
 Open access Proceedings Article DOI:10.1109/ISVLSI.2016.22

Hardware Trust through Layout Filling: A Hardware Trojan Prevention Technique
— Source link

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise-Flottes ...+2 more authors

Published on: 11 Jul 2016 - IEEE Computer Society Annual Symposium on VLSI

Topics: Hardware Trojan, IC layout editor and Register-transfer level

Related papers:

 BISA: Built-in self-authentication for preventing hardware Trojan insertion

 A Survey of Hardware Trojan Taxonomy and Detection

 Hardware Trojan prevention using layout-level design approach

 Vulnerability Analysis of a Circuit Layout to Hardware Trojan Insertion

 New testing procedure for finding insertion sites of stealthy hardware trojans

Share this paper:

View more about this paper here: https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-
40w7y5awo2

https://typeset.io/
https://www.doi.org/10.1109/ISVLSI.2016.22
https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://typeset.io/authors/papa-sidy-ba-vwin53j1l6
https://typeset.io/authors/sophie-dupuis-2c7igx2ij0
https://typeset.io/authors/manikandan-palanichamy-51g49ugpgr
https://typeset.io/authors/marie-lise-flottes-53v7kghhbh
https://typeset.io/conferences/ieee-computer-society-annual-symposium-on-vlsi-uw6b76qb
https://typeset.io/topics/hardware-trojan-rzrfcxnu
https://typeset.io/topics/ic-layout-editor-3rwo08mp
https://typeset.io/topics/register-transfer-level-1o10g2ox
https://typeset.io/papers/bisa-built-in-self-authentication-for-preventing-hardware-nr6smi6huq
https://typeset.io/papers/a-survey-of-hardware-trojan-taxonomy-and-detection-4fn90ckd0z
https://typeset.io/papers/hardware-trojan-prevention-using-layout-level-design-2zm74vuqoi
https://typeset.io/papers/vulnerability-analysis-of-a-circuit-layout-to-hardware-vk48gag8jc
https://typeset.io/papers/new-testing-procedure-for-finding-insertion-sites-of-473o7x1fj9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://twitter.com/intent/tweet?text=Hardware%20Trust%20through%20Layout%20Filling:%20A%20Hardware%20Trojan%20Prevention%20Technique&url=https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2

HAL Id: lirmm-01346529
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01346529

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Trust through Layout Filling: a Hardware
Trojan Prevention Technique

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise Flottes,
Giorgio Di Natale, Bruno Rouzeyre

To cite this version:
Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise Flottes, Giorgio Di Natale, et al..
Hardware Trust through Layout Filling: a Hardware Trojan Prevention Technique. ISVLSI: Interna-
tional Symposium on Very Large Scale Integration, Jul 2016, Pittsburgh, United States. pp.254-259,
10.1109/ISVLSI.2016.22. lirmm-01346529

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01346529
https://hal.archives-ouvertes.fr

Hardware'Trust'through'Layout'Filling:'

a'Hardware'Trojan'Prevention'Technique'

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise-Flottes, Giorgio Di Natale, Bruno Rouzeyre

LIRMM (Université de Montpellier / CNRS UMR 5506)

Montpellier, France

firstname.lastname@lirmm.fr

Abstract— The insertion of malicious alterations to a circuit,

referred to as Hardware Trojans, is a threat considered more

and more seriously during the last years. Numerous methods

have been proposed in the literature to detect the presence of

such alterations. More recently, Design-for-Hardware-Trust

(DfHT) methods have been proposed, that enhance the design

of the circuit in order to incorporate features that can either

prevent the insertion of a HT or that can help detection

methods. This paper focuses on a HT prevention technique

that aims at creating a layout without filler cells, which are

assumed to provide a great opportunity for HT insertion, in

order to make the insertion of a HT in a layout as difficult as

possible.

