
Hardware Transactional Memory

Sean Lie†, Krste Asanovic†, Bradley C. Kuszmaul‡, Charles E. Leiserson‡

†MIT CSAIL Computer Architecture Group
‡MIT CSAIL Supercomputing Technologies Group

Abstract— This work shows how hardware transactional
memory (HTM) can be implemented to support transactions
of arbitrarily large size, while ensuring that small
transactions run efficiently. Our implementation handles
small transactions similar to Herlihy and Moss's scheme in
that it holds tentative updates in a cache. Unlike their
scheme, which uses a special fully associative cache, ours
augments the ordinary processor cache and provides a
mechanism to handle cache spills of uncommitted
transactional data. Consequently, our scheme runs faster
for small transactions while correctly handling transactions
of arbitrarily large size.

Although transactions are small in the common case, we
argue that HTM should not restrict the size of transactions,
because it complicates the programmer/compiler model and
precludes some important programs from exploiting
transactional memory. We show that the Linux 2.4.19
kernel can be automatically and efficiently “transactified” if
boundless transactions can be supported. Our experimental
results show that the largest transaction touches over 7000
64-byte cache lines, whereas 99.94\% of the transactions
touch fewer than 64 cache lines. We further show that
synchronized methods in Java can be easily compiled to our
HTM scheme, thereby providing the advantages of
nonblocking atomicity (including absence of deadlock) in a
straightforward fashion.

Our HTM scheme for boundless transactions uses an
efficiently implementable hardware snapshot and the
ordinary set-associative L2 cache extended with less than
two bits per cache line. One of the bits tells whether the
cached item is part of a transaction (as in the Herlihy-Moss
scheme), and all the lines in an associative set share another
bit telling whether a line has overflowed from the cache and
is now stored in a special overflow area of main memory.
We provide empirical results to show that our scheme does
not adversely affect the processor pipeline or hinder
speculative execution.

[Full Text Not Available]

