synthesis of
the binary tree search algorithm in section II-B, and how the
complexity of the resulting hardware design scales with the
problem parameters. The key parameters characterizing the
PWL function complexity are defined in Table I.

A. Hardware synthesis approach

The hardware design program PICO-Express (a product of
Synfora Inc.), based on the HP Labs PICO research [38] takes
the C source code of the PWL function evaluation algorithm,
as described in section II-B, as an input along with some
assumptions about the memory bandwidth. This program then
computes an efficient hardware architecture including cache
size, functional register assignments, and ALUs. It also gen-
erates estimates of performance, execution time, and memory
requirements. PICO produces the hardware design expressed
at the register-transfer level (RTL) in a hardware design
language, either VHDL or Verilog. The RTL design is tested
and verified by PICO as well. This design can be implemented
in an FPGA or an ASIC. In either case, routing and placement
tools, as well as libraries of parameterized macrocells (for the
RTL level components such as adders and registers) are used
to generate the FPGA or ASIC implementation. The main
differences between ASIC and FPGA implementations are as
follows. ASICs can be faster, can include analogue as well

4

as digital signals, can demonstrate lower power consumption
and are less expensive for large unit volumes. FPGAs are more
flexible during design time, less expensive for small lots, and
require less lead time.

The tree search loop and control evaluation loop are pro-
cessed in a pipeline. It consists of a pipe-fill phase, the prolog,
where iterations are initiated at regular intervals. The initiation
interval is the number of clock cycles between sequential
starts of the inner loop. No iterations are complete during
the prolog. Next, the loop enters the steady-state where for
every initiation interval one iteration is completed and one
new iteration is initiated. When the loop nears termination, it
enters the pipe-drain state, known as the epilog, in which the
pipeline is drained by allowing iterations to complete without
new iterations being initiated. PICO synthesizes a hardware
design with the requested initiation interval using heuristics to
reduce the hardware cost. (If an unachievable initiation interval
is requested, PICO reports that the requested throughput is
impossible using its library of functional elements.)

Both the tree search loop and the control evaluation loop are
doubly nested loops. In the tree search loop, whose synthesis
we report on here, the outer loop is a loop over depth in the
search tree. The inner loop is a loop ofn iterations for the
evaluation of the dot product of the input vectorx with one
hyperplane normal vectorci. An initiation interval equal to
one can be achieved by PICO, since the inner loop recurrence
(evaluation ofcT

i x) is through an addition, and PICO can
generate designs using an one-cycle adder. There is also an
important dependence of larger latency. At the end of the inner
loop, the dot productcT

i x is first compared with a constantdi,
then a branch is taken to select one of two possible child nodes
in the search tree, then the index of the selected node is used to
start the lookup of the parameters of the next hyperplane from
memory. To accommodate the latency of these operations and
still achieve an initiation interval equal to one, the inner loop
is padded with a few ”slack” iterations at the front. These do
no work, but they increase the number of inner-loop iterations
between the completion of one dot product and the start of the
next one, so that there are enough cycles to cover this latency.
For the case studies, all the tables of hyperplane normalsci and
pointer arrays that define the search tree structure are assumed
to be stored in fast SRAM in the accelerator device. PICO can
also synthesize designs in which data arrays are kept in main
memory.

B. Benchmark problems

The characteristics of the benchmark problems used in our
case study are given in Table II. The double integrator and
helicopter examples are described in more detail in [14], and
the quadruple integrator example in [41]. The MPC horizon
h is the number of samples the MPC looks into the future
when optimizing the control input in order not to violate
the constraints at some future point in time. Please see these
references for a description of the control design, performance,
and additional details.