Keywords- Harware-Trojans; Design-for-Hardware-Trust;

Layout; Placement and routing

I. INTRODUCTION

With ever-shrinking transistor technologies, the cost of

new fabrication facilities is becoming prohibitive and

outsourcing the fabrication process to low-cost locations has

become a major trend in the Integrated Circuits (ICs)

industry. This raises the question about untrusted foundries

in which the insertion of malicious circuitry, referred to as

Hardware Trojans (HTs), is a possible threat [1, 2]. A wide

variety of HTs can indeed be implemented for altering the

initial functionality of a design. They differ in their phase of

insertion in the flow, physical characteristics, activation

mechanisms, or functionality [3]. The challenge lies in how

to detect HTs and/or prevent HT insertion knowing the

stealthy nature of that threat. Few hundred transistors are

indeed sufficient to insert a malicious behavior in a billion-

transistor design. There is therefore a need of developing

novel techniques to secure the ICs against this threat [4].

Many studies have been recently dedicated to the HT

threat. Proposed techniques can be classified into two main

categories: detection methods and DfHT. In the former case,

the design flow of the circuit is not modified and the circuit

is tested after its fabrication in order to ensure the

nonexistence of HT. On the contrary, DfHT methods consist

in enhancing the design of the circuit in order to incorporate

features that can either prevent the insertion of a HT or that

can help detection methods [5].

HTs detection methods are divided into two types: side-

channel analysis [6, 7], and logic testing [8-11]. Side

channel analysis methods focus on monitoring physical

parameters of the circuit, such as the power consumption [6]

or path delay [7]. Relying on golden ICs (i.e. circuit that

have been ensured to be HT-free by destructive methods), a

comparison is made with the circuits under test. The

assumption is that the introduction of any additional

malicious logic would increase power consumption or some

path delay. The main weakness of side-channel analysis is

to manage process variations. This makes them hardly

effective on small HTs. Most logic testing based methods

focus on so-called rare values based HTs i.e. HTs that are

dormant until a very rare condition activates/triggers them

[8]. The HT payload is then observed with an error on the

outputs. The main concern is then to be able to activate

potential HTs at test time i.e. find test vectors that can

maximize the chances of activating HTs [9, 10]. More

recently, it is assumed in [11] that an attacker may not have

control on the internal signals of a circuit and that he will

rather attach a HT trigger on the inputs. The goal is then to

produce a reduced set of test vectors using combinatorial

testing. Logic testing methods reach their limits when the

needed set of test vectors increase to an unaffordable size.

They can therefore be hardly effective when considering

large HTs requiring the control of numerous signals.

Given the limitations of HT detection methods, the idea

of modifying the design flow has emerged. These DfHT

methods incorporate into circuits features that can help

detection methods or/and make more difficult the insertion

of a HT [12-20].

In this paper, we focus on a DfHT method that aims at

preventing an attacker in an untrusted foundry from

inserting a HT at the layout level. The proposed method

consists in creating a circuit layout as dense as possible. As

shown in [12], a possible threat for easy HT insertion is

indeed provided by the filler cells. Filler cells are inserted in

the empty spaces of the circuit layout after the placement

step and do not have any specific logic function. Their goal

is to improve the density uniformity of the circuit [21]. They

can provide a great opportunity for HT insertion because

they are not tested after production. Therefore they can be

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.22

254

easily removed and replaced by a HT. Furthermore,

removing filler cells to replace them with new gates seems

stealthier from a visual inspection point of view [22] than

modifying the original functional cells of the circuit. In this

way, any intentional modification of the placement of the

logic gates becomes extremely hard to be performed by a

possible attacker.

The authors of [12] proposed a technique called Built-In

Self-Authentication (BISA) in which interconnected

combinational cells are used as filler cells in order to create

an additional combinational network. By testing the extra

network (besides the original design), it is possible to

understand if filler cells have been altered. The test of the

additional network is performed through a Built-In Self-Test

architecture, where Linear Feed Back Shift Registers

(LFSRs) and Multiple-Input Shift-Registers (MISRs) are

also implemented in the space dedicated to filler cells.

