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With the growth and globalization of IC design and development, there is an increase in the number of De-

signers and Design houses. As setting up a fabrication facility may easily cost upwards of $20 billion, costs

for advanced nodes may be even greater. IC design houses that cannot produce their chips in-house have no

option but to use external foundries that are often in other countries. Establishing trust with these external

foundries can be a challenge, and these foundries are assumed to be untrusted. The use of these untrusted

foundries in the global semiconductor supply chain has raised concerns about the security of the fabricated

ICs targeted for sensitive applications. One of these security threats is the adversarial infestation of fabri-

cated ICs with a Hardware Trojan (HT). An HT can be broadly described as a malicious modification to a

circuit to control, modify, disable, or monitor its logic. Conventional VLSI manufacturing tests and verifica-

tion methods fail to detect HT due to the different and un-modeled nature of these malicious modifications.

Current state-of-the-art HT detection methods utilize statistical analysis of various side-channel information

collected from ICs, such as power analysis, power supply transient analysis, regional supply current analysis,

temperature analysis, wireless transmission power analysis, and delay analysis. To detect HTs, most methods

require a Trojan-free reference golden IC. A signature from these golden ICs is extracted and used to detect

ICs with HTs. However, access to a golden IC is not always feasible. Thus, a mechanism for HT detection

is sought that does not require the golden IC. Machine Learning (ML) approaches have emerged to be ex-

tremely useful in helping eliminate the need for a golden IC. Recent works on utilizing ML for HT detection

have been shown to be promising in achieving this goal. Thus, in this tutorial, we will explain utilizing ML as

a solution to the challenge of HT detection. Additionally, we will describe the Electronic Design Automa-

tion (EDA) tool flow for automating ML-assisted HT detection. Moreover, to further discuss the benefits of

ML-assisted HT detection solutions, we will demonstrate a Neural Network (NN)-assisted timing profil-

ing method for HT detection. Finally, we will discuss the shortcomings and open challenges of ML-assisted

HT detection methods.

CCS Concepts: • Security and privacy→Malicious design modifications;
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1 INTRODUCTION

Concerns regarding the security of manufactured ICs intended for use in sensitive applications
have grown rapidly as a result of the use of untrusted parties throughout the IC supply chain
network. The adversarial infestation of manufactured ICs with a Hardware Trojan (HT) is one
of these security risks. A malicious alteration to a circuit intended to control, modify, disable, or
observe its logic is known as a Trojan. There are more designers and design firms due to the ex-
pansion and globalization of IC design and development. IC design houses unable to manufacture
their chips internally must use external foundries because building up a fabrication facility might
easily cost more than $20 billion, and expenses for advanced nodes could be substantially higher.
It can be difficult to build confidence with these external foundries, and they are often not trusted.
The difficulties in the field of secure embedded system design were underlined by writers in the
2004 publication [1]. Some of the challenges described in [1] are: Processing Gap, Battery Gap,
Flexibility, Tamper Resistance, Assurance Gap, and Cost, One of these security threats are the ad-
versarial infestation of fabricated ICs with an HT. Conventional VLSI manufacturing tests and ver-
ification methods fail to detect HTs due to the different and un-modeled nature of these malicious
modifications.

Due to the unique and un-modeled nature of these malicious modifications, conventional
manufacturing VLSI test and verification procedures are ineffective in identifying HTs. This has
motivated other researchers to look at methods for HTs detection using statistical analysis of
side-channel data gathered from ICs, including side-channel power analysis [2], power supply
transient signal analysis [3], regional supply currents analysis [4], temperature analysis [5],
wireless transmission power analysis [6], and side-channel delay analysis [7–12].

The issue with many of the earlier HT detection techniques is the requirement for some golden
model from which the parametric signature of the manufactured ICs can be gathered and used to
define a decision boundary (power, delay, temperature, etc.) for separating the ICs infected with
HTs. However, creating a golden IC is incredibly challenging, if not impossible: Most of the time,
especially in advanced technology nodes, there is just one or a very small number of foundries
available, and none can be trusted. Even if a reliable foundry were to exist, it would typically be
too expensive to fabricate a small number of ICs in order to find a golden IC [13]. Another challenge
is that a golden integrated circuit (IC) made in one foundry cannot be used to evaluate an IC
made in another foundry. This is because each foundry has a very distinct manufacturing method.

For these reasons, we do not assume the existence of a golden IC or a golden model. Instead,
we develop and train a learning-assisted timing-adjustment model combined with the STA acts
as a golden model. This work illustrated in this tutorial is motivated by two previous papers: The
side-channel power analysis in [13] and side-channel delay analysis in [7], a short description of
which is given next section.

The side-channel statistical power analysis approach for HT detection in [13] proposed that
the trusted region for the operation of a Trojan-free IC can be learned using a combination of
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Fig. 1. HT taxonomy (top), HT activation circuit types (middle), and impact of inserted Trojan (bottom) [14].

measurements from the meticulously designed and distributed PCM structures, advanced statisti-
cal tail modeling techniques, and measurements from the trusted simulation model. However, this
approach uses side-channel power analysis to find HTs. The size of the HT must be considered
to see a significant change in leakage or dynamic power. As a result, this method cannot detect
HTs constructed with a few gates. This is when the solution outlined in this tutorial can detect
even a single added logic gate in a tested timing path. Additionally, to retrieve the process param-
eters, [13] uses PCMs (with a predetermined structure that is repeated and dispersed throughout
the IC). The quantity and precision of PCMs are constrained, though. PCM falls short of precisely
describing the behavior of various gates and metal layers, even if it can generally trace the process
corner from chip to chip and be used for the crude calibration of timing and spice models. At this
point, every timing path in our suggested solution could be used as a PCM to train the neural-
assisted timing augmentation engine, allowing the effects of various timing path topologies, gate
types and sizes, and variations in the capacitive or resistive load of various metal layers to be
considered.

The side channel delay analysis solution in [7] utilizes the Clock Frequency Sweeping Test

(CFST) to locate the HT. For a delay comparison, a Golden IC must be present, though. This work
served as the basis for the development of the side-channel HT detection method (shown in this
tutorial), which does not need a Golden IC but instead creates label data points for each feature
set using CFST.

2 HT BENCHMARKS/TAXONOMY

Over the past decade, there has been a substantial increase in the study of HTs. Standard bench-
marks for assessing HTs and their detection, however, were not yet available till the authors in
[15, 16] developed a comprehensive HT benchmark set. In order to achieve this, they developed
a resource suite with known HTs and “trust benchmarks” (benchmark circuits with HTs injected
into them) that may be used by researchers in the community to examine different HT detection
methods. In their study, they offer a thorough vulnerability analysis flow that can be used to pro-
duce these trust benchmarks in digital design at various levels of abstraction as shown in Figure 2.
Additionally, they provide a thorough analysis of their benchmarks in relation to metrics like HT
detectability and in the context of various attack methods. These HT suites are available at the
Trust-Hub website [15].
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Fig. 2. HT taxonomy recreated from [15].

