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Abstract Consider a second order divergence form elliptic operator L with complex
bounded measurable coefficients. In general, operators based on L, such as the Riesz
transform or square function, may lie beyond the scope of the Calderén—Zygmund
theory. They need not be bounded in the classical Hardy, BMO and even some L7
spaces. In this work we develop a theory of Hardy and BMO spaces associated to
L, which includes, in particular, a molecular decomposition, maximal and square
function characterizations, duality of Hardy and BMO spaces, and a John—Nirenberg
inequality.
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1 Introduction and statement of main results

Extensive study of classical real-variable Hardy spaces in R” began in the early 1960s
with the fundamental paper of Stein and Weiss [27]. Since then these classes of func-
tions have played an important role in harmonic analysis, naturally continuing the
scale of L? spaces to the range of p < 1. Although many real-variable methods have
been developed (see especially the work of Fefferman and Stein [17]), the theory of
Hardy spaces is intimately connected with properties of harmonic functions and of the
Laplacian.

For instance, Hardy space H L(R") can be viewed as the collection of functions
f € LY(R") such that the Riesz transform VA~!/2 f belongs to L' (R"). One also has
alternative characterizations of H'(RR") by the square function and the non-tangential
maximal function associated to the Poisson semigroup generated by Laplacian. To
be precise, fix a family of non-tangential cones I'(x) = {(y,7) € R" x (0, 00) :
|x — y| < t}, x € R", and define

1,2
2 dyd
S8 f(x) = // Ve S p ()] tny+1t , (1.1)
I'(x)
NAF@ = s [eVErG). (1.2)
(y,0)el'(x)

Then ”NAf”LI(Rn) and ”SAf”Ll(Rn) give equivalent norms in the space HY(RM),
that is

IN® Flligey = 182 Fllpigey = 1 gt gy (1.3)

Consider now a general elliptic operator in divergence form with complex bounded
coefficients. Let A be an n x n matrix with entries

ajp: L°R") —C, j=1,....n, k=1,...,n, (1.4)
satisfying the ellipticity condition

MEP < MeAE -E and |AE-C| < AE|lCl, VE,¢eCP, (1.5)
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Hardy and BMO spaces 39

for some constants 0 < & < A < oo. Then the second order divergence form operator
is given by

Lf := —div(AV f), (1.6)

interpreted in the weak sense via a sesquilinear form.

Unfortunately, the classical Hardy spaces need not be applicable to problems
connected with the general operator L defined in (1.4)—(1.6). For example, the cor-
responding Riesz transform VL~!/2 need not be bounded from H'!(R") to L' (R").
Indeed, by the solution of the Kato problem [5], we know that the Riesz transform is
bounded in L?(R"). Thus, if it were also bounded from H!(R") to L' (R"), then by
interpolation we would have that VL~!/ 2. LP(R") — LP(R") forall 1l < p < 2,
which, in general, is not true. It is true that there exists pr, 1 < pr < 2n/(n + 2),
such that the Riesz transform is bounded on L? (R") for p; < p < 2 (see [3,9,19]
and Sect. 2 for more details; see also [10] for related theory), but it is known that the
best possible p; may be strictly greater than 1. Similar statements apply to the heat
semigroup e 'L (for which L? boundedness may fail also for p finite, but sufficiently
large), as well as to the square function (see (1.15) below). This failure of L? bounds for
some p € (1, 2) (and in (2, 00)), which relies on counterexamples built in [4,14,23],
along with some observations in [3], illustrates the significant difference between the
operators associated to L and those arising in the classical Calderén—Zygmund theory.
We note that it has been shown in [3] that the intervals of p < 2 such that the heat
semigroup and Riesz transform are L”-bounded have the same interior. In the sequel,
we shall denote by (pr, pr) the interior of the interval of L” boundedness of the
semigroup, i.e.,

pr=inf{p > 1:suplleL|rrmrr < 00} and
t>0

~ . (1.7)
pL =sup{p <oo:suplle " ||Lr—Lr < 00}
t>0

We recall [3] that p;, > 2n/(n — 2), and, as noted above, p; < 2n/(n + 2).

In writing this paper we have two goals: (1) to generalize the classical theory
of Hardy spaces in order to ameliorate the deficiencies described in the previous
paragraph, and (2) to develop a corresponding BMO theory, which includes analogues
ofthe H' — BMO duality theorem [17] and of the John—Nirenberg Lemma [20].

We begin by discussing the first goal. Given an elliptic operator L as above, we
construct an H'! space adapted to L, which, for example, is mapped into L' by the
Riesz transforms VL ~!'/2, and which serves as an endpoint of a complex interpolation
scale which coincides in part with some range of L? spaces. The utility of the Hardy
space H ! being due in part to its many useful characterizations, thus, we aim to provide
analogues to most of these, including the atomic (or molecular) decomposition and
characterizations by square and non-tangential maximal functions. We note that one
problem which remains open is that of finding a Riesz transform characterization of
the adapted H! space; i.e., we do not yet know (except in the low dimensional case
n < 4) whether L! bounds for VL—1/2 f, or some suitable substitute, imply that f
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belongs to our Hardy space (as mentioned above, we do prove the converse). We plan
to present the low dimensional results, as well as an analogous H? theory, p # 1, in
a forthcoming joint paper with McIntosh. We remark that, in contrast to the classical
setting, even the case p > 1 may involve Hardy spaces which are strictly smaller than
L?, and for at least some such spaces, we do have a Riesz transform characterization.
Finally, we remark that our Hardy spaces belong to a complex interpolation scale which
includes L?, p; < p < pr. Indeed, this fact follows as in [12], using interpolation
of the so-called “tent spaces”, given the square function characterization of our H'
space (cf. Theorem 1.1 below), and the fact that the square function S, (cf. (1.19)) is
bounded on L? for p; < p < pr (cf. Lemma 2.6).

We now discuss the various characterizations of our Hardy space. Let us start
with the matter of atomic/molecular decompositions. The decomposition into simple
building blocks, atoms, originally proved by Coifman for n = 1 [11] and by Latter
in higher dimensions [22], is a key feature of H!(R"). In this paper we work with an
analogous molecular decomposition, in the spirit of the one introduced in the classical
setting by Taibleson and Weiss [28].

Throughout the paper for cube O C R” we denote by /(Q) the sidelength of Q and
set

So(0Q):=0, 0;=2'0 and S;(Q):=2'0\2"'Q fori=1,2,...
(1.8)

where 2/  is cube with the same center as Q and sidelength 2/1(Q).

Letl < pr < 2n/(n+2)and py > 2n/(n — 2) retain the same significance as
above (that is, they are the endpoints of the interval of L? boundedness for the heat
semigroup). A function m € L?(R"), pp < p < py, is called a (p, &, M)-molecule,
e>0and M € N, M > n/4, if there exists a cube Q C R” such that

i) lmlers oy < 27 /Pl i =0,1,2, ., (1.9)
() Q)AL Y, mll (s 0y < 271/ PFO QP
i=0,1,2,....k=1,...,M. (1.10)

Having fixed some p, ¢ and M, we will often use the term molecule rather than
(p, &, M)-molecule in the sequel. Then the adapted Hardy space can be defined as

oo
H} (R") = [ijmj s {52 € ¢" and m; are molecules] , (1.11)
i=0

with the norm given by

o0 o0
1/ 1) gy =1nf Z Al f = ijmj, {rj}izo € ¢" and m ; are molecules
i=0 j=0
(1.12)
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Hardy and BMO spaces 41

We shall prove in Sect. 4 that any fixed choice of p, & and M within the allowable
parameters stated above, will generate the same space.

We remark that our molecules are, in particular, classical H I molecules, so that
H g C H'! (and this containment is proper for some L, by our earlier observations
concerning the failure of H' — L' bounds). We also observe that one may construct
examples of H,f molecules by hand: given a cube Q, let f € L*(Q), with || f|l» <
|Q|~1/2, and set

m = (Z(Q)ZL)Mﬂ(Q)ZLf, i = (1 —a +5(Q)2L)*1)Mf. (1.13)

One may then easily check, using the “Gaffney estimate” (2.8) below, that up to a
suitable normalizing constant, m, m are (2, &, M) molecules for every ¢ > 0.

Molecules have appeared in the H ! theory as an analogue of atoms lacking compact
support but decaying rapidly away from some cube Q [18]. However, the classical
vanishing moment condition ( fR" m(x) dx = 0) does not interact well with the ope-
rators we have in mind because it does not provide appropriate cancellation. Instead,
we impose the requirement that the molecule “absorbs” properly normalized negative
powers of the operator L—the condition made precise in (1.10). In such a setting it
can be proved, for instance, that the Riesz transform

VL2 H (R — LYRY), (1.14)

as desired.
Next, given an operator L as above and function f € L*(R"), consider the following
quadratic and maximal operators associated to the heat semigroup generated by L

172
) dydt
s = | [ [ 1L tror 5| (1.15)
I'(x)
12
1
Nif(x):= sup | / e L f)Pdz |, (1.16)
(.ner) \

B(y.1)

where B(y,t), y € R", ¢t € (0, 00), is a ball in R"” with center at y and radius ¢ and
x € R". These are the natural modifications of (1.1)—(1.2). We use an extra averaging
in the space variable for the non-tangential maximal function in order to compensate
for the lack of pointwise estimates on the heat semigroup (an idea originating in [21]).

Alternatively, one can consider the Poisson semigroup generated by the operator L
and the operators

1/2

dyd
Spf(x) = / / Ve VEr P S| (1.17)

I'(x)
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1/2

Npf(x) = sup tin/|e—’ﬁf(x)|2dx , (1.18)

(y.n)el(x)
B(y.1)

withx € R”, f € L*(R").
We define H ;h (R™) as the completion of { f € L2(R") : S, f € L'}, with respect
to the norm

W ey ey = WSkt eny;

the spaces H /l\fh R™), H blp (R") and H /l\fp (R™) are defined analogously. Then the
following result holds.

Theorem 1.1 Suppose that p;, < p < pr (1.7),e > 0and M > n/4 in (1.9)—(1.10).
Foran operator L given by (1.4)—(1.6), the Hardy spaces H,i (R™), Hslh (R™), HJI\/}, (R™),
H SIP R™, H }\/P (R™) coincide. Moreover,

1 g @y = USh Fll L@y & INGfllLt@ny = ISP il ey & NP fIlL @y
(1.19)

forevery f € Hi(R”).

The second half of the paper is to devoted to the study of the space of functions of
bounded mean oscillation, adapted to L.

The BM O space originally introduced by John and Nirenberg in [20] in the context
of partial differential equations, has been identified as the dual of classical H' in the
work by Fefferman and Stein [17]. Analogous to the role of H' as a substitute for
L', BM O substitutes for L> as an endpoint of the L? scale. For reasons similar to
those discussed above in connection with H!, the classical BM O may not be at all
compatible with the operator L.

The second goal of this paper is to generalize the classical notion of BM O. We
define a version of this space adapted to L, and prove that it is equipped with several
characteristic properties of BM O; in particular, it is tied up with the Hardy space
theory via duality. The adapted BMO theory (using a similar norm to our (1.22), but
with M = 1) has previously been introduced by Duong and Yan [15,16], under the
stronger assumption that the heat kernel associated to L satisfies a pointwise Gaussian
upper bound. Much of their methodology seems inapplicable in the present setting;
in particular, we have been forced to take a completely different approach to the
John—Nirenberg Lemma, and to view our BM O space as a subspace, not of Llloc, but
rather of a certain space of distributions as we shall describe momentarily. Moreover,
the lack of pointwise kernel bounds renders the proof of the duality theorem signifi-
cantly more problematic, and in addition seems to require the higher order cancellation
inherent in the parameter M.
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Hardy and BMO spaces 43

We define our adapted BM O space as follows. For ¢ > 0 and M € N we introduce
the norm

M
||I»L||M§FM = jli% 2](11/2+8) Z ”Lik/j“”Lz(Sj(Qo))’
= k=0

where Qy is the unit cube centered at 0, and set

Mg = (i€ LR < llnllygen < oo).

Implicitly, of course, this space depends upon L, and we shall write Mé’g‘M(L) when
we need to indicate this dependence explicitly. We note thatif u € Mg’S’M withnorm 1,
then w is a (2, €, M) molecule adapted to Q. Conversely, if m is a (2, ¢, M) molecule
adapted to any cube, then m € M(Z)’s’M (this follows from the fact that, given any two
cubes Q1 and Q», there exists integers K1 and K>, depending upon £(Q1), £(Q2) and
dist(Q1, Q2), suchthat 25101 2 0, and 2520y 2 Q). Let (MJ*")* be the dual of
M(Z)’S’M, and let A, denote either (I +2L)~" ore=*"L. We claim that if fe (M%’E’M)*,
then (I — A¥)M f is globally well defined in the sense of distributions, and belongs
to L2 . Indeed, if ¢ € L?(Q) for some cube Q, it follows from the Gaffney estimate

loc*

(2.8) below that (I — A)My e M(Z)’S’M for every & > 0. Thus,

<(1 — ADOM £, §0> = <f, - Az)M<P> < Ct,((Q),dist(Q,O)”f”(Mgv&M)*||(P||L2(Q)~
(1.20)

Since Q was arbitrary, the claim follows. Similarly, (t>L*)M A} f € L3, .

We are now ready to define our adapted BM O spaces. We suppose now and in the
sequel that M > n/4. An element

f € NemoMp*My* = (g ™)y* (1.21)

is said to belong to BM Op«(R") if
1/2

Il fllBmo, - @®ny := sup

R ﬁ/‘(’—e—“QW)Mf(xfdx <00, (1.22)
QCR”"

0

where M > n/4 and Q stands for a cube in R”. Eventually, we shall see that this
definition is independent of the choice of M > n/4 (up to “modding out” elements in
the null space of the operator (L*)M | as these are annihilated by (I — e! (Q)ZL*)M ;we
thank Lixin Yan for this observation). Clearly, we can define BM Oy, by interchanging
the roles of L and L* in the preceding discussion. Using the “Gaffney” estimate (2.8)
below, and the fact that e~ (Q)ZLI = 1, one may readily verify that BMO € BMOy.
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44 S. Hofmann, S. Mayboroda

Compared to the classical definition, in (1.22) the heat semigroup ¢~/ (0L plays the
role of averaging over the cube, and an extra power M > n /4 provides the necessary
cancellation.

As usual, we have some flexibility in the choice of BM O norm, by virtue of an
appropriate version of the John-Nirenberg inequality (see [20] for the case of usual
BM 0), although in our case we obtain a more restricted range of equivalence. To
be more precise, let us denote by BM O f R™), 1 < p < o0, the set of elements of

(MS‘M)* with the property that
1/p

1 o2 P
Iflsmop@n = sup | To0 / \(1—e HOTM ()| dx (1.23)
0c 0

is finite. By definition, BM Oz R*) = BMOr(R"). We have a “John—Nirenberg
Lemma”:

Theorem 1.2 For all p such that p;, < p < py, the spaces BM 0£ (R™) coincide.

Another important feature of classical BM O is its Carleson measure characteriza-
tion. Roughly speaking, we shall establish the following analogue of the Fefferman—
Stein criterion:

2 dydt
feBMOL(R") <+ (tzL)Me*tsz(y) yT is a Carleson measure;

(1.24)

see Theorem 9.1 for the precise statement, in which, as in the classical case, a certain
“controlled growth” hypothesis is needed to prove the <= direction.
And finally, we prove the desired duality with the Hardy spaces.

Theorem 1.3 Suppose p;, < p < pr, € > 0and M > n/4 in (1.9)—(1.10), (1.22).
Then for an operator L given by (1.4)—(1.6)

(HLl(]R”))* — BMO.-(R"). (1.25)

As we have mentioned, our results lie beyond the classical Calderén—Zygmund
setting. Moreover, the methods we have at our disposal are substantially restricted.
For instance, no analogue of the subaveraging property of harmonic functions, no
maximum principle, no regularity or pointwise bounds for the kernel of the heat or
Poisson semigroup are available. The operators we work with do not even possess a
kernel in the regular sense. In fact, we employ only certain estimates in L> and L”
with p close to 2, controlling the growth of the heat semigroup and the resolvent.