Problem n m N M D H
Double integratorh = 1 2 1 5 13 4 10
Double integratorh = 5 2 1 25 87 7 86
Double integratorh = 10 2 1 95 323 9 346
Double integratorh = 15 2 1 215 815 11 818
Quadruple integratorh = 2 4 1 3 5 2 14
Quadruple integratorh = 6 4 1 31 215 8 268
Quadruple integratorh = 10 4 1 81 715 11 1188
Helicopterh = 1 6 2 47 527 11 82
Helicopterh = 2 6 2 152 15395 19 1107

TABLE II

BENCHMARK PROBLEM CHARACTERISTICS, WHERE h IS THE MPC

HORIZON.

Problem Gates Memory Clock Loop time
(kGates) (kBytes) cycles (µs)

Double integr.h = 1 19.3 0.7 33 1.65
Double integr.h = 5 19.6 31 48 2.40
Double integr.h = 10 19.7 452 58 2.90
Double integr.h = 15 19.8 2680 68 3.40
Quadruple integr.h = 2 19.7 0.4 31 1.55
Quadruple integr.h = 6 20.2 235 73 3.65
Quadruple integr.h = 10 20.4 3414 94 4.70
Helicopterh = 1 21.7 202 129 6.45
Helicopterh = 2 22.9 62873 201 10.5

TABLE III

HARDWARE SYNTHESIS RESULT SUMMARY WITH A CLOCK FREQUENCY

ON 20 MHZ. THE SYMBOL h DENOTES THEMPC HORIZON. THE TIMES

WILL BE NEARLY A FACTOR OF 10 FASTER FOR A CLOCK FREQUENCY OF

200 MHZ. DATA ARE THOSE PROVIDED BYPICO EXPRESS1.3.

C. Number of clock cycles per control blocks

The total number of clock cycles required to execute one
control block is summarized in Table III and illustrated in
Figure 2. The number of clock cycles does not explicitly
depend on the number of parameters but rather on the search
depth of the tree. The number of clock cycles, NClock, is
approximately given by

NClock ≈ D(n + 1 + SLACK) + m(n + 1 + SLACK)
(6)

where SLACK is the number of padding iterations needed,
as discussed above. It is 2 at 10 - 20 MHz clock speeds
and 4 for 200 MHz clock speeds. This variable represents
the time it takes to set up the inner loop and the number
of clock cycles for memory access. The first term is the
number of clock cycles for the tree search; the second is the
number of clock cycles needed for evaluation ofk(x) once
the appropriate polyhedron has been determined. Because the
search depth increases aslog2(M), the execution time also
increases aslog2(M). This scaling can continue until the
number of nodes is so large that the data can no longer be
held in scratch SRAM memory and must be added as general
system memory. The limits depend on the technology of the
chip but roughly 20MB of SRAM is put on current Intel chips
so this represents a break point. In the future this number will
go up. Beyond this limit, the access time jumps to roughly
50 nsec. For clock speeds of 10 and 20 MHz, this is not a
problem but for 200 MHz clock speeds, this transition can lead
to slower performance requiring a larger value for SLACK. In

5

Fig. 2. The number of clock cycles required to evaluate the PWL controller,
as a function of the dimensionn = 2, 4, 6 of the parameters vectorx (upper)
and as a function of the number of search tree nodes (lower).

Figure 3 the dependence of the tree search clock cycles as a
function of clock speed and number of nodes is shown. The
dependence of the tree search on clock speed is not strong up
to 200 MHz indicating that for these problems clock speed
translates directly into improved control loop speed. It should
be mentioned that for 200 MHz clock speeds, even the slowest
benchmark problem can execute in about 1.1µs.

D. Number of gates and chip circuit area

The number of gates as a function of problem dimensions
are given in Table III and Figure 4. Basically, the number of
gates (20 kGates) for the tree search does not depend strongly
on the problem parameters. The number of gates for the
function evaluation also does not increase much with problem
complexity. This result occurs because, in all cases, we have
fixed the performance at one loop iteration per clock cycle, and
PICO has produced the least costly hardware that it can, while
achieving this fixed (independent of parameters) throughput.
Total latency, as indicated above, depends strongly on the
parameters. If we were to change the performance requirement
up or down, we would see an increase or a decrease in the
gate count.