Some of the challenges, as mentioned in [16], that lead to this HT benchmarking effort were:

• Ad-Hoc Trojans: Most researchers, prior to a standardized benchmark suite, have resorted
to using ‘home-grown’ HTs to showcase the advantages and accuracy of their proposed de-
tection methods. Although these HTs may be well suited to a type of detection method, the
outcomes when utilized in conjunction with other methods of detection could be very differ-
ent. As a result, there was never a baseline for comparing the advantages of one detection
technique to another when comparing the outcomes of different detection techniques. Fur-
thermore, it is unclear if these HTs meet the fundamental requirement of an HT, namely
that they must be able to completely avoid all conventional manufacturing test procedures
including functional, structural, fault-based checks, and so on.
• Varying assumptions: The environment for simulation and implementation, as well as fac-

tors like the degree of process variation permitted, the difficulty of triggering HTs, HT
switching activity, the size of the design (number of gates, HT size, etc.), and others, dif-
fer significantly between techniques. This makes it even harder to compare different HT
detection methods.
• Ad-Hoc metrics: A lot of ad-hoc measures have also been employed to assess detection

techniques. While some researchers may offer false positive/false negative rates and some
may explain their findings in terms of test coverage, others may choose to evaluate their
technique in terms of an arbitrary percentage detection rate. Even though various strate-
gies might use the same HT attack model, comparing them using ad-hoc figures of merit is
challenging.

2.1 HT Threat Model

In this section, we will briefly review the IC supply chain and discuss the HT threat model. Figure 3
shows the traditional IC supply chain model with the associated HT threats. Once the design speci-
fications are decided by the chip architects, the design is sent to the appropriate design teams. Most
design houses use third-party IPs (3PIP), third-party EDA tools or vendors (3P-EDA), and
external design expertise through the IC design and implementation phase. As shown in Figure 3,
there are a number of HT security vulnerabilities throughout the supply chain of an IC. The most
common insertion point is at the untrusted fabrication facility where the adversary may modify
the lithography masks to maliciously modify the IC. Some other threats are the insertion of HTs
by 3PIPs, 3P-EDA vendors, and rogue designers. The threat model here assumes that the untrusted
foundry is the adversary with access to GDSII, and HTs are potentially inserted into every IC that
is produced.

The adversary’s objective is to introduce an HT that is activated by a combination or a series
of unusual occurrences. Figure 1 shows the components of an HT: (1) Trojan’s Trigger inputs
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Fig. 3. Vulnerabilities of IC supply chain to HTs.

(TT), (2) Trojan’s Triggering Circuit (TTC), which may be sequential or combinational, and
(3) Trojan Payload (TP). The TP modifies the circuit’s functioning after activation. Another as-
sumption that is made, is that the design house has access to a secure test facility to test for HTs,
and no Golden IC is available.

2.2 Current State of the Art in HT Detection

Researchers have investigated various methods of detecting these HTs through statistical analysis
of side-channel information collected from ICs. Some of these side channels are:

• Side-channel Power analysis
• Power supply transient signal analysis
• Regional supply current analysis
• Temperature analysis
• Wireless transmission power analysis
• Side-channel delay analysis

Many of the existing methods require some golden model or Golden ICs that have been fabri-
cated at a trusted facility and are free of HTs. A signature from these golden ICs is extracted and
used to detect ICs with HTs. Using golden ICs as a reference has proved to be effective in aug-
menting the HT detection process, however, fabricating these Golden ICs is difficult as the design
house has to have an in-house foundry or access to a trusted foundry.

3 HT DETECTION CHALLENGES

This section provides an overview of some significant challenges in detecting HTs. While the TP
of the Trojans studied in this work adds at least one gate delay to their victim time route, the TT of
the Trojans causes an extra capacitive load on the driving cell, slowing the rise and fall. Note that
the added delay could be more than a single gate; this is because a large and complex TC may also
affect the timing path hosting the TP if the sum of worse-case trigger sub-path delay and TC delay
is larger than the delay of sub-path leading to the TP. In this paper (to address a more challenging
scenario), we assume that TC is small, and the increase in the delay of the timing path hosting the
TP is limited to a single gate delay.

Our scheme, ML-HTD (to be discussed in later sections), relies on side-channel delay analysis.
It detects HTs by tracking and analyzing the changes in the delay resulting from tested timing
paths. Our scheme does not rely on the availability of a Golden IC but on the timing model
generated using Static Timing Analysis (STA) at the design time. However, the STA data can
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Fig. 4. Figure shows the effect of random Process Variations (PV) on the delay of a timing path when

tested across multiple dies.

differ significantly from the delay information calculated at the test time. The difference is due to
pessimistic margins in generating GDSII files to account for various sources of variability, includ-
ing Process Variation and process drift. What follows discusses the sources of such variations,
and how they can be exploited by an adversary to insert stealthy HT. Then, in a later section, we
describe the modeling of different sources of variability and how to improve the probability of
HT detection by mitigating or modeling their impact.

3.1 Process Variation

The random process variation refers to the variations in the physical and electrical properties of
transistors due to the physical limitations faced during the fabrication process. The random process
variation impacts the delay and drive strength of fabricated transistors and makes HT detection
more difficult as the test engineer needs to differentiate between the delays imposed by random
process variation and the timing impact of an HT. Figure 4 illustrates the effect of the random
process variation on the slack of timing paths.

3.2 Process Drift

The standard cell libraries used in a physical design house are characterized using the SPICE mod-
els for the manufacturing process at a new technology node, which is made public shortly after the
process has reached a level of consistency. To ensure a high yield, the SPICE model and common
cell libraries are padded with conservative margins. Additionally, the foundry updates the process
by introducing newer and more capable stepping devices over time to increase yield and decrease
cost. As a result, the manufacturing process and the published SPICE model diverge over time. A
manufactured IC developed using the more outdated SPICE model has significant space thanks
to process improvement. This method creates a security issue since an attacker in an unreliable
foundry may utilize these wasted and concealed timing slacks to create stealthy HTs. The effect
of Process Drift on the timing routes’ slack is seen in Figure 5.

3.3 Voltage Noise

The Power Delivery Network (PDN), which is an RLC network on an ASIC chip, responds
to changes in the current demands of transistors by imposing voltage (IR) drop and voltage
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Fig. 5. Process improvement over time non-linearly alters the latency of various timing paths (process drift).

Each timing path is distinctly impacted by process drift.

variation on transistors [19]. Modeling the IR drop and voltage noise during STA involves
(1) setting a rail voltage value lower than the provided voltage to account for the IR drop, and
(2) employing register-endpoint uncertainty to prevent voltage-variation-induced clock network
[17]. To account for the worst-case scenario (and avoid setup/hold failure), pessimistic values for
the rail voltage and uncertainty should be used. Voltage noise and IR drop are often less of an
issue for timing paths. As a result, there is a security risk since the test engineer and physical
designer are not aware of the significant amounts of timing slack that is built into the majority of
timing paths due to pessimistic margins. A malicious party in a foundry that is not trusted may
construct an HT and conceal the impact of the delay using the unused timing slacks.