The layout of the paper is as follows: Section 2 contains a few preliminary results,
regarding general square functions and properties of the operator L. Section 3 is
devoted to the behavior of sublinear operators, in particular, Riesz transform, acting on
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H Ll (R™). Sections 4, 5, 6 and 7 cover the characterizations of Hardy space announced
in Theorem 1.1. Finally, in Sects. 8, 9 and 10 we discuss the spaces BM O (R"),
duality, connection with Carleson measures and John—Nirenberg inequality.

While this work was in preparation, we learned that much of the Hardy space theory
that we present here has also been treated independently by Auscher et al. [7]. Their
results are stated in the context of a Dirac operator on a Riemannian manifold, but
their arguments carry over to the present setting as well. To the best of our knowledge,
the theory of BM O (R") spaces, in the absence of pointwise heat kernel bounds, is
unique to this paper. As mentioned above, some of this material has been developed
previously, assuming pointwise kernel bounds (see [8,15,16]).

2 Notation and preliminaries

Let I'*, « > 0, be the cone of aperture ¢, i.e. '*(x) := {(y,1) € R" x (0, 00) :
|[x —y| < at} for x € R". Then for a closed set F € R" we define a saw-tooth region
RY(F) := U cp I'*(x). For simplicity we will often write I'" in place of ' and R(F)
instead of R1(F).

Suppose F is a closed set in R” and y € (0, 1) is fixed. We set

FNB
F* = [x € R" : for every B(x), ball in R" centered at x, ﬂ > ] ,

By 7
Q2.1

and every x as above is called a point having global y-density with respect to F'. One
can see that F'* is closed and F* C F. Also,

CFf={xeR": M(xcp)(x) > 1—y}, (2.2)

which implies | ¢ F*| < C| € F| with C depending on y and the dimension only.
Here and throughout the paper we denote by ©F the complement of F, xr is the
characteristic function of F, and M is the Hardy-Littlewood maximal operator, i.e.

1
Mfx) = SUP el / lf(»ldy, (2.3)

r=0 |B(x, r
B(x,r)

where f is a locally integrable function and B(x, ) stands for the ball with radius r
centered at x € R".

Lemma 2.1 [12] Fix some o > 0. There exists y € (0, 1), sufficiently close to 1,
such that for every closed set F whose complement has finite measure and every
non-negative function ® the following inequality holds:
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46 S. Hofmann, S. Mayboroda

/ ®(x, 1) t"dxdt < C(a, y)/ / ®(y, t)dydr | dx, 2.4)

RY(F*) F |T'(x)

where F* denotes the set of points of global y -density with respect to F.
Conversely,

/ /Cb(y,t)dydt dx < C(w) / ®(x,1)t" dxdt, 2.5)

F [To(x) R(F)
for every closed set F C R" and every non-negative function ®.

Lemma 2.2 [12] Consider the operator

1/2

d
S*F(x) = // F(y ;)|2[f+1 , 2.6)

[ (x)

where a > 0. There exists a constant C > 0 depending on the dimension only such
that

IS Fll 1 @ny < CIS'FllL1 gy 2.7

Both lemmas above are proved in [12].

Turning to the properties of the differential operator L we start with the off-diagonal
estimates. We say that the family of operators {S;},-0 satisfies L? off-diagonal esti-
mates (Gaffney estimates) if there exist some constants ¢, C, 8 > 0 such that for
arbitrary closed sets E, F C R”

([ dist(E,F)? s

ISt fllz2ry < Ce ( “ ) (FAIVEIE (2.8)

for every ¢ > 0 and every f € L?(R") supported in E.

Lemma 2.3 [19] If two families of operators, {St};~0 and {T;}:=0, satisfy Gaffney
estimates (2.8) then so does {S;T;}1~0. Moreover, there exist ¢, C > 0 such that for
arbitrary closed sets E, F C R"

([ dist(E,F)? £

ISsTi fll 20y < Cee (") £l 22y 2.9)

forallt,s > 0andall f € L*>(R") supported in E.
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Lemma 2.4 [5,19] The families
{e7 Yoo, {tLe F)ng, {tV2Ve 'ty 0, (2.10)
as well as
{1 4+1tL) Yoo, {12V +1L) Y0, (2.11)

satisfy Gaffney estimates withc, C > 0depending onn, . and A only. For the operators
in (2.10), B =1, and in (2.11), B = 1/2.

We remark that it is well known from functional calculus and ellipticity (accretivity)
that the operators in (2.10)—(2.11) are bounded from L2(R™) to L2(R") uniformly in ¢.

Lemma 2.5 There exist p,1 < pp < nz% and pr, nzT"Q < pL < oo, such that
for every p and q with pp < p < q < pr, the family {e”'L},-¢ satisfies LP — L4

off-diagonal estimates, i.e. for arbitrary closed sets E, F C R"

2)  dist(E.F)2
e

1fn_
le ™ fllar < Ctz(" g a | fllLrce), (2.12)

for every t > 0 and every f € LP(R") supported in E. The operators e 'L, t > 0,

are bounded from LP (R™) to LY(R™) with the norm Ct%(g_%) and from LP (R™) to
L? (R™) with the norm independent of t.

In the case p = q, the statement of the Lemma remains valid with {e™'L},-
replaced by {(1 + tL)~'},~0, and with exponent B = 1/2 in the exponential decay
expression.

Proof For the heat semigroup the proof of the Lemma can be found in [3] and the
result for the resolvent can be obtained following similar ideas. O

Remark Tt has been shown in [3] that the interval of p such that the heat semigroup
is LP-bounded, and the interval of p, g such that it enjoys the off-diagonal bound
(2.12), have the same interior. In particular, there is no inconsistency between the
definitions of py in (1.7) and in Lemma 2.5. We will preserve this notation for py and
pr throughout the paper.

Lemma 2.6 The operator

172

) dvydt
Si f(x) = // LR MP ST | xeRL KN, @13)

I'(x)

is bounded in L? (R") for p € (pL, 1)

Proof The proof closely follows an analogous argument for vertical square function
[3]. We omit the details. O
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Finally, the solutions of strongly parabolic and elliptic systems satisfy the following
versions of Caccioppoli inequality.

Lemma 2.7 Suppose Lu = 0 in By, (xg) = {x € R" : |x — xo| < 2r}. Then there
exists C = C(\, A) > 0 such that

C
/ |Vu(x)|? dx —2 / lu(x)|® dx. (2.14)
By (x0) By (x0)
Lemma 2.8 Suppose o,u = —Lu in I (xo, to), where I (xg, ty) = Br(x0) X [to —

cr?, tol, to > 4cr? and ¢ > 0. Then there exists C = C(\, A, c) > 0 such that

// |Vu(x,t)|2dxdt§£2// lu(x, 1)|? dxdt. (2.15)
r

I (x0,t0) Dy (x0,t0)

3 Sublinear operators in Hardy spaces

To begin, let us note that the space H}, defined by means of molecular decompositions,
is complete. We learned the following proof of this fact from E. Russ. We first require
a well known completeness criterion from functional analysis.

Lemma 3.1 Ler X be a normed space which enjoys the property that > xj converges
in X, whenever > || x| < 0o. Then, X is complete.

The lemma is well known, and we omit the proof.
Let us now use the lemma to establish completeness of H . ! To this end, we suppose
that f; € H}, and that 2 filly 1 <00 Given the former fact there exists for each

k a molecular decomposition fi = >.°2, kfmf, with X7, |)»f| ~ ||fk||H£. Thus,
ki ~
;w ~ ; I ficll g1 < oo
1,

Consequently, the sum > f; = Zk’ ; )Lf‘mf converges in H}, as desired. O

For certain technical reasons, we shall need to work also with a modified version
of the molecular representations. Given p € (pr, pr), € > 0, M > n/4,and § > 0,
we say that f = > A;m; is a §-representation of f if {A]} 2o € ¢! and each mjisa
(p, &, M)-molecule adapted to a cube Q; of side length at least 8. We set

HLI’B(R”) ={fe Ll(R") : f has a §-representation}.

Observe that a §-representation is also a 5,-representation forall§ < 6. Thus, H 11 s €
HL1 5 for0 <8 < §. Set

H} (R") = UsH] 5(R"),
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and define

o o0
”f”ﬁLl(R") =inf Z [Aj] :f=2)»jmj is a §-representation for some § > 0
j=0 j=0
3.D

We note that for f € ﬁl, Nfll < C||f||,7L1, since in particular, ||m|;1 < C for

every molecule m (of course, a similar statement is true for H 11). Now for f € ! , set
112y ey = 1 gy ey + 1 iy 2 £ 13 oy (3.2)

and define H Ll as the completion of H Ll with respect to this norm. We now show that
H} = H}, (3.3)

for any choice of p, € and M, within the allowable parameters. By definition, and the
completeness of H}, we have

Hy CHj and |fllg <1 flg (3.4)

whenever f € H 11 Let us now verify that these statements can be reversed (up to
a multiplicative constant). We learned the following argument from P. Auscher. Let

. k .
f e H}, f = > am;, with ||f||HL1 ~ > IAil. Set fi = D ; Aim;. Note in
particular that f; — f in L'. Moreover, f; € H}, so that

k
I il < D 1%l < ClLf -

i=1

Also,

k
I i = fellgr < D~ Inil = 0,

i=k'

so that {f;} is a Cauchy sequence in H Ll Consequently, there exists f such that
fi — fin I?Ll and thus also in L. Therefore, f=fae,sof¢€ I-I£

The advantage to working with H Ll is that, if f = D" A;m; is a §-representation
with (p, €, M)-molecules, for some § > 0, then the partial sums fy = >, Aim;
converge to f in LP?, since the L? norms of the molecules are uniformly bounded
(with a constant depending upon §).

Theorem 3.2 Let p; < p <2 and assume that the sublinear operator

T:LP(R") — LP(R") (3.5)
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satisfies the following estimates. There exists M € N, M > n/4, such that for all
closed sets E, F in R" with dist(E, F) > 0 and every f € LP(R") supported in E

M
ITU — e YM fllpnry < C ) I fllLecey. Yi>0, (3.6)

(dist (E, F)?
t

M
m) I fllLrey, Yt>0. (3.7

ITLe™ Y™ fllpnry < C (

Then
T:H(R") — L'(R"). (3.8)

Remark Of course, the estimates (3.5)—(3.7) are of interest only when s < dist(E, F )2.
The proof below shows that (3.5)—(3.7) imply (3.8) with the Hardy space H L] (R™)
defined by linear combinations of (p, &, M)-molecules for the same values of p and
M as in (3.5)—(3.7). We do not emphasize this fact as the space H Ll (R™) does not
depend on the choice (within the stated allowable parameters) of p, ¢ and M in
(1.9)—(1.12)—see Corollary 4.3.

Proof Suppose that T : L? — LP” is sublinear. We claim that for every (p, &, M)
molecule m, we have

ITmll sy < C (3.9)
with constant C independent of m. Let us take this statement for granted momentarily.
The conclusion of the theorem is then an immediate consequence of the following

lemma.

Lemma 3.3 Fix p, €, M within the allowable parameters, with p;, < p < 2. Suppose
that T is either a linear operator, or a positive sublinear operator, bounded on L?,
which satisfies (3.9) for all (p, €, M) molecules. Then T extends to a bounded operator
on H Ll, and

ITf e < Cllflig) -

Proof By our previous observations, it is enough to work with the space H Ll By
density, it is enough to show that

1T < Clliflg

for f € H Ll Choose such an f, so that f = > 72 A;m; is a §-representation, where
the m; are (p, €, M)—molecules and

IF g~ D Il
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Set fiy = Zf-;] Aim;. Then fi — f in L? N L'. By hypothesis, |Tfi — Tf| <
T (fx — f)] = Oin L?. On the other hand, by (3.9),

k
ITfi = Tl < 1T — fidlh < € D Inil = 0,

i=k'

as k, k' — oo. Consequently, {7 f;} is a Cauchy sequence in L' so there exists & € L'
such that T fy — h in Ll Taking subsequences, we see that T f = h a.e.. Hence,

ITfln = lim ITfilly < C Ikl < 1fll ;-

We now turn to the proof of (3.9). To begin, we write

M
NTmll 1 gy < || T (1 - e*“QVL) m
L1(Rm)
M
+ HT [1 - (1 - e—’<Q)2L) ]m =T +11,
L1(Rm)
and we further split I so that
ad 2
_ lQPLM
1< ZO |7t — e @M oy, (Q)>HL1(R” .
=

Here, the family of annuli {S;(Q)}72 is taken with respect to the cube Q associated
with m. Going further,

HT(I — el BYM (my, (Q))H

LI(Rm)
=cX (@) " |ra e O s o], o
S (i1 o) 1(Q)? "
i+ r
é(z @) (diSt(Sj(Qi)aSi(Q))Z) mlersion
¢ (21@)" " Imleson- (3.10)

where the last inequality follows from (3.5)—(3.6) and uniform boundedness of
{e7"L};-0 in LP(R™). Then by the properties of (p, &, M)-molecules the expression
above is bounded by
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o0
C Z 2i(=2M—e)pj(n—n/p=2M) 4 c~ie < Co~ie, (3.11)
j=2

sothatI < C.
As for the remaining part,

M
I- (1 - e*“Q)zL)M = M~k ML (3.12)
k=1
where C,f” = (Mkav)'k" k=1,..., M, are binomial coefficients. Therefore,

HT[I —- e_l(Q)zL)M]m‘

2
< C sup HTe_kl(Q) Lm‘
L'(Rm) I<k<M

LU(Rn)

<C sup (3.13)

M
T(ﬁz(Q)zLea’ﬂ@“) Q)L HYMm
I<k<M M

LY (Rn)

At this point we proceed as in (3.10)=(3.11) with (1(Q)">L~)m in place of m,
M

(% l(Q)zLe’%l(Q)zL) in place of (I — e/ (@’LYM and using (3.7) and (1.10) to

obtain that

k M .
sup |T (MZ(Q)ZLeAkﬂ(Q)zL) ([(z(Q)*ZL”)Mm] XS,.(Q)) <co-ie,
1<k<M LI®RY)
(3.14)
Summing in i, we obtain that II < C, as desired. O

Remark The result of Theorem 3.2 holds for p € (2, pr) as well. However, in that

case one has to take M > % (n — %)

For f € L*(R") consider the following vertical version of square function:

0 1/2
d
gnf(x) = / 12Le "L F ()2 Tt : (3.15)

0

Theorem 3.4 The operators g, and VL2 satisfy (3.6)—(3.7) forp =2, M > n/4,
and map H} (R") to L' (R").

Proof The proof rests on ideas of similar estimates for the Riesz transform (cf.

Lemma 2.2 in [19]) and Theorem 3.2. By the L? bounds, p; < p < pr, for g
[3], it is enough to treat the case ¢ < dist(E, F)2 in (3.6)-(3.7).
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First of all, the operators under consideration are obviously sublinear. Further,
L? boundedness of the Riesz transform has been proved in [5] and boundedness of
gn in L2(R™) follows from the quadratic estimates for operators having bounded
holomorphic calculus [1].