Based on the same insight, it is proposed in [13] to improve

the method by prioritizing the empty spaces to fill, since

achieving 100% occupation ratio is in most cases impossible

for routability reasons. The proposed idea is to fill in

priority the so called “critical empty spaces” i.e. the ones

that are close to signals which are prone to be selected for

HT triggering. Furthermore, it is also proposed in [13] to

use shift registers in order to test the added combinational

functions, instead of a TPG and a MISR, with the intention

of needing less space left. However, this method still

reaches its limits because of the large size of the FFs.

Firstly, there may be a lack of FFs inserted with regards to

the number of combinational cells inserted. Secondly, when

the original occupancy rate reaches about 85% in medium

size ASICs, no space is large enough to hold a FF.

The contribution of this paper is to enhance the method

proposed in [13], by:

1. Providing an enhanced algorithm that allows deriving

the best number of combinatorial functions given the

possible number of FFs to insert;

2. Describing experiments consisting in inserting only

logical gates when a design is too dense to contain any

FF;

3. Describing resulting circuits in terms of power

consumption and timing.
The rest of the paper is organized as follows: Section II

presents related works on HT prevention. Section III details
the proposed layout level design approach. Experimental
results are presented in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORKS

A. RTL level

Chakraborty et al. propose in [14] to modify Finite-State

Machines (FSMs) in order to create a special mode of

system operation called “transparent mode” that allows to

control low-controllability signals and observe low-

observability signals. A key port is added to the circuits, and

on the application of the right sequence of keys, the FSM

enters the transparent mode.

The method proposed in [15] consists also in adding a

key, but in that case, the goal is to obfuscate the FSM: upon

activation, the circuit is in an “obfuscated mode”, and enters

the normal mode only upon application of the right input

sequence of keys.

B. Gate level

The approach proposed in [16] inserts so-called “dummy

flips-flops” in order to improve the controllability of the

design and thus remove rare triggering condition for HTs.

The method in [17] aims also at removing rare triggering

conditions thanks to the insertion of AND/OR gates

controlled by a key. These gates have the double feature of

changing the controllability of the signals (in order to

remove low controllable signals) and obfuscating the

functionality of the circuit: the circuit behaves correctly

only upon the application of the right key.

C. Layout level

In [18], controllability is improved thanks to an inverted

voltage scheme. Voltage inversion on a CMOS gate indeed

changes the gate behavior e.g. a NAND gate behaves like a

AND gate, a NOR gate behaves like an OR gate.

Consequently, while the NAND gate output is initially low

controllable to ‘0’ and easily controllable to ‘1’, the voltage

inversion on that gate makes its output easily controllable to

‘0’ (and low controllable to ‘1’). Using both voltage

configurations allows controlling the gate output to both

values. This approach affects the place and root process

since gates with the same combinatorial depth must be

connected to the same voltage supply network, and gates in

the alternate levels (combinatorial depths i and i+1) must be

connected to separate supply voltage network.

D. Transistor level

Methods in [19, 20] propose to change the standard-cell

library used.

It is proposed in [19] to implement circuits with

differential cascade voltage switch logic (DCVSL), which

produces complementary logic values in all signals. The

assumption is that the insertion of a HT will necessarily lead

to non-complementary inputs in a DCVSL gate and

consequently abnormal short-circuit power peaks. Note that

any HT implementation leading to produce errors

simultaneously on complementary values will not be

detected.

The idea of creating new types of CMOS gates that

include not only the wanted functionality but also a so-called

dual functionality is introduced in [20]. The aim of this dual

functionality is that a slight change caused by a HT in the

primary functionality should cause a large difference in the

dual functionality. A potential HT should therefore be easily

detected by logic testing methods. This hypothesis,

interesting in theory, has unfortunately not been

implemented.

