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Abstract Consider a second order divergence form elliptic operator L with complex
bounded measurable coefficients. In general, operators based on L , such as the Riesz
transform or square function, may lie beyond the scope of the Calderón–Zygmund
theory. They need not be bounded in the classical Hardy, BMO and even some L p

spaces. In this work we develop a theory of Hardy and BMO spaces associated to
L , which includes, in particular, a molecular decomposition, maximal and square
function characterizations, duality of Hardy and BMO spaces, and a John–Nirenberg
inequality.
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1 Introduction and statement of main results

Extensive study of classical real-variable Hardy spaces in R
n began in the early 1960s

with the fundamental paper of Stein and Weiss [27]. Since then these classes of func-
tions have played an important role in harmonic analysis, naturally continuing the
scale of L p spaces to the range of p ≤ 1. Although many real-variable methods have
been developed (see especially the work of Fefferman and Stein [17]), the theory of
Hardy spaces is intimately connected with properties of harmonic functions and of the
Laplacian.

For instance, Hardy space H1(Rn) can be viewed as the collection of functions
f ∈ L1(Rn) such that the Riesz transform ∇�−1/2 f belongs to L1(Rn). One also has
alternative characterizations of H1(Rn) by the square function and the non-tangential
maximal function associated to the Poisson semigroup generated by Laplacian. To
be precise, fix a family of non-tangential cones �(x) := {(y, t) ∈ R

n × (0,∞) :
|x − y| < t}, x ∈ R

n , and define

S� f (x) =
⎛
⎜⎝
∫ ∫

�(x)

∣∣∣t∇e−t
√

� f (y)

∣∣∣2 dydt

tn+1

⎞
⎟⎠

1/2

, (1.1)

N� f (x) = sup
(y,t)∈�(x)

∣∣∣e−t
√

� f (y)

∣∣∣ . (1.2)

Then ‖N� f ‖L1(Rn) and ‖S� f ‖L1(Rn) give equivalent norms in the space H1(Rn),
that is

‖N� f ‖L1(Rn) ≈ ‖S� f ‖L1(Rn) ≈ ‖ f ‖H1(Rn). (1.3)

Consider now a general elliptic operator in divergence form with complex bounded
coefficients. Let A be an n × n matrix with entries

a jk : L∞(Rn) −→ C, j = 1, . . . , n, k = 1, . . . , n, (1.4)

satisfying the ellipticity condition

λ|ξ |2 ≤ 	eAξ · ξ̄ and |Aξ · ζ̄ | ≤ �|ξ ||ζ |, ∀ ξ, ζ ∈ C
n, (1.5)
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Hardy and BMO spaces 39

for some constants 0 < λ ≤ � < ∞. Then the second order divergence form operator
is given by

L f := −div(A∇ f ), (1.6)

interpreted in the weak sense via a sesquilinear form.
Unfortunately, the classical Hardy spaces need not be applicable to problems

connected with the general operator L defined in (1.4)–(1.6). For example, the cor-
responding Riesz transform ∇L−1/2 need not be bounded from H1(Rn) to L1(Rn).
Indeed, by the solution of the Kato problem [5], we know that the Riesz transform is
bounded in L2(Rn). Thus, if it were also bounded from H1(Rn) to L1(Rn), then by
interpolation we would have that ∇L−1/2 : L p(Rn) → L p(Rn) for all 1 < p ≤ 2,
which, in general, is not true. It is true that there exists pL , 1 ≤ pL < 2n/(n + 2),

such that the Riesz transform is bounded on L p(Rn) for pL < p ≤ 2 (see [3,9,19]
and Sect. 2 for more details; see also [10] for related theory), but it is known that the
best possible pL may be strictly greater than 1. Similar statements apply to the heat
semigroup e−t L (for which L p boundedness may fail also for p finite, but sufficiently
large), as well as to the square function (see (1.15) below). This failure of L p bounds for
some p ∈ (1, 2) (and in (2,∞)), which relies on counterexamples built in [4,14,23],
along with some observations in [3], illustrates the significant difference between the
operators associated to L and those arising in the classical Calderón–Zygmund theory.
We note that it has been shown in [3] that the intervals of p ≤ 2 such that the heat
semigroup and Riesz transform are L p-bounded have the same interior. In the sequel,
we shall denote by (pL , p̃L) the interior of the interval of L p boundedness of the
semigroup, i.e.,

pL := inf{p ≥ 1 : sup
t>0

‖e−t L‖L p→L p < ∞} and

(1.7)
p̃L := sup{p ≤ ∞ : sup

t>0
‖e−t L‖L p→L p < ∞}.

