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Abstract—Due to outsourcing of IC fabrication, chip supply 
contamination is a clear and present danger, of which hardware 
Trojans (HTs) pose the greatest threat. This paper reviews the 
limitation of existing gate level characterization approaches to 
HT detection and presents a new detection method with a faster 
estimation of gate scaling factors by solving the normal equation 
of linear regression model. The HT-infected circuit can be 
distinguished from the genuine circuit without the need for a 
golden reference chip by their discrepancies in the bias 
parameter of the linear regression and a subset of the accurately 
estimated scaling factors. It has high detection sensitivity as long 
as the Trojan-to-circuit gate count ratio exceeds 0.4%.  

I. INTRODUCTION  
To avoid the increasingly expensive capital cost of 

maintaining the semiconductor manufacturing facility, many 
semiconductor companies like Qualcomm, Broadcom and 
AMD have outsourced the fabrication of their chips to external 
contract foundries [1]. A rising concern of this merchant silicon 
business model is the trustworthiness of the manufactured 
chips. The IC supply chain can now be easily contaminated. 
There are many opportunities in the fabrication steps for an 
attacker to implant a malicious component in the design 
without changing the functionality. Such extraneous dormant 
function, known as hardware Trojan (HT), may act as a time 
bomb, leak secrets through side channel or allow the attacker to 
remotely take over the system containing the chip [2]. If these 
HT-infected chips are used in critical applications in financial, 
government or defense sectors, catastrophic damage may be 
inflicted.  

Many post-fabrication methods have been proposed to 
detect potential HT infection. Destructive testing by micro-
photography based reverse-engineering is too expensive and 
time consuming, and cannot be applied to all chips. Logic-test 
based approaches try to generate stochastic test patterns to 
activate the HT so that its effect can be detected at the circuit 
outputs. Such approaches are effective in activating ultra-small 
HTs but are feeble in triggering structurally and functionally 
complex HTs. HT may also be detected based on its manifested 
side-channel properties such as delay, transient current and 
leakage power. An anomaly in any of these properties indicates 
the existence of HT. Even so, their effect on the measured side-
channel signals is easily masked by the large process variations 
(PVs) in today's nano-scale technologies.  

From this perspective, gate-level characterization (GLC) 
approaches [3-6], in which PV is an innate attribute, 
outperform other side-channel based methods. Early HT 
detection methods assume the existence of a Trojan-free golden 
chip as reference for comparison with the IC under 

authentication (IUA). Such a golden chip is expensive to make 
and may not always be available. This requirement is avoided 
in GLC approaches by the linear extrapolation between the 
gate-level properties and measured side-channel signals. PV is 
an integral part of the gate property and is represented as a 
scaling factor to the nominal gate value in the system of linear 
equations (SLE). Existence of the HT will show up by the 
abnormal scaling factors in the SLE solution.       

Existing GLC-based HT detection methods require 
expensive computations, series of statistical methods or a large 
number of measurements to ensure accuracy. A consistency 
based approach is proposed in [4], where a convex quadratic 
program is formulated with the objective function of 
minimizing the square root of measurement noise. The scaling 
factors are iteratively reweighted with the Gaussian kernel 
function. Existence of HT is verified by the large difference 
between the initial and final estimates of the scaling factor of 
each gate. Another consistency based approach [5] divides the 
IUA into multiple segments and performs the GLC for each 
segment with controlled input vectors. Overlapping gates 
across segments will have multiple estimated scaling factors. 
They will be consistent if all segments are Trojan-free and 
inconsistent if HT is present in one or more segments. The 
problem with this method is that it has limited sensitivity to HT 
that poses similar effects to all the affected segments. Solving 
convex quadratic problem iteratively is highly computational 
intensive and impractical for large IUA. A much faster linear 
program (LP) is formulated in [6] with an HT variable added 
into the SLE to indicate the presence or absence of HT. To 
improve the accuracy, thermal conditioning technique is 
employed to break the correlations among gates; the GLC 
process is repeated multiple times and maximum likelihood 
estimation is used to select the most likely values of scaling 
factors validated by statistical methods like re-sampling.     

