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Abstract

In this paper, we propose a system-level error tolerance scheme for systems where a linear transform
is combined with quantization. These are key components in multimedia compression systems, e.g., video
and image codecs. Using the concept of acceptable degradation, our scheme classifies hardware faults into
acceptable and unacceptable faults. We propose analysis techniques that allow us to estimate the faults’
impact on compression performance, and in particular on the quality of decoded images/video. We consider
as an example the Discrete Cosine Transform (DCT), which is part of a large number of existing image
and video compression systems. We propose methods to establish thresholds of acceptable degradation and
corresponding testing algorithms for DCT-based systems. Our results for a JPEG encoder using a typical
DCT architecture show that over 50% of single stuck-at interconnection faults in one of its 1D DCT modules
lead to imperceptible quality degradation in the decoded images, over the complete range of compression
rates at which JPEG can operate.

1. Introduction

Classical manufacturing test for digital chips classifies chips into two categories: perfect and imperfect.
Our work is motivated by the notion that in some instances imperfect chips can be used, as long as they
introduce “acceptable errors”. Error tolerance (ET) leads to a relaxation of the requirement of 100% correct-
ness for devices and interconnects, which may dramatically reduce costs for manufacturing, verification, and
testing [4]. Categorizing chips into acceptable and unacceptable also leads to increases in yield rate.

Determining what constitutes acceptable degradation in system performance is obviously an application-
specific decision; both performance criteria and acceptability thresholds are highly dependent on the appli-
cation. In this paper we consider multimedia compression systems as a promising application area for our
proposed ET concepts. This is because i) many multimedia compression systems are deployed in consumer
devices, for which maintaining low costs is important, and ii) compression itself leads to a lossy represen-
tation of signals, so that the effect of system faults can be viewed as an additional source of “noise” or
representation error. As an example, our study of a complete MPEG video encoder [5] indicates that several
of its building blocks, in particular its Motion Estimation (ME) component, are such that some hardware
faults lead to acceptable degradation at the system outputs [5, 6].

In this paper we focus on a very common component of multimedia compression systems, namely the
discrete cosine transform (DCT). This transform is used in video coders, e.g., MPEG [9], and image coders,
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e.g., JPEG [8], and similar linear block transforms are used in emerging compression systems, such as ITU-T
H.264 [2]. Note that in all these systems the transform is followed by quantization. Thus, while we consider
faults in the transform operation, our analysis considers the impact of the faultsafterquantization.

To provide some intuition about the impact of faults in the DCT, consider Table 1, where we show the
average peak signal to noise ratio (PSNR) degradation produced by single stuck-at faults (SSF) at the input
of a DCT block. PSNR is a well acccepted objective quality metric used in image/video compression. Note
that some faults generate acceptable degradation. For example, if we set the acceptable PSNR degradation
to be less than0.2dB, we see that more than half the faults at the input are acceptable1. Observe also from
Table 1 that a fault’s impact depends on the choice of quantization parameters, so that, as expected, a given
fault in the transform computation will tend to have a lesser impact as the quantization becomes coarser (i.e.,
at lower bit rates). Intuitively, both hardware fault and quantization contribute to additional distortion in the
decoded images, but as quantization quantization distortion increases the additional distortion due to the fault
becomes negligible.

Bit/R 1 4 8
0 -0.0030 -0.0009 0.0008
1 -0.0056 -0.0007 0.0002
2 -0.0154 -0.0022 -0.0009
3 -0.0489 -0.0083 -0.0008
4 -0.1943 -0.0257 -0.0082
5 -0.6406 -0.1066 -0.0293
6 -2.6987 -0.4066 -0.1308
7 -5.3202 -1.8567 -0.3713

Table 1. Changes in decoded image quality due to a SSF at the input of DCT. The quality
change is measured for a test image by computing the difference in the PSNR of the decoded
image obtained from a fault-free JPEG encoder and that produced by a faulty JPEG encoder.
A negative value corresponds quality degradation. Bit 0 corresponds to the least signif-
icant bit of an input pixel. The parameter R controls the quantization level, with larger R
corresponding to coarser quantization (i.e., lower bit-rate and worse decoded image quality.)