We recall [3] that p̃L > 2n/(n − 2), and, as noted above, pL < 2n/(n + 2).
In writing this paper we have two goals: (1) to generalize the classical theory

of Hardy spaces in order to ameliorate the deficiencies described in the previous
paragraph, and (2) to develop a corresponding BMO theory, which includes analogues
of the H1 − B M O duality theorem [17] and of the John–Nirenberg Lemma [20].

We begin by discussing the first goal. Given an elliptic operator L as above, we
construct an H1 space adapted to L , which, for example, is mapped into L1 by the
Riesz transforms ∇L−1/2, and which serves as an endpoint of a complex interpolation
scale which coincides in part with some range of L p spaces. The utility of the Hardy
space H1 being due in part to its many useful characterizations, thus, we aim to provide
analogues to most of these, including the atomic (or molecular) decomposition and
characterizations by square and non-tangential maximal functions. We note that one
problem which remains open is that of finding a Riesz transform characterization of
the adapted H1 space; i.e., we do not yet know (except in the low dimensional case
n ≤ 4) whether L1 bounds for ∇L−1/2 f , or some suitable substitute, imply that f
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belongs to our Hardy space (as mentioned above, we do prove the converse). We plan
to present the low dimensional results, as well as an analogous H p theory, p �= 1, in
a forthcoming joint paper with McIntosh. We remark that, in contrast to the classical
setting, even the case p > 1 may involve Hardy spaces which are strictly smaller than
L p, and for at least some such spaces, we do have a Riesz transform characterization.
Finally, we remark that our Hardy spaces belong to a complex interpolation scale which
includes L p, pL < p < p̃L . Indeed, this fact follows as in [12], using interpolation
of the so-called “tent spaces”, given the square function characterization of our H1

space (cf. Theorem 1.1 below), and the fact that the square function Sh (cf. (1.15)) is
bounded on L p for pL < p < p̃L (cf. Lemma 2.6).

We now discuss the various characterizations of our Hardy space. Let us start
with the matter of atomic/molecular decompositions. The decomposition into simple
building blocks, atoms, originally proved by Coifman for n = 1 [11] and by Latter
in higher dimensions [22], is a key feature of H1(Rn). In this paper we work with an
analogous molecular decomposition, in the spirit of the one introduced in the classical
setting by Taibleson and Weiss [28].

Throughout the paper for cube Q ⊂ R
n we denote by l(Q) the sidelength of Q and

set

S0(Q) := Q, Qi = 2i Q and Si (Q) := 2i Q\2i−1 Q for i = 1, 2, . . .

(1.8)

where 2i Q is cube with the same center as Q and sidelength 2i l(Q).
Let 1 ≤ pL < 2n/(n + 2) and p̃L > 2n/(n − 2) retain the same significance as

above (that is, they are the endpoints of the interval of L p boundedness for the heat
semigroup). A function m ∈ L p(Rn), pL < p < p̃L , is called a (p, ε, M)-molecule,
ε > 0 and M ∈ N, M > n/4, if there exists a cube Q ⊂ R

n such that

(i) ‖m‖L p(Si (Q)) ≤ 2−i(n−n/p+ε)|Q|1/p−1, i = 0, 1, 2, . . . , (1.9)

(ii) ‖(l(Q)−2L−1)km‖L p(Si (Q)) ≤ 2−i(n−n/p+ε)|Q|1/p−1,

i =0, 1, 2, . . . , k =1, . . . , M. (1.10)

Having fixed some p, ε and M , we will often use the term molecule rather than
(p, ε, M)-molecule in the sequel. Then the adapted Hardy space can be defined as

H1
L(Rn) ≡

{ ∞∑
i=0

λ j m j : {λ j }∞j=0 ∈ �1 and m j are molecules

}
, (1.11)

with the norm given by

‖ f ‖H1
L (Rn) = inf

⎧⎨
⎩

∞∑
j=0

|λ j | : f =
∞∑
j=0

λ j m j , {λ j }∞j=0 ∈ �1 and m j are molecules

⎫⎬
⎭ .