4 ML-BASED HT DETECTION

In this section, we first answer why and how ML could help us in HT detection. Then we review the
previous works that exploit different Machine Learning (ML) algorithms for Trojan detection.

4.1 Why ML Is Necessary For HT Detection?

HTs are difficult to detect by conventional testing and approaches because of the following reasons:

• Today’s ICs are huge and complex.
• HTs are minute and difficult to detect.
• Finding the HT early in the design stage is important.
• Reducing HT detection cost.

Because of these, we can automate the process using different ML approaches like Regression,
Deep Neural Networks, Graph Neural Networks, and Reinforcement Learning. HTs have specific
features that can be given as input to an ML approach to do the detection. ML-based Trojan detec-
tion has two main phases: the learning phase and the detection phase [18]. Before we get into the
details of a path-delay-based Trojan detection method, we give an overview of the current state of
the art in ML.

4.2 Overview of ML Methods and Algorithms

ML is learning from experience. A reasonable amount of data is needed to use as input to
our learning model. It has two main steps: Model training and Prediction. Figure 6 shows the
current state-of-the-art ML approaches. We can categorize them into four main categories:
Supervised, Semi-Supervised, Unsupervised, and Reinforcement. We briefly explain each group.
Supervised ML uses input-output pairs to learn a model to map the input to output. So, an optimal
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Fig. 6. ML taxonomy (adapted from [19]).

trained model predicts output values that are the same as class labels. Semi-supervised ML uses a
combination of a labeled and unlabeled dataset for model training. Unsupervised ML only uses un-
tagged data to find a model to predict input data. The final group is Reinforcement learning which
is based on using an agent to do some action in the problem search space based on the feedback
it received from the environment to maximize the reward. K-means and GAN are famous models
from a supervised group, the Bayesian network and Genetic algorithm is from a semi-supervised
group, Random Forest, Regression, and deep learning approaches are unsupervised based ML and
Q-learning, SARSA, and Actor-critic are well-known RL-based algorithms.

4.3 A Review on Previous ML-based HT Detection Methods

Figure 7 shows the overview of ML-based HT detection. We can categorize the ML-based HT
detection approaches into the following groups:

4.3.1 Classification Approaches Using Netlist. These approaches classify design nets into Trojan
and Not-Trojan. Authors in [18] proposed an HT classification method to identify the HTs at the
gate level. They used a support vector machine (SVM) and a neural network (NN) as their
ML model. Using the proposed model, they detect the HT Nets. They extracted five features and
considered them as a five-dimensional vector. In [20], they introduced 51 HT features and used a
Random Forest to extract the 11 important features to improve their ML-based HT classifier.

4.3.2 Reverse Engineering Based Approaches. Reverse engineering consists of five steps. The
first three steps are (1) Decapsulation, (2) Delayering, and (3) Imaging for layout identification.
And the last two stages extract the netlist. In [21], they used One-class SVM to propose a reverse
engineering-based HT detection. This work extracted the features from the IC images directly
hence avoiding extracting netlists. By skipping the netlist generation steps, they skip unnecessary
efforts. In [22], they presented a technique to automate the layout identification. In this work,
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Fig. 7. Overview of ML-based HT detection.

they used a histogram of oriented gradients to extract features of the circuit layout. The extracted
features are fed to the decision tree classifier. Moreover, they leveraged AdaBoost to benefit from
a stronger classifier named Automatic HT Detection and description Tool (AHTDT). In [23],
they considered HT detection as a clustering problem, and they used k-mean clustering as a solu-
tion. Compared to the SVM-based method, this approach is not dependent on the choice of param-
eters, and as a result, it is easier to train. To implement their method, they divided the image of the
layout into grids, and then they extracted features from each grid to form feature vectors. Finally,
they applied the K-means clustering approach to group these feature vectors into k clusters.

4.3.3 Golden Model Free Approaches. Using the golden model is expensive, so, the approaches
in this category eliminate the need for a golden model for Trojan detection. In [24] the author
used Controllability and Observability to propose COTD. The COTD uses k-means clustering
to cluster the HT signals into Trojan-inserted and Trojan-free. In [25], they formulated the HT
detection algorithm as a two-class classification problem, and they used transient power of the
simulated ICs during IC design flow for training the model, so the proposed model does not need
HT real-time behavior. They tried different regression learning algorithms and also used adaptive
iterative optimization of one algorithm, matched algorithm pairs, and cost-sensitive detection and
suitable algorithm settings against process variations for optimization.

4.3.4 LASCA. In [26], the authors present a Learning Assisted Side Channel delay Analy-

sis (LASCA). The proposed neural network works as a process tracking watchdog to correlate the
extracted static timing data at the design time to the extracted delay information from clock fre-
quency sweeping at test time to detect the HT. The main idea of this work is based on the fact that
the Trojan Trigger (TT) part of an HT makes the rise and fall of the design slower, and the Trojan

payload (TP) of it adds a gate delay to the timing path that it is inserted to. LASCA exploits sev-
eral techniques to mitigate the impact of voltage noise, Process Variation (PV), and process drift
to improve the correlation between the timing model and IC behavior. They modeled the timing
impact of process drift using a process tracking NN-watchdog. The proposed NN module predicts
the difference between the reported slack by STA at design time and the extracted from IC at test
time. To model and mitigate PV, at first, they divided the PV into two categories (1) Random Class
(independent intra-die PV) and (2) Persistent class (inter-die and correlated intra-die variation).
For the first class, they used speed binning on fabricated ICs with the assumption that ICs in the
same bin are similarly affected by the persistent PV. For the second class to reduce randomness,
they averaged the delay of timing paths collected from many IC in the test set. To model voltage
noise, they followed the IR-ATA methodology. AVATAR [14] is an extension of the side-channel
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delay-based HT detection method, LASCA, and will also be discussed wherever appropriate in this
tutorial paper.

4.3.5 Deep Learning Based Approaches. In HERO [27], the authors provide a holistic solution
for HT detection using a DNN model and by exploiting many different types of features that have
been generated in different manufacturing stages (design, verification, post-silicon, etc.) from a
variety of benchmarks. Hero has a pipeline to combine and handle the different sources of data
and converts them into a uniform format (single-channel images), and finally apply the DNN.
So, converting features to the image provides the possibility of using various pre-trained deep
convolution-based networks. Hero also uses data augmentation to fix the dataset distribution im-
balance. Hero uses several HT techniques, including Gate level netlist analysis, Placement and

Routing (PNR), and Side channel analysis. In [28, 29], they used the graph data structure to rep-
resent the hardware design and generate the Data Flow Graph (DFG) for both RTL codes and
gate-level netlists and Graph Neural Network (GNN) to detect Trojans. The main goal of this
paper is to find a feed-forward function f to detect whether an HT is inserted into the design. The
presented approach is based on three main steps: (1) extracting DFG from hardware, (2) Passing
DFG to GNN for graph learning and feature extraction, and (3) Classification using Multi-Layer

Perceptron (MLP). Authors in [30] used Generative Adversarial Neural Network (GAN) in
combination with Stacked Auto Encoder (SAE) for HT detection. To elaborate, they used GAN
for data pre-processing in order to generate fake samples identical to the original Trojan-inserted
samples to keep the dataset balance. Next, they used SAE as a classification model.