255

E. Synthesis

As mentioned before, Design-for-Trust methods are

useful, either to help detection methods or to make HT

insertion more difficult. Methods at RTL or gate levels

provide effective protection, but need to incorporate new

functionality into the circuits and therefore entail silicon

area overhead. Method proposed in [19, 20] require creating

the ICs with uncommon logic cells, which can be very

costly and lead to a non-negligible area/power consumption

overhead.
The only methods that do not generate larger circuits are

the ones based on “layout filling”, as proposed in [12, 13].
Filling unused spaces with functional cells instead of filler
cells has indeed no impact on the silicon area. Furthermore,
these methods are not costly or time consuming since they
are based on a standard library as well as standard place and
route tools. Although promising in theory, this idea may
nevertheless be limited by the place/route tools capabilities.
Placement and routing are indeed critical steps in the VLSI
design flow. Limited routing resources (in terms of number
of available wire tracks) are indeed the initial cause of the
need to enlarge the layout during placement to provide
enough wire tracks to resolve routing congestion, hence the
creation of the “empty spaces” between the standard cells.
Filling these empty spaces with functional cells and
connecting these additional cells together may generate new
routing constraints, which may lead to unroutable layouts.
That is why the idea of prioritizing the empty spaces to fill
was introduced in [13]. However, the method proposed in
[13] reached its limits because of the size of the shift
registers to add. We address this issue in this paper by
proposing an enhanced procedure in which an iterative
analysis to derive the best way to connect the combinatorial
cells together given the possible number of FFs to insert.

III. PROPOSED LAYOUT-LEVEL HT PREVENTION APPROACH

Fig. 1 shows the block diagram of the proposed layout

level design approach. The principle of this method is to fill

the “empty spaces” needed to perform routing with extra

combinatorial functions. Thus an attacker has no room in the

design to add extra functions such as HTs.

Figure 1. Block diagram of an IC with HT prevention

Extra standard-cells are inserted and connected together

to form several combinatorial functions that are independent

from the original design. A significant constraint is to create

testable functions. The goal of the method is indeed to test

these functions on the fabricated ICs to ensure that no

function has been modified by an attacker introducing a HT.

Although it is difficult for an attacker to identify additional

functions from the original circuit, the pessimistic scenario in

which the attacker succeeds is therefore handled. In order to

test these functions, shift-registers are used at both input and

output sides in order to apply input patterns and receive

output responses. These shift-registers are also implemented

within unused empty spaces.

The next sub-sections detail the global flow, as well as

the several steps of the method: the identification of the so-

called “critical empty spaces” in the layout, the filling with

standard cells and shift registers and the building of the

extra functions.

A. Global flow

From a placed circuit (and a chosen initial occupation

ratio), the global flow of the experimental procedure is as

follows:

1. Computation of the empty spaces and critical empty

spaces,

2. Placement of the maximum number of FFs that can

fit into these empty spaces (possibly none) to create

the shift registers,

3. Placement of the logic cells in the remaining empty

spaces (giving priority to critical empty spaces),

4. Interconnections of cell in order to create the

appropriate number of logical functions depending

on the number of FFs (only 1 function in case of no

FF inserted).

Then the whole circuit is routed (original circuit and

added functions).

The aim of this procedure is to find the maximum

occupation ratio possible that allows routing. The procedure

described is then used iteratively, with a goal ratio of 100%,

which is decremented until no routing violation occurs.

Once the ICs are fabricated, a test phase is required

before they are deployed in the field. In addition to the

conventional tests ensuring the proper operation of each IC,

it is necessary to test the additional functions, to ensure that

a HT was not inserted. To do so, input patterns are shifted in

thanks to the input shift register, and the responses of all

combinatorial functions are shifted out.

One has to notice that the shift-registers are using a

separate clock than the original circuit. Firstly, it allows to

switch of the additional functions once in the field in order

to prevent unnecessary power consumption. Secondly, it

allows relaxing the timing constraints of the additional

functions, which will also help relaxing the constraints for

routing these functions.