Post-silicon test time is expensive. Although precise GLC 
for each gate is helpful for HT detection and diagnosis, it is too 
slow for thousands of IUAs. In this paper, we propose a new 
approach to HT detection based on post-silicon leakage current 
measurement. In spite of some gate correlations, scaling factors 
of other circuit gates can be efficiently and accurately 
estimated by solving the normal equation in linear regression 
analysis. Based on the disparity of the bias term of linear 
regression and a subset of accurately estimated scaling factors, 
HT-infected chips can be easily distinguished from the genuine 
chip. As HT gates consume leakage power at all time, our 
method does not require the HT to be activated in order to 
detect it, making it possible to detect different types of HT, 
including those that are hard to be randomly triggered. 



II. PRELIMINARIES ON PROBLEM FORMULATION 

A. Process Variation  
A unique characteristic of deep sub-micron technologies is 

the intrinsic non-deterministic variations of process parameters. 
Such process variation (PV) is usually classified into two 
categories: inter-die and intra-die variations. Inter-die 
variations account for the variations arising between chips in 
the same or different wafers and its effect can be considered as 
being constant over a specific chip. In contrast, intra-die 
variations affect the devices in the same IC differently. Due to 
the normally distributed intra-die variations of device 
dimensions (like gate oxide thickness and effective channel 
length) and the exponential relation between these dimensions 
and the leakage current, the distribution of the leakage current 
variation is approximately lognormal [7]. Leakage current 
variation of a device can be deemed as an independent 
skewness that results in n

leak
r
leak IsI ×= , where n

leakI  and r
leakI  

are the nominal and real leakage currents for the device, 
respectively, and s is the scaling factor ascribed to the PV. 

The scaling factor is usually assumed to be the same for 
different states of a device. These states typically correspond to 
different nominal leakage values, which are readily available 
from simulation models or other sources. 

B. Gate-level Characterization of Leakage Current 
By representing PV as a scaling factor of leakage current of 

each device, the total leakage current of an IC can be obtained 
by summing up the leaking current contributions from each 
gate on the chip. For every input vector, the state of each gate 
can be determined from the design information, e.g., the gate-
level netlist. By summing up the scaled nominal leakage values 
of all gates and from the measured total leakage current for 
each input vector applied at the input pins, an SLE can be 
formulated. The i-th linear equation of the SLE is given by: 
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where N is the number of gates in the chip, )( i
m
leak vI  and 
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jleak vI  are respectively the measured leakage current of the 
chip and the nominal leakage current of gate j for the i-th input 
vector vi, and sj is the PV scaling factor for gate j.  

As the measurements are usually taken at the external pins, 
they are highly susceptible to measurement errors due to 
variations in environmental conditions, thermal effects and 
noise. Taking the measurement errors into account, )( i

m
leak vI  in 

(1) is the sum of the chip leakage current )( i
c
leak vI  and the 

measurement error )( jve . The scaling factors are the variables 
to be estimated and can be calculated by solving the SLE with 
an objective function of minimizing the measurement errors. 

C. Linear Regression with Multiple Variables  

Let ),,( )()(
1

)( i
N

ii xxx …=  be an input vector of N features 

and )(iy  be the desired output. Assume that D = {D (1) ... D (M)} 

is a set of M training data, where >=< )()()( , iii yxD  is the ith 

data. A bias term )(
0
ix = 1 is added to each input vector to learn 

the mapping from )(ix  to )(iy  for all Mi ,,1…=  by the linear 
regression model in (2). The optimal set of parameters 

),,,( 10 Nθθθθ …=  can be obtained with the objective of 
minimizing the averaged sum of squared errors )(θJ  in (3).  
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The M input vectors )(ix  (with )(
0
ix =1) form a matrix of 

dimension M×(N+1), denoted as X, while the M outputs )(iy  
form a vector denoted as y. Eq. (3) can be rewritten in terms of 
X and y in (4). The optimal set of linear regression parameters 

),,,( 10 Nθθθθ …=  that minimizes )(θJ  can be obtained when 
the partial derivative of )(θJ  with respect to each parameter θj 
is 0, as expressed in (5).  
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where 0 is a vector of (N +1) 0’s.  
By rearranging the terms in (5), a normal equation (6) is 

derived for solving θ.    
                        yXXX TT ⋅⋅⋅= −1)(θ                             (6) 

Even though XX T ⋅ is non-invertible, the normal equation 
can be efficiently solved by using singular value decomposition 
to compute the pseudo-inverse of XX T ⋅ .  

