
 Open access  Proceedings Article  DOI:10.1109/ISVLSI.2016.22

Hardware Trust through Layout Filling: A Hardware Trojan Prevention Technique
— Source link 

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise-Flottes ...+2 more authors

Published on: 11 Jul 2016 - IEEE Computer Society Annual Symposium on VLSI

Topics: Hardware Trojan, IC layout editor and Register-transfer level

Related papers:

 BISA: Built-in self-authentication for preventing hardware Trojan insertion

 A Survey of Hardware Trojan Taxonomy and Detection

 Hardware Trojan prevention using layout-level design approach

 Vulnerability Analysis of a Circuit Layout to Hardware Trojan Insertion

 New testing procedure for finding insertion sites of stealthy hardware trojans

Share this paper:    

View more about this paper here: https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-
40w7y5awo2

https://typeset.io/
https://www.doi.org/10.1109/ISVLSI.2016.22
https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://typeset.io/authors/papa-sidy-ba-vwin53j1l6
https://typeset.io/authors/sophie-dupuis-2c7igx2ij0
https://typeset.io/authors/manikandan-palanichamy-51g49ugpgr
https://typeset.io/authors/marie-lise-flottes-53v7kghhbh
https://typeset.io/conferences/ieee-computer-society-annual-symposium-on-vlsi-uw6b76qb
https://typeset.io/topics/hardware-trojan-rzrfcxnu
https://typeset.io/topics/ic-layout-editor-3rwo08mp
https://typeset.io/topics/register-transfer-level-1o10g2ox
https://typeset.io/papers/bisa-built-in-self-authentication-for-preventing-hardware-nr6smi6huq
https://typeset.io/papers/a-survey-of-hardware-trojan-taxonomy-and-detection-4fn90ckd0z
https://typeset.io/papers/hardware-trojan-prevention-using-layout-level-design-2zm74vuqoi
https://typeset.io/papers/vulnerability-analysis-of-a-circuit-layout-to-hardware-vk48gag8jc
https://typeset.io/papers/new-testing-procedure-for-finding-insertion-sites-of-473o7x1fj9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://twitter.com/intent/tweet?text=Hardware%20Trust%20through%20Layout%20Filling:%20A%20Hardware%20Trojan%20Prevention%20Technique&url=https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2
https://typeset.io/papers/hardware-trust-through-layout-filling-a-hardware-trojan-40w7y5awo2


HAL Id: lirmm-01346529
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01346529

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Trust through Layout Filling: a Hardware
Trojan Prevention Technique

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise Flottes,
Giorgio Di Natale, Bruno Rouzeyre

To cite this version:
Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise Flottes, Giorgio Di Natale, et al..
Hardware Trust through Layout Filling: a Hardware Trojan Prevention Technique. ISVLSI: Interna-
tional Symposium on Very Large Scale Integration, Jul 2016, Pittsburgh, United States. pp.254-259,
10.1109/ISVLSI.2016.22. lirmm-01346529

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01346529
https://hal.archives-ouvertes.fr


Hardware'Trust'through'Layout'Filling:'

a'Hardware'Trojan'Prevention'Technique'
 

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise-Flottes, Giorgio Di Natale, Bruno Rouzeyre 

LIRMM (Université de Montpellier / CNRS UMR 5506) 

Montpellier, France 

firstname.lastname@lirmm.fr 

 

 
Abstract— The insertion of malicious alterations to a circuit, 

referred to as Hardware Trojans, is a threat considered more 

and more seriously during the last years. Numerous methods 

have been proposed in the literature to detect the presence of 

such alterations. More recently, Design-for-Hardware-Trust 

(DfHT) methods have been proposed, that enhance the design 

of the circuit in order to incorporate features that can either 

prevent the insertion of a HT or that can help detection 

methods. This paper focuses on a HT prevention technique 

that aims at creating a layout without filler cells, which are 

assumed to provide a great opportunity for HT insertion, in 

order to make the insertion of a HT in a layout as difficult as 

possible. 