Let us now address the inequalities (3.6)—(3.7) for p = 2 and the operator T = gj,.
An argument for the Riesz transform, viewed as

o0
-2 = C/Ve_”‘f , (3.16)
0

is completely analogous [19]. Write

00 1/2
ds
I — —tL ‘ / L —sL I — —tL 2
Jan . [sLe~L( MRS
0 L(F)
00 172
—s(M+1)L —1L\M zds
<C |sLeSMFDL(p — o=t )M f|
0 L2(F)
12
< C / “sLe—Y(M+1)L(I —tL)Mf‘
- LZ(F) s
12
ds
+C /”sLe_S(MH)L(I "L)Mf’ —5L+L (.17
L2(F) s
We will analyze I and I, separately. Expanding (I —e~'F)M by the binomial formula,
one can see that
‘ 12
2
Il < C /HSL@iS(M{Fl)Lf ﬁ
- LX(F) s
[ 1/2
+C sup / §Le—SM+DL —kth‘ ds
I<k<M L2(F) s
0
172
<C /HsLe_‘(MH)Lf‘
L2(F) s
172
sds
1C su /H —s(M+DLy ;1 =KL
15k£M f L2(F) 2
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. 12
_dist(E.P)? ds
<C e cs o I f 12k
0
. 172
1 dist(E,F)?
+C sup | e sds 1 f 2
1<k<Mm \ !
0

where we used Lemma 2.4 and a variant of Lemma 2.3 in the last step. One may

M
readily check that the expression above is bounded by C (m) WAl L2(E)» @S
desired.
Turning to the second integral,

00 172
L L M | ds
h<C /HsLe_S (63 — ¢~GHDLy f‘ @ (3.18)
LX(F) s
t
It was observed in [19] that
t
Hf(est _ef(ert)L)g‘ _ f/are—(s+r)Lgdr
t L2(F) t
0 L2(F)
t d
s r
<C- H s 4+ r)Le” 6L ‘
- t/(+) ng(F)s+r
0
t
c s dist(E, )2 dr 3.19
< — e c(s+r)  ——— | . .
= Cligll2) t/ Sy (3.19)

0
Buts+r ~ s fors > tandr € (0, 1), therefore the expression above does not exceed

t
 dist(E,F)? Ky / dr  dist(E,F)?

C cs - < C cs . 320
||g||L2(E)€ PR e I e ||g||L2<E) ( )

0

Now we multiply and divide the integrand in (3.18) by (%)2M and use Lemma 2.3 for
sLe™ and M copies of %(e_SL — e~ 6H0Ly 1o get
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1/2

7 dlst(E F)2 2M dS
k=¢ /e =) e

o0 g, 12
<C dr
B /e (dlst (E, F)2) p I fll L2k

0

M

= “\ascE, P2 ’ 321

as desired, where in the second inequality we have made the the change of variables
_ dist(E,F)?
cs :
This finishes the proof of (3.6) for the operator gj,. The argument for (3.7) follows
essentially the same path. More precisely, one needs to estimate the integrals /; and
I, with (I — e~'F)M replaced by (tLe™'L)M . As for the first one,

12
Le—SM+DL (1 ,~1L\M ‘
/HS ¢ ( " L2(F) s
| [ 5 1/2
< C _2/ e—S(M-i—l)L(tLe—lL)M—l (%Le—éL) f sds
! 0 L2(F)
<=5 < () i (3.22)
e —_— , .
= 12 =\ Gist (£, F)2 LA(E)
by Lemma 2.3. Concerning to the analogue of />, one can write
00 1/2
/ sLe—S(M+1)L(tL —[L)Mf’ dS
L2(F) s
t
OotzM L NN ds v
< /(-) HsLe_* (sLe~+OL)M ¢ a (3.23)
S LX(F) s
1
At this stage, similarly to (3.19),
t
—(s+0)L 5 -sL —rL
HsLe g‘ o = |7 e /Br(rLe )gdr
L2(F)
t
< Zesk /(Le_rl‘ —rL? ™ Hgdr
L2(F)
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dr
r+s

t
N —
=2 [0+ gl
0

t
s rdr
+cl 4+ 5) L2 L _rar
; / ll( ) 8ll2ry 12
0
t
" s _dist(E,F)?  dr
< — e c(s+r)
= Cligllr2) ; / e
0
_ dist (E,F)?
< Ce o ligllLg), (3.24)
and following (3.21) we complete the proof. O

Remark Using the same line of reasoning and L? — L? off-diagonal estimates (p; <
p < 2) one can show for all closed sets E, F in R" with dist(E, F) > 0 and every
f € LP(R") supported in E

l(n_n M
[ —e )M ‘ <Ct7(77) S — gy, Vi>0,
Janr =My, < G Ee) Mlee, vis
(3.25)
tL\M 5(5-5) "
e My et (e . Vi>0.
JsnteLe s, < (dist(E,F)z) 1oy, Vi>

(3.26)

4 Characterization by the square function associated to the heat semigroup

Theorem 4.1 The spaces H Ll and H ;h are the same; in particular,

£y =~ 1S £l ey 1)

In light of (3.3), the theorem is an immediate consequence of the following lemma.
Lemma 4.2 We have the containments H Ll CH Slh - H Ll Moreover,

Q) Iffel’n H;h, then f is the limit in I-I]1 of fn € ﬁi Furthermore, for every

e >0, M eN, pp < p < pL there exists a family of (p, &, M)-molecules

{m;}72, and a sequence of numbers {A;}7° such that f can be represented in
the form f = > 72, kimj, with

o
1)@y = € 21l = ClLE gy oy 4.2)
i=0
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(ii) Conversely, givene > 0, M > n/4and pp < p < pyr, let f = 2.2 Aimj,
where {m;}° is a family of (p, &, M)-molecules and > 220 |Ail < 0o. Then the

series Zfio Aim; converges in H Sl} R™) and
- 1

o
<CY Il

Hslh (Rm) i=0

e’}
Z)\,’mi
i=0

In particular, we have that
”f”[-[Slh(Rn) = C”f”HL](R”)' (4.3)

The proof follows that of [12], and is based on the tent space decomposition of that
paper, as well as on the ideas of the proof of the atomic decomposition of the classical
Hardy spaces (as in [29]).

Proof Stepl.Let f € Hslh (R")NL*(R"). We shall construct a family { fy}3_, € ﬁLl
such that fy — f in H] and in Hg , with

=~ <
S;p ”fN”HL'(]R”) = C”f”HSI,, (Rm)*

In particular, this will show that f € H!, with norm controlled by | f]l H) - The
h

claimed molecular decomposition will be established in the course of the proof.
We start with a suitable version of the Calderén reproducing formula. By L? func-
tional calculus, for every f € L2(R™) one can write

o0
dt
f=Cu /(IZLeftzL)M+2f —
0
N
. 2 M2 4t
= Cy lim L "M f — = 1im fy, 4.4
N—o00 1 N—o0
1/N

with the integral converging in L*(R").
Now define the family of sets Oy := {x € R" : S, f(x) > 2%}, k € 7Z, and consider
Oy :={x e R" : M(x0,) > 1— vy} for some fixed 0 < y < 1. Then Oy C Oy

and |O[| < C(y)|Ok| for every k € Z. Next let {Q,{ }; be a Whitney decomposition
of OZ‘ and OZ‘ be a tent region, that is

5,2" ={(x,1) € R" x (0, 00) : dist(x, Of) > t}. 4.5)
For every k, j € Z we define

1{ = (0f x (0,00)) N O N O, (4.6)
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and then recall the formula (4.4) to write

N
_ 27 —2L\M+1 2, 2L 4t i i
fv=Cu > /(z Le "M (3, 17 Le )fT = > MmN,

j,kEZ l/N j,kEZ
A.7)
where 1] = Cy2¥| Q]| and
L7 d
j 2 _2 t
ml(N) = o (2Le~ " LyM+1 (XTk;tzLe ’L) r. (4.8)
ki/n

We claim that, up to a normalization by a harmless multiplicative constant, the
m,j( (N) are molecules. Assuming the claim, we note that by definition of Tk] , m,]C (N) =

0if CK(Q,{) < 1/N, so that (4.7) is a §-representation with § &~ 1/N. Thus, once the
claim is established, we shall have

supll fvllgreny < C D 2 =C D 20]1 = €Y 2407
N

Jj.keZ kel keZ
< C Y 240kl = ClIShf 1 ey (4.9)
keZ

as desired. Let us now prove the claim: that is, we will show that for every j, k € Z,
and N € N the function C ’1m',£ (N)isa(p, e, M)- molecule associated with the cube

Q,{, 2 < p < pr, for some harmless constant C. The case p < 2 follows from this
one by Holder’s inequality. _
To this end, fix j, k € Z andi € NU {0} and consider some % € L”/(S,-(Q,]{)) such

1 1
that 111l g o) = 15+ 7 = 1. Set

Jo_ )
X = X(Q,{x(O,oo))ﬂﬁZ' (4.10)

Then

/ m (N)(x)h(x) dx| < Ai] / / ’tzLe_tsz(x) ((tzLe_’zL)MH)*h(x)‘ #dx
k .
TJ

Rn

¢ j 2, 2L 2p 2L\ M+1)* didy
< | [[ donlerertro (@re ) no| G5 ax

€Or+1 TI'(x)
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C ) 2 dydt
< — / // ‘tzLe lLf(y)‘ tnT dx

J
% )
60k+1ﬂCQ}£ I

IS
1

>

« / / / ‘((tzLe_ﬂL)MH)*h(y)‘zotl:flt .

Op11NcQ) I‘(x)ﬂ(Q]{x(O,oo))ﬂalf
=11 x I,. 4.11)

Some comments are in order here. For the second inequality we used Lemma 2.1 with
F = ©Opy1 (sothat F* = €O}, and R' (F*) = O}, ) and

D(x.1) = ¥} (y.1) (rzLe—’sz(x) ((tzLe_tzL)MH)*h(x)’ = (412)

The third estimate above is based on Holder’s inequality and the fact that whenever
yel(x)N (Q,J( x (0, oo)) N 5,1‘ we have x € ¢ Q,’(, where the constant c is related

to the implicit constant in Whitney decomposition. Without loss of generality we will
assume that ¢ < 3.
Observe now that

1/p
1
nzes | [ rwra (4.13)
A .
cOIN € Opy1
and Sy, f (x) is bounded by 2¥*! for every x € €Oy 1. Therefore

1 S 1 Pl
I scﬁzk“m,’cw <clolr . (4.14)
k

Turning to I, recall that supp h C S,-(Q,{). Then to handle i < 4 it is enough to
notice that

< Cln|

LV Ry — L”/(Si(Q,{)) =C, @15

B =il

using Lemma 2.6. Then
Wheni > 5, we proceed as follows. We invoke Hélder’s inequality to estimate LY

norm by L? norm and then apply (2.5) with F = <041 N¢ Qi and
_ _ 2y 2L M+1\* R
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Then
1
cl(Q) :
pecolr | [ (@) e EE| @)
3co] O

By Lemmas 2.5 and 2.3 applied to the operator L* the expression in (4.17) is bounded
by

; 1/2
cl(@p) dist e Q) ,5;(07))2
P OGRS ODP (s dt :
ClQ;l» e o e Wl s op)
0
. 12
cl(0) 2(L+e)
1 i 175 =5
<Clor? / L PP d) gl
) \2iue)) !
(4.18)
All'in all,
/ m] (N)()RG0) dx| < C2=i0=n/p+e) o] |1/p=1 (4.19)
Rn

for every h € L”,(S,-(Q,{)) with |||
such & we arrive at (1.9). '

The condition (1.10) can be verified directly applying (/ (Q',i)’zL’l)k A <k<M,
to the molecule and arguing along the lines (4.11)—(4.19). A few modifications relate
solely to I which is majorized by

LY sy = 1. Taking the supremum over all

_ _ dydt
/ // Xk ktL(t2L tL MA1— k) h(y )‘ P dx

<Opyinco] \ T

(cf. (4.10)), and the rest of the argument follows verbatim. We have therefore establi-
shed that fy € H'!, and that fn satisfies the desired bounds in H 1 uniformly in N. It

remains to verify that fy — f in H Ll and in H slh’ and also that f = > A,{m,{, where

the mi =limy_ o m,jc (N) exist and are molecules (up to a harmless normalization).
We defer consideration of this matter for the moment, and proceed to:
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Step I1. Let us now move to part (ii) of the lemma. To begin, observe that it is enough
to consider the case p < 2.

The proof follows that of Theorem 3.2 above. We recall that Sy, : L? — L?, pp <
p < pr (Lemma 2.6). By Lemma 3.3, it will therefore be enough to show that S,
maps allowable (p, &, M) molecules uniformly into L. To this end, we show that Sh
satisfies certain estimates arising in the proof of Theorem 3.2, which may be inserted
directly into the appropriate places in the argument to establish (3.9). More precisely,
the combination of estimates (3.10) and (3.11) amounts to showing that

< Cc27'e, (4.20)

[ 101 = @M nys o)

L! (]Rn

while (3.14), with T = Sy, becomes

sup <27l

1<k<M

M
Sh (%I(QVL‘?_’@I(Q)%) (Xsi<Q>(l(Q)_2L‘l)Mm

LI(Rm)
4.21)

Given the latter two estimates, the remainder of the proof of Theorem 3.2 carries over
verbatim.

We begin with (4.20). We first note that since Sy and (I — et (Q)ZL)M are bounded
in L? (in the latter case with constant independent of /(Q)), we have for j =0, 1, 2,

o2
IS (I — (@) L)M(mXS,-(Q))”LP(Sj(Q,-)) < CllmllLrs;0))- (4.22)

Assume now that j > 3. By Holder’s inequality and Lemma 2.1

_ 2
[s11 =@M ms )|

LP(S;(Q)
i+ -4) 2 ~PL [ _ ,~l(QL\M drdx
<caio)’t Le (1= QM g gy o)
R(S; (Q))
i+ (5-1) 2L oL ([ o=@ LM, didx
=c@ iy ] Le (1= O M, ) 0]
Rn\Q} 2+l
i+ Z(L%)
+c@ iy’

o0

j—2
2 _1(O)2 dtdx
xZ/ / 2 Le™ (1 — e O M g5y 0) (0P —

k=0, (i) 2i-1-2k)2i1(0)

— 1+ I (4.23)
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We observe that

L o(r_n _ 2
1 < c@ i) gy — 1@ M amxs o) 2@ 0, 5.0

. . n_n n_n l 2 2M
< c@*ie -8 oplt p)(dist(S(Q)(Igj\Q. 2+‘)2) 17125,
1 ’ J— 1
=¢ (2_+J) e (s (4.24)

where the second inequality follows from (3.25). Turning to I, k = 0,1,...,j =2,
we make a change of variables s := 12/(m + 1), so that s > [(2/~1 — 25)2/1(0)1?/
(m+ 1)~ [21171(0)]? and

i = c@*ing) i)

x / HsLe*“"“)SL(I—e”(Q)zL)M(mXS,«Q))

21

2 ds
L2(Sk () §

[e¢]

- 2 2M
< c@*ien 1) « / (I(Q))

N

2P
2
X

M
—s s g _ 2.
SL@ sL [ (e sL —e ([(Q) +A)L)} (mXS,(Q))

ds
10)? - (4.25)

L2(Sk(Qi)

At this point we apply (3.19)—(3.20) with r = [(Q)* combined with L? — L? off-
diagonal estimates for s Le™* and obtain

I = c@*10) 58 jm)2

L2(S:(Q))
o0
/ (3-12) dssi@.5007 (Z(Q)Z)ZM s
x § re o ds
s s
c[2i+71(Q))?
o0
10>\ ds .
- s - | e sicon
C[2[+11(Q)]2
1 4M )
<C 2i+j ||m||L"(S,~(Q))' (4.26)
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Combining (4.24) and (4.26), one can see that

HSh(I — e LYM(mys, (Q))‘

2
I lZe s on-
4.27)

1 )‘W“(’z‘ﬁ)

C. s
LP(Sj(0i) / (2""‘1

Finally, using (4.22) and (4.27) we obtain (4.20) as follows:

S, (] — e—l(@*LyM H
H n(l —e ) (mxs:0) L@

T )
<c > @iy H 7 lmllLrsicon

j=3
+C QIO 7 ImllLrs; o)

o0
- C2i(%—%—2M—s) z\/jzj(n/272M) L Ccoie < coie,
j=3

A similar argument establishes (4.21). This time we use (3.26) to control an analogue
of (4.24), and (3.24) instead of (3.19) at the step corresponding to (4.25)—(4.26). This
completes the proof of part (ii) of the lemma.