4.3.6 Using Reinforcement Learning (RL) for HT Detection. In [31], the authors propose AdaTest,
an adaptive test pattern generation framework for HT detection that is saleable and has noise and
variation resistance. AdaTest used RL to generate test inputs and adaptive sampling to prioritize
test samples that provide more information for HT detection. AdaTest framework has two main
phases: (1) Circuit Profiling and (2) Adaptive Test pattern Generation. During the first phase, AdaT-
est characterizes each node in the design based on transition probability and SCOAP testability.
In the second phase, it used a reward function that gives the reward according to the number of
times each rare node is triggered and the SCOAP testability measure of the rare nodes and graph-
level distance of the circuit. AdaTest also used a hardware acceleration approach that pipelines the
computation in online TPG and deployed circuit emulation to accelerate reward evaluation.

5 ML-BASED HT DETECTION IMPLEMENTATION

In our detection model, we assume that the adversary is an untrusted foundry with access to
the Graphic Database System format (GDSII) of the design, aiming at inserting an HT that is
triggered based on a combination or sequence of rare events. We assume that the HT has several
Triggers and at least one payload. However, the HT detection solution implemented applies to
HTs with no Payload (inserted for monitoring purposes). We further assume that the same HT
is inserted in all fabricated dies. We also assume that the foundry can skew the process (making
faster transistors) to create available slack for the insertion of HT in desired timing paths without
making the overall delay of the timing path larger than the delay reported (or expected) by STA at
design time. HT detection, in our solution, is performed in a trusted facility.

5.1 Clock Frequency Sweeping Test (CFST)

Frequency sweep tests fall squarely within the scope of analog electronics. The objective is to ex-
amine the effects of various circuit elements on a monochromatic input signal. The output voltage
or current is then measured at each input frequency while the input signal’s frequency is swept
across the desired range. The phase shift applied to the signal by reactive circuits is also recorded
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along with the output voltage or current. Researchers in [32] first showed path delay analysis for
uniquely identifying ICs. Authors in [7] have used clock frequency sweeping tests to detect HTs.

5.2 HT Detection Flow

Figure 8 gives the overall flow of the ML-Assisted HT Detection (ML-HTD). The design stage
is augmented with an additional stage for statistical modeling for IR drop and voltage noise using
IR-ATA flow as described in [33]. As a result, based on its estimation of voltage drop and voltage
noise, the STA reports the timing slack of each timing path (as opposed to a global pessimistic
margin). This will enhance the correlation between the timing slack detected during testing using
CFST and the timing slack anticipated by the timing engine, as we shall demonstrate in the results
section. The foundry is then contacted to fabricate the final GDSII. The unreliable foundry may
test the functionality of the manufactured ICs. After that, the functional ICs are delivered to a
reliable facility for Trojan detection.

We need to locate the TT/TP-induced slack shift in order to detect a Trojan. As seen in Figure 1,
a TT increases the capacitive load on the observed net’s driving cell, while a TP adds an extra gate
delay to each timing line that goes through its victim net. We must include all nets in our delay
study because we have no prior information on which nets are affected and need to identify a
victimized or monitored net (by a TP or TT). A P2P wire is a net that joins a driver cell’s output
pin (or principal input) to one of its fanout cells’ input pins (or primary output). So a gate with a
fanout of four has four P2P wires. Each P2P wire will be tested for rise and fall transitions.

This procedure may be performed for N separate timing paths going through that net to boost
the detection rate and consider PV. The maximum frequency of the tester equipment serves as the
second criterion for timing-path selection. The delay of the chosen paths should be greater than
the restriction imposed by the tester equipment’s maximum achievable frequency. The P2P wire
is considered a potential for Trojan detection by power-based detection techniques if it is not in
a timing path that is long enough for CFST. The power-based HT detection algorithms (such as
[34–37]) that depend on full or partial activation of such paths are appropriate for timing paths
with a small number of gates (in their data sub-path), as they have high controllability. We create
the Path Delay Fault (PDF) test vectors using an automatic test pattern generation (ATPG)

technique for all other timing-path possibilities. The path is chosen differently if ATPG cannot
produce a test pattern for a particular path. Any path through the P2P wire that ATPG cannot
generate a test vector for is eliminated.

5.3 HT Detection Methodology

5.3.1 Modeling and Tracking the Process Drift. Different timing-paths experience a non-uniform
shift in delay as a result of process drift. We train an NN that serves as a process tracking watchdog
(NN-watchdog) to model the timing impact of process drift. The gap between the delay indicated
by STA at design time and the measured delay from the manufactured IC at test time is predicted
by this NN-watchdog. We employ a labeled data set with each labeled data point consisting of
a collection of 48 input feature values and a label (output) value to train the NN-watchdog. The
input characteristics, detailed in Table 2, are taken from EDA tools for timing engines and physical
design.

We modeled the process drift (and systematic process variation) by extracting the shift in delay
values from SPICE simulations, done using a skewed SPICE model, to evaluate the efficacy of NN-
watchdog (and for the lack of access to produced ICs). To do this, we first retrieved the SPICE
model from the input training for each timing path. The SPICE model was then skewed so that
the NMOS and PMOS transistors were X% quicker and the Metal capacitance for Metal layers 1
to 7 derated by Y% in order to replicate a systematic process drift. We get a consistently quicker
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Fig. 8. ML-assisted HT detection (ML-HTD) flow.

Fig. 9. Generating a training set for the NN-Watchdog.

or slower process model depending on how X and Y are chosen. For instance, in our simulations,
using (X, Y)=(5,5),(0,0),(5,5) results in Fast, Typical, and Slow process models, respectively.

In this paper, we have evaluated three different models for predicting the process-induced
change in the timing path delays. Details of each model are discussed in the relevant section:

(1) Linear Regression (Ridge Regression) Model (Baseline) Ridge Regression [38] is a regular-
ized linear regression model and it is useful for modeling and tracking multicollinearity
phenomena.

(2) Multi-Layer Perceptron Regression Multi-Layer Perceptron (MLP), is a non-linear neural
network composed of an input layer, one or more hidden layers, and an output layer. Details
and setup of the MLP regressor used in this paper are summarized in the table.

(3) Stacking Regression Model The structure of the Stacking Regression model [38], which is
also known as stacked generalization [38], is depicted in Figure 14. Stacking Regression
is an ensemble learning technique in which different estimators are arranged into two
layers to form a regressor with lower variance in comparison to each (member) regressor.
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Fig. 10. ML-assisted HT detection (ML-HTD) algorithm.