Keywords- Harware-Trojans; Design-for-Hardware-Trust; 

Layout; Placement and routing 

I.  INTRODUCTION 

With ever-shrinking transistor technologies, the cost of 

new fabrication facilities is becoming prohibitive and 

outsourcing the fabrication process to low-cost locations has 

become a major trend in the Integrated Circuits (ICs) 

industry. This raises the question about untrusted foundries 

in which the insertion of malicious circuitry, referred to as 

Hardware Trojans (HTs), is a possible threat [1, 2]. A wide 

variety of HTs can indeed be implemented for altering the 

initial functionality of a design. They differ in their phase of 

insertion in the flow, physical characteristics, activation 

mechanisms, or functionality [3]. The challenge lies in how 

to detect HTs and/or prevent HT insertion knowing the 

stealthy nature of that threat. Few hundred transistors are 

indeed sufficient to insert a malicious behavior in a billion-

transistor design. There is therefore a need of developing 

novel techniques to secure the ICs against this threat [4]. 

Many studies have been recently dedicated to the HT 

threat. Proposed techniques can be classified into two main 

categories: detection methods and DfHT. In the former case, 

the design flow of the circuit is not modified and the circuit 

is tested after its fabrication in order to ensure the 

nonexistence of HT. On the contrary, DfHT methods consist 

in enhancing the design of the circuit in order to incorporate 

features that can either prevent the insertion of a HT or that 

can help detection methods [5]. 

HTs detection methods are divided into two types: side-

channel analysis [6, 7], and logic testing [8-11]. Side 

channel analysis methods focus on monitoring physical 

parameters of the circuit, such as the power consumption [6] 

or path delay [7]. Relying on golden ICs (i.e. circuit that 

have been ensured to be HT-free by destructive methods), a 

comparison is made with the circuits under test. The 

assumption is that the introduction of any additional 

malicious logic would increase power consumption or some 

path delay. The main weakness of side-channel analysis is 

to manage process variations. This makes them hardly 

effective on small HTs. Most logic testing based methods 

focus on so-called rare values based HTs i.e. HTs that are 

dormant until a very rare condition activates/triggers them 

[8]. The HT payload is then observed with an error on the 

outputs. The main concern is then to be able to activate 

potential HTs at test time i.e. find test vectors that can 

maximize the chances of activating HTs [9, 10]. More 

recently, it is assumed in [11] that an attacker may not have 

control on the internal signals of a circuit and that he will 

rather attach a HT trigger on the inputs. The goal is then to 

produce a reduced set of test vectors using combinatorial 

testing. Logic testing methods reach their limits when the 

needed set of test vectors increase to an unaffordable size. 

They can therefore be hardly effective when considering 

large HTs requiring the control of numerous signals. 

Given the limitations of HT detection methods, the idea 

of modifying the design flow has emerged. These DfHT 

methods incorporate into circuits features that can help 

detection methods or/and make more difficult the insertion 

of a HT [12-20]. 

In this paper, we focus on a DfHT method that aims at 

preventing an attacker in an untrusted foundry from 

inserting a HT at the layout level. The proposed method 

consists in creating a circuit layout as dense as possible. As 

shown in [12], a possible threat for easy HT insertion is 

indeed provided by the filler cells. Filler cells are inserted in 

the empty spaces of the circuit layout after the placement 

step and do not have any specific logic function. Their goal 

is to improve the density uniformity of the circuit [21]. They 

can provide a great opportunity for HT insertion because 

they are not tested after production. Therefore they can be 
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easily removed and replaced by a HT. Furthermore, 

removing filler cells to replace them with new gates seems 

stealthier from a visual inspection point of view [22] than 

modifying the original functional cells of the circuit. In this 

way, any intentional modification of the placement of the 

logic gates becomes extremely hard to be performed by a 

possible attacker. 