Our goal is to define a methodology to discriminate between acceptable and unacceptable faults in systems
comprised of a linear transform followed by quantization. To do so, we propose tools to (i) estimate the effect
of individual faults at the system output, and (ii) decide on thresholds of acceptable degradation, which will be
used to determine whether each specific fault is acceptable or not. This will require analyzing specific system
architectures and also taking into account the characteristics of the input (i.e., the statistics of typical image
data), as well as specific image/video quality requirements in the application. With this methodology we then
seek to generate testing methods to classify systems with unknown faults into acceptable and unacceptable
systems. As compared to previous work on testing for ET [7], a significant novelty in this paper is that we
consider typical input statistics, instead of assuming a simple uniform distribution of inputs [7]. We also
propose novel application-specific error rate testing techniques. Our results are specific to the analysis of
linear transforms followed by quantization, and our acceptable degradation thresholds take into account the
perceptual effect of faults on typical image and video compression applications.

Our results show that a significant fraction (e.g., over 50% in some cases) of interconnection faults within
a 1D DCT module are acceptable in a JPEG encoder (operating at any of its admissible compression rates).
Our acceptability criteria take into account the maximum error produced at the output (the error is dependent
on the input), as well as the rate at which errors of a given magnitude occur. We also propose techniques to
reduce the number of test vectors to be used, and show that a small number of test vectors leads to practically
the same test coverage (the difference is within 1%, with a a factor of64 reduction in the number of test
vectors.)

The paper is organized as follows. In Section 2, we propose a general framework for analyzing linear

1Quality differences as high as 0.5dB are often difficult to perceive in typical image and video coding applications.
As we will see later in this paper the errors introduced due to faults are different from typical errors introduced by lossy
compression and thus we will need to take into account both maximum error and probability of error measurements.



transforms followed by quantization and provide tools to quantify the effect of faults at the output. In Sec-
tion 3, we use the DCT as an example and propose a method to select perceptual error thresholds. We also
present an overview of fault analysis method. Finally, in Section 4, we propose heuristic methods to reduce
the size of the set of test vectors, while preserving the accuracy of our estimates of the error statistics. We
provide results to illustrate the performance of these test vectors for testing a 1D DCT module.

2. System level fault tolerance in linear transform and quantization

Invertible linear transforms are used to extract meaningful frequency information from signals. In lossy
compression applications these transforms are followed by quantization, as shown in Figure 1. The input
to the system is a vector̄X, which we assume drawn from a vector distribution that can be statistically
characterized, e.g., by its covariance structure. We can define the set of possible faults, or fault space,F, by
analyzing the architecture of the system. Assume there is a single faultfi ∈ F in the transform and denote
its faulty (vector) outputȲ′. DenoteȲ the output of the fault-free system when the input isX̄. Our goal is
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Figure 1. Linear Transform and Quantization

to analyze whether a particular faultfi is acceptable. To simplify the analysis we view the effect of the fault
as a term̄E added to the fault-free output̄Y. Clearly,Ē is a deterministic function offi, X̄, and the structure
of the linear transform. Since we consider invertible transforms, there is a 1-to-1 mapping betweenX̄ and
Ȳ, and thus,̄E is not independent of̄Y.

2.1. Quantization Analysis

Note that scalar quantization is normally used, so that each component ofȲ (or Ȳ′) is independently
quantized. DenoteYi, Ei, Y ′

i thei-th component of the vectors̄Y, Ē, andȲ′, respectively, withi = 1 . . . N ,
andN the vector dimension. When considering individual components it is reasonable to assume thatEi

will be independent ofYi, even though̄Y andĒ are dependent. To see why, note that for a specific value
of Yi there are many possible values ofEi, which depend on theYj , j 6= i. In what follows we make
the assumption thatEi is a random additive error term independent ofYi. We have verified that this is a
reasonable assumption for typical systems. For convenience, in what follows we focus on one component
and drop the subscripti.

Our focus now turns to analyzing how the errorE leads to additional errorafter quantization(refer to
Figure 2). LetE andY be discrete and continuous random variables, respectively, with known pmf/pdf. We
use absolute difference as a distortion metric, due to its computational simplicity. Let the quantization bin
size be∆ and define∆D = DQE − DQ, the additional distortion after quantization due to the errorE,
whereDQE = |Q(Y ′) − Y | is the distortion due to both quantization and error, andDQ = |Q(Y ) − Y | is
the distortion due only to quantization.