Table 1. Description of Models used and Model Hyper-parameters

Model Hyper-parameters

MLP in_layer=48, hidden_layer=23, out_layer=1, activation=’tanh’, optimizer=’Adam’, learning_rate=’adaptive’, start_lr=’0.1’

Random Forest n_estimators=’1024’, bootstrap=’true’, min_leaf=’1’, min_split=’2’

XgB n_estimators=’1024’, learning_rate=’0.05’,

Lasso alpha=’1’, max_iter=’5000’

Ridge alpha=’1’, max_iter=’500’

ElasticNet alpha=’0.001’, max_iter=’1000’

More precisely, at a two-layer stacked regressor, we used regressors XGB [39, 40], Enet
[41–43], Lasso [44, 45], Ridge [46], MLP [38, 47], and RandomForest [48, 49] for our first
layer regression. The predictions of these regressors, yˆ1 to yˆ6, are stacked together and fed
to the second layer of regressor(s). In general, the second layer may also consist of multiple

regressors. The overall prediction yf̂in is obtained by averaging the results of the second
layer regressors. In our model, we have only deployed a single Lasso [38] regressor in the
second layer. Including additional regressor results in only negligible improvement in the
model’s prediction performance at the cost of increased complexity. A detailed explanation
of the fundamentals of the all models used will be given in the regression models section.

5.4 Feature Selection, Extraction, and Dataset Generation

To detect an HT, we need to detect the change of slack in affected timing paths due to TT or TP
presence. As Figure 1 shows, the TT adds capacitive load to the driving cell of an observed net,
and the TP inserts one (or more) additional gate(s) in the victim net. Without a Golden IC, we
do not know which nets have been victimized. Hence, we need to check for the delay change of
timing paths by investigating each net included in the suspicious timing paths, i.e., the timing
paths whose slack appeared to be larger than expected when doing the frequency sweeping test.
We define a Pin-to-Pin Wire (P2P-wire) as a net connecting the output pin of a driver cell (or
a primary input) to the input pin of one of its fanout cells (or a primary output). Hence, a gate
with a fanout of 4 has 4 P2P wires. Each P2P wire will be tested for rise and fall transitions. To
increase the detection rate and to account for random process variation, this process may repeat
for N different timing paths passing through each net (a similar approach to N-detect testing).
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Table 2. Description for Each of 48 Features, Extracted From Each Timing-Path to Build

the NN Training Set

Total of 48 features, three features extracted from each timing-path

Setup Time Path Delay reported in STA Sum of fanout over cells in DP

Total of 45 features extracted, 15 features from sub-path (CP, LP and DP)

number of gates subpath delay # cells of x0 strength

# cells of x1 strength # cells of x2 strength # cells of x4 strength

# cells of x8 strength # cells of x16 strength # cells of x32 strength

Total of Length of M1 Total Length of M2 Total length of M3

Total Length of M4 Total Length of M5 Total Length of M6

(LP: Launch Portion of Timing-Path, CP: Capture Portion of Timing-Path, DP: Data Portion of Timing-Path,

M: Metal Layer, x: Drive Strength of the Gate).

The second criterion for selecting the timing paths is the maximum frequency of the tester
equipment; the selected paths’ delay should be larger than the limit imposed by the maximum
reachable frequency of the tester equipment. If the P2P wire in no timing path is long enough for
CFST, it cannot be subjected to side-channel delay testing. However, such timing paths could be
used as a candidate for HT detection via power-based detection schemes. This is because timing
paths with a smaller number of cells often exhibit better controllability and are better suited for
the power-based HT detection schemes (e.g., [50, 51]) that rely on full or partial activation of an
HT. We generate the Path Delay Fault (PDF) test vectors for the long timing-path candidates
using an Automatic Test Pattern Generation tool (ATPG). Suppose the ATPG fails to generate
a test pattern for exclusive PDF testing of a given net in a suspicious timing path (in other words,
no other timing path exists that contains the targeted net while it does not contain any other nets
in the suspicious timing path). In that case, a sequence of nets (preceding or proceeding the target
net) is selected for test pattern generation.

5.5 Regression Models

5.5.1 MLPRegressor. A Multi-Layered Perceptron, as shown in Figure 11, is a simple neural
network with three main components, the input layer, the hidden layer, and the output layer. The
input is fed to the input layer through the neurons. Each and every neuron is connected through
weights which represents the strength of the connection between two neurons. The neurons in the
layers use an activation function to decide whether the value carries useful information to pass
on to the next layer which will help with the prediction. The neural network learns iteratively
by backpropagating the overall error, as shown in Equation (1), i.e., the difference between the
predicted value and the ground truth value. This step is performed by an Optimizer function which
helps in effectively finding the best fit for the model on the training set. After the network gets
trained over a set number of epochs, the model is tested by feeding the inputs from the testing
set to the input layer and is passed through successive layers, and ultimately we get the desired
output.

Loss (MLP Reдression) =
1

M

M∑

i=1

��
�
yi −

p∑

j=0

w j ∗ xi j
��
�

2

(1)

where, M is the number o f instances and p is the number o f f eatures

5.5.2 Ridge. Ridge regression is a way to limit the number of independent variables
(columns/features/attributes) in the regression. The regular least-squares criterion minimizes the
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Fig. 11. Multi-layer perceptron regression model.

least-squares of the error plus a regularization term that is a product of a constant and the sum of
squared coefficients, as shown in Equation (2). The main purpose of a Ridge regression model is to
penalize the size of the weights to avoid running into over-fitting the model. It also minimizes the
effect of irrelevant features to make the predictions more accurate. The Ridge regression is most ef-
fective when dealing with a dataset that has multicollinear features. We train our models with 45 in-
terdependent features. Hence, using the Ridge regression helped us reduce the prediction variance.

Loss (Ridдe Reдression) =
1

M

M∑

i=1

��
�
yi −

p∑

j=0

w j ∗ xi j
��
�

2

+ λ1

p∑

j=0

w2
j (2)

5.5.3 Lasso. Lasso regression does pretty much the same thing as Ridge regression, it is another
way to limit the number of independent variables in the regression. Lasso regression performs L1
regularization, i.e., a penalized term will be added whose value is equal to the absolute value of
the magnitude of the coefficient, as shown in Equation (4). This algorithm is best used when the
low-contributing features can be eliminated. Using the L1 penalty avoids over-fitting by selecting
useful features to predict the output class.

Loss (Lasso Reдression) =
1

M

M∑

i=1
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�
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+ λ2

p∑

j=0

|w j | (3)

5.5.4 ElasticNet. The ElasticNet regression combines the behavior of the Ridge and Lasso re-
gression models. The loss function includes the effect of both L1 and L2 regularization terms. Since
the Ridge regression model does not guarantee to suppress the contribution of all the irrelevant
features, the effect of Lasso regression is combined with the Ridge regression term to produce ro-
bust results. The α hyperparameter is used to control the weighted combination of the L1 and L2
terms. The ElasticNet model outperforms both Lasso and Ridge regression models while handling
the bias and complexity of the model.