The authors of [12] proposed a technique called Built-In 

Self-Authentication (BISA) in which interconnected 

combinational cells are used as filler cells in order to create 

an additional combinational network. By testing the extra 

network (besides the original design), it is possible to 

understand if filler cells have been altered. The test of the 

additional network is performed through a Built-In Self-Test 

architecture, where Linear Feed Back Shift Registers 

(LFSRs) and Multiple-Input Shift-Registers (MISRs) are 

also implemented in the space dedicated to filler cells. 

Based on the same insight, it is proposed in [13] to improve 

the method by prioritizing the empty spaces to fill, since 

achieving 100% occupation ratio is in most cases impossible 

for routability reasons. The proposed idea is to fill in 

priority the so called “critical empty spaces” i.e. the ones 

that are close to signals which are prone to be selected for 

HT triggering. Furthermore, it is also proposed in [13] to 

use shift registers in order to test the added combinational 

functions, instead of a TPG and a MISR, with the intention 

of needing less space left. However, this method still 

reaches its limits because of the large size of the FFs. 

Firstly, there may be a lack of FFs inserted with regards to 

the number of combinational cells inserted. Secondly, when 

the original occupancy rate reaches about 85% in medium 

size ASICs, no space is large enough to hold a FF. 

The contribution of this paper is to enhance the method 

proposed in [13], by: 

1. Providing an enhanced algorithm that allows deriving 

the best number of combinatorial functions given the 

possible number of FFs to insert; 

2. Describing experiments consisting in inserting only 

logical gates when a design is too dense to contain any 

FF; 

3. Describing resulting circuits in terms of power 

consumption and timing. 
The rest of the paper is organized as follows: Section II 

presents related works on HT prevention. Section III details 
the proposed layout level design approach. Experimental 
results are presented in Section IV. Finally, Section V 
concludes the paper. 

II. RELATED WORKS 

A. RTL level 

Chakraborty et al. propose in [14] to modify Finite-State 

Machines (FSMs) in order to create a special mode of 

system operation called “transparent mode” that allows to 

control low-controllability signals and observe low-

observability signals. A key port is added to the circuits, and 

on the application of the right sequence of keys, the FSM 

enters the transparent mode. 

The method proposed in [15] consists also in adding a 

key, but in that case, the goal is to obfuscate the FSM: upon 

activation, the circuit is in an “obfuscated mode”, and enters 

the normal mode only upon application of the right input 

sequence of keys. 

B. Gate level 

The approach proposed in [16] inserts so-called “dummy 

flips-flops” in order to improve the controllability of the 

design and thus remove rare triggering condition for HTs. 

The method in [17] aims also at removing rare triggering 

conditions thanks to the insertion of AND/OR gates 

controlled by a key. These gates have the double feature of 

changing the controllability of the signals (in order to 

remove low controllable signals) and obfuscating the 

functionality of the circuit: the circuit behaves correctly 

only upon the application of the right key. 

C. Layout level 

In [18], controllability is improved thanks to an inverted 

voltage scheme. Voltage inversion on a CMOS gate indeed 

changes the gate behavior e.g. a NAND gate behaves like a 

AND gate, a NOR gate behaves like an OR gate. 

Consequently, while the NAND gate output is initially low 

controllable to ‘0’ and easily controllable to ‘1’, the voltage 

inversion on that gate makes its output easily controllable to 

‘0’ (and low controllable to ‘1’). Using both voltage 

configurations allows controlling the gate output to both 

values. This approach affects the place and root process 

since gates with the same combinatorial depth must be 

connected to the same voltage supply network, and gates in 

the alternate levels (combinatorial depths i and i+1) must be 

connected to separate supply voltage network. 

D. Transistor level 

Methods in [19, 20] propose to change the standard-cell 

library used. 