To finish part (i), it remains to show that fy — f in H Ll andin H ;h, and that f has
the claimed molecular decomposition. To this end, we recall that fy — f in L?. We
claim that { fx} is a Cauchy sequence in H; . H!. Let us postpone establishing this claim
until the end of the proof. Assuming the clalm we see that there exists g € H| H! such
that fy — gin H H! and, in particular, in L. By taking subsequences which converge
a.e., we see that the L' and L? limits are the same, i.e., g¢ = f,and fy — f in Hl.

Since we have already established part (ii), we may use (4.3) to extend Sj, to all
of H Ll (thus in particular by (3.4) to H Ll) by continuity. Let us momentarily call this
extension Sy,. Then by (4.3) and (3.4), we have

155 (v = P)lliny = O,

Thus, by sublinearity, S, fy — Sy f in L'. Butalso, Sy fy — S f in L%, s0 S f =
Sy f almost everywhere. Therefore, using (4.9), we have that

Iy @y = Jim vl gy < € D000 < IShf e

= I8 fllrgeny < CIF Nt qooy-

Next, we show that m,]C (N) converges weakly in each L?, p; < p < pr, and
that the limits are molecules (up to a harmless multiplicative constant). Indeed, let
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h e LP N L2 Then

N
j 1 2 _2 dr | ——
(m{(N), h) = F/ /(tzLe ’L)M“XTkjtzLe ’Lf(x)T h(x)dx
krn \1/N
1 ’ d
* t
- = / ijtzLe*’sz, (2L e L )M+lh>_
A ‘ 1
1/N
17 d
t
_)_/ X /t Le—l Lf (t L* —IL)M+1h>
Al % t
ko
by dominated convergence, since the square functions
00 1/2 00 1/2
dt x dt
/|t2Le7t2Lf|zT , /|(t2L*€7t2L )M+lh|27 ,
0 0

belong, in particular, to L2. Similarly, but even more crudely, we may obtain existence
of

lim ((E(Q)°L)'m{(N),h), 1<i =M,
N—o00
sincet < CL(Q ,{) in Tj On the other hand, we have shown that, up to a multiplicative

constant, the my, J(N) are molecules i.e., the bounds (1.9) and (1.10) hold uniformly
in N, for m;, (N ), with 0 = Q7 %~ In particular,

sup [l (N) ey < C1QYIMP™.
N

Taking a supremum over i € L? (R"), with norm 1, we therefore obtain by the Riesz
representation theorem that the weak limit m ,/( belongs to L?. The desired bounds (1.9)
and (1.10) follow by taking i € L”/(S,-(Q',i)), and using the corresponding uniform
bounds for mi (N). Thus,uptoa multiplicative constant, the mljc are molecules.

We now show that f=> )tkm - Let @ € C3°. Then, using absolute convergence,
and the fact that mj, (N )y = m] © weakly in L?, we obtain

[ o (Siml) =3 [ om]
=>4 woo/m,{(m

@ Springer



Hardy and BMO spaces 65

= hm Z A / © m,’c (N) (by dominated convergence)
= hm (Z)\jmk(N))

im /fﬂfN—/fpf

Since this equality holds for all ¢ € C§°, we have that f = > A/mj almost every-
where.

To complete the proof of the lemma, it remains to show that { fx} is a Cauchy
sequence in H;. We recall that fy = > A/m](N) where 1] = C2¥|Q]|, and

N
1 M+1 dt
mk(N) = — / (tzLe_tzL) XTjtzL -t Lf
)» k t’
ki/n

For K € N, we write

S MmNy + D admiav)
j+k<K j+k>K
= ok (N) + Rk (N).

Then

sup IRk (M)l g ey =, M1 =0 (4.28)
N j+k>K

as K — oo. Thus, it suffices to consider
lok (V) = ok Ny ey = | >, 4 (ml (V) = m{ (V)
Jj+k<K HUR”)

Let n > 0 be given, and choose K so that (4.28) is bounded by 7. It is enough to show
that for all p € (pr, pr), forevery ¢ > 0, M > n/4, and every K € N, there exists
an integer N1 = N1(n, K, p, &, M) such that

(4.29)

J VNG
max |[m;, (N) —m; (N P <
max m{(N) = m{(NOI, g o <11

whenever N’ > N > N, where the “(p, &, M)-molecular norm adapted to Q” is
defined as

l1llp.e.01.0 —sup2'<" Saadilolln ‘/”ZII(E(Q) L) ullLr(si0)-
v=0
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To this end, we note that, for N, N’ sufficiently large,

1/N
; ; ; 1 2 _ dt
(N, N/)Em,jc(N/)—m,j((N)zp /(tzLe MY, tL ’Lft
kN

since t < CE(Q',i) in T}‘. Leth € LP/(Si(Q;{)), with ||2]| , = 1. Then, following the
argument from (4.11) to (4.19), we obtain that

/N
. 1 * dt
(h (N, N, )] = | = / 2 N A
k
)‘kl/N/
1/p
<cl / (SN pyrdx | 27in/rte)
=C5 )
k .
COIN< Ok
where
1/2
sl N _ dydt
V=l wettrorsd
|x—y|<t<1/N
Now, since f € L%, § l/ N f — 0in L%. We choose N so large that
1 7ol -1,
IISh fIILZ(Rn = Eﬁ H}(ln A 1Qrl™ (4.30)

whenever N > Nj, where R will be chosen depending on p. If p = 2, taking R = 1,
and taking the surpemum over 4 as above, we obtain immediately that

J ’ . —i(n/2+4e)) nJ|—1/2

The case pr < p < 2 follows by Holder’s inequality. For 2 < p < pp, we choose
r € (p,pL), and using that Sj, f < 2k+1 on €Og+1 by definition, we interpolate
between (4.30) and the crude bound

1/r

/ SN feoydx | < ekl

COIN< Ok
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to deduce that

[y (N, N, )| < q2= =/pEed g /et
for R chosen large enough depending on p. We now obtain (4.29), by applying
(L(Q)*L)™" to i (N, N'), and then repeating the previous argument with minor
changes. It follows that { fi} is a Cauchy sequence in H Ll This concludes the proof
of Lemma 4.2 and therefore also that of Theorem 4.1. O

We conclude this section with

Corollary 4.3 The spaces H Ll (R™) coincide for different choices of ¢ > 0, pp <
p < pr and M € N such that M > n/4.

Indeed, for all permissible values of these parameters, we have established that the
corresponding H Ll space is equivalent to H _éh.

5 Characterization by the square function associated to the Poisson semigroup
We start with the following auxiliary result.

Lemma 5.1 Fix K € N. For all closed sets E, F in R" with dist(E, F) > 0

if f € LER") is supported in E.

oK ; 2K +1
(m/Z) 2 <cC (—) 1fll 2y, Vi>0, (5.1)

L2(F) - dist (E, F)

Proof The subordination formula
o
~V/L c/e_u -G rd (5.2)
e = — e 4u u .
f NG
0
allows us to write

uX du

L2(F)

e

IA

2L K 7:27Lf
_ e u
4u

e¢]

o
c / e’
L2(F) Ju
0
 dist(E,F)?

= C||f||L2(E)/€_u€ w? KV (5.3)
0
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: 2
Then we make the change of variables u +— s := ud‘St(t# to bound (5.3) by
® . 2 K—-1/2 2
C e dsEFRZe™S [g— — ————ds
”f””““/ ( dist(E, F)2) dist(E, F)?
0

2k+1 P
< Cllf 2 (d SE, F)) / sk
0

2K+1
<C (m) ”f”LZ(E)’ (5.4)

as desired. O
Theorem 5.2 Consider the operator

1/2

SK f(x):= // |(rﬁ)2 VL f(y )|2dy , xeR", feL*®R"). (5.5)

I'(x)

Suppose K e NN M e N M+ K > n/4—1/2, ande = 2M + 2K + 1 —n/2.
If f € L2(R™), with ”SKf”Ll(Rn) < oo, then f € H1 Furthermore, there exists a
family of (2, &, M)-molecules {m;}7°, and a sequence ofnumbers {Xi}32, such that
f can be represented in the form f = Z i—o Aimi, with

[o,0]
1y < € D 134l < CUSE Fllpi . (5.6)
i=0

Proof The lemma can be proved following the argument of Theorem 4.1 with minor
modifications. To be more precise, we use the Calderén reproducing formula in the
form

o0 5 00
f= C/ ((tzL)MJrKe_’“/Z) f% = C/(,2L)2M+Ke—tﬁ(t2L)Ke—zﬁf ?
0 0
5.7

for f € L?>(R"). To be completely rigorous, we should truncate and approximate by
fn as in the proof of Theorem 4.1. As the details are similar in the present case, we
shall merely sketch a formal proof, and leave the details of the limiting arguments to
the reader.

To begin, we define

={x eR": SKf(x) > 2K}, (5.8)
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and

00
. 1 dt
mi - (tZL)ZM—&-Ke—t\FL (X i (IZL)Ke—t\/Z) f—, (5.9)
el T t
0

with Tkj ,k, j € Z, given analogously to (4.6). The rest of the proof follows the same
path, using Lemma 5.1 instead of Gaffney relations, which allows to derive the estimate

IImille(Si(Qi))5cz—i<4M+2K+1>|Q,i|—1/2, i=0,1,2,..., (510

forallk, j € Z.
As for the vanishing moment condition,

00 2M
(I(Q]‘i)_zL_l) mi — _] ( t] ) (tZL)M-'rKe—f\/Z
) \ieh

dt
x (kaf (tzL)Ke_“/Z) f — (5.11)

and hence

[aceh=2Hmi | < CoTICMREAD o712 20,12, .

L2(Si(0]))
(5.12)

Combined with (5.10), this finishes the argument. O

Theorem 5.3 Let ¢ > 0 and M > n/4. Then for every representation Y .=, Aimj,
where {m;}7° is a family of (2, &, M)-molecules and Z?io [Ai] < oo, the series
> 2o Aim; converges in H ;P (R™) and

)
Z)»im,'
i=0

o0
<C > il (5.13)
i=0

Hg, (R")

Proof We will follow the argument of Theorem 4.1, Step II, and mention only neces-
sary changes.

First, by Lemma 3.3, it will be enough to establish a uniform L' bound on molecules.
To this end, we observe that the operator

1/2

o0
dt
gpf = / Ve ErP =) (5.14)
0
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isbounded in L?(R™). This follows from the estimates on the operators having bounded
holomorphic functional calculus in L2 [1] and integration by parts. Then S p is bounded
in L2(R"), since

1/2
_ dydt
e sl < | [ [ | [ arfuve o SE
R"x(0,00) |[lx—y|<t
1/2
o dydt
scl[ [ uwvertropet
R x(0,00)
< Cligp flli2@ey = ClIlfllL2@wn)- (5.15)
Therefore, for j =0, 1, 2,
_ 2
[sptr =@M anxs o) i o= Clmlizs)y (G16)
Turning to the case j > 3, we write
j—2
Sp(l — e 1L ‘ < I, 5.17
[ sr 011310 5, =1+ 2 (5.17)

where

o0
2 dtd
I=c / /‘tVe_"/Z(I — O )M i y5,0) () tx (5.18)
RMN\Qj24i 0

and

o0
2 dtd
Ik=C / / ‘tVe_"/Z(I —e—”Q)ZL)M(mXS,.(Q))(x)‘ Tx (5.19)
SK(0) 2i-1-26)2i1(Q)

fork =0, ..., j — 2. Then by the subordination formula and Minkowski’s inequality
we have that 7'/ < C [;° e™J'/?du, where

2 dtd
-/ / Ve = O g )|
(Q] 2+i
_ 2d sdx
/ /‘sve SL(I — TN L) (g (Q))(X)’
(Q] 2+i 0
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and where in the last step we have made the change of variable ¢t > s := t//4u.
However, it can be proved along the lines of Theorem 3.4 that g, f := ( fooo [tVe™! L

172
fI? %) (similarly to g, f) satisfies the estimates (3.6) with p = 2 and therefore

M aM
1(Q)? ) 1 )
1 <C <|\— .
- (dist(si(Q),R”\j2+i)2 Imliason < \z77 ) Imlisicon

Concerning I, k =0, 1, ..., j — 2, we use the subordination formula once again
to write

2
172 /_u / / t _2L
1 <C | e Ve
k - 5 \/4_1,{

Sk(Qi) (2/—1-2k)2i1(Q)

dtdx
1

(I — e (@ LyM

2
(mXS,-(Q))(x)‘ du. (5.20)

Then one can make a change of variables s := %, so that following (4.25) and
(4.26)

o0

o0
L*<c / e / Vs Ve iRt
0

(/=1 2kyi))2

cu

172

. ds
x(I = e M m x5, 01725, 000 S|

1/2
o

o0
_diss;(0).5.0)* (1(Q)? M
<C e U e cs(14u) — du
S A
0

[@J—1-2kyii0))2

cu

X”m”LZ(Si(Q))a (5.21)

and hence

1 4M
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Then

a2
HSP(I —e 12 L)M(me,«(Q))‘

L (R")
2M

0 o n/2 1
< CZ (Z’ﬂl(Q)) Vi (2’_+1) Il L2 (s, o))
j=3

; n/2 —ie
+C (2 I(Q)) lmll 250 = €277

A similar argument provides an estimate for [|Sp[/ — (I — e~/ @*LY|Mp]|, | (&n) and
finishes the proof. O

Lemma 5.4 Forall f € L>(R")
1Sp fllL1 ey < CISP FllL1 gy (5.23)
Proof To start, let us define the family of truncated cones
reRe) .= {(y,1) eR" x (¢, R) : |x — y| < ta}, x € R". (5.24)

Then for every function n € C8°(F8/2’2R’3/2(x)) such that n = 1 on I'®®1(x) and
O0=n=l

1/2

_ dydt
[ [ e Erorss

FS‘R‘I(X)
172

IA

tzLe‘*sz(y)t2L€"¢Zny)n(y,t)g%g;

1“5/2,2R.3/2(x)

1/2
< tAve—fﬁf(y).tv[m]n(y,t)dny—ff
[e/2.2R.3/2 (x) !
1/2
+/ / tAVe—’ﬁf(w-t2Le—'ﬁf<y)rVn(y,t)dfff
[e/2.2R3/2(y) !
(5.25)
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We can always assume that ||Vl oo re/22r.2(y)) < 1/1, so that the expression above
is bounded by

1/4

_ dydt dydt

[ e rorS / [ e Erop

Fs/2,2R.3/2(X) e/2.2R, 3/2(x)

1/4 1/4

_ dydt _ dydt

+/ / ive Y roP S / / PLeVE P T

1"8/2,2R,3/2(x) r£/2.2R,3/2(x)

Consider now a covering of the set I'*/22R:3/2(x) given by collection of balls
{B(zk, )22, in R"*1, such that

oo o0
re/22R3200 € | Bk, mo € | Blaw, 2r0) € 9472 (0),
k=0 k=0

dist (Zk, C(Fg/4’3R’2(x))) ~ ry ~ dist (B(zk, i), {t = 0}), (5.26)

and the collection { B(zx, 2r¢)}, has bounded overlaps. Such a collection {B(zx, rr)}
can be constructed using the Whitney decomposition (for the latter see [13,24]). Then
we use Caccioppoli’s inequality (Lemma 2.7) for the operator

Lf = —divy (B Vy,f),

where L is understood in the usual weak sense, B is the (n+1) x (n+1) block diagonal
matrix with components 1 and A and divy ;, Vy ; denote, respectively, divergence and

gradient taken in space and time variables. Clearly, Le ™" VL f = 0. We obtain

_ 2 dydt
/ / ‘tVtzLe ’ﬁf(y)‘ o

r‘s/2,2R,3/2(x)

dyd
<z// 19, 2 Le VL f(y )’ t;ir]t

k=07 B(z1m)
00 2
_ dydt
sex> [ [ |Eereiof 2
k=07 B(zx,2)
2 dydt
71‘\/2 y
/ / tLe f(y)‘ med (5.27)
8/43R2(x)
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Combining this with the formulae above and passing to the limit as ¢ — 0 and
R — o0, we arrive at

Spfx) < CSpf)'*(Sp N2, (5.28)
and hence (5.23), as desired. O
Corollary 5.5 H} (R") = Hg, (R"), in particular, || f || ) gy ~ 1Sp £l L1 -

Proof The left-to-the-right inclusion follows from Theorem 5.3, the converse from
Theorem 5.2 combined with Lemma 5.4; in addition, we use Corollary 4.3 to guarantee
that the molecular spaces H Ll (R™) coincide for different choices of p € (pr, pr) and
& > 0, thus removing the constraints on ¢ and p in Theorem 5.2. We omit the details.