Loss (ElasticN et Reдression) =
1

M
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w 2
j + 0.5α ∗ (1 − Lr atio)

p∑

j=0
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where, α = a + b and Lr atio =
a

a + b

5.5.5 Random Forest. It is a type of supervised ensemble learning model that uses a combina-
tion of different decision trees and the final outcome is determined by averaging the results of
all each and every Decision Tree. The Decision Trees start with the root of the tree and follow
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Fig. 12. Random forest regression model.

splits based on variable outcomes until a leaf node is reached and the result is given. It is assumed
that each and every Decision Tree learn different features and are almost independent of each
other.

As the size of the dataset increases, the Random Forest models are prone to over-fitting. This
can be avoided by incorporating the bootstrapping technique along with the ensemble learning
algorithm to produce desirable results. Bootstrapping is the process of randomly sampling subsets
of a dataset over a given number of iterations and a given number of variables. These results are
then averaged together to obtain a more powerful result, as shown in Figure 12.

5.5.6 Gradient Boosting. Gradient boosting is one of the variants of ensemble methods where
multiple weak models are created and combined to get better performance as a whole. It is powerful
enough to find any nonlinear relationship between the model target and features and has great
usability that can deal with missing values, outliers, and high cardinality categorical values on the
features without any special treatment.

The goal is to teach a model to predict values by minimizing the mean squared error. At any
stage, the model tries to improve the imperfect model to give a better output. A residual function is
calculated to be added as an estimator to the current output. This is used to improve the model over
several iterations. The next model attempts to correct the errors of its preceding model by using a
Mean-Squared Error loss function. The gradient of this loss function is calculated with respect to
the current model output. This is further used to fit the next weak-learner model. This is performed
until a threshold is reached, usually the number of estimators, as illustrated in Figure 13.

5.5.7 StackingCV. Stacking is an ensemble learning technique that combines multiple regres-
sion models via a meta-regressor. Meta-regression is similar to general regressions, where the
outcome is predicted through the values of different explanatory variables. In meta-regression,
the outcome is the effect estimate of the first-level regressor model outcomes. The StackingCV
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Fig. 13. Gradient boost regressor model.

Fig. 14. StackingCV regressor model.

regressor extends the standard stacking algorithm (implemented as Stacking Regressor) using
out-of-fold predictions to prepare the input data for the level-2 regressor.

As shown in Figure 14, the first-level regressors are fit to the same training set that is used to
prepare the inputs for the second-level regressor, which may lead to over-fitting. The StackingCV
Regressor uses the concept of out-of-fold predictions: the dataset is split into k folds, and in k
successive rounds, k-1 folds are used to fit the first level regressor. In each round, the first-level
regressors are then applied to the remaining one subset that was not used for model fitting in each
iteration. The resulting predictions are then stacked and provided as input data to the second-level
regressor. After the training of the StackingCV Regressor, the first-level regressors are fit to the
entire dataset for optimal predictions.

5.6 Model Training

In this section, we discuss the training setup, the regression model parameters, and hyper-
parameters. All information is in a tabular form in Table 1. We leverage the Scikit-learn [38] library
in Python to implement the regression models to detect the inserted HTs. The MLP model with 23
hidden layers and Adam optimizer [52] and an adaptive learning rate was found to produce good
results. Our model was trained for 10,000 epochs since the training set was considerably large
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with a Tanh activation function. The dataset was trained on an 80:20 train-test split. Our model
was able to perform well with an accuracy of on the test set. To implement our Ridge Regression
model, the ‘α ’ hyperparameter was set to 1.0 since that was found to be most optimal to fit on the
dataset. We train our models with 45 interdependent features. Hence, using the Ridge regression
helped us reduce the prediction variance.

To implement our Lasso Regression model, the ‘α ’ hyperparameter was set at 0.001, and the
model was trained for 5,000 epochs and was seen to yield the best results. For our Random Forest
Regression model, the maximum number of trees used is 1,024. The Gradient Boost Regressor
model was trained with a learning rate of 0.01 and a maximum number of 1,024 trees. We used
the MLXtend library [53] in Python to implement our StackingCV regressor model. The Lasso
regression model was used as a meta-regressor model. We used the Scikit-learn library in Python
to implement our ElasticNet Regression model. We chose the ‘α ’ term to be 0.001 and trained for
1,000 epochs, which is the default value.

5.7 Implementation Results and Discussion

In this section, we first describe our experimental setup, and then describe the results of our sim-
ulations:

Setup: We assessed the effectiveness of ML-Assisted HT Detection (ML-HTD) on the three
major IWLS benchmarks [54] (Ethernet, S38417, and AES128). We created each benchmark and
added 90 HT. These HTs are straightforward combinational HTs, consisting of a single 2-input
XOR gate to transfer the Trojan payload to a target net, a single AND-tree to create the HT acti-
vation signal, and four input triggers attached to specific nets (as Trigger Nets). Nets are carefully
picked from non-critical timing patterns with enough available timing slack to insert the Trojan
trigger and payload. The positioning of the HT Circuit (and the first gate of the AND-tree) in re-
lation to the triggering net determines the influence of the TT capacitive delay. The HT Circuit
(first gate) is positioned within a 20 μm radius of the Trojan Trigger nets to minimize the Trig-
ger impact (assuring a small delay impact). In order to reduce the influence of the driver gate’s
gated capacitance on the latency of the Trojan triggering net, the AND tree for the HT Circuit is
likewise built using the smallest AND gate available in the standard cell library. We would have
90 placed-and-routed netlists for each benchmark, each including a single HT circuit, in order to
demonstrate the sensitivity of our approach. Each HT Circuit is added in a distinct placed-and-
routed netlist. Each benchmark has a physical design that is hardened and timing that is closed at
1.4GHz in 32nm technology.

We do not know if a timing path chosen for training contains an HT during NN-watchdog
training. As a result, we also assessed the effect of adding Trojan-affected temporal pathways to
the practice set. With the inclusion of 0, 1, 5, 10, and 15 Trojan pathways in their training set, we
trained 5 NN-watchdogs. Our objective is to assess whether Trojan-affected temporal routes, such
as trigger nets or payload nets, might contaminate the model to the point where HT evasion occurs
when evaluated using ML-Assisted HT Detection (ML-HTD).

By adjusting the slack recorded for each timing path to the neighboring higher clock sweeping
frequency step, and modeling the CFST step size, the silicon CFST test was simulated using SPICE
simulation. Modern testing equipment allows for step sizes as tiny as 10-15ps. Therefore, we de-
cided on 15ps for the tester’s step size. Here, we additionally consider the influence of random
process fluctuation (see Figure 4). In order to model the variation in path delays from chip to chip,
each SPICE simulation is subjected to 200 Monte Carlo simulations (modeling CFST performed on
200 different dies in the same speed bin). For these simulations, the threshold voltage (Vth), oxide
thickness (Tox), and channel length (L) are varied. In keeping with [7], we have limited the random
process variation to 5%.
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Table 3. Percentage of True Positives (T+) and False Positives (F+) when ML-HTD

(as Described in 9) with NGTM-10 is used for Detection of T+ and F+

in Slow, Typical, and Fast Speed Bins

Benchmarks
Slow Bin Typical Bin Fast Bin No-Binning

T+ F+ T+ F+ T+ F+ T+ F+

AES128 88.6 0.11 87.8 0.17 86.1 0.18 0.78 0.31

Ethernet 87.3 0.17 85.5 0.12 88.6 0.15 0.80 0.48

S38417 83.7 0.19 82.2 0.23 80.3 0.39 0.77 0.45

Table 4. Threshold Values used for Trojan Trigger and Trojan Payload

Benchmarks
TP TT

Youden 4 x σN N Youden 4 x σN N

AES128 27.1 29.86 16.3 29.86

Ethernet 35.5 38.67 15.4 38.67

S38417 24.7 27.46 17.2 27.46
Trojan detection in Fast-bin described in in Figure 10.