It is proposed in [19] to implement circuits with 

differential cascade voltage switch logic (DCVSL), which 

produces complementary logic values in all signals. The 

assumption is that the insertion of a HT will necessarily lead 

to non-complementary inputs in a DCVSL gate and 

consequently abnormal short-circuit power peaks. Note that 

any HT implementation leading to produce errors 

simultaneously on complementary values will not be 

detected. 

The idea of creating new types of CMOS gates that 

include not only the wanted functionality but also a so-called 

dual functionality is introduced in [20]. The aim of this dual 

functionality is that a slight change caused by a HT in the 

primary functionality should cause a large difference in the 

dual functionality. A potential HT should therefore be easily 

detected by logic testing methods. This hypothesis, 

interesting in theory, has unfortunately not been 

implemented. 
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E. Synthesis 

As mentioned before, Design-for-Trust methods are 

useful, either to help detection methods or to make HT 

insertion more difficult. Methods at RTL or gate levels 

provide effective protection, but need to incorporate new 

functionality into the circuits and therefore entail silicon 

area overhead. Method proposed in [19, 20] require creating 

the ICs with uncommon logic cells, which can be very 

costly and lead to a non-negligible area/power consumption 

overhead. 
The only methods that do not generate larger circuits are 

the ones based on “layout filling”, as proposed in [12, 13]. 
Filling unused spaces with functional cells instead of filler 
cells has indeed no impact on the silicon area. Furthermore, 
these methods are not costly or time consuming since they 
are based on a standard library as well as standard place and 
route tools. Although promising in theory, this idea may 
nevertheless be limited by the place/route tools capabilities. 
Placement and routing are indeed critical steps in the VLSI 
design flow. Limited routing resources (in terms of number 
of available wire tracks) are indeed the initial cause of the 
need to enlarge the layout during placement to provide 
enough wire tracks to resolve routing congestion, hence the 
creation of the “empty spaces” between the standard cells. 
Filling these empty spaces with functional cells and 
connecting these additional cells together may generate new 
routing constraints, which may lead to unroutable layouts. 
That is why the idea of prioritizing the empty spaces to fill 
was introduced in [13]. However, the method proposed in 
[13] reached its limits because of the size of the shift 
registers to add. We address this issue in this paper by 
proposing an enhanced procedure in which an iterative 
analysis to derive the best way to connect the combinatorial 
cells together given the possible number of FFs to insert. 

III. PROPOSED LAYOUT-LEVEL HT PREVENTION APPROACH 

Fig. 1 shows the block diagram of the proposed layout 

level design approach. The principle of this method is to fill 

the “empty spaces” needed to perform routing with extra 

combinatorial functions. Thus an attacker has no room in the 

design to add extra functions such as HTs. 

 

 

Figure 1.  Block diagram of an IC with HT prevention 

Extra standard-cells are inserted and connected together 

to form several combinatorial functions that are independent 

from the original design. A significant constraint is to create 

testable functions. The goal of the method is indeed to test 

these functions on the fabricated ICs to ensure that no 

function has been modified by an attacker introducing a HT. 

Although it is difficult for an attacker to identify additional 

functions from the original circuit, the pessimistic scenario in 

which the attacker succeeds is therefore handled. In order to 

test these functions, shift-registers are used at both input and 

output sides in order to apply input patterns and receive 

output responses. These shift-registers are also implemented 

within unused empty spaces. 

The next sub-sections detail the global flow, as well as 

the several steps of the method: the identification of the so-

called “critical empty spaces” in the layout, the filling with 

standard cells and shift registers and the building of the 

extra functions. 

A. Global flow 

From a placed circuit (and a chosen initial occupation 

ratio), the global flow of the experimental procedure is as 

follows: 

1. Computation of the empty spaces and critical empty 

spaces, 

2. Placement of the maximum number of FFs that can 

fit into these empty spaces (possibly none) to create 

the shift registers, 

3.  Placement of the logic cells in the remaining empty 

spaces (giving priority to critical empty spaces), 

4. Interconnections of cell in order to create the 

appropriate number of logical functions depending 

on the number of FFs (only 1 function in case of no 

FF inserted). 