256

B. Identification of critical empty spaces

As mentioned before, even with a filling method as the

one we propose, being able to always achieve 100%

occupation ratio is not possible given routing limited

resources. We therefore propose to fill in priority so called

“critical empty spaces” as follows.

“Critical empty spaces” are the empty spaces that are

close to signals with a large slack (i.e. time margin). The

reason is that an attacker is likely to insert a HT in that kind

of empty spaces in order take advantage of the large slack of

these signals to insert a HT’s trigger. These signals are

indeed insensitive to HT insertions from a delay point of

view i.e. the insertion of a HT will not result in any

degradation in the timing performance of the original design

and will be insensitive to HT detection techniques based on

delay measurements [10]. Therefore, these critical empty

spaces will be considered as a priority during filling.

C. Filling

First of all, flips-flops that will be used to create shift-in

and shift-out registers are inserted. The flip-flop being a very

large cell, it is introduced first in order to use all the "big

empty spaces". As will be seen in the experimental results

section, due to the large size of flip-flops, the number of flip-

flops introduced is often not sufficient with respect to the

number of combinatorial gates. Thus in this step, we insert as

many flip-flops as possible.

Then, left critical empty spaces are filled with

combinatorial cells, from larger to smaller ones. Last, left

empty spaces are filled the same way. The choice of the

combinatorial cells to use is done according to each cell’s a)

width, b) number of inputs, and c) decoupling capacitance

value. For an empty space of a given size, the choice is

firstly restricted to the larger cells fitting into this empty

space (in order to limit the number of introduced cells).

Then, cells with a large number of inputs have priority

(because it helps reduce the size of the functions as

described afterwards). Last, cells with larger decoupling

capacitance values have priority because they help to

compensate the absence of filler or decoupling capacitance

(DECAP) cells [26]. For instance if we consider different

cells with different parameters from Table I, the OR4 gate is

the most suitable one for an empty space of 5um. Note that,

cells with large fan-outs are presented in Table I. One can

choose not to use such cells in order to prevent possible

resizing attacks, or to use them (under the assumption that

an attacker will not be able to perform such an attack).

Besides, if an empty space can contain only an inverter,

we choose to let it empty: this kind of empty space will not

usable by an attacker. Furthermore, if we made the choice to

insert an inverter and use it in the creation of the

combinatorial functions, it would generate additional

unnecessary contraints on the routing.

D. Construction of the extra functions

Once added in the layout, the cells are connected in a tree

structure to build up the functions, as shown in Fig. 2. The

process iterates, from inputs down to outputs until a function

with 1 output is created. In order to prevent routing

congestion, the first cell of each function is chosen as close

as possible to one flip-flop and other cells used to build the

function under construction are selected from the first one’s

closer cells.

In order to prevent an attacker from replacing a function

with a HT, a constraint is to consider: not create two

identical functions. This would give an attacker the

opportunity to replace one of the two functions (and connect

together the two outputs) without this being visible during

the test phase.

Besides, as mentioned before, this method can face a

lack of FFs inserted relative to the number of logical

functions created. Given that the number of functions inputs

is directly related to the number of FFs in the shift in

register, and the number of functions to the number of FFs

in the shift out register, the idea is to find the optimal

function size (i.e. inputs number) i.e. the size that produces

an optimal number between the number of inputs and

outputs, resulting in the smallest number of FF possible.

In practice, we iteratively run the global flow for several

input numbers, observe the resulting number of functions

and then choose the optimal one.

I. EXPERIMENTAL RESULTS

We evaluated our method on several benchmarks.

Experiments were conducted with a 65nm library and

Synopsys tools for synthesis, placement and routing.