To facilitate the analysis, we will representE as follows:

E = L∆ + E′,

whereL = bE
∆c is a non-negative integer and0 ≤ E′ < ∆.

Figure 2 illustrates the relationship betweenQ(Y ′) andQ(Y ). As can be seen in the figure, forQ(Y ) =
l∆, and for a given error,Q(Y ′) can take two different values, depending on the original value ofY . More
formally (refer to Fig. 2):

Q(Y ′) =

{
(l + L + 1)∆, if Y ∈ A1
(l + L)∆, if Y ∈ A0

(1)
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Figure 2. Quantization Analysis. Y is quantized into bins of size ( ∆). If we focus on one bin
(Binl), Q(Y ) = l∆ is the center of that bin. Y ′ = Y +e now belongs to a different quantization
bin. There are two cases for a given error e. If Y ′ ∈ A1′ then Q(Y ′) ∈ (l+L+1)∆. Alternatively,
Y ′ ∈ A0′, corresponding to Y ∈ A0, leads to Q(Y ′) ∈ (l + L)∆. Thus two errors are possible
when Y ∈ Binl.

We now use (1) to evaluate the error added at the output due to the fault. Mean square error (MSE) is the
most popular objective distortion metric for image and video coding applications. However, we argue that
MSE is nota suitable choice for our problem. In a typical compression scenario quantization is designed so
that quantization noise affects all components ofȲ in a controlled manner, according to perceptual criteria.
Instead, we are now considering error produced by a fault, which has no such properties, and thus can be
unevenly distributed over the various components ofȲ. In our evaluation this is indeed the case: for example,
certain faults produce no errors at the output for most image blocks and very visible errors for a few blocks.
In this situation MSE would not a suitable metric, since a large error in a few blocks, while clearly visible by
the end user, could still lead to a low overall MSE. As an alternative we propose (i) a maximum error metric
(Emax), which measures the worst possible additional error after quantization (for any input), and ii) an error
rate (Po) metric, measuring the probability that unacceptable degradation occurs for a given input pdf.

2.1.1. Emax and Po analysis
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Figure 3. Relation between ∆D and Y. At the edge of A1 ∆D has maximum. Bi is the range
of Y in each quantization bin ( Bini) where ∆D is larger than error threshold ( Eth). We need
to integrate fY (y) over this range to get error rate.

Figure 3 depicts the relationship between∆D andY for a particular value of the errore, and withe =
L ·∆ + e′. Consider first the situation whereL = 0, i.e.,e < ∆ ande′ = e, and observe two different cases.
First, if Y ∈ A1 = [(l + 0.5)∆− e′, (l + 0.5)∆], then∆D = |(l + 1)∆− Y | − |l∆− Y | (because the error
due to the fault shifts the input to the quantizer enough to move the output to the next quantization bin.) In
this case, as Y increases,|l∆ − Y | increases,|(l + 1)∆ − Y | decreases, and thus∆D decreases. Instead if
Y ∈ A0 = [(l− 0.5)∆, (l + 0.5)∆− e′] , ∆D = |l∆− Y | − |l∆− Y | = 0. Similar results can be obtained
whenL is non-zero, by addingL∆ to the final error (for inputs in both intervalsA0 andA1). From Figure 3,
we see thatEmax = E + E′ (whenE ≤ ∆, Emax = 2E, sinceE = E′). To determinePo, we first select



an error threshold for acceptable degradation, which we denoteEth. Then we definePo as follows:

Po =
∑

e

P (∆D ≥ Eth|E = e)PE(e). (2)

P (∆D ≥ Eth|E = e) has different expressions depending on the relative values of error (e) and error
threshold (Eth).

P (∆D ≥ Eth|E = e) =





∫S
Bi

fY (y)dy, e− e′ < Eth < e + e′

0, Eth > e + e′

1, Eth < e− e′

Bi = {Y | i∆ + ∆
2 − e′ 5 Y < i∆ + ∆

2 − e′ + e+e′−Eth

2 }

(3)

HereBi is the range ofY in each quantization bin (Bini) where∆D ≥ Eth. Then using (3), we can
write:

Po =
∑

Eth
∆ − 2e′

∆ <b e
∆ c<

Eth
∆

PE(e)
∫
S

Bi

fY (y)dy +
∑

b e
∆ c>

Eth
∆

PE(e) (4)