Then the whole circuit is routed (original circuit and 

added functions). 

The aim of this procedure is to find the maximum 

occupation ratio possible that allows routing. The procedure 

described is then used iteratively, with a goal ratio of 100%, 

which is decremented until no routing violation occurs. 

Once the ICs are fabricated, a test phase is required 

before they are deployed in the field. In addition to the 

conventional tests ensuring the proper operation of each IC, 

it is necessary to test the additional functions, to ensure that 

a HT was not inserted. To do so, input patterns are shifted in 

thanks to the input shift register, and the responses of all 

combinatorial functions are shifted out. 

One has to notice that the shift-registers are using a 

separate clock than the original circuit. Firstly, it allows to 

switch of the additional functions once in the field in order 

to prevent unnecessary power consumption. Secondly, it 

allows relaxing the timing constraints of the additional 

functions, which will also help relaxing the constraints for 

routing these functions. 
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B. Identification of critical empty spaces 

As mentioned before, even with a filling method as the 

one we propose, being able to always achieve 100% 

occupation ratio is not possible given routing limited 

resources. We therefore propose to fill in priority so called 

“critical empty spaces” as follows. 

“Critical empty spaces” are the empty spaces that are 

close to signals with a large slack (i.e. time margin). The 

reason is that an attacker is likely to insert a HT in that kind 

of empty spaces in order take advantage of the large slack of 

these signals to insert a HT’s trigger. These signals are 

indeed insensitive to HT insertions from a delay point of 

view i.e. the insertion of a HT will not result in any 

degradation in the timing performance of the original design 

and will be insensitive to HT detection techniques based on 

delay measurements [10]. Therefore, these critical empty 

spaces will be considered as a priority during filling. 

C. Filling 

First of all, flips-flops that will be used to create shift-in 

and shift-out registers are inserted. The flip-flop being a very 

large cell, it is introduced first in order to use all the "big 

empty spaces". As will be seen in the experimental results 

section, due to the large size of flip-flops, the number of flip-

flops introduced is often not sufficient with respect to the 

number of combinatorial gates. Thus in this step, we insert as 

many flip-flops as possible. 

Then, left critical empty spaces are filled with 

combinatorial cells, from larger to smaller ones. Last, left 

empty spaces are filled the same way. The choice of the 

combinatorial cells to use is done according to each cell’s a) 

width, b) number of inputs, and c) decoupling capacitance 

value. For an empty space of a given size, the choice is 

firstly restricted to the larger cells fitting into this empty 

space (in order to limit the number of introduced cells). 

Then, cells with a large number of inputs have priority 

(because it helps reduce the size of the functions as 

described afterwards). Last, cells with larger decoupling 

capacitance values have priority because they help to 

compensate the absence of filler or decoupling capacitance 

(DECAP) cells [26]. For instance if we consider different 

cells with different parameters from Table I, the OR4 gate is 

the most suitable one for an empty space of 5um. Note that, 

cells with large fan-outs are presented in Table I. One can 

choose not to use such cells in order to prevent possible 

resizing attacks, or to use them (under the assumption that 

an attacker will not be able to perform such an attack). 

Besides, if an empty space can contain only an inverter, 

we choose to let it empty: this kind of empty space will not 

usable by an attacker. Furthermore, if we made the choice to 

insert an inverter and use it in the creation of the 

combinatorial functions, it would generate additional 

unnecessary contraints on the routing. 

 

D. Construction of the extra functions 

Once added in the layout, the cells are connected in a tree 

structure to build up the functions, as shown in Fig. 2. The 

process iterates, from inputs down to outputs until a function 

with 1 output is created. In order to prevent routing 

congestion, the first cell of each function is chosen as close 

as possible to one flip-flop and other cells used to build the 

function under construction are selected from the first one’s 

closer cells. 