In our simulations, we assessed the effectiveness of HT detection using two mechanisms for
building our reference (Golden) timing model:

5.7.1 Shifted STA (SSTA). In this case, in order to detect HT, we utilize the STA findings as our
reference Timing Model. The process drift makes it very ineffective to use STA findings directly.
We calculated a static shift value, acquired by averaging the observed shift from several sampled
timing paths, and have moved all reported slacks by STA using this value to account for process
drift in SSTA. The detection threshold for this method has been placed at 45ps, corresponding to
the latency of a 2-input NAND gate in our standard cell library.

5.7.2 Neural Shifted Golden Timing Model (NGTM). Using the suggested NN-watchdog, the
process drift and systematic process variation is modelled, see Table 3. The anticipated shift by
NN-watchdog, which generates path-specific changes in slack based on path topology/features,
is then added to the STA findings. We also assessed the use of MLP and stacked regression as
NN-watchdogs to demonstrate the efficacy of the layered learning model. There is no assurance
that the timing path(s) impacted by the HT will not be included in the dataset used to train the
NN-watchdog. As a result, we have looked at how well NGTM performs when the training set com-
prises 0, 1, 5, 10, and 15 timing paths that are HT-affected. In this method, we have adjusted the
threshold for HT identification to 4σ regressor standard deviation. The frequency of false positives
is greatly decreased by selectingσ . A critical understanding of why the NN-watchdog created using
the stacked-regression model is anticipated to be more sensitive/accurate than the MLP-regression
model may be gained by comparing the standard deviation of the two models, as shown in
Table 4. While statistically benefiting from a comparable false-positive rate, it benefits from a lower
detection threshold.

We have extracted and reported the ideal threshold from the ROC curve using Youden’s [55]
method to assess the validity of the threshold values used for the HT detection flow outlined
in this tutorial. Note that the ideal threshold can only be used for quality assessment since it
depends on the ground-truth table (knowing precisely which time paths are and are not affected
by HT). For both TT and TP-based ROC curves, the Youden technique gives a distinct detection
threshold. The Receiver Operating Characteristic (ROC) curve is a plot between the False
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Fig. 15. Trojan Payload detection results.

Positive Rate and the True Positive Rate of a classification model. These plots are often used as a
part of diagnostic test studies to demonstrate the trade-offs between Specificity (True Positive Rate)
and Sensitivity (False Negative Rate) and hence find the cutoff point which optimizes Specificity
and Sensitivity. The True Positive Rates and the False Negative Rates of a model are calculated for
different cutoff points. Youden’s index is one of the sought-after metrics to find the optimal cutoff
from the ROC curve. Youden’s index combines sensitivity and specificity into a single measure
(J = Sensitivity + Speci f icity − 1) and has a value between 0 and 1. In a perfect test, Youden’s
index equals 1. It is comparable to the vertical distance from the ROC curve for a single choice
threshold to the diagonal no discrimination (chance) line. The overall accuracy of the diagnostic
test is determined by the Area Under the Curve (AUC) metric. The ROC curve comes in handy
when comparing the results of different models. An excellent model has an AUC near 1, which
means it has a good measure of separability. A poor model has an AUC near 0, which means it has
the worst measure of separability.

The outcome of the TP identification in the Fast (X, Y) = (5, 5) speed bin is shown in Figure 15.
The accuracy of SSTA and NGTM in detecting TPs is compared in the top row. The false positive
detection rate for each model across several benchmarks is shown. To forecast the change in slack,
this figure compares the performance of the Stacked-regression and MLP-regression models for HT
detection. Five different iterations of the NGTM model (NGTM-X) are provided, with each iteration
having been trained with X HT included in its training set, where X∈[0,1,5,10,15]. As reported, the
inclusion of a small number of HT samples in our data set minimally impacts the detection rate of
ML-HTD (using NGTM) on the test set, as the detection rate and false-positive rate of ML-HTD
for NGTM-0 is similar to the NGTM-X for X∈[0,1,5,10,15]. The similarity of detection rate and
false-positive rate is simply because the number of HT is not statistically significant to affect the
training (e.g., 15 HT data versus 20K HT free data points) process.
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Fig. 16. Trojan trigger detection results.

Since the detection rate and false-positive rate of ML-HTD for NGTM-0 and NGTM-X for
X[0,1,5,10,15] are comparable, the inclusion of a few HT samples in our data set had a negligible
effect on the rate of ML-HTD detection on the test set (using NGTM). The closeness in the detec-
tion and false-positive rates is because the number of HT (e.g., 15 HT data versus 20K HT-free data
points) is not statistically significant enough to influence the training process.

The outcome of our TT identification in the FAST speed bin with (X, X) = (5, 5) is shown in
Figure 16. It contrasts the efficiency of SSTA and various types of NGTM (Trojan-tainted model) for
identifying TTs, much like the TP scenario. The graph illustrates how the detection rate for TTs is
greatly improved by a decrease in the NN-standard watchdog’s deviation (over 40% in some cases).
As demonstrated, NGTM has a lower rate of identifying TTs than TPs because TT has a lesser
effect on the latency of impacted observed nets than TP (which is at least equal to one gate delay).
We see that, similar to the TP situation, the training set being contaminated by a small number of
HT data points does not affect the trained NN-WatchDog accuracy. As shown, the accuracy of HT
detection greatly depends on the learning model chosen (MLP vs. Stacked) for training the NN-
watchdog. As shown by the stacking regression, a reduced threshold (chosen based on 4x(sigma
NN) of regression model error) might increase the detection rate by 10% to 15%, yielding an HT
detection rate above 95%. This occurs when the entire solution’s false-positive rate, as determined
by the stacking regression model, is lower or equal to its MLP-based equivalent. Although using
the Youden threshold for detection considerably increases TT detection, it produces more false
positives and might not be the best method for determining the detection threshold.