(1.12)
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We shall prove in Sect. 4 that any fixed choice of p, ε and M within the allowable
parameters stated above, will generate the same space.

We remark that our molecules are, in particular, classical H1 molecules, so that
H1

L ⊆ H1 (and this containment is proper for some L , by our earlier observations
concerning the failure of H1 → L1 bounds). We also observe that one may construct
examples of H1

L molecules by hand: given a cube Q, let f ∈ L2(Q), with ‖ f ‖2 ≤
|Q|−1/2, and set

m =
(
�(Q)2L

)M
e−�(Q)2 L f, m̃ =

(
I − (I + �(Q)2L)−1

)M
f. (1.13)

One may then easily check, using the “Gaffney estimate” (2.8) below, that up to a
suitable normalizing constant, m, m̃ are (2, ε, M) molecules for every ε > 0.

Molecules have appeared in the H1 theory as an analogue of atoms lacking compact
support but decaying rapidly away from some cube Q [18]. However, the classical
vanishing moment condition (

∫
Rn m(x) dx = 0) does not interact well with the ope-

rators we have in mind because it does not provide appropriate cancellation. Instead,
we impose the requirement that the molecule “absorbs” properly normalized negative
powers of the operator L—the condition made precise in (1.10). In such a setting it
can be proved, for instance, that the Riesz transform

∇L−1/2 : H1
L(Rn) −→ L1(Rn), (1.14)

as desired.
Next, given an operator L as above and function f ∈ L2(Rn), consider the following

quadratic and maximal operators associated to the heat semigroup generated by L

Sh f (x) :=
⎛
⎜⎝
∫ ∫

�(x)

|t2Le−t2 L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

, (1.15)

Nh f (x) := sup
(y,t)∈�(x)

⎛
⎜⎝ 1

tn

∫

B(y,t)

|e−t2 L f (z)|2 dz

⎞
⎟⎠

1/2

, (1.16)

where B(y, t), y ∈ R
n , t ∈ (0,∞), is a ball in R

n with center at y and radius t and
x ∈ R

n . These are the natural modifications of (1.1)–(1.2). We use an extra averaging
in the space variable for the non-tangential maximal function in order to compensate
for the lack of pointwise estimates on the heat semigroup (an idea originating in [21]).

Alternatively, one can consider the Poisson semigroup generated by the operator L
and the operators

SP f (x) :=
⎛
⎜⎝
∫ ∫

�(x)

|t∇e−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

, (1.17)
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NP f (x) := sup
(y,t)∈�(x)

⎛
⎜⎝ 1

tn

∫

B(y,t)

|e−t
√

L f (x)|2dx

⎞
⎟⎠

1/2

, (1.18)

with x ∈ R
n , f ∈ L2(Rn).

We define H1
Sh

(Rn) as the completion of { f ∈ L2(Rn) : Sh f ∈ L1}, with respect
to the norm

‖ f ‖H1
Sh

(Rn) ≡ ‖Sh f ‖L1(Rn);

the spaces H1
Nh

(Rn), H1
SP

(Rn) and H1
NP

(Rn) are defined analogously. Then the
following result holds.

Theorem 1.1 Suppose that pL < p < p̃L (1.7), ε > 0 and M > n/4 in (1.9)–(1.10).
For an operator L given by (1.4)–(1.6), the Hardy spaces H1

L (Rn), H1
Sh

(Rn), H1
Nh

(Rn),

H1
SP

(Rn), H1
NP

(Rn) coincide. Moreover,

‖ f ‖H1
L (Rn) ≈ ‖Sh f ‖L1(Rn) ≈ ‖Nh f ‖L1(Rn) ≈ ‖SP f ‖L1(Rn) ≈ ‖NP f ‖L1(Rn),

(1.19)

for every f ∈ H1
L(Rn).

The second half of the paper is to devoted to the study of the space of functions of
bounded mean oscillation, adapted to L .

The B M O space originally introduced by John and Nirenberg in [20] in the context
of partial differential equations, has been identified as the dual of classical H1 in the
work by Fefferman and Stein [17]. Analogous to the role of H1 as a substitute for
L1, B M O substitutes for L∞ as an endpoint of the L p scale. For reasons similar to
those discussed above in connection with H1, the classical B M O may not be at all
compatible with the operator L .