In order to prevent an attacker from replacing a function 

with a HT, a constraint is to consider: not create two 

identical functions. This would give an attacker the 

opportunity to replace one of the two functions (and connect 

together the two outputs) without this being visible during 

the test phase. 

Besides, as mentioned before, this method can face a 

lack of FFs inserted relative to the number of logical 

functions created. Given that the number of functions inputs 

is directly related to the number of FFs in the shift in 

register, and the number of functions to the number of FFs 

in the shift out register, the idea is to find the optimal 

function size (i.e. inputs number) i.e. the size that produces 

an optimal number between the number of inputs and 

outputs, resulting in the smallest number of FF possible. 

In practice, we iteratively run the global flow for several 

input numbers, observe the resulting number of functions 

and then choose the optimal one. 

I. EXPERIMENTAL RESULTS 

We evaluated our method on several benchmarks. 

Experiments were conducted with a 65nm library and 

Synopsys tools for synthesis, placement and routing. 

TABLE I.  CELL SELECTION 

Function Width (um) Input Count DECAP 

NAN3X38 4.6 3 0.67 

AND4X25 4.6 4 0.44 

AOI12X5 5 3 0.61 

AOI21X35 5 3 0.61 

OAI12X37 5 3 0.65 

OAI21X37 5 3 0.65 

OR4XX29 5 4 0.51 

 

FF1

...

FF2

FFn

FF3

...

Level 1

FF1

...

FF2

FFn

FF3
Level 2 Level y

FFn-1

n inputs and single output function

1

m

m=1

...

 

Figure 2.  Function formation
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TABLE II.  LAYOUT FILLING (1) 

Benchmark 
Initial 

OR 

Initial 

leakage 

power (nW) 

Initial 

DAT 

(ns) 

Final 

OR 

Final leakage 

power (nW) 

Final DAT 

(ns) 

FFs/cells Inputs/ 

Functions 

Left-

over 

cells 

NAND 

possible 

AES 75 173.59 5.18 91 191.56 (+10%) 5.22(+0.8%) 61/1036 30/31 27 280 

 80 173.95 5.11 90 185.13 (%6%) 5.25 (+2.8%) 27/609 12/14 31 237 

 85 173.59 5.12 88 175.6 (+1%) 5.12 (-0.2%) 6/172 5/1 51 202 

S13207 75 14.31 0.89 95 23.51 (+64%) 0.6 (-32%) 29/125 19/10 0 0 

 80 13.42 0.91 90 18.41 (+37) 0.58 (-36%) 13/80 5/8 9 55 

 85 13.42 0.92 90 14.99 (+12) 0.92 (+0%) 7/39 2/5 6 51 

S35932 75 118.14 1.19 95 175.24 (+48%) 0.77 (-35%) 277/977 62/26 0 139 

 80 117.91 1.17 91 160.8 (+36%) 0.71 (-39%) 131/504 11/70 0 383 

 85 117.15 1.13 90 145.69 (+24%) 0.73 (-45%) 112/217 10/34 0 552 

RSA 75 35.99 9.8 93 45.35 (+26) 9.84 (+0.3%) 62/328 17/23 0 45 

 80 35.92 9.82 93 43.26 (+20%) 9.63 (-2%) 53/209 46/7 0 39 

 85 35.86 9.72 92 38.86 (+8%) 9.9 (+1.8%) 16/114 10/6 1 89 

RS232 75 18.28 1.9 91 22.63 (+24%) 1.84 (-4%) 32/157 27/5 0 25 

 80 18.29 1.9 91 20.95 (+15%) 1.83 (-4.7%) 19/102 15/4 0 28 

 85 18.26 2.1 87 18.72 (+2) 1.92 (-8.7%) 4/17 3/1 12 60 

ARM4U 75 41.49 9.71 93 50.26 (+21%) 10.79 (+11%) 70/328 63/6 0 42 

 80 41.48 9.86 91 46.98 (+13%) 10.77 (+9.3%) 36/191 16/20 0 79 

 85 41.45 9.8 91 43.6 (+5%) 10.52 (+7.4%) 22/97 13/8 0 81 

 

Table II presents the results of layout filling in terms 

of: (1) initial occupation ratio (OR) and final OR reached 

(i.e. the densest OR without routing violation), (2) initial 

and final leakage power (note that since the extra testable 

functions are connected to a separate clock, they are off 

during normal operation and therefore do not increase 

dynamic power) and (3) initial and final data time arrival. 