The size of the embedded SRAMs does not change, how-
ever, with performance, and these may dominate the chip cost.
However, the number of SRAM cells scales directly with the
number of search tree nodes, see Figure 4. For larger problems,

Fig. 3. Number of clock cycles to evaluate PWL controller, as a function of
the chip clock speed. There is little overhead for increasing the clock speed
up to 200 MHz. Higher speeds incur a significant penalty for memory access.

Fig. 4. The number of gates (diamonds) for the tree search and memory
(squares) for the benchmark problems.

this cost is by far the dominant one for implementing the chip
and may be prohibitive for some applications.

PICO’s output is a hardware design expressed in Verilog,
which is an industry-standard hardware design language. In
order to generate an ASIC implementation, the Verilog speci-
fication (combined with the rest of the specification of an entire
system-on-chip design, normally) is input to a logic-synthesis
step, which in turn creates a netlist, input to a place-and-route
step. We used a standard logic synthesis tool, Synopsys DC
Ultra, on the Helicopterh = 2 design. The process targeted
was TSMC at 0.13 microns. Synopsys gives a process-specific
estimate of chip area for an ASIC implementation. For this
design, its estimate is 91,000µ2 (square microns); of this total,
53,000µ2 was for sequential circuit elements (the memory
used for the hyperplace normals take up most of this in this, a
memory-heavy case) and 38,000µ2 was for the combinational
circuit elements, the gates.

E. Discussion

If the clock frequency is assumed to be 200 MHz, then
the control loop execution time would range from 0.2µs
to 1.1 µs for the benchmark problems, see Table III and

6

Fig. 5. Execution times for the various benchmark problems with a 20 MHz
clock frequency. For 200 MHz clock rates the times would be about 10 times
faster.

Figure 5. This result is rather important in that it indicates
that control for mechanical, thermal, and acoustic time scales
can be handled by these controllers with speed to spare,
e.g. [16], [17], [18]. In particular, lower level constrained
multidimensional controls in mechanical systems may readily
be implemented using hardware implementation of explicit
MPC. Because the complexity of the problem grows with the
dimension of the parameter vectorx and the MPC horizon
h, [2], [14] these numbers should be minimized in order to
improve the performance. The biggest cost factor appears to
be the memory needed for storing the hyperplane normals;
reducing the complexity of the PWL function representation
is in fact an active area of research [42], [14], [4], [39], [40],
[11]. Moreover, a tradeoff between computational and memory
requirements can be made by constructing a binary search tree
of less depth such that at each leaf node a number of candidate
linear expression can be compared using a sequential search
[43] or other evaluation methods [41].

IV. CONCLUSION

We have shown that small-scale explicit MPC solutions
exactly represented as PWL functions can be efficiently im-
plemented in an ASIC using about 20 kGates and resulting in
execution times around 1µs with a 200 MHz clock frequency.
The binary search tree representation of polyhedral PWL
mappings is the key data structure that allows an efficient
binary tree search to be applied. The cost of implementation
is largely determined by the requirement for memory to store
the data structures needed to hold the PWL functions and the
associated search tree. Methods for complexity reduction and
PWL function approximation will greatly reduce implementa-
tion cost.

ACKNOWLEDGEMENTS

We thank Synfora, and in particular Darren Cronquist, for
discussions and for his help with the hardware synthesis using
PICO.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit solution of model predictive control via multiparametric quadratic
programming,” inProc. American Control Conference, Chicago, 2000,
pp. 872–876.

[2] ——, “The explicit linear quadratic regulator for constrained systems,”
Automatica, vol. 38, pp. 3–20, 2002.

[3] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MPC solutions,”
Automatica, vol. 39, pp. 489–497, 2003.

[4] P. Grieder, M. Kvasnica, M. Baotic, and M. Morari, “Low complexity
control of piecewise affine systems with stability guarantee,” inAmeri-
can Control Conference, Boston, 2004.