Figure 15 illustrates the ROC curve from which the Youden threshold is extracted for NGTM-
10. The Youden value for other NGTM models is extracted using similar ROC curves. Table 4
compares the threshold values obtained from using the Youden method with a threshold of 4σN N of
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regression model error. For having a different ROC curve, the threshold obtained from the Youden
method is different for TT and TP detection. However, the 4σN N threshold is fixed for both TT
and TP (because the same NN for detection of TT and TP is used). As illustrated, the Youden
threshold is smaller (for both TT and TP detection) than the threshold. This explains why HT
detection using the Youden threshold results in a higher detection rate in Figures 15 and 16 for TT
and TP detection. But, as illustrated in these figures, the smaller threshold comes at the expense
of a significantly higher false-positive rate. This table also compares the threshold values obtained
using the stacking learning solution and when using an MLP solution.

The TTs may be engineered to have a negligible delay impact on the affected timing paths, mak-
ing them more covert. A tiny change in the delay of the affected timing paths might be achieved
by connecting TTs to gates with high drive strength and low threshold voltage and minimizing
their capacitive delay by shortening the TT nets. However, as mentioned in section IV-C, by cap-
ping the size of standard cells utilized in the design, boosting usage in regions that need to be
safeguarded, and mandating high routing density across those areas, we may make the system
more sensitive to Trojan Triggers. This would force the adversary to connect the TT to cells with
smaller drive strength and use longer nets to connect the Trojan Trigger to the Trojan logic (TT
placed further away). An experimental SPICE framework is set up for evaluating how a Trojan
Trigger affects delay at various distances from its driving cell. For a process with 32nm technol-
ogy, metal 3, we employed a distributed RC model. The effect of increasing the TT distance (and
associated capacitive delay) on the latency of a timing path built using five NAND gates have been
modeled. Assuming our detection threshold is 25ps, the timing-path delay will rise by 25ps when
the TT introduces an extra capacitance equivalent to a net that drives the TT logic positioned 40
m distant from the impacted net, as shown. Sensitization may therefore be a successful strategy
for raising the HT detection rate.

6 FUTURE DIRECTIONS AND DISCUSSION

In this section, we will discuss the future directions for ML-based HT detection. State-of-the-art
techniques and enablers for HT detection will also be discussed.

Some of the drawbacks with HT detection methods, in general, are automation of the HT de-
tection flow, integration of state-of-the-art ML, adoption of emerging imaging, testing, and side-
channel techniques to extract IC features, and effective HT insertion methods to validate HT de-
tection schemes. Automating the EDA tool flow, ML framework, and analytics for HT detection
is an important task. A typical HT detection methodology may consist of several EDA tools and
ML frameworks at different abstraction layers. To aid in HT detection, automation scripts and
flows are required to integrate multiple EDA tools and ML frameworks. In the ML-HTD example
explained in this tutorial, we have used several EDA tools for feature extraction, HT insertion,
netlist extraction, physical design, sign-off, and GDSII generation. To make it easier for the end-
user to detect HTs in ICs, it is crucial to develop automated HT detection tools and frameworks.
Improvements in HT insertion strategies drive the advancement of HT detection. An efficient HT
insertion scheme provides a better challenge and feedback for the HT detection scheme being
tested. In [56], researchers used Reinforcement Learning for HT insertion. Their insertion mech-
anism is based on the Proximal Policy Optimization algorithm, and they randomly insert HTs in
the design. However, In their insertion mechanism, they have not considered the design features.
The main point in using RL is problem size and search space that here depend on the size of the
circuit. So, considering that, one of the promising directions could be RL-based HT insertion based
on the design features. So, this way, the insertion mechanism would be different for each design
and specific to that design. Another possibility is having a completely automated HT validation
tool that would be helpful for academic research. In a way, we give the design netlist as input to
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the tool, and it inserts the HT into the design. Also, it has the capability of supporting different
ML-based HT detection approaches.

Advancements in imaging, testing, and IC data extraction techniques have been key enablers
for reverse engineering and, as a result, HT detection. Authors in [57] demonstrated the first use of
high spatial resolution and wide field-of-view magnetic field measurements using the Quantum

Diamond Microscope (QDM) for HT detection. They also showed that this side channel data
could be used for HT detection through a Convolutional Neural Network (CNN) and clustering
analysis for unsupervised deep learning. Researchers in [58] have proposed ptychographic X-ray

computed tomography (PXCT), where an IC’s intricate interconnect network is mapped onto
a 3D canvas.

After mounting the sample on a mechanical stage that allowed them to rotate it along its cylin-
drical axis, they shot an X-ray beam through the side of the sample. The IC sample was then lit
with a sequence of overlapping 2m wide dots as it rotated. The coherent X-rays diffracted as they
traveled through the chip’s intricate network of copper interconnects at each lighted point, pro-
ducing a pattern onto a detector that was then saved for further processing. The three-dimensional
structure might be identified from the recorded projections’ information about the substance the
X-rays passed through. The computational method of ptychography creates an image of a spec-
imen from the light’s interference pattern passing through it. The experiment in the PXCT [58]
was conducted on an Intel Pentium G3260 manufactured using 22nm FinFET technology.

State-of-the-art HTs are stealthy, and adversaries are finding newer strategies to insert and hide
malicious HTs at different stages of the IC design and supply chain. One way of hiding HTs from
image-based detection methods is by using reinforcement learning to iteratively find the best possi-
ble location and position to hide HTs and validate the placement using detection schemes. Another
area of HT detection to be investigated is the adversarial insertion of HT in the HT detection frame-
work. Adversarial insertion of HTs in HT detection tools or frameworks can fool the ML-based HT
detection model into thinking there is no Trojan while a Trojan is inserted. Tricking the testing
team by making an IC look like a Trojan-free IC while an HT is inserted, is far more malicious once
there is some confidence that the IC is Trojan-free, as this IC may be used in highly confidential or
critical applications given that there is an all clear from the Trojan detection model. Researchers
are investigating adversarial attacks on deep learning models and also a possible solution to keep
the model secure against state-of-the-art adversarial attacks [59–63]

Another question is if we can use GANs for Trojan insertion for better IC Trojan detection val-
idation [30]. Another direction is exploiting the NLP-based model to detect Trojans. For example,
we can use BILSTM models for processing circuit timing features similar to this work [64] and use
that for Trojan detection. Another option could be the use of different Transformer based models
[65] that are powerful NLP tools to process design features and predict the possibility of having a
Trojan-free circuit with more accuracy. Taking a holistic approach to mitigating hardware security
threats, the threat of HTs, in this case, is crucial to the development and security of an organization
and nation.

7 CONCLUSION

In this tutorial, we provided a comprehensive overview of ML-based HT detection methods and
illustrated with an example, ML-Assisted HT Detection (ML-HTD). ML-Assisted HT Detection
(ML-HTD) is a methodology for Trojan detection that builds over LASCA [66]. ML-HTD does
not require a Golden IC but relies on two factors: improving the timing model at design time to
account for voltage noise, and training a Neural Network, which is used as a process tracking
watchdog, at test time to model the process drift while accounting for process variations. The
complete Trojan detection flow and ML framework are explained in detail, along with a brief
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explanation of individual ML models. Detection results are reported, and evaluation metrics are
explained. Finally, we review the trends, future challenges, and outlook of using ML methods for
HT detection.
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