TABLE I. CELL SELECTION

Function Width (um) Input Count DECAP

NAN3X38 4.6 3 0.67

AND4X25 4.6 4 0.44

AOI12X5 5 3 0.61

AOI21X35 5 3 0.61

OAI12X37 5 3 0.65

OAI21X37 5 3 0.65

OR4XX29 5 4 0.51

FF1

...

FF2

FFn

FF3

...

Level 1

FF1

...

FF2

FFn

FF3
Level 2 Level y

FFn-1

n inputs and single output function

1

m

m=1

...

Figure 2. Function formation

257

TABLE II. LAYOUT FILLING (1)

Benchmark
Initial

OR

Initial

leakage

power (nW)

Initial

DAT

(ns)

Final

OR

Final leakage

power (nW)

Final DAT

(ns)

FFs/cells Inputs/

Functions

Left-

over

cells

NAND

possible

AES 75 173.59 5.18 91 191.56 (+10%) 5.22(+0.8%) 61/1036 30/31 27 280

 80 173.95 5.11 90 185.13 (%6%) 5.25 (+2.8%) 27/609 12/14 31 237

 85 173.59 5.12 88 175.6 (+1%) 5.12 (-0.2%) 6/172 5/1 51 202

S13207 75 14.31 0.89 95 23.51 (+64%) 0.6 (-32%) 29/125 19/10 0 0

 80 13.42 0.91 90 18.41 (+37) 0.58 (-36%) 13/80 5/8 9 55

 85 13.42 0.92 90 14.99 (+12) 0.92 (+0%) 7/39 2/5 6 51

S35932 75 118.14 1.19 95 175.24 (+48%) 0.77 (-35%) 277/977 62/26 0 139

 80 117.91 1.17 91 160.8 (+36%) 0.71 (-39%) 131/504 11/70 0 383

 85 117.15 1.13 90 145.69 (+24%) 0.73 (-45%) 112/217 10/34 0 552

RSA 75 35.99 9.8 93 45.35 (+26) 9.84 (+0.3%) 62/328 17/23 0 45

 80 35.92 9.82 93 43.26 (+20%) 9.63 (-2%) 53/209 46/7 0 39

 85 35.86 9.72 92 38.86 (+8%) 9.9 (+1.8%) 16/114 10/6 1 89

RS232 75 18.28 1.9 91 22.63 (+24%) 1.84 (-4%) 32/157 27/5 0 25

 80 18.29 1.9 91 20.95 (+15%) 1.83 (-4.7%) 19/102 15/4 0 28

 85 18.26 2.1 87 18.72 (+2) 1.92 (-8.7%) 4/17 3/1 12 60

ARM4U 75 41.49 9.71 93 50.26 (+21%) 10.79 (+11%) 70/328 63/6 0 42

 80 41.48 9.86 91 46.98 (+13%) 10.77 (+9.3%) 36/191 16/20 0 79

 85 41.45 9.8 91 43.6 (+5%) 10.52 (+7.4%) 22/97 13/8 0 81

Table II presents the results of layout filling in terms

of: (1) initial occupation ratio (OR) and final OR reached

(i.e. the densest OR without routing violation), (2) initial

and final leakage power (note that since the extra testable

functions are connected to a separate clock, they are off

during normal operation and therefore do not increase

dynamic power) and (3) initial and final data time arrival.

To comprehend the filling of the circuits, the number of

FFs and logical cells inserted is presented as well as the

number of functions created (along with the number of

inputs for each function) and the number of combinatorial

cells that remain unconnected due to a lack of FFs. Last,

to better evaluate the difficulty for an attacker after

applying our method, the number of NAND gates that

could be inserted after filling is presented.

High occupancy rates (above 90%) can be achieved by

our method. Besides, the final OR achieved is generally

the largest from the minimum initial OR and the bigger

the initial OR, the greater the risk of a lack of FFs.