O
Finally, consider two more versions of the square function:
1/2
_ dydt
Spf(x) = // N )‘ e (5.29)
T(x)
1/2
—~ dydt
Sereyi= | [ [ [rvee VP ro[ 5] (530)
I'(x)

where f € L*>(R"), x € R" and Vy,: stands for the gradient in space and time
variables.

Theorem 5.6 We have the equivalence

1/ 1) ey ™ ISp fll 1@y = ISp £ll1 @y (5.31)

This result is just a slight modification of the previous ones in this section. In fact,
the argument for Sp follows the same lines as the proofs of Theorems 5.2 and 5.3 ones

we observe that t:/fe”‘/Z = —toe! \/Z’ and the result for §p is a combination of
those for Sp and Sp.

6 Characterization by the non-tangential maximal function associated to the
heat semigroup

Theorem 6.1 For every f € L>(R")

ISh fll L1 ey < CINRF I @@y - (6.1)
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Proof The idea of the proof is based on the analogous argument for the maximal and
square functions associated to the Poisson semigroup for the Laplacian that appeared
in [17], with some technical modifications owing to the parabolic nature of the heat
semigroup. Similar ideas have also been used in [8].

To begin, notice that the argument of Lemma 5.4 also provides the estimate

IS8 £l igey < CUSf Il s (6.2)
for §h = gfl, where
12
S ()= // ety ‘ffff . feL’®"), xeR". (63)

'8 (x)

Therefore, it is enough to prove (6.1) with §h in place of Sj,. Also, recall the definition
of truncated cone (5.24) and denote

1/2

_ e 2 dydt
SpRP f )= / / ‘tVe CLE(y) t:+l ., feL’R"), x eR". (64)
Fs.R,ﬁ(x)

In what follows we will work with EZ’R’ﬂ rather than Ef and then pass to the limit
as ¢ — 0, R — o0, all constants in estimates will not depend on ¢ and R unless
explicitly stated.

Consider the non-tangential maximal function

172

2
/ (e‘“f(z)\ dz| , feL*®"), 6.5)

B(y.p1)

1
Nﬁf(x) ‘= sup
" (y,HeMB (x) Bo"

where ['# (x),x € R", B > 0, is the cone of aperture §. Let us introduce the following
sets:

E:={xeR": N/ f(x) <o}, o€k, (6.6)

where $ is some fixed constant to be determined later, and

N n . [ENBx)| 1
E* := {x € R" : for every B(x), ball in R" centered at x, ———— > —t, (6.7)
|B(x)] 2
the set of points having global 1/2 density with respect to E. Also,
B:=°E, B*:=°E*. (6.8)
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Finally, denote

REFP(E*) = ) ToFP(x), (6.9)
xek*
B R-P (E*)—the boundary of R&R-P(E*), (6.10)
and
o —1°L n
u(y,t)y:=e" “f(y), t€(0,00), yeR" (6.11)

It is not hard to see that
/( 2£R1/2f(x)) dx S/( SueaRi1/a oo )) dx
E* E*

sc/ / (Vu(y, DP dydi, Ve e (1,2),
Ras,ozR,l/ot(E*)
(6.12)

by Lemma 2.1. Going further,

/ / 1\Vu(y, 1)) dydt =/ / tVu(y,t) - Vu(y, 1) dydt

ReE, aR, l/a(E* Raa,ozR,l/a(E*)

< C.‘Re/ / [tA(y)Vu(y,t) : Vu(y,t)+Vu(y,t)-tA(y)Vu(y,t)] dydt,
Ras.ch,l/a(E*)
(6.13)

using the ellipticity of A. Now we integrate by parts to bound (6.13) by

Csﬁe/ / [— 1 diVA)Vu(y, DGy, 1) — u(y, 1)1 dVAG) Vi (Y, t)] dydt
Ras,otR.l/a(E*)

wcme [ [tA0IVu0LD 00 000D
Bee.aR1/a (E*)
Fu(y, DYy (0, 1) - LAGVEG, D | doy i,
where vy (y, 1),y € R", ¢ € R, is the projection of normal vector to BeeaR. o pry on
R”" (similarly, v, will denote projection on R). However, u given by (6.11) is a solution

of system d;u = —2¢t divAVu, and hence the first integral above can be represented
modulo multiplicative constant as
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[ [peon aGn v ut.n - 5at0) dy

Ree.aR,1/a (E*)

/ / dluly, DP dydi = / 1y, Py, 1) doy .

ReE, aR, l/oz(E* Bas,aR,l/a(E*)
(6.14)
Combining (6.13) and (6.14), one can write
2
// / 1|Vu(y, t)|> dydt do
1 Rae.aR,l/oz(E*)
< / / (Vuly, 0l lu(y, Dldo , de
1 BasotRl/a(E*
2
+C/ / lu(y, 0> doy,, da
1 Bac.aR, l/oz(E*)
dydt
<C/ / [Vu(y, )] lu(y, t)Idydt+C/ / lu(y, 1)
BSR(E* BSR(E*
1/2
dydt
<c / / (1Vu(y, DI dyds / / juty, 0 2
gER(E*) [SV&R(E*)
dydt
+C/ / lu(y, 2 2L (6.15)
BSR(E*

where

BER(E*):={(x,1) €e R"x (0, 00) : (x, ) € B**RVE*) for some 1 < a < 2}.

(6.16)

Consider the following three regions:
BE(E*) :={(x,1) e R" x (&,2¢) : dist(x, E*) < 1}, (6.17)
BR(E*) := {(x,1) e R" x (R,2R) : dist(x, E*) < 1}, (6.18)

B'(E*) :={(x,1) € B* x (¢, 2R) : dist(x, E*) <t < 2 dist(x, E*)}, (6.19)
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and observe that
B&R(E*) ¢ BY(E*) U BR(E*) UB/(E"). (6.20)
Below we will analyze separately the parts of integrals in (6.15) corresponding to the

regions (6.17)—(6.19).
Let us start with

ﬁ=//|wwW@?. 6.21)

Be(E*)

Forevery (y,t) € gg(E*)thereexists y* € E* suchthat y* € B(y, t). By definition of
E* this implies that | E N B(y*, t)| > C|B(y*, t)| and therefore | E N B(y, 2t)| > Ct".

Then
dydt
KSC//) / uy, D dz

Be(E*) ENB(y,21)

2e
1 5 dt
C// P / lu(y, )| dy dZT
& E

B(z,2t)

IA

2¢e
< c// ‘fo(z)‘zdz$ < c/(/v,ff(z))zdz, (6.22)
¢ E

E

for every 8 > 2.
Using similar ideas,

2¢e
1 dt
I; ::// t|Vu(y,t)|2dydt§C// pr / IVu(y, )|>dy dZT'
) ¢ E

Be(E* B(z,21)

(6.23)

Recall now parabolic Caccioppoli inequality (2.15). By definition u(y,t) = e 'L

f (), therefore, making the change of variables in (2.15), one can see that

10 (0]
c

/ /t|Vu(x,t)|2dxdt§—2/ / tlu(x, )| dxdt,  (6.24)
r

to—cr B(xg,r) to—2cr B(xg,2r)

for every xg € R", r > 0, fo > 2cr. Here ¢ > 0 and the constant C depends on c.
Next, we divide the integral in ¢ € (¢, 2¢) from (6.21) into integrals over (g, 3¢/2) and

@ Springer



Hardy and BMO spaces 79

(3e/2, 2¢), and apply (6.24) with typ = 2¢ and 1) = 3¢/2,r = 2¢, ¢ = 1/4 to obtain
the bound

2¢e
1 2 dt
secf |5 [ wonpar|e
/2 E B(z,8¢)
2¢e
<C P lu(y, |~ dy dZT <C | N, f@|"dz, (6.25)
e/2 E B(z,16t) E
where g > 16.
Observe that the same argument applies to estimates
dyd
/ / lu(y, r)|2_ < C/|/\/ﬂf(z)| dz, (6.26)
BR(E*)
/ / tVu(y, 0))? dydt < C/INﬂf(z)l dz, (6.27)
BR(E*)

with g > 16. B

To control the integral over 5'(E*), we first decompose B* into a family of Whit-
ney balls, {B(x, rk)},‘fozo, such that U,inB(xk, rv) = B*, cidist(xg, E*) < rp <
¢ dist(xg, E*), and every point x € B* belongs at most to ¢3 balls, 0 < ¢] < ¢ < 1
and c¢3 € N are some fixed constants, independent of B* [13,24]. Then

o 2rk(/c1+D) o

dyd ydt

1 —// Ju(y, 2—52 / / u(y. ==
B(E%) k=0 (1/e2—1) Bxgr)

2rr(1/c1+1)

1 dt
<C " — L DPdy | —. 6.28
ey [ |5 [ weora S (6.28)

k=0 tjer—1)

On the other side, E* C E, hence, dist(xg, E) < dist(xg, E*) < (lfcﬁt and the
expression in brackets above can be majorized by the square of non-tangential maximal

function NP f(z) for some z € E and g > U_CC# Hence,
00 2 2
f<c> (sup/\/f f(z)) < C|B¥| (supN,f’ f(z)) . (6.29)
k=0 zeE zeE
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Similarly to (6.28) and (6.29) we can prove that there exists Co = Co(cy, c2) > 0
such that

2
I ;=// z|vM(y,t)|2dydt§C|B*|(supN,ff(z)) , (6.30)

~ z€E
B'(E*)

for B > Cy, using (6.24) to control the gradient of u.
Let us choose now

8 := max [16, 2 c()] 6.31)
(I —c2)cq
in (6.6). Then
I < Co?|B*| and I, < Co?|B*|. (6.32)

Combining all the estimates above allows us to write
/ (52712 ) dx < Co?1BY + € / WVE fPdz,  (633)
E*
and therefore, passing to the limitas ¢ — 0 and R — oo,
312 B 2
/ ( f(x)) dx < Co?|B*| + c/ WP f(2)Pdz. (6.34)
E*

Denote by X AP the distribution function of A/ f f and recall that \V, ;16 <oonkE.

h f
Then

o

<12 2 5
/(Sh @) dx = Co )LMf;f(o)—i—C/tkwf(t)dt, (6.35)
E* 0

since |B*| < C|B| < CA (0) Next,

Agie () = erE* S2 £ (x) >cr”+| E*|

<172
< C—/ S f(x) dx+C)»fo(a)
< C(ﬁ tkwf(t)dt+C)qu(a), (6.36)
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and therefore,

o]

=1/2
18y FllLi ey = / kst (@) do < CING £ 111 g, 6.37)
0

for B asin (6.31). In view of Lemma 2.2 and (6.2) the theorem is proved modulo the
result we present below. O

Lemma 6.2 Forall f € L*>(R") and g > 1

NP Fll ey < CBMING £l - (6.38)
Proof Fix o € (0, 00) and consider the following sets:

E; ={xeR": N} f(x) >0} and E} :={x eR": M(xg,)(x) > C/B"}.
(6.39)

It is not hard to see that |E¥| < CB"|E,|.
Assume now that x & E. Then B(y, t) ¢ E, forevery (y, t) € 2t (x). Indeed, if
B(y,t) C E,, then

B0 DL - /g, (6.40)

M(XEJ)(X) > Cm =

which implies x € E}.
Therefore, there exists z € B(y, t) such that V, hl f(z) < o, in particular,

172

/ le "L f@Pdz| <o (6.41)

B(y,1)

1

"

Recall that the above inequality holds for all (y, r) € I'*#(x). Now for every w €
B(x, Bt) one can cover B(w, Bt) by CB" balls B(y;, t), where y; € 28 (x), to prove
that

1 C 1
(B0 / TSP dz < G 2 / et f(@)Pdz < Co?, (6.42)
B(w, 1) i B
hence,
N;f}f(x) < Co foreveryx ¢ E¥. (6.43)
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Having this at hand, we simply write

oo
||N;ff||Ll(Rn < C/‘{x eR”" :fo > CG}‘do

0

o0 o
< c/ |EXldo < C/ﬂ”lEaldfr < CB"ING Flligny.  (6.44)
0 0

and finish the argument. O

Theorem 6.3 Let ¢ > 0 and M > n/4. Then for every representation .o Aim,
where {mi}?io is a family of (2, &, M)-molecules and Z?io |[Ai| < o0, the series

Z?io Aim; converges in H /l\fh (R™) and

00
2 himi
i=0

oo
<C Il (6.45)
Hjl\fh (Rm) i=0

Proof As usual, by Lemma 3.3 we need only establish a uniform L' bound on mole-
cules. Consider the following modifications of the non-tangential maximal function

1/2
1 2
N f(y) = sup o / le "L foPdx |, (6.46)
t>0 e yl<t
1/2
1 2
MZ"’Mf(w:sug - / [PMIMe L oy Pdx |, (6.47)
1>
[x—yl<t

where y e R, M € Nand f € L*>(R"). Both of the operators above are bounded on
L2(R™).
Indeed

2
”N}Tf”LZ(Rn)

~ 1/242
oo
1 2
SC/ Sugz o / le™! L(sz,(B(y,z)))(X)Ide dy
N I T
— 2
L
<c / wp > e A Il sean | 4,
Rr L Jj=

(6.48)
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forevery pr < p < 2by L? — L? off-diagonal estimates. Therefore, for every & > 0
and p < 2 as above

2
”N};kf”iZ(Rn) < C/ Sugz n/p 271D FllLnis By | dY
R >
p 2/p
< [marmol” ay <C/If(y)| dy, (649

Rn

using L?/? (R") boundedness of the Hardy—Littlewood maximal function.
Along the same lines we can prove L? boundedness of the function A/; ; ’
On the other side, by Lemma 6.2

M

1/2
ING £l ey < CUNG Fllpi ey < CING Fllpenys (6.50)
and therefore, by Lemma 3.3, it is enough to show that
||N/,Tm”LI(]Rn <C (6.51)

for every m a (2, ¢, M)-molecule associated to some cube Q.
To this end, we use the annular decomposition of R" along with Holder’s inequality
to write

oo
NG mllL1ny < € DI PING mll 25,0y
j=0
10 )
<c Z(QJI(Q))”/ZHNJm 2250y

j=0

+C D QI INGml 25,0y (6.52)

Jj=10

The finite sum above is bounded by some constant in view of LZ(R") boundedness of
N and (1.9) condition on molecules.