The second goal of this paper is to generalize the classical notion of B M O . We
define a version of this space adapted to L , and prove that it is equipped with several
characteristic properties of B M O; in particular, it is tied up with the Hardy space
theory via duality. The adapted BMO theory (using a similar norm to our (1.22), but
with M = 1) has previously been introduced by Duong and Yan [15,16], under the
stronger assumption that the heat kernel associated to L satisfies a pointwise Gaussian
upper bound. Much of their methodology seems inapplicable in the present setting;
in particular, we have been forced to take a completely different approach to the
John–Nirenberg Lemma, and to view our B M O space as a subspace, not of L1

loc, but
rather of a certain space of distributions as we shall describe momentarily. Moreover,
the lack of pointwise kernel bounds renders the proof of the duality theorem signifi-
cantly more problematic, and in addition seems to require the higher order cancellation
inherent in the parameter M .
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Hardy and BMO spaces 43

We define our adapted B M O space as follows. For ε > 0 and M ∈ N we introduce
the norm

‖µ‖M2,ε,M
0

≡ sup
j≥0

2 j (n/2+ε)
M∑

k=0

‖L−kµ‖L2(S j (Q0))
,

where Q0 is the unit cube centered at 0, and set

M2,ε,M
0 ≡ {µ ∈ L2(Rn) : ‖µ‖M2,ε,M

0
< ∞}.

Implicitly, of course, this space depends upon L , and we shall write M2,ε,M
0 (L) when

we need to indicate this dependence explicitly. We note that if µ ∈ M2,ε,M
0 with norm 1,

then µ is a (2, ε, M) molecule adapted to Q0. Conversely, if m is a (2, ε, M) molecule
adapted to any cube, then m ∈ M2,ε,M

0 (this follows from the fact that, given any two
cubes Q1 and Q2, there exists integers K1 and K2, depending upon �(Q1), �(Q2) and
dist(Q1, Q2), such that 2K1 Q1 ⊇ Q2 and 2K2 Q2 ⊇ Q1). Let (M2,ε,M

0 )∗ be the dual of

M2,ε,M
0 , and let At denote either (I +t2L)−1 or e−t2 L . We claim that if f ∈ (M2,ε,M

0 )∗,
then (I − A∗

t )
M f is globally well defined in the sense of distributions, and belongs

to L2
loc. Indeed, if ϕ ∈ L2(Q) for some cube Q, it follows from the Gaffney estimate

(2.8) below that (I − At )
Mϕ ∈ M2,ε,M

0 for every ε > 0. Thus,

〈
(I − A∗

t )
M f, ϕ

〉
≡
〈

f, (I − At )
Mϕ
〉
≤ Ct,�(Q),dist(Q,0)‖ f ‖

(M2,ε,M
0 )∗‖ϕ‖L2(Q).

(1.20)

Since Q was arbitrary, the claim follows. Similarly, (t2L∗)M A∗
t f ∈ L2

loc.

We are now ready to define our adapted B M O spaces. We suppose now and in the
sequel that M > n/4. An element

f ∈ ∩ε>0(M
2,ε,M
0 )∗ ≡ (M2,M

0 )∗ (1.21)

is said to belong to B M OL∗(Rn) if

‖ f ‖B M OL∗ (Rn) := sup
Q⊂Rn

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣(I − e−l(Q)2 L∗
)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

< ∞, (1.22)

where M > n/4 and Q stands for a cube in R
n . Eventually, we shall see that this

definition is independent of the choice of M > n/4 (up to “modding out” elements in
the null space of the operator (L∗)M , as these are annihilated by (I −e−l(Q)2 L∗

)M ; we
thank Lixin Yan for this observation). Clearly, we can define B M OL by interchanging
the roles of L and L∗ in the preceding discussion. Using the “Gaffney” estimate (2.8)
below, and the fact that e−l(Q)2 L1 = 1, one may readily verify that B M O ⊆ B M OL .
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Compared to the classical definition, in (1.22) the heat semigroup e−l(Q)2 L plays the
role of averaging over the cube, and an extra power M > n/4 provides the necessary
cancellation.

As usual, we have some flexibility in the choice of B M O norm, by virtue of an
appropriate version of the John–Nirenberg inequality (see [20] for the case of usual
B M O), although in our case we obtain a more restricted range of equivalence. To