III. PROPOSED HT DETECTION METHOD 
Our proposed HT detection method is based on the 

observed similarity between (1) and (2). The main idea is to 

map the scaling factor in the SLE )(
1 , i

N
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parameters in the linear regression )()(
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treating the measured leakage current )( i
m
leak vI  with 

measurement error )( ive  as a predicted value of )( ivhθ  with 
some prediction error. The remnant θ0 can then be ascribed to 
the extraneous anomaly. By minimizing the measurement 
error, )( i

c
leak vI  of an HT-free circuit can be construed as 

contributed entirely by the leakage of N circuit gates, and θ0 is 
usually very small. Additional leakage contributed by the 
existence of HT to )( i

c
leak vI  will thus be manifested by the 

abnormally large value of θ0 or by the inconsistency in θ0 
values obtained from multiple runs with different test vector 
sets. The reason for the latter is that an HT is an extraneously 
introduced subcircuit and its leakage current will also vary with 
the input vector like any other circuit gates. To improve the HT 
detection sensitivity, instead of using the absolute value of θ0, 



we use the inconsistency of θ0 under different test vector sets, 
measured by the variance of θ0, to minimize the PV noise in 
the calculated parameters for each fabricated IC.    

It turns out that the novel use of normal equation (6) gives a 
fast and good approximation of the scaling factors. If the input 
matrix X is full rank, the calculated θj (j = 1, ..., N) will match 
well with the actual scaling factor for each gate. However, due 
to gate correlations which make the coefficients of some gates 
collinear in X, the rank of X is usually smaller than N, resulting 
in only a portion of θj’s being a good approximation of the 
actual scaling factor. The accurately estimated θj’s, together 
with θ0, are to be used as an indicator for the existence of HT, 
denoted by Ind(θ). By examining the mean and variance of 
each element in Ind(θ), an HT-infected circuit will be 
identified.  

Our method consists of two phases, i.e., the HT indicator 
extraction phase and the HT detection phase. In phase I, the 
mean and variance of each element in Ind(θ) are to be 
collected. This phase can be performed by the design house 
using the simulation model of the circuit incorporating the PV, 
hence avoiding the need for an HT-free golden chip.  

For a circuit of N gates, a set of M = gN (g > 1) test vectors 
is randomly generated. The test vectors will produce an SLE of 
M linear equations in (1), from which an M×N matrix G of gate 
nominal leakage current and an M-element vector y of the 
measured leakage current can be constructed. The scaling 
factors can be calculated using the normal equation in (6) after 
augmenting the first column of G with an M-element column 
vector of all ones and forming the input matrix X.  

The above steps for calculating θ are repeated K times, with 
a different random test vector set used at each time. The 
obtained K sets of θ are then post-processed to extract the HT 
indicators. For each θj (j = 0, ..., N), the K values below the 20th 
percentile and above the 80th percentile are curtailed to remove 
the influence of outliers. The remaining 60% of the K values 
are then used to calculate the mean and variance of θj. The 
parameter θj (j = 1, ..., N) is deemed to be accurately estimated 
if the fractional difference between the 20th percentile 
modulated mean of θj and the actual gate’s scaling factor sj 
falls within a small error margin ε (ε is set to be 0.01 or 1% in 
our case), as depicted in (7). The modulated mean and variance 
of θ0 and the accurately estimated θj are then recorded to form 
the HT indicator Ind(θ). 