To handle the second sum in (6.52), we fix some number 0 < a < 1 such that
n/2—2aM < 0and split N;'m according to whether r < ¢291(Q) ort > ¢2%1(Q).
Consider the former case first. Set

U;j(Q):=2/P00 30, R;(Q):=2/"0\2/70, and E;(Q) =° R;(Q),
(6.53)

forevery j > 10 and splitm = mxg; (@) + mXE;(0)-
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For x € S;(Q), |x — y] <t and t < ¢2%](Q) we have y € U;(Q). Moreover,
dist(U;(Q), E;(Q)) ~ C2/1(Q). Then the Gaffney estimates (Lemma 2.4) guarantee
that for every such#, y e R",a < land N ¢ N

1/2
1
"

2
/ ‘éftzL(mXE_,-(Q))(x)‘ dx

lx—yl<t

C _<2-f1(g)>2 C f N
=< Y A lmll2g;0) = 72 \271(0) Imllp2gny, (6.54)

so that
1/2
- j n/2 1 —2L 2
S @iy s | = Lo )| dx
j=10 r<c2a1(Q) \ ! ,
—l< L2(S;(0))
o0
< 3 git-am2-N < ¢, (6.55)
j=10
when N > n/2.

As for the contribution of mxg; (). by L? boundedness of N we have

> @) PN mxr; o) 12501

j=10

o0 o0
< C D QU Imxr; 20y <C D27 <C. (6.56)
j=10 j=10

Now we consider the case t > ¢2%1(Q). For every y € R"

1/2
1
sup — / |e_’2Lm(x)|2dx
r=c24i1(0) | !
[x—yl<t
1/2
1 2
= swp |- / ‘(tZMLMe*sz)(szL*Mm)(x) dx
1>c2ai1(0) | !
le—yl<t
< C27 2 MINEM ()M LM m) (y), (6.57)
so we use the boundedness of N, ; M on L2(R") to finish the argument. O
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Corollary 6.4 H[{ (Rn) = H/I\/‘h (Rn)’ in particular, ”f”Hli(R”) ~ “NthLl(R”)'
Proof The right-to-the-left inclusion is a direct consequence of Theorems 4.1 and 6.1,

the converse follows from Theorem 6.3 and Corollary 4.3. O

7 Characterization by the non-tangential maximal function associated to the
Poisson semigroup

Theorem 7.1 For every f € L>(R")
ISP fllLi @y < CINP L gy (7.1)

where Sp is the operator defined in (5.30).

Proof We follow the proof in [17] for the case of the Laplacian, and also the proof of
our Theorem 6.1. More precisely, at the step corresponding to (6.11) we assign

u(y, 1) = e VLF(y), te0,00), yeR" (7.2)

The analogue of (6.13) and (6.14) can be obtained observing that —div, ; BV, ;u =0,
where as before B is the (n + 1) x (n + 1) block diagonal matrix with entries 1 and
A and div, ; is divergence in space and time variables. Concretely, we can write

/ / 19, 4u(y, DP dydt

Roear.b g
< cme/ / —divy [t B()Vyu(y, Dlu(y, )
Rosar b (pey
—u(y, divy LBV, 1u(y, t)]] dydt
+Che / [tB(y)Vy,,u(y, 1) vy, Du(y, 1)
peeak k gr)

(v, V(1) - BV, 1) | doy

< Cﬁte/ / [—B,u(y,t)-u(y,t) —u(y,t)-B,u(y,t)] dydt

Rae aR, E(E*

weve [ [tBOIVuty. 0 v 0D
Bas,atR, (]7 (E*)

+u(y V(1) - BOIVy e, 1) | doys,

so that (6.14) and (6.15) with V, ; in place of space gradient holds.
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The rest of the argument is essentially the same as the proof of Theorem 6.1, just
employing elliptic instead of parabolic Caccioppoli inequality. O

To handle the converse to (7.1), we start with two auxiliary Lemmas.
Lemma 7.2 Define

1/2

grf(x) = /(M/Ze"ﬁf(x) 2? : (1.3)
0
Then
gpf(x) <Cgnf(x), xeR", (7.4)

for every f € L>(R").
Proof By subordination formula (5.2) and Minkowski inequality

~ 12

2 4

Grfx) = / e r|
0

o]

0
. 2 . .
After the change of variables ¢t +— s = f‘—u, s € (0, 00), % = ‘é—;, the expression above
can be written as

172

t2
1de” T f(x) du. (1.5)

2 dt
!

e—u
Ju

00 00 12
c / jﬁ / |sLe—SLf(x>|2‘i—S du < Cgp(x), (7.6)
0 0
as desired. O
Lemma 7.3 Define
) 1/2
e o= ([ leEoethpe ) 1.7)
0
Then
¢ f(x) < Cenf(x), xeR", (7.8)

for every f € L>(R").
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Proof By the subordination formula (5.2)

0ol oo 2 1/2
e 4 2L 2 dt
aux ——== —t“L
F) = // (% ey du| L
u t
0 10 f
2
oo| 0o t//4u 2 Y
e 4 2 dt
=C // /ZrLe_’Lf(x)drdu — . (19
u t
0 |0 f t

We now split the integral in u according to whether u < 1/4 or u > 1/4. In the first
case,

1/4 1/ A ool 12/4r?)
/e_u / 2 Le "L f(x)drd </ / ¢ du| rLemt fo)d
rire X rau u rire X r
Ju - Ju
0 t

Le L f(x)’ dr. (7.10)

IA

As for the second part,

o0 t

; / 2rLe7r2Lf(x)drdu —b/ /

1/4 1/v/4u 12/(4r?)

2rLe "L f(x)| dr

t
< c/ ‘(r2/t) Le™L f(x)| dr. (7.11)

0

Inserting the results into (7.9), we get

) 1/2

o0 o0
d dt
gp f(x)=C /t2 /IrLe"sz(x)ITr -
0 t

001 . 2d 1/2
2 t
C = 2Le L dr| —
+ /tz /|r e rldr | -
0 0
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1/2

oo o0
<cC //|rLe*’2Lf(x)|2drdr
0

t

o 1 1/2
dt
+C //|r2Le*r2Lf(x)|2drt—2
0 0
00 1/2
_2 dr
sc([rLetrmp) = coso.
0
This finishes the argument. O

Theorem 7.4 Let ¢ > 0 and M > n/4. Then for every representation Z?io Aimj,
where {m;}7° is a family of (2, &, M)-molecules and Z?io [Xi] < o0, the series
Z?io Aim; converges in HJI\/P (R™) and

o0
Z?»imi

i=0

o0
<C Il (7.12)
=0

Hyr,, (R

I

Proof Let2 < p < pr, € > 0, M > 7. Similarly to Theorem 6.3, it is enough to
prove that

INpmll 1@y < C, (7.13)

for every (p, €, M)-molecule m, where

1/2

N5 f(x) = sup ti / ‘e_"/zf(y)‘zdy L xR, feLXR"). (7.14)
>0
x=yl<t

To this end, by the standard dyadic annular decomposition and Holder’s inequality, it
will suffice to establish the estimate

INEmllLres; ) < C(zf'l<Q>>”(F‘1)2‘fy, Jj e NU{0}, (7.15)

where Q is a cube associated to the molecule m and y is some fixed positive number.
Fix some a such that n (% + 2M)_1 < a < 1. Then
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1/2

1 _
sup | — / eV m(y)Pdy
1>241(Q) \ !
l=yl<t LP(S;(Q)
1

2

2M
— sup (@) ri / ’<I2L)Me*’ﬁ(l(Q>2L)*Mm<y)zdy

12291(0) ! [-—yl<t

L \2M | n/2
<C|{— -
=(w) (7w)

x ||sup / LM e VLU0 L) Mm(y)Pdy
Rn

LP(S;(Q))

1/2
t>0
LP(S;(Q))
Resting on Lemma 5.1, one can prove that for M > n/4 the family of operators
(tzL)Me*tﬁ is uniformly bounded in L(R"). Also,
1@ L) M mll 2y < CIOITY2, j €N, (7.16)

by the definition of molecule and Holder’s inequality. Then

172

1 _
sup [ — / leYEm(y)2dy
1=20i1(Q) |
l=yl<t LP(S;(0))

< Czaj(—ZM—n/2)2jn/Pl(Q)n/P—n — C(2jl(Q))n(%_1)2_j81, (7.17)

fore; = a(2M +n/2) —n > 0 by the assumptions on a.
Turning to the case t < 2%(Q), we follow a suggestion of P. Auscher, and split

1/2

1
sup | / eV m(y)*dy
=200y | 1

[x—y|<t

12
1 _ 2

< sup |- / eV — e DymPdy |+ Nam(o). (7.18)
1=2991(0) t‘x_qu

We remark that Auscher has observed [2] that this splitting yields L? boundedness of
Np; a similar idea has appeared previously in the work of Stein [26]. An argument
similar to the proof of Theorem 6.3 shows that A;,m satisfies the desired estimate, so
we will concentrate on the first term on the right hand side of (7.18). Observe that
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t ‘(e"ﬁ - e_’zL)M(Y)‘2

; 2
= /8‘Y (sl/z(e_sﬁ — e_szl‘)m(y)) ds
0
t t 2
< /sl/zas(e—sﬁ — e Lym(y)ds + l/s—l/z(e—fﬁ — e Lym(y)ds
0 s 0
t
<Ct /‘(e‘sﬁ - e_SZL)M(y)‘2 ds
) s
1 t
+ / ‘s*/ze‘sﬁm(y))zd—u / e Em(y) gy (7.19)
0 ’ 0 *
Given Lemmas 7.2 and 7.3, this allows to control the first term in (7.18) by
N 12
sup ks / /|s2Le*s2Lm(y)|2 Sl . oxer (720
=) \ ™ S s
Much as for 7 > 2%](Q), we have
N 1/2
sup ln / / szLe_ssz(y)‘2 d_sd
IO\ i)
- 172
S (”Q)) et n Mo o)
201(0)
(7.21)
where M denotes the Hardy-Littlewood maximal operator. Thus,
N 1/2
sup 1 / / ‘szLe_Ssz(y)‘2 d—sdy
i<201(Q) | 1" _
=) LP(S;(Q)
o 2p \ 2
=c| | (’(Q))W [l iy | a) ¢
241(Q) ' R” '
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1/2
e l AM _o(r_n d
. / ((SQ)) D jaorn m e
241 1(Q)
3 Czaj(_m_n/m/p)l(Q)n(;_l) _ C(Zjl(Q))n(%—l)z—jSz, (7.22)

where &0 = a(2M +n/2) —n+ (1 —a)n/p > €1 > 0 by our assumptions on a.
It remains to estimate

21(Q) 12
1 2 ds
sup — / ‘szLeﬂsz(y) —dy . (7.23)
1<2%1(Q) tI-—‘I<l ) §
’ LP(S;(Q))

Consider first the case j > 10. Observe that for x € S;(Q), j > 10, and |x — y| <t
we have y € U;(Q), a slightly fattened version of S;(Q) (see (6.53)). Then, in the
notation of (6.53),

291(0) 2
1 2 ds
sup | — / / |s°Le™ " (mxg;0) I — dy
=2 [-—yl<t 0 *
LP(S;(0)
21(0) i
_s2 ds
<c|fm / 2 Le™ Gty o) P
0
LP(S;(0)

. 1) .
< Clgntmxr;0) | 1o @ny = Climliocrc0n < iy 2
(7.24)

where the next-to-the-last inequality follows from L”-boundedness of g, for p; <
p < pr [3] and the last inequality follows from the definition of molecule. On the

other hand,

291(0) -
sup / / 2Le Py, (Q>)(y)’
i) \ LP(S5(Q))
J
291(0) .
) 2 2 ds
<c|[ M| 100 [s*Le™" Eom (Q))’
0
LP(S;(0))
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1/2
2 ds
LrU;(Q)) §

2491(Q)

=<C /

0

< 29 VIN|im | Ly gy,

)
s2Le™S L(mXEj(Q))’

where N is any natural number and the last inequality follows from the Gaffney
estimates. Clearly, we can take N large enough to bound the expression above by
. 1_ .
c@iy' )z
Finally, in the case j < 10 following (7.24) we show

271(0) 2
1 d
sup | — / s2Le™ " Lm(n 2 2 dy
1<201(Q) \ ! s
|-—yl<t 0
LP(S;(Q))
n(l}—l)
< Clignmllpp@ny = ClimllLp@ny = CL(Q) NP/, (7.25)
as desired.
Collecting all the terms, we arrive at (7.15) with y = min{ey, €}. O

Corollary 7.5 HLI(R") = HJI\/P (R™), in particular, ”f”HLl(R") ~ IIprIILl(Rn).

Proof The Corollary follows from Theorems 7.1, 7.4 and 5.6. O

8 BM O, (R"): duality with Hardy spaces

We start with an auxiliary lemma that gives an equivalent characterization of
BM O (R") using the resolvent in place of the heat semigroup. In the sequel we shall
frequently use the characterization below as the definition of BM O (R") without
additional comments. In addition, by the results of Sect. 4, we are at liberty to choose
the molecular parameters ¢ > 0 and M > n/4 at our convenience. In the sequel, we
shall use this fact without further comment.

Lemma 8.1 An element f € ﬁg>0(Mg’€’M(L*))* = (Mg’M(L*))* belongs to
BM O (R") if and only if

172

su 1 ‘ _ 2r\—1\M 2
p | [ |U-0+HKQ) L))" f(x)] dx < 00, (8.1
ocre | 0] )

where M > n/4 and Q stands for a cube in R".

Proof For brevity in this proof we shall distinguish (8.1) as || f|l zm ores(rry- In the
rest of the paper both the norm based on the heat semigroup and the one based on the
resolvent will be denoted by || £l gy o, ®?)-
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Step 1. Let us start with the “<” inequality. To this end, we split
2 -1\M 2 -1\M
f= (1—(1+1(Q) L) ) f+ I—(I—(H-Z(Q) L) ) 82

For every Q C R”

172
|Q|/\(1 QM (11007 feo| dx
12
33 /) Oy o1 — (14101 £ d
i=0 =0 101
< C||f||BM0£“(Rn)
12
O @)’ "y
I b / - a+10°n™ f(x)‘ x| . 83)
=2 5;(0)

where we used Lemmas 2.3, 2.4 for the second inequality. Now one can cover S;(Q)
by approximately 2/” cubes of the sidelength /(Q), this allows to bound the second
term in the expression above by

o0
—c22i N
CY e P22 fllgmors@ny < Cllflsuoms @, (8.4)
j=2

as desired.
As for the remaining term, observe that

I—(I—(1+1(Q)?>L)y~HM
(I — (1+1(Q)2L)~HhM

(1 a4+ z(Q)ZL)—l)fM .y

(1 + l(Q)zL)
—1
1(0)2L

(1+ @ L)*)M 1

QL) (8.5)

I
M=

(M — k)'k'

k=1

and therefore,
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1/2
|_;| / (1= e @M — (1= (1410 f (o) " dx
0
v [ 1Q) k
<c> @/ (1 — e 1@ LyM—* —/afe—szdr 10121+
k=1 0 0
) 1/2
(I = (1+1(Q*L) " HM f(x)| dx
v 1Q) k
C _ [ — ol (@LyM—k T —2L
=C2, oo Pt "
0 0
2 1/2
x(I — (1 +1(Q)*L)y " HYM r(x)| dx ) (8.6)

Having this at hand, we obtain the required estimate changing the order of integration
above and using the annular decomposition and Gaffney estimates, much as in (8.3)
and (8.4).