Leakage power is degraded as expected, in proportion to

the number of added cells: the bigger the initial

occupation ratio, the less the deterioration. Data arrival

time is degraded or enhanced. It totally depends on the

routing algorithm; no prediction can be made. The

number of exploitable spaces remaining after filling may

seem too large in some cases, however, this number is in

most cases far smaller than the number of cells inserted.

This shows that the method has removed a majority of

opportunities an attacker

A layout of the benchmark s35932 cipher is presented

in Fig. 3 in which the circuit is placed with an OR of

75%. The cells in yellow/bold are the cells added by our

method with a goal OR of 100%.

Table III presents results in case of an initial OR too

large to insert any FF. To test the limits of the method, the

initial OR chosen is the maximum OR possible without

routing violation. Our method can cope with such

constraints, since it manages to insert logical cells and to

create a logical function in all cases, even achieving 100%

in 2 cases.

Fig. 4 shows the interest of seeking for the best

combination between the number of combinatorial

functions and the number of inputs for each function i.e.

the number of inputs that leads the least amount of non-

connected logical cells, depending on the possible number

of FFs. In this figure, the number of remaining

unconnected cells is presented, according to the number

of inputs chosen for the combinatorial functions. These

data correspond to the filling of the ARM4U benchmark,

from 80% to 91%. 36 FFs can be inserted. All numbers of

functions inputs have been tested from 4 to 35, and only

one solution allows to have no cells remaining not

connected: 16 inputs. Thanks to this method, our method

can be applied on circuits with an initial rate up to 85%

(only 80% were reached in [15]).

Figure 3. Layout occupation (added cells in yellow/bold)

258

TABLE III. LAYOUT FILLING (2)

Benchmark Initial OR Final OR Number of Inputs

AES 93% 94% 19

S13207 99% 100% 8

S35932 99% 100% 30

RSA 94% 95% 9

RS232 95% 96% 9

ARM4U 96% 97% 10

Figure 4. Iterative analysis of the functions size

II. CONCLUSION

In this paper, we have presented a DfHT method that

aims at creating a layout as dense as possible in order to

prevent possible HT insertion at layout level by an attacker

in an untrusted foundry. The method consists in filling

empty spaces in a layout by functional cells instead of

filler cells. These additional functions are testable in order

to prevent an attacker from replacing them with a HT.

Such a method can generate large constraints for the

routing; we explained how to minimize these additional

constraints. Experimental results show that very high

occupancy rates can be achieved, which demonstrates the

feasibility of the method. To avoid potential degradation of

the critical path due to routing, a future work could be to

develop an ad-hoc routing algorithm, in order to route the

additional functions after the routing of the initial circuit,

i.e. without modifying the initial routing.

ACKNOWLEDGMENT

This project has been funded by the French

Government (BPI-OSEO) under grant FUI#14 HOMERE

(Hardware trOjans : Menaces et robustEsse des ciRcuits

intEgrés).

REFERENCES

[1] X. Wang, M. Tehranipoor and J. Plusquellic, “Detecting malicious

inclusions in secure hardware: challenges and solutions”, In IEEE
International Workshop on Hardware-Oriented Security and Trust

(HOST’08), pp. 15–19, 2008.

[2] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor and
Y. Makris, “Counterfeit integrated circuits: a rising threat in the

global semicondictor supply chain”, In Proceedings of the IEEE,
Special Issue on Trustworthy Hardware, 102(8):1207–1228, 2014.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection”, IEEE Design & Test of Computer,

27:10– 25, 2010.

[4] S. Bhunia, M. S. Hsiao, M. Banga, S. Narasimhan, “Hardware
trojan attacks: threat analysis and countermeasures”, In

Proceedings of the IEEE, Special Issue on Trustworthy Hardware,
102(8):1229–1247, 2014.

[5] J. Rajendran, O. Sinanoglu and R. Karri, “Regaining trust in VLSI

design: design-for-trust techniques“, In Proceedings of the IEEE,
Special Issue on Trustworthy Hardware, 102(8):1266–1282, 2014.