                        εθ <− jjj ss                         (7) 

In phase II, the K sets of test vectors used in phase I will be 
injected to the IUA and the total chip leakage current is 
measured for each set of test vectors. Multiple measurements 
can be performed for each input vector to reduce the random 
measurement errors.  Based on the SLE formed under each test 
vector set, the matrix X and vector y can be constructed. Then, 
the normal equation (6) is used to solve for θ. Next, the same 
modulated mean and variance of each θ after removing the 
lower and upper 20th percentiles are calculated. The measured 
Ind(θ) of the IUA are compared with those recorded in phase I. 
If a large discrepancy exists, the IUA is considered to be HT-
infected. Otherwise, the IUA is deemed to be HT-free. The 
flow of our HT detection method is depicted in Fig. 1.    

      
Fig. 1.  Flow chart of the proposed HT detection method. 

As an illustration, consider a circuit of seven NAND gates 
in Fig. 2. A total of K = 50 runs of tests are performed and each 
test vector set consists of 20 randomly generated vectors. For 
each test vector set, a 20×8 matrix X of nominal leakage 
current and a 20-element vector y of measured chip leakage 
current are constructed. By using the normal equation in (6), θ 
can be calculated. The modulated means and variances of θ for 
the seven gates of the genuine and HT-infected circuits are 
listed in Table I. The scaling factors sj of each gate j obtained 
from the PV model used in the simulation are also listed. As 
Gates 3 and 7 always have the same inputs (i.e., they are 
correlated), their scaling factors, bold-printed in Table 1, 
cannot be correctly estimated. However, this does not influence 
the correct characterization of the other five gates. We will use 
the estimated scaling factors of these five gates’ as well as θ0 as 
the HT indicator, i.e., Ind(θ) = (θ0, θ1, θ2, θ4, θ5, θ6). It can be 
seen that there exists a large gap between Ind(θ) of the HT-free 
and HT-infected circuits, which provides a clear evidence to 
distinguish  an HT-infected circuit from the genuine circuit.   

 
Fig. 2. The example circuit of 7 NAND gates with a 1-NAND HT. 

IV. EXPERIMENTAL EVALUATIONS 
Our method is tested on circuits from the ISCAS’89 

benchmark suit. Both the HT-free and HT-infected circuits are 
simulated. The nominal leakage values of the elementary gates 
are estimated by Cadence SoC Encounter with TSMC 0.18 µm 
CMOS standard cell library. It should be noted that the 



successful HT detection rate of our method is not dependent on 
the choice of process technology since it is the relative 
difference among the leakage powers of the library cells 
instead of their absolute values that matters most [8]. A total 
PV of 12% is assumed in the simulations as in [9], where 20% 
of the PV is inter-die variation, 60% is spatially correlated 
intra-die variation and 20% is random uncorrelated intra-die 
variation. The measurement error is modeled using the 
triangular distribution with mean value of 1% as in [10]. 
Custom C++ codes were written to randomly generate the test 
vectors, deduce the final gate state for each vector, and 
construct the matrix X and y. The estimated parameters θj are 
obtained with Python codes which implements (6) and 
calculates the modulated mean and variance for Ind(θ).  

TABLE I. The 20th percentile modulated mean and variance of the 
calculated θ with scaling factors sj.  

θ j θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 
sj NA 0.83 1.27 0.92 0.70 0.72 1.24 1.50 

Mean(HT-free) 3E-4 0.83 1.27 1.21 0.70 0.72 1.24 1.21 
Mean(HT) −21 2.25 0.79 1.34 0.59 1.23 1.15 1.35 

Var(HT-Free) 2E-4 9E-7 7E-7 6E-7 9E-7 1E-6 1E-6 6E-7 
Var(HT) 41.35 0.18 0.09 0.12 0.15 0.22 0.19 0.12 

The HT used is a 2-input, 1-output NAND gate well 
regarded as the most difficult case for HT detection [11]. Our 
experimental results show that the method can easily 
discriminate the HT-infected circuits as long as the Trojan-to-
circuit ratio (TCR) in terms of gate count exceeds 0.4%. Due to 
the page constraint, two circuits C499 of 202 gates and C880a 
of 383 gates, representing the typical cases of HT detectable 
and HT indistinguishable respectively, are sampled for further 
analysis. Five instances of C499 circuits, each associated with 
a different PV, are tested. The simulation results for each of the 
genuine and HT-infected instances are shown in Table II.   