Step I1. Let us now consider the “>" part of (8.1). For every x € R"

V21(Q)
fo=2"110)7? / sds | f(x)
1(Q)

V20(Q) V21(Q)
=2M Q)2 / si(I— e~ T1M sy | 1(0) 2 / s ds f(x)
1(Q) 1(Q)
u V21(Q) V21(0) B
+> Coml(@)? / sie”®ibdsy [ 1(0)72 / sds | [,
k=1 1(0) 1(0)
(8.7)
—kssz

where Cy s € R are some constants depending on k and M only. However, d5e
2
—2kLse %L and therefore,

@ Springer



Hardy and BMO spaces 95

V21(0)
2kL se kL g — o HIQPL _ ,~2kI(Q)L

1Q)
_ e—kl(Q)zL(I _ e—kl(Q)zL)

k—1
= ML () — (TIQPL) N7 IO (38
i=0

Applying the procedure outlined in (8.7) and (8.8) M times, we arrive at the following
formula

(M+D)M M
fo= D QML N Cl kM) pixf ), (8.9)
i=1 k=1

where 0 < N; < M and for all i, k as above either

V21(0)
Dik = / s(I —e
1(Q)

—LyM g (8.10)

or p; x is of the form (8.8).
Fix some Q C R" and x € Q and consider (I — (1 + [(Q)*>L)"YHM f(x) with f
represented in the form (8.9). The negative powers of L can be handled writing

(1 —a +l(Q)2L)_1)Ni 1(Q)"2Ni L ~Ni = (1 +l(Q)2L)_Ni. 8.11)

Then the new expression for (I — (1 + l(Q)ZL)_l)Mf(x) is a linear combination of
terms, with the property that each term contains

V21(Q)
cither 1(Q)~2 / s(I—e LM gs or (I —e QLM (g 1)
Q)
and a finite number of factors (almost) in the form of resolvent or heat semigroup
corresponding to t &~ [(Q). One can now build an argument similar to Step I, (8.3)
and (8.4), using dyadic annular decomposition and Gaffney estimates, to single out

I — e_l(Q)zL)M or (I — e_SZL)M, s ~ I(Q), and obtain the desired estimate. We
leave the details to the interested reader. O

Theorem 8.2 Let f € BMOp+(R") for some M € N. Then the linear functional
given by

I(g) =(f 8 (8.13)
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initially defined on the dense subspace of finite linear combinations of (2,¢, M)-
molecules, ¢ > 0, via the pairing of MS’S‘M with its dual, has a unique bounded

extention to H Ll (R™) with

NN < CllfllBmo«®m-

Proof Let us prove first that for every (2, ¢, M)-molecule m

[{fom) < ClfllBmo,«@®n-

By definition, f € (Mg*M(L))*, so in particular (I — (1 +1(Q)’L*)"HWM f e L2

(see the discussion preceding (1.21)). Thus, we may write

M J—
trom = [ (1= a+1@2L )" feomtdx

&
+{[1 = = a+12LH™HM] fom)
=11+ D,

where Q is the cube associated to m. Then

12
ad 2
W< /((1—(1+1<Q>2L*)—1>Mf(x> dx
=0 \s;(0

1/2

X
—
B
5
S
Q
=

1
i (

<ClfllBmo,®n>

i 2
—je 27 x\—1\M
<> gy | - ari@iy el dx

S.

(8.14)

(8.15)

loc

(8.16)

1/2

(8.17)

where we used (1.9) for the second inequality, and the third one follows by covering

S;(Q) by C2J" cubes of the sidelength /(Q).
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To analyze I, recall (8.5) (with L* in place of L), and write

M
Ll<CY /(1 — (1+1Q)* L) HM f () 1(Q)2L)Fm(x) dx

k=1 Rr

12

M oo

ZZ /((1—(1+1<Q>L) W oo d

k=17=0\s5;(0)

1/2
x /|(I(Q)2L)_km(x)|2dx ) (8.18)

$;(Q)

We finish as in (8.17) using (1.10). Thus, (8.15) is now established.

Having at hand (8.15), our goal is to show that for every N € N and for every
g = Z?/:o Ajm j, where {mj}j.vzo are (2, &, M')-molecules, and M’ > n/4 is chosen
large enough relative to M, we have

If 8l = Cligly) @yl f I BMo, - ) (8.19)

Since the space of finite linear combinations of (2, &, M’)-molecules is dense in
H Ll (R™), the linear functional / will then have a unique bounded extension to H Ll (R™)
defined in a standard fashion by continuity. We point out that this extension by conti-
nuity depends on having a bound in terms of || g|| H) (R in (8.19), as opposed to

Z;\]:o |Aj]. The latter bound is immediately obtainable from (8.15) (since in particu-
lar, a (2, &, M’)-molecule is a (2, &, M)-molecule whenever M’ > M), but may be
much larger than the H Ll norm. To obtain the sharper bound (8.19) will be somew-
hat delicate. In the classical setting, the same issue arises, but may be handled in a
fairly routine fashion by truncating the BMO function so that it may be approxima-
ted in (H")* by bounded functions (see, e.g. [25, pp. 142—-143]). This avenue is not
available to us, as we cannot expect that any L°° truncation will interact well with
our operator L. Instead, we should seek a “truncation” in L”, p € (pr, pr). In fact,
approximating by L? functions will be most convenient, and this is what we shall do.
We note that it is to deal with this difficulty that we have been forced to introduce
the equivalent norm || - || 5 ik The reason for our doing so will become apparent in the
sequel.

We shall require some rather extensive preliminaries. In particular, we shall use
the “tent space” approach of Coifman—Meyer—Stein [12]. Let us now recall the basic
theory.
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98 S. Hofmann, S. Mayboroda

For some F : R’_’f] - C, R’}f] = R" x (0, 00), consider the square function
SF := S'F, where S*F, o > 0, was defined in (2.6) and

1/2
1 5 dydt n
CF(x):= sup | — |F(y, t)|" — , xR, (8.20)
B:xes | I1BlJJ t
B
where B stands for a ball in R” and
B:={(x,1) e R" x (0, 00) : dist(x, °B) > t}, (8.21)
is the tent region above ball B. Define the tent spaces
T'RYY = (F: R — ¢
||F||T1(R1+1) = |SFlL1@n) < 00}, (8.22)
and
TR = (F: R — ¢
IE Nl oo ity = 1€ Fll ooy < 00}, (8.23)

and recall from [12] that (T (R™)* = 7°(R%H).
We now prove the following analogue of a classical estimate of [17].

Lemma 8.3 The operator
fec(@nMerty)

maps BM Oy (R") — TOO(RT'I); ie.,

172

1 2 M *IZL 2 dxdt

— t°L

sup |B|/ﬂ( WMehfon| =
B

< Clfllmo,®m-
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Proof For every cube Q C R”

10) 12

1 2 dyd
o [ [enrertiof 22
0 ¢

1) 172
1 dyd
o [ [levrerta—a s ro| 2
(U
o) 12
dyd
3//@ DM 1= a e ] rol B
0 0
= I+ I. (8.24)
Then
o 1Q) i 1z
n=yl //\(r DYt sy -1 +1020) Y f o 2
=0
< g ¢ (ot —a+ 1@ )]
> o ("9 Lior g 1z
e (Q)) ¢ B ) Ny
+JZ:;—|Q|1/2<O/ e ) [u—aviern ™|, oo
(8.25)

where
00 1/2
dt
M f(x) = (/ 1(2L)M L £ (x))? 7) , MeN, xeR" (826)

is bounded in L?(R") according to [1]. Therefore, for every N € N

[ =+

< ¢
"= ol L220)

00 ' C
-jN____~ _ 2 v—1\M
+j§2 BTG | —a+iern =y Lo

< ClfllBmo,®m- (8.27)
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To estimate I, we use (8.5) and write
100) 172
1

I =C sup —//)(t DYe L nta-a+iern Y o 24
0

1<k<M | |

10) 172

1 B B 2dydt
c — LYk e=L (1 _ (141 L
=c s Q'O/(Z(Q)) Q/\(z ) U=+ fo

the rest of the argument is similar to (8.25)—(8.27). This finishes the proof of
Lemma 8.3. O

We shall also require an extension of the “Calderén reproducing formula™:

Lemma 8.4 Supposethat f € (Mg’M(L))* satisfies the “controlled growth estimate”

(I — A+ LH ™ HM Fx0))?

TF e dx < o0, (8.28)

Rn

for some g1 > 0 (in particular, this holds trivially for every e1 > 0if f € BM Op~).
Then for every g € H Ll that can be represented as a finite linear combination of
(2, &, M) molecules, with £, M' sufficiently large compared to €1, M, we have

dtdx

(f.8) =Cu / / (PLHMe L f(x) 2LeLg(x) (8.29)

RrH»l

Proof For §, R > 0 consider

dtdx

/ / (LMe L f(x) 2 Le~"Lg(x)

Rr §

= <f, /R (t2L)M+1 e_zlng? >

5

R
- C;Il (f.g) — <f, CA_/Ilg_/ (tzL)M+1 —212L a;t > (8.30)
)
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We will now write f in the following way

f= (1 —A4LH L*)—l)M f

= i—M! (1-a +L*)*‘)M_k(1 + LS
A — bkl
u M! k n\M

_ Zm(ﬁr (1 —A4LH ) f (8.31)
~ k!

Thus, the last expression in (8.30) equals Z;i”:o Ci, m times

R
M+1 dt
<(1 _ (1 + L*)_I)Mf, C[—VllL—kg _/ (IZL) e—Z[ZLL—kg T >
)

t

5

_ <(1 a4 L*)—I)Mf’/ (t2L)M+1 e 2L kg ﬂ>
0

t

+ <(1 — 4+ L*)_I)Mf,/ (tZL)M+1 oLk U > (8.32)
R

since for L ¥ g € L?(R") the Calderén reproducing formula is valid. The last term in
(8.32) is bounded by a constant times

1/2
/ (I — (1 + L HM f (o)
dx
1 + |x|n+8|
Rn
- ) 1/2
M+1 dt
X sup //(IZL) e_Z’ZLL_kg(x)— (1 + |x|" 1) dx
0<k<M t
Rr IR
o 7 M+1 dt ? "
<CY sup > 2itens / /(tzL) 2L kg L ax
0<k<M i—0 t
J= S;(Qo) IR
o
<CTY sup sz(n+81)/2
0<k<M =0
i M+M —k+1 d
+M'—k+ / t
X/ (tzL) €_2t2LL_M 8 DO —+1’ (833)
12(55(0g)) PPMTOT
R J
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where Y is the finite quantity defined in (8.28), and Qy is the cube centered at 0 with
the sidelength 1. Then the expression under the sup sign above is bounded modulo
multiplicative constant by

o0
/ (I2L)M+M/7k+l —ZIZLL—M/ d[
€ g XM —I)+1
Loy 12T
R
MM —k+1 ) ) dt
+ ZZ!(H+£1)/2/ (t L) o2 LI:X]R”\2J'—2QOL_M g] T
=3 . L2(8;(Qon !
S 2 i 2 \MAM kL o0 M dt
+Zzl(n+al)/ (t L) e~ I:X2j’2QoL_ g:| ST
j=3 L2(8;(Qon ¢
- -M - jnten)/2 || —M'
= RZ(M/—k) H 8 ‘ L2(Rm) + RZ(M’ k) 22 HL ‘LZ(R"\Zf;on)
S~ oj(n-ten)2 [ 2 v
J(n+eq a2 -
* 22 /e , tz(M/_k)J"l HL g‘ LZ(Rn) : (834)
j=3 R
However,
o0 o0
2 A ] hds L
¢ S = ooy | ¢ gar-on = Caarn; @/R)
R R/2]
(8.35)

for every ¢/ > 0. Also, g is a finite linear combination of (2, &, M’)- molecules,
therefore for large j

-k
|-

which allows to estimate the second term in (8.34). Without loss of generality we can
assume that £ > ¢1/2 and M" > ""ZTSI + M. Then there exists €g > 0 such that the
quantity in (8.34), and hence the one in (8.33), does not exceed C/R.

We now turn to the integral over (0, §). For convenience of notation, we set

<Cc27im2te) 0 <k < M, (8.36)
L2(S7(Qo)) —

= (1 — 1+ L*)*I)M f.
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. _p _p .
Since —2tLe™ "'t = 9,e7""L, we may write

) )
<f,/(t2L)M+162’2LLkg(x) #> —C <f/ (rzL)Ma,ezlzLL"g(x)dt>
0 0
)
<cC <f,/(r2L)Me—2f2LL—’<g(x)i—t> +C'<f, ((SZL)Me—252LL—’<g(x)>
0

~ k ~
<f, (s°2) e—z‘szLL‘kg<x>>’ +C|(7 (e = 1) L)
repeatedly integrating by parts in ¢. Therefore, as in (8.33),

8
~ M+1 dt
<f,/ (tzL) e—thLL—kg(x) T>

0

<CY sup ZZzJ("+€1>/2 (52L) WL

0<k'<M 11—0 L2(S;(Q0))
2 /
+CYT su 2 (+en)/2 H (e—z‘S L_ 1) L* . (837)
0<k’£)MZ & L%(S;(Q0))

Now let us split L™%'¢ = xg, L ¥ g + xcx, L™ g where

R; =2/, ifj=0,1,2,

R; =2/1200\2/72Qy, ifj=3,4,...,

and start with the part of (8.37) corresponding to x R_/.L_k/ g. Fix some n > 0. Then
for N eNandforall0 <k/ <M

M oo
. k /
C Z Z 2](”+€1)/2( H (52L) 67282L(XRjL7k g)

k=1 j=N L%(8;(Q0))
_282 ¥
+ H (e 7L _ 1) (xr, L7 g) ) (8.38)
LZ(S,‘(QO))
o
<C Z 2j(n+81)/2||L g||L2(R e Z pJ(nten/2p=jn/2+e) (g 30)
j=N j=N
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where the last inequality uses (8.36). Recall that e > &1/2. Then choosing N &~ —Inn,
we can control the expression above by 7. As for the remaining part, for § small enough

M N
. k ,
CS S pitrtens2 (H (52L) 2Ly L ¥ )

k=1 j=0

L2(S;(Q0))

<C 8.40
LZ(Sj(QO))) = ( )

using that (82L)k ¢™2L — 0and e2°L — [ — 0 in the strong operator topology
as § — 0.
The integral corresponding to x <g; L~ g is analyzed similarly, with the only dif-

_ 982 1
+H(e 2“—1) (xr,L kg)‘

ference that the Gaffney estimates instead of L?-decay of L’k/g are used to control
an analogue of (8.39).