To simplify (4), we assume that the pdf ofY (fY (y)) is smooth, and we define K as follows:

K =

∫S
Bi

fY (y)dy

|Bi|/∆
, |Bi| : e + e′ − Eth(interval of Bi) (5)

where, depending on the relative values ofσmax and∆, K can be written as follows:

• Case 1:K ≈ 1, ∆ << σmax

• Case 2:K < 1, ∆ = Gσmax, (G ≈ 1)
• Case 3:K ≈ 0, ∆ >> σmax

Thus, when the quantization bin size is much smaller than the dynamic range of the signal, as characterized
by σmax, i.e. in Case 1, from (5)

∫S
Bi

fY (y)dy ' |Bi|/∆. As ∆ becomes smaller relative toσmax (Cases

2 and 3),
∫S

Bi
fY (y)dy decreases. We can then writePo as a function ofK as:

Po =
∑

Eth
∆ − 2e′

∆ <b e
∆ c<

Eth
∆

PE(e)K
e + e′ − Eth

2∆
+

∑

b e
∆ c>

Eth
∆

PE(e) (6)

As can be seen in (6), in order to estimatePo, we need to select a threshold and estimate the pdf/pmf of
Y andE. This is addressed in the next section.

3. System level fault tolerance in DCT and quantization

We now provide a more detailed analysis of the transform operation, using the Discrete Cosine Transform
(DCT) as an example. Figure 4 shows the basic structure of a 2D separable DCT system [11], which can be
implemented using two 1D DCT systems and some memory. Note that the 1D DCT is composed of parallel
PEi modules, where each processing element calculates the dot product between input vectorX̄ and one of
the 1D DCT basis vectors̄Ci, which will be denotedDC (lowest frequency) andAC1 to AC7 (with AC7
being the highest frequency basis vector).

3.1. Problem formulation

The input (X(i, j)) to the 2D DCT is anN ×N block of image pixels and the output (Y (u, v)) is a matrix
of sizeN × N , where each entry represents a frequency component of the original image block. Each of
these “frequency coefficients” is quantized independently, andE(u, v) is assumed independent ofY (u, v) as
discussed in the previous section. Among the various structures proposed forPEi [11], we select a simple
serial multiplication and accumulation structure shown in Figure 4. The fault spaceF is assumed to include
only single stuck-at faults (SSF) on interconnections. We assume that the pdf ofY (u, v) is known based on
statistics gathered from typical images.
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3.2. Metric and System Analysis

Our design will be based on setting thresholds for a maximum error value for each frequency,Eth(u, v),
and a thresholdPth for the probability of exceeding that error (their selection will be discussed in Sec-
tion 3.3). The expression derived in Section 2.1.1 allowed us to calculatePo for one frequency component.
Now we need to combine these individual values (Po(u, v)) into a globalPo; this can be done using the
summation law:

Po = 1−
N∏

u=1

N∏
v=1

(1− Po(u, v)). (7)

If we assumePo(u, v) is small for allu, v, thenPo ≈
∑N

u=1

∑N
v=1 Po(u, v). Therefore, for a fault to be

acceptable with a given probability of error thresholdPth, the following will have to hold:

N∑
u=1

N∑
v=1

Po(u, v) ≤ Pth. (8)

Using the above metrics, we now summarize our analysis of the DCT system. First, we perform aerror
analysisto obtain for each possible fault a random variable (E(u, v)) that captures the error added by the
fault. This will allows us to computePo andEmax, using the input statistics and any chosen error threshold
(Eth). Second, we perform athreshold analysisto determine appropriate error threshold (Eth(u, v)) and
error rate threshold (Pth) for the application (as will be discussed in next section.) With this information,
we can proceed to thefault analysis, to determine whether a specific fault is acceptable or not. In the fault
analysis,E(u, v) depends on the DCT structure, input pdf, and faultfi, and we can get statistics ofE(u, v)
by simulation, analysis of the system, or using a set of test vectors.