[6] D.Agrawal, S.Baktir, D.Karakoyunlu, P.Rohatgi, and B.Sunar,
“Trojan detection using IC fingerprinting“, In IEEE Symposium on

Security and Privacy (SP’07), pp. 296–310, 2007.

[7] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint“, In IEEE International Workshop on Hardware-

Oriented Security and Trust (HOST’08), pp. 51–57, 2008.

[8] F. Wolf, C. Papachristou, S. Bhunia and R. S. Chakraborty,
“Towards trojan-free trusted ICs: problem analysis and detection

scheme“, In Design, Automation and Test in Europe (DATE’08),
pp. 1362–1365, 2008.

[9] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S.

Bhunia, “MERO: a statistical approach for hardware trojan
detection“, In International Conference on Cryptographic

Hardware and Embedded Systems (CHES’09), pp. 396–410, 2009.

[10] S. Dupuis, P.-S. Ba, M.-L. Flottes, G. Di Natale and B. Rouzeyre,
“New testing procedure for finding insertion sites of stealthy

hardware trojans”, In Design Automation & Test in Europe
(DATE’15), pp. 776–781, 2015.

[11] P. Kitsos, D. E. Simos, J. Torres-Jimenez and A. G. Voyiatzis,

“Exciting FPGA cryptographic trojans using combinatorial
testing”, In IEEE International Symposiul on Software Reliability

Engineering (ISSRE’15), 2015.

[12] K. Xiao and M. Tehranipoor, “BISA: built-in self-authentication

for preventing hardware trojan insertion”, In International
symposium on Hardware-oriented security and trust (HOST’13),

pp. 45–50, 2013.

[13] P.-S. Ba, P. Manikandan, S. Dupuis, M.-L. Flottes, G. Di Natale
and B. Rouzeyre, “Hardware trojan prevention using layout-level

design approach”, In IEEE European Conference on Circuit
Theory and Design (ECCTD’15), 2015.

[14] R. S. Chakraborty, S. Paul, S. Bhunia, “On-demand transparency

for improving hardware trojan detectability“, In IEEE International
Workshop on Hardware-Oriented Secutity and Trust (HOST’08),

pp. 48–50, 2008.

[15] R. S. Chakraborty and S. Bhunia, “Security against hardware
trojan attacks using key-based design obfuscation“, In Journal of

Electronic Testing, 27(6):767–785, 2011.

[16] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel
technique for improving hardware trojan detection and reducing

trojan activation time“, In IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 20(1):112–125, 2012.

[17] S. Dupuis, P.-S. Ba, G. Di Natale, , M.-L. Flottes, and B.

Rouzeyre, “A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware trojans“, In IEEE

International On-Line Testing Symposium (IOLTS’14), 2014.

[18] M. Banga and M. S. Hsiao, “VITAMIN: voltage inversion

technique to ascertain malicious insertions in ICs”, In IEEE
International Workshop on Hardware-Oriented Security and Trust

(HOST’09), pp. 104–107, 2009.

[19] W. Danesh, J. Dofe and Q. Yu, “Efficient hardware trojan
detection with differential cascade voltage switch logic”, In VLSI

Desing, Special Issue on Advanced VLSI Architecture Design for
Emerging Digital Systems, 2014.

[20] Y. Alkabani, “Trojan immune circuits using duality”, In

Euromocro Conference on Digital System Design (DSD’12), pp.
177–184, 2012.

[21] J. Ichimiya, “Layout design method of semiconductor integrated

circuit, and semiconductor integrated circuit, with high integration
level of multiple level metalization”, US Patent 7,076,756, 2006.

[22] S. Bhasin, J.-L. Danger, X. T. Ngo and S. Guilley, “Hardware

trojan horses in cryptographic IP cores”, In Fault Diagnostic and
Tolerance in Cryptography (FDTC’13), pp. 15–29, 2013.

259