We have proved that the second term in (8.30) vanishes as 6 — 0 and R — oo.
Therefore, the formula (8.29) is justified for every g belonging to the space of finite
linear combinations of molecules. O

We return now to the proof of (8.19). We shall approximate f by

K
% * dt
fxk = / tzL*e_tzL (XBK(IZL*)Me_tzL f) ’E
17K

where Bx = {x € R" : |x| < K}. We claim that fx € L?, and that
27
sup | ficllsmoy.n = C [ @LMe ™ f| < Cllflsmo. -
K TR
(8.41)

We note that the second inequality in (8.41) is just Lemma 8.3, so the key issue
is the first inequality. Let us take the claim for granted momentarily. Since g is a
finite linear combination of (2, &, M")-molecules, in particular we have thatg € H Ll

Consequently, there is a 8 > 0 and a §-representation g = >_ A;m;, converging in L?,
with D |A;| =~ ||g||ﬁ£ ~ ||g||H£ (by (3.3)). Thus, for fx € L?, we have that

(s 8 = | D2 mi o mi)
< C 3 Willlfxllsmo. = Clflswo, gy, (842)

where we have used the claim (8.41). Now, we also have that

dxdt
t 9

(i g) — / / LM eV f(x) 2Le"Lg(x)

n+1
R+
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by a dominated convergence argument which uses Lemma 4.2 (ii), Lemma 8.3, and the
duality of 7' and 7°° [12]. But by Lemma 8.4, the last expression equals (f, g); i.e.,

(fk.8) = (f. &)

so that (8.19) follows from (8.42).
To complete the proof of Theorem 8.2, it remains only to establish the claims

concerning fx. To see that fx € L*(R"), it suffices by Lemma 8.3 to observe that
forall F; € T“(R’fl), we have

K K
/sz*e_tzL* (XBKFt)? < C/ ”Ft”LZ(BK)$
1/K L2(RM) 1/K
X 1/2
<ce| [ [imeopaxst
0 Bk :
< CxlIFillpoogeriny 1Bk 12, (8:43)

To prove the claim (8.41), again by Lemma 8.3 it suffices to prove the following

Lemma 8.5 Suppose that F; € TOO(R'fl), and set

K
_ 27 dt
fKE / tzL*e L (XBKFI) T
/K

1

Then
sup ”fK ”BMOL* (R™) = C”Ft”TOO(R'Jlr‘*'])-
K

Proof We need to prove that for every cube Q C R”

K 2 2
1 *
@/ (I — (14+1(Q)*LH ™ HM / tL*e L (xBy Fr) dt| dx
0] 1/K

uniformly in K. To this end, we split the integral in 7 in (8.44) into two integrals
over (1/K,1(Q)] and (I(Q), K) (these are of course vacuous if £(Q) < 1/K, or
if £(Q) > K, respectively), and consider first the case < [(Q). Let h € L*(R")
such that supph C Q and ||A|| 2y = 1. The left hand side of (8.44), restricted to
t <1(Q), is bounded by the supremum over all such % of the following:
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1(Q)
o || (1= a2y )" [ e (g R) @ di Gy

1/K
c 1(Q) ded
xdt
= o7 / (X Fr () £2Le*H (L = (1 4+ L)L) "HMh(x) =
1/K R"
1/2
1(Q)
[ 1 , dxdt
<Cc> o LGS
j=0 0 S0
1(Q) ) ded 172
1
x / / ‘zzLe*’ZL(I—(1+1(Q)2L)*1)Mh(x) xt
0 S;(Q
OO .
< C D 2" Pl o n,
j=0
Q) s ed 172
t
x / / [PLe U = A+ 1@ )| S| 845)
0 S;(Q)

where we majorized the integral over S j(Q) x (0,1(Q)) by the integral over B for
some ball B with size comparable to (2/1(Q))" in the last inequality.
Ifj=0,1

1(0) e 172
t
2Le "t - (1 + 10D Y[ E
0 S;(Q)
<C sup lign(1+1(Q)*L) *h|l 2@ < C. (8.46)
0<k<M

since gj, is bounded on LZ(R") (see [1]) and (1 4+ [(Q)*L)~ ! is uniformly bounded
on L?(R") (see Lemma 2.4).
Assume now that j > 2. Then

10) 172
2 dxdt

‘ﬂLe—sz(z (1 +1(0)2L)y"YMh(x)
0 S;(Q)
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10) 1/2
27 1L 27—k 2 dxdt
<C sup ‘t Le "L+ 102 heo)| == . (847
0<k<M t
0 s
When k£ = 0,
10) i 12 10) g 4 12
t t .
/ / ‘ﬂLe*’th(x) xt <cC /e R I c2iN,
0 s 0
(8.48)

for every N € N. Here we used Gaffney estimates and the fact that supph C Q,
Al 2 gy = 1.
When 1 < k < M, the quantity under the sup sign in (8.47) can be rewritten as

1(0) 1/2

e e 2 2 . dxdt
//Z(Q)“‘ “Ha@? D+ A+ L™ )‘
0 5;(Q)

1(Q) 4 s
< C / / l(;)4‘ —t L(] - (1 +l(Q)2L) 1)(1+1(Q)2L) k-l,-]h( )‘ 2dxdt

0 $;(Q)

Q) 1/2 KO U

o _ e dt H _ele)? gy
<C / —e aF  — +C / 7€ Cde? = ,
" Q) t ) Q) t

where the first term above comes from the case k = 1 and we use Lemmas 2.4 and
2.3. The last sum in (8.49) is bounded by C2-/¥ for every N € N, and combining
(8.45)—(8.49) we deduce the desired estimate for (8.45) when t < [(Q).

As for the case t € (I(Q), K),

K

|Q|1/2/ (1-a+10rn ) / (L7 L (xpy Fr) () di BGx) dx
Q 1(0)

2k+ll(Q) 1/2

ii o [ [ mer s
purtenrl MI21 ' t

2H(Q) S;(2¢0)
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1/2
2 dxdt

2k+ll(Q)
x / / ’tzLe_’zL(I—(1+l(Q)2L)_1)Mh(x)
2(0) §;240)

o0 o0
<CD D 2V e

k=0 j=0
2*11c0) ny 12
l 2 dxdt
x / / (@) ‘(tzL)M“e_’zL(l+l(Q)2L)_Mh(x) xt
2k1(Q) 5,2k 0)
oo o0 )
<C Z Z 2Jn/2ok(n/2=2M) | F, ”TOO(R'_}_“)
k=0 j=0
2k+ll(Q) 12
2 dxdt
x / / ’(tzL)MHe_’zL(l H1IQ2 L) Mhx)| =
2k(Q) §;(2% Q)
(8.49)
From this point the argument is essentially the same as the one for small ¢. For
Jj = 0, 1 the expression in the parentheses above is bounded by C|| ||i2 ®" = C, and

the sum in k converges for M > n/4. For j > 2 we use Gaffney estimates to bound
the quantity in (8.49) by

12
2k+1
[ ) @ @itk

) dt
27k(n/2—-2M)
2 2 2/n/29k(n/ 12l oo gy / e o - <ClF Nl oo gty

k=0 j=2 2%1(0)

(8.50)

Therefore, (8.44) is valid for all M > n/4. This concludes the proof of Lemma 8.5,
and thus also that of Theorem 8.2. O

Next, we prove the converse:
Theorem 8.6 Suppose M > n/4, ¢ > 0, and that | is a bounded linear functional
on HIE(]R”). Then in fact, | € BMOp«(R") and for all g € HI{(R”) which can be
represented as finite linear combinations of (2, ¢, M)-molecules, we have
I(g) =1 g), (8.51)

where the latter pairing is in the sense ofMg’S’M(L) and its dual. Moreover,

lllBymo, @y < CIIZI. (8.52)
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We observe that the combination of Theorems 8.2 and 8.6 gives Theorem 1.3.

Proof By Theorem 4.1 and its proof, we have in particular that for any (2, &, M)-
molecule m, ”m”Hi < C. Thus,

l(m) < CJ|!|]
for every (2, e, M)-molecule m. In particular, / defines a linear functional on
Mg M (L) for every & > 0, M > n/4. Thus, (I — (I + 2L*)"HM[ is well defi-
ned and belongs to leoc for every ¢ > 0 (recall (1.20) and the related discussion). Fix
acube Q, and let ¢ € L?(Q), with lellz2o) < |Q|~1/2. As we have observed above
(1.13),
m=(I—I+6Q)>L)y H

is (up to a harmless multiplicative constant) a (2, ¢, M)-molecule for every ¢ > 0.
Thus,

(= + 2Ly g

(1. = +2ry=Hg)|
0. = .

Taking a supremum over all such ¢ supported in Q, we obtain that

é/ ‘(1 —u +t2L*)_1)Ml(x)‘2dx <.
0

Since Q was arbitrary, the conclusion of the theorem follows. O

Corollary 8.7 The operator (L*)~1/2 div = (VL_1/2)>k is bounded from L°° (R™) to
BM Op+(R™).

Proof The corollary follows from Theorems 3.4 and 1.3 or can be proved directly.
The argument is standard, we leave the details to the interested reader. O

We conclude this section with the following consequence of Theorems 8.2 and 8.6,
and Corollary 4.3.

Corollary 8.8 For every M > n/4, the spaces BM O (R") defined by the norms
(1.22) are equivalent.

9 BM Oy (R"): connection with Carleson measures

A Carleson measure is a positive measure (L on Rf‘;’l such that

1
lilic == sup — u (B) < oo, ©.1)
B |Bl
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where B denotes a ball in R” and B is a tent over B (see (8.21)). Recall the definition
of the operator C in (8.20) and observe that

, dydr
y 9.2)

ICFII7 ooy = HIF(y, ok

Theorem 9.1 Assume that M € N, M > n/4. Then for every f € BM O (R")

dyd
pr =@M )| 2 9.3)

is a Carleson measure and
2
lirlle < CIFE o0, @ ©.4)

Conversely, if f € (MS’M(L* ))* satisfies the controlled growth bound (8.28) (with
L in place of L*) for some &1 > 0, and if ¢ defined in (9.3) is a Carleson measure,
then f € BMOp(R") and

”f”%?MOL(R") < Cluy “c 9.5)

Proof The direction BM O implies (9.4) is just a restatement of Lemma 8.3.

For the converse we follow [12], using the duality of the tent spaces. More precisely,
for f satisfying (8.28) and every g € H}.(R") that can be represented as a finite linear
combination of (2, &, M’)-molecules, ¢ > ¢1/2and M’ > n/4 large enough compared
to M, we have by Lemma 8.4 that

———————did
(f.8) =Cum // (PLMe™L f(x) 2L e L7 g(x) Z4E 9.6)
sz»l
Now according to Theorem 1 in [12]
/ / \(rzL)Me"zLﬂx) 2L L g(x)| dx
Rli+l
C/C((zzL)Me*’ZLf)(x)S(tzL*e*”L*g)(x)dx
]Rn
<CHC 2L)Me L H ‘s 2L e L ‘ .97
=c|c(wnMerty) pon | S 0D
Then using (9.2) and Theorem 4.1, we have
o 2 dydt ||'/?
I(fog)l <C )<t2L>Me “f(y)) | I8y, @y 9.8)
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for every g € H}.(R"). By Theorem 8.6 this gives the desired conclusion (9.5). O

Remark Fix some p € (pr,2). Using the finite linear combinations of (p’, &, M’)-
molecules in the proof of Lemma 8.4, % + # = 1, we can prove that the condition
(8.28) can be replaced by

_ —1\M
/l(l (I+L0)™) f(x)|pdx<oo 9.9)

1+ |x|”+€'

for some ¢; > 0. We will use this fact later in conjunction with the fact that every
f € BMO? (R") satisfies (9.9).

10 John—-Nirenberg inequality

We start with the following auxiliary result, which is a modification of Lemma 2.14
in [6].

Lemma 10.1 Suppose there exist numbers 0 < o < 1 and 0 < N < oo such that for

some function F € loc((O 00) x R"), some a € R and every cube Q C R"

1/2

dydt
xeQ: / / |F(t, y)| pr > Nt| <a|Q]. (10.1)

[x—y|<3at<3al(Q)

Then there exists C > 0 such that

F 2
e 8 IQI/ / / £ )]

|x—y|<at<al(Q)

r/2
dyd

dx <C,  (10.2)

forall p € (1, 0).

Proof Denote the set on the left-hand side of (10.1) by €2, so that |Q2| < «|Q|, and let
UQ be a Whitney decomposition of 2. Also,

r/2
dydt
M) = su P, )2 2 dx,
n+1
ocol b
lx—yl<a(t—§8)
S<t<I(Q)
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where the integral is set to be zero whenever /(Q’) < 8. Then

p/2

/ [ ] resrSE| e

|[x—yl<a(t—§)

s<t<I(Q)

p/2

/ // IF, )|2d,,yff dx

Q\Q |x—y|<3at
1<l(Q)

p/2

> [ ] rewr L

j:l(Qj)>6Qj ‘g HT(UQ 5))
<t< Jj

r/2

+Z// / \F(t, )|2dyd dx

|[x—y|<a(t—6)

max{l(Q;),0}<t<I(Q)

r/2
dydt
<N”|Q|+M(8)aIQ|+Z/ [ ] renrSE| -
max(1(Q ) 8) <1 <1(0)
(10.3)

By the properties of the Whitney decomposition dist (x’, Q;) ~ [(Q;) for some
x" € Q\Q. Therefore, without loss of generality we can assume that for every x € Q;
there exists x” € O\ such that

{v:lx—yl <a@—2¢), max{l(Q)),8} <t <I1(Q)}
c{y: X' =yl <3at, t <I(Q)}. (10.4)

Then the last term in (10.3) can be bounded by

p/2

2 y

< N?|Q|. (10.5)

Sllp / /
¥'e0\Q

—y|<3at

f<l(Q)
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Repeating the procedure in (10.3)-(10.5) for every cube Q' C Q, we arrive at
(I —a)M(§) < CN?, (10.6)
and the argument can be finished taking limit as § — 0. O

Proof of Theorem 1.2 Step I. Tt is an easy consequence of Holder’s inequality that

”f”BMOf(R") =< C”f”BMOL(R") = C”f”BMOZ(R") forpp < p<2<gq<pL,
(10.7)

so we will concentrate on the reverse estimates.

Step I1. In this part we will show that f € BM 020 (R™) implies f € BM O (R")
with p;, < po < 2. Letus first prove that whenever f € BM O fO the inequality (10.1)
holds with p = pp, a = 1. We split f as in (8.2). Then the contribution of the first
part is handled as follows. Making the dyadic annular decomposition,

2LM—z2L
IQI// / (G"L)"e

[x—yl<t<l(Q)

< (= +1QPD Y R |

< 2LM—t2L
=C2 IQI// / (L) e

j=0 lx—yl<t<I(Q)

d
x [xsi0 — a4 1@ o | dx

=C |Q|1/p0 /|(1—(1+1(Q) Ly~HY £ (0|7 dx

+CZ|Q|1/2 [ ] e

20x(0.1(Q))

D=

|2 dxdt

x X, = 1 +1QL)™H" f] ) (10.8)
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Here we have used L7°(R") boundedness of the conical square function (see
Lemma 2.6) for the first term above. To handle the second one we have applied
Holder’s inequality to pass from the L7 to the L norm and then Lemma 2.1. Using

LPo—12 off-diagonal estimates (Lemma 2.5) the second term can be further bounded
by

Nl—

oo () N
1 _ /1oy 2 dt
o2 _ 27yl PO
CE 0172 /e i / | —(1+1(Q)*LY W f(x)Pdx ”Otlf%ﬁ)
j=3 0 5;(0)

(10.9)

Covering S;(Q) by approximately 2J" cubes of the sidelength /(Q) and integrating
in ¢, we control (10.9) and hence (10.8) by /1 g a0 Ry
L

The contribution of

M
1= = A +10 )™M f =3 Com W@ LU = L +1(@*L)™HM ¢
k=1
(10.10)
(cf. (8.5)) can be estimated in the same way as (10.8)—(10.9), first combining L7k,
1 <k <M, with L™, ,
We have thus proved that F := F(r, y) = t*Le~""L f(y) satisfies (10.2) for some
p = po and a = 1. Then by Chebyshev’s inequality F satisfies (10.1) with a = 1/3.
Hence (10.2) holds for p = 2,a = 1/3 and F as above by Lemma 10.1. The latter fact
implies that f € BM O (R") using Theorem 9.1 and the Remark after Theorem 9.1.

Step I11. Let us consider the estimate
I/ gm0t @ny = Cllf Mo, @n) for2 <g < PL- (10.11)
Fix a cube Q, and let ¢ € L2(Q) D L”(Q), where p = q,ie.,
(PL) =pL/(PpL—1D <p=q/lg—-1) <2,
and suppose that

lell, < 101VP7 1

We claim that for some harmless constant C,

_1 2*—1M
m=g (1-u ey T)
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is a (p, &, M)-molecule, for the operator L*, adapted to Q, for every ¢ > 0. Indeed,
by a simple duality argument, we have that

(PL) = pr*, pL = DL*-

Thus, for (pr) = pr+ < p < 2, the resolvent kernel (I + r>L*)~! satisfies the
LP — L? off-diagonal estimates by Lemma 2.5. Taking £ = Q, and F' = S;(Q), the
reader may then readily verify that m is a molecule as claimed. We omit the details.

Now, suppose that f € BM O . Then by Theorem 8.2, f € (HLI*)*. Thus, since
||m||HL1* < C, we have that

Co

2 -1\¥
(1=t +en)" fo)| = 14ml = € avoyo

Thus, taking a supremum over all ¢ as above, we obtain (10.11). O
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