3.3. Perceptual threshold

In our analysis, we have two types of thresholds. First, an error threshold (Eth(u, v)) for each frequency
component is selected using perceptual thresholds derived from human visual system criteria [3], [10]. For
example, in [3], a perceptual threshold is obtained for each DCT coefficient which is used to determine
what constitutes perceptually lossless quantization for each coefficient. If the error in one coefficient of DCT
basis exceeds threshold value, then perceptible distortion can be found in the output in the form of a DCT
basis pattern (regular pattern in pixel domain). Due to variations in the contrast sensitivity of the human
visual system as a function of spatial frequency, different thresholds are selected at different frequencies.
Note that in our case we are concerned with the perceptual difference betweentwo quantized images, rather
than a quantized image and an original one, as in [3]. This is important because we have observed that
as quantization becomes coarser, the effect of errors becomes less significant. Roughly speaking, when
quantization is very coarse, even large errors due to faults will not lead to changes in the quantized output
(i.e., the original value and the one with error added are quantized to the same bin.)

This allows us to use a bigger threshold than the original perceptual threshold (Eth,orig) in the case
of coefficients with small dynamic range (σmax), as compared to the quantization step size (∆). To take
advantage of this we use a heuristic modification of the threshold. We assume that errors that are less than
∆− σmax will typically not lead to changes in the quantized data (hereσmax is an estimate of the dynamic
range of the signal). Then we replace the original perceptual threshold byEth(u, v) = max(Eth,orig, ∆ −
σmax) in Case 3 of Section 2.1. For Case 1 and Case 2,Eth(u, v) = Eth,orig, i.e., we use the same threshold



as in [3]. The second threshold to select is the application-specific error rate thresholdPth. If the application
has strict quality constraints, then a lowPth will have to be chosen. We provide some example images with
variousPth values in [1].

3.4. Fault Analysis

Using the above analysis, we propose a fault analysis algorithm, depicted in Figure 5. Basically our
analysis consists of two stages. First, error significance analysis determines whether the maximum error
value is bigger than an error threshold for each frequency component. If the maximum error is smaller than
the threshold for all frequencies, then faults in the system are acceptable. Note that a testing method has
been developed in [7] using this type of analysis for cases when inputs are uniformly distributed. The whole
input space is searched, and at least one test vector is found for each detectable fault in fault spaceF. So
the number of test vectors is almost the same as the number of faults inF. In our work, however, we are
considering a specific input pdf, which captures typical image characteristics and thus we need an alternative
testing method.

The second stage is the error rate analysis, which checks how often unacceptable errors occur due to a
fault in the system, based on pmf/pdf ofE andY . The pdf ofY is given, but the pmf ofE is not, and
would be obtained via testing. Our goal is to obtain the pmf ofE using small number of test vectors. This is
addressed in the next section.

Threshold
 Analysis

Eth(u,v),Pth

Emax(u,v)
Error

Analysis

Acceptable

YES

NOFor all u,v
Emax(u,v)<Eth(u,v)

Non
Acceptable

Calculate Po

Po<Pth

Acceptable

YES NO

Figure 5. Overview of Fault Analsis

4. System Level Fault Testing

4.1. Problem formulation

Denote the vector input to the system̄X. Assume we have access to both a faulty and a fault-free system.
The error can be computed by subtracting the output of the faulty system from the output of fault free
system. Assume we start with an initial set of test vectors (I), large enough to provide an arbitrarily good
approximation to the pmf of E (PE(e)). We would like to select a smaller set (S) which generates estimated
pmf of E (PE,sub(e)). NI andNS are the sizes ofI andS, respectively. Our goal is to reduce the number of
input in setI such thatPE,sub(e) is similar toPE(e) for for all faults in fault spaceF. As similarity metric
between the two pmfs we use the correlation between the two pmfs:

Corr(PE(e), PE,sub(e)) =
∑

PE(e)PE,sub(e)√∑
PE(e)2

∑
PE,sub(e)2

(9)

4.2. Heuristic Solutions and Results

A 2D DCT system is implemented using two 1D DCT systems, with each 1D DCT composed ofN PEis.
Here we assume allPEi in the 1st 1D DCT have the structure shown in Figure 4. Dimension of DCT (N )
is 8, and the fault spaceF consists of SSF in interconnections represented by p1˜ p5 ofPEi. C̄i will be one



of the 8 1D DCT basis vectors (fromDC to AC7) depending on the specificPEi considered. We will be
selecting test vectors that can be used to test allPE’s. As initial set (I), we used a typical test image, which
is decomposed into1× 8 vectors. We tried three types of reduced input set (S) which have the same number
of test vectors (NS).
Method 1: Assume each frequency component to be Gaussian, and calculate mean and variance of each
frequency component using initial set (I).Then use random Gaussian generator with those parameters. (S1)
Method 2: Downsize initial set image using filtering and down sampling. Then use that small size image to
get test vectors. (S2)
Method 3: Using1× 8 vectors from initial set, regularly subsample those 1D vectors. (S3)
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Figure 6. Testing Performance of Reduced Vector Set using Correlation metric