[5] T. A. Johansen, “On multi-parametric nonlinear programming and
explicit nonlinear model predictive control,” inIEEE Conf. Decision
and Control, Las Vegas, NV, vol. 3, 2002, pp. 2768–2773.

[6] ——, “Approximate explicit receding horizon control of constrained
nonlinear systems,”Automatica, vol. 40, pp. 293–300, 2004.

[7] A. Bemporad, F. Borrelli, and M. Morari, “Optimal controllers for
hybrid systems: Stability and piecewise linear explicit form,” inProc.
Conference on Decision and Control, Sydney, 2000.

[8] T. A. Johansen, T. I. Fossen, and P. Tøndel, “Optimal constrained control
allocation via multi-parametric programming,”J. Guidance, Control and
Dynamics, vol. 28, pp. 506–515, 2005.

[9] T. A. Johansen, T. P. Fuglseth, P. Tøndel, and T. I. Fossen, “Optimal
constrained control allocation in marine surface vessels with rudders,”
in IFAC Conf. Manoeuvring and Control of Marine Craft, Girona, 2003.

[10] A. Bemporad and C. Filippi, “Suboptimal explicit RHC via approximate
multiparametric quadratic programming,”J. Optimization Theory and
Applications, vol. 117, pp. 9–38, 2003.

[11] T. A. Johansen and A. Grancharova, “Approximate explicit model
predictive control via orthogonal search tree,”IEEE Trans. Automatic
Control, vol. 48, pp. 810–815, 2003.

[12] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,”Communications of the ACM, vol. 18, pp. 509–517, 1975.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry, 2nd edition. Springer-Verlag, Berlin, 2000.

[14] P. Tøndel and T. A. Johansen, “Complexity reduction in explicit model
predictive control,” inPreprints, IFAC World Congress, Barcelona, 2002.

[15] P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of piecewise
affine control via binary search tree,”Automatica, vol. 39, pp. 945–950,
2003.

[16] A. Bemporad, F. Borrelli, L. Glielmo, and F. Vasca, “Optimal piecewise-
linear control of dry clutch engagement,” in3rd IFAC Workshop on
Advances in Automotive Control, Karlsruhe, Germany, 2001.

[17] F. Borelli, A. Bemporad, M. Morari, M. Fodor, and D. Hrovat, “A hybrid
approach to traction control,” inProc. Hybrid Systems, Computation and
Control, Rome, 2001.

[18] P. Tøndel and T. A. Johansen, “Lateral vehicle stabilization using
constrained optimal control,” inProc. European Control Conference,
Cambridge, UK, 2003.

[19] G. Papafotiou, T. Geyer, and M. Morari, “Hybrid modelling and opti-
mal control of switch-mode dc-dc converters,” inIEEE Workshop on
Computers in Power Electronics (COMPEL), Champaign, IL, 2004.

[20] W. Jackson, M. P. J. Fromherz, D. K. Biegelsen, J. Reisch, and
D. Goldberg, “Constrained optimization based control of real time large-
scale systems: Airjet object movement system,” inProc. IEEE Conf.
Decision and Control, Orlando, 2001.

[21] R. Ross, “Startup company will offer model based predictive control on
a single chip,”Control Engineering Europe, pp. 8–9, November 2003.

[22] ——, “Revolutionising model-based predictive control,”IEE Computing
and Control Engineering, pp. 26–29, December 2003.

[23] P. Dua, V. Sakizlis, L. Kershenbaum, and E. Pistikopoulos, “Model-
based parametric controller for the operation of an experimental reactor,”
in ESCAPE 14, Lisbon, Portugal, 2004, pp. 337–340.

[24] E. N. Pistikopoulos, “On-line optimization via off-line optimization!
- a guided tour to parametric programming and control,” inIFAC
Symposium on Dynamics and Control of Process Systems (DYCOPS-
7), Boston, 2004.