To comprehend the filling of the circuits, the number of 

FFs and logical cells inserted is presented as well as the 

number of functions created (along with the number of 

inputs for each function) and the number of combinatorial 

cells that remain unconnected due to a lack of FFs. Last, 

to better evaluate the difficulty for an attacker after 

applying our method, the number of NAND gates that 

could be inserted after filling is presented. 

High occupancy rates (above 90%) can be achieved by 

our method. Besides, the final OR achieved is generally 

the largest from the minimum initial OR and the bigger 

the initial OR, the greater the risk of a lack of FFs. 

Leakage power is degraded as expected, in proportion to 

the number of added cells: the bigger the initial 

occupation ratio, the less the deterioration. Data arrival 

time is degraded or enhanced. It totally depends on the 

routing algorithm; no prediction can be made. The 

number of exploitable spaces remaining after filling may 

seem too large in some cases, however, this number is in 

most cases far smaller than the number of cells inserted. 

This shows that the method has removed a majority of 

opportunities an attacker 

A layout of the benchmark s35932 cipher is presented 

in Fig. 3 in which the circuit is placed with an OR of 

75%. The cells in yellow/bold are the cells added by our 

method with a goal OR of 100%. 

Table III presents results in case of an initial OR too 

large to insert any FF. To test the limits of the method, the 

initial OR chosen is the maximum OR possible without 

routing violation. Our method can cope with such 

constraints, since it manages to insert logical cells and to 

create a logical function in all cases, even achieving 100% 

in 2 cases. 

Fig. 4 shows the interest of seeking for the best 

combination between the number of combinatorial 

functions and the number of inputs for each function i.e. 

the number of inputs that leads the least amount of non-

connected logical cells, depending on the possible number 

of FFs. In this figure, the number of remaining 

unconnected cells is presented, according to the number 

of inputs chosen for the combinatorial functions. These 

data correspond to the filling of the ARM4U benchmark, 

from 80% to 91%. 36 FFs can be inserted. All numbers of 

functions inputs have been tested from 4 to 35, and only 

one solution allows to have no cells remaining not 

connected: 16 inputs. Thanks to this method, our method 

can be applied on circuits with an initial rate up to 85% 

(only 80% were reached in [15]). 

 

Figure 3.  Layout occupation (added cells in yellow/bold) 
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TABLE III.  LAYOUT FILLING (2) 

Benchmark Initial OR Final OR Number of Inputs 

AES 93% 94% 19 

S13207 99% 100% 8 

S35932 99% 100% 30 

RSA 94% 95% 9 

RS232 95% 96% 9 

ARM4U 96% 97% 10 

 

Figure 4.  Iterative analysis of the functions size 

II. CONCLUSION 

In this paper, we have presented a DfHT method that 

aims at creating a layout as dense as possible in order to 

prevent possible HT insertion at layout level by an attacker 

in an untrusted foundry. The method consists in filling 

empty spaces in a layout by functional cells instead of 

filler cells. These additional functions are testable in order 

to prevent an attacker from replacing them with a HT. 

Such a method can generate large constraints for the 

routing; we explained how to minimize these additional 

constraints. Experimental results show that very high 

occupancy rates can be achieved, which demonstrates the 

feasibility of the method. To avoid potential degradation of 

the critical path due to routing, a future work could be to 

develop an ad-hoc routing algorithm, in order to route the 

additional functions after the routing of the initial circuit, 

i.e. without modifying the initial routing. 
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