Figure 6 shows the correlation between the actual and estimated pmfs when we insert a fault in each
interconnection line ofp1 position ofPEi block. X axis in Figure 6 represents position of faults (LSB to
MSB) in each interconnection and each line represents each basis . As can be seen in Figure 6,Method 3
shows the best performance among three methods (with the subset size1

64 of initial one) and this method
also shows the best performance in case of other fault positions inp2, p3, p4, andp5 cases. The correlation
between two pmfs is always over 0.99 in all cases.

Now we test the first 1D DCT module (column-wise DCT) in the 2D DCT system in Figure 4 using the
above reduced test vector set (S3) to test both error significance and error rate. Recall that our error threshold
values (Eth(u, v)) are for the 2D DCT system. Thus, we need to translate these into thresholds applicable to
the first 1D DCT system.

Assume that there is a SSF (fk) in one specificPEi of the first (column-wise) 1D DCT module. When we
perform a series of 1D DCTs for each column of an input8×8 image block, a series of errors is generated by
fk in PEi module, and those errors are stored in theith of each8×8 output block stored in the transposition
memory. We observe that these errors are strongly correlated iffk occurs in higher bit positions and weakly
correlated if it occurs in lower bit positions within one8× 8 image block.

After the second (row-wise) 1D DCT, for higher bit cases, due to correlation, the final error in the 2D
DCT output is concentrated on the first column of theith, i.e.,E(i, 1) will contain most of the error energy.
For lower bit cases, due to the lack of correlation, error will be spread over all columns of theith row, i.e.,
E(i, 1) ∼ E(i, 8) will all contain relative similar amounts of energy. To simplify we assume that errors are
also highly correlated in lower bit cases, which is clearly a worse case scenario than assuming evenly spread
errors. Under this assumption, we can have a lower bound for the percentage of acceptable faults. Thus when
E is the error produced byPEi, the final errorE(i, 1) in the 2D DCT output will

√
NE because 1D DC

basis is[ 1√
N

, ..., 1√
N

] and 1√
N
× N × E =

√
NE. Using the above assumption, givenEth(1, i), we can

select the acceptability threshold for the first 1D DCT asEth,1D(i) = Eth(1,i)√
N

, which ensures that acceptable
faults (in the first 1D DCT) result in images that are perceptually lossless.

In our experiments we change the error rate threshold value (Pth) and the quantization bin size to observe
relation between those parameters and percentage of acceptable faults. The quantization bin size is modified
by multiplying an integerQp value to the basic JPEG quantization table.

Figure 7 shows percentage of acceptable faults using initial set (I) and reduced set (S). The difference



Figure 7. Testing Performance of S3 for 1D DCT block

between the two cases is relatively small. So we can test the first 1D DCT system usingS with enough
confidence. Also we can observe that the percentage of acceptable faults is over 50% in all operating range,
and as quantization bin sizes increase, so does the percentage of acceptable faults. This is because as quan-
tization bin size increases, more quantization noise occurs, which makes the system more resilient to larger
errors due to faults. Another observation is that as error rate threshold increases, more faults are acceptable,
because we loosen the standard for acceptable degradation.

5. Conclusion

We presented a general framework for analyzing linear transform followed by quantization. We estimated
faults’ impact on the system, by analyzing quantization block and linear transform block separately. Faults
in the linear transform are modeled as errors added to the output of transform. More specifically we chose
the DCT as a transform of interest, and introduced perceptual thresholds for acceptable degradation, which
enables categorizing chips into acceptable and unacceptable. Using these perceptual thresholds and our
system analysis, we proposed a general fault analysis for this system which consists of error significance and
error rate analysis. The error pmf is estimated using a small number of test vectors to minimize test costs.
Our results show that a significant fraction (e.g., over 50% in some cases) of interconnection faults within a
first 1D DCT module are acceptable in a JPEG encoder operating at any of its available compression rates.
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