[25] P. Dua, “Model based and paramtric control for drug delivery systems,”
Ph.D. dissertation, Imperial College London, 2005.

[26] M. Cannon and B. Kouvaritakis, “Efficient constrained model predictive
control with asymptotic optimality,”SIAM J. Optimization and Control,
vol. 41, pp. 60–82, 2002.

7

[27] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, “Efficient robust
predictive control,”IEEE Trans. Automatic Control, vol. 45, pp. 1545–
1550, 2000.

[28] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model
predictive control (feasibility implies stability),”IEEE Trans. Automatic
Control, vol. 44, pp. 648–654, 1999.

[29] B. Kouvaritakis, M. Cannon, and J. A. Rossiter, “Who needs QP for
linear system MPC anyway?”Automatica, vol. 38, pp. 879–884, 2002.

[30] L. G. Bleris and M. V. Kothare, “Real-time implementation of model
predictive control,” inProc. American Control Conference, Portland,
OR, 2005, pp. 1752–1757.

[31] G. Hassapis, “Implementation of model predictive control using real-
time multiprocessing computing,”Microprocessors and Microsystems,
vol. 27, pp. 327–340, 2003.

[32] M. H. He and K. V. Ling, “Model predictive control on a chip,” in
The 5th International Conference on Control and Automation, Hungary,
Budapest, 2005, pp. 528–531.

[33] O. A. Palusinski, S. Vrudhula, L. Znamirowski, and D. Humbert,
“Process control for microreactors,”Chemical Engineering Progress, pp.
60–66, 2001.

[34] D. Henrikson, A. Cervin, J. Akesson, and K. Arzen, “Feedback schedule
of model predictive controllers,” inProc. 8th IEEE Real-time and
embedded technology and applications symposium, San Jose, CA, 2002.

[35] L. G. Bleris, M. V. Kothare, J. G. Garcia, and M. G. Arnold, “Towards
embedded model predictive control for system-on-a-chip applications,”
J. Process Control, vol. 16, pp. 255–264, 2005.

[36] ——, “Embedded model predictive control for system-on-a-chip appli-
cations,” inProceedings of the 7th IFAC Symposium on Dynamics and
Control of Process Systems (DYCOPS-7), Boston, MA, 2004.

[37] J. G. Garcia, M. G. Arnold, L. G. Bleris, and M. V. Kothare, “LNS
architectures for embedded model predictive control processors,” inInt.
Conf. Compilers, Architectures and Synthesis for Embedded Systems,
Washington DC, 2004, pp. 79–84.

[38] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cron-
quist, and M. Sivaraman, “PICO-NPA: High-level synthesis of nonpro-
grammable hardware accelerators,”Journal of VLSI Signal Processing,
vol. 31, pp. 127–142, June 2002.

[39] T. Geyer, F. Torrisi, and M. Morari, “Optimal complexity reduction
of piecewise affine models based on hyperplane arrangements,” in
American Control Conference, Boston, 2004, pp. 1190 – 1195.

[40] A. Bemporad, K. Fukuda, and F. D. Torrisi, “Convexity recognition of
the union of polyhedra,”Computational Gemometry, vol. 18, pp. 141–
154, 2001.

[41] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari, “Efficient on-line
computation of explicit model predictive control,” inProc. IEEE Conf.
Decision and Control, Orlando, vol. 2, 2001, pp. 1187–1192.

[42] P. Tøndel, T. A. Johansen, and A. Bemporad, “Computation and approxi-
mation of piecewise affine control via binary search tree,” inIEEE Conf.
Decision and Control, Las Vegas, NV, vol. 3, 2002, pp. 3144–3149.

[43] T. A. Johansen, I. Petersen, and O. Slupphaug, “Explicit suboptimal
linear quadratic regulation with input and state constraints,”Automatica,
vol. 38, pp. 1099–1112, 2002.