TABLE II. 20th percentile modulated mean and variance of some elements of 
Ind(θ) from the five instances of C499 associated with different PV. 

Instance HT θ0 Mean (Var)   θ132 Mean (Var)  θ133 Mean (Var)  

1 
Free −0.07 (0.39) 0.92 (6.6E-6) 0.89 (7.7E-6) 

Infected −100.8 (7.17) 0.92 (9.3E-5) 0.89 (8.0E-5) 

2 
Free −0.14 (0.56) 0.80 (8.3E-6) 0.81 (7.6E-6) 

 Infected −73.3 (5.27) 0.80 (6.8E-5) 0.81 (6.2E-5) 

3 
Free 0.04 (0.40) 0.77 (8.7E-6) 0.74 (9.5E-6)) 

Infected −140.6 (9.72) 0.77 (1.4E-4) 0.74 (1.1E-4) 

4 
Free −0.26 (0.48) 0.96 (7.2E-6) 0.96 (9.8E-6) 

Infected −74 (5.02) 0.96 (6.89E-5) 0.96 (6.0E-5) 

5 
Free −0.05 (0.48) 0.74 (5.8E-6) 0.75 (9.0E-6) 

 Infected −106.2 (7.63) 0.74 (1.0E-4) 0.75 (8.7E-5) 

From Table II, the variance of estimated θ is consistent 
among the five HT-free circuits. Hence, the variance of θ0 and 
some correctly characterized gate’s scaling factors can be used 
to detect the HT. The difference between the variances of the 
HT-free and HT-infected circuits is around 10~20 times. The 
gap is not obvious for C880a, which indicates that the HT-to-
circuit gate count ratio has fallen below the HT detection 
sensitivity of our method. To confirm the case, two NAND 
gates are randomly inserted into C880a to double the ratio of 
HT-to-circuit gate count. The experimental results for a subset 
of Ind(θ) are shown in Table III. From Table III, the HT-

infected circuit can now be easily distinguished from the HT-
free circuit, as the TCR is now 0.52%, which is higher than the 
detection sensitivity of our method.  

Table III. 20th percentile modulated mean and variance of some elementst of 
Ind(θ) from five instances of C880a associated with different PV. 

Instance HT θ0 θ191 θ292 

1 Free 0.014 (3.5E-6) 1.24(4.0E-6) 1.503(2.73E-6)
Infected 0.019(1.2E-3) 1.24(1.6E-3) 1.503(1.4E-3) 

2 Free 0.016(1.7E-5) 1.635(5.4E-6) 1.069(1.96E-6)
Infected 0.018(5.9E-4) 1.635(7.4E-4) 1.069(6.7E-4) 

3 Free 0.013(8.2E-6) 1.369(4.8E-6) 1.02(2.8E-6) 
Infected 0.016(6.9E-4) 1.369(8.6E-4) 1.02(8.0E-4) 

4 Free 0.014(1.5E-5) 1.132(5.48E-6) 0.589(2.1E-6) 
Infected 0.015(4.0E-4) 1.132(5.0E-4) 0.589(4.5E-4) 

5 Free 0.014(1.8E-6) 0.758(4.6E-6) 1.36(2.7E-6) 
Infected 0.017(7.6E-4) 0.758(9.6E-4) 1.36(8.6E-4) 

V. CONCLUSION 
Our HT detection method efficiently solves the SLE 

formed by the GLC process. The scaling factors are estimated 
with linear regression. With the bias term of linear regression 
and a subset of accurately estimated scaling factors, our 
method is able to detect the presence of a wide range of HTs 
without the need for a golden reference nor the need to trigger 
the HT as long as the TCR exceeds 0.4%. The approach is an 
excellent complement to the logic testing approach which is 
effective in triggering ultra-small HTs. Without having to solve 
the GLC completely for every IUA at individual gate level, the 
time and computational cost required by our method is much 
lower than the conventional GLC approaches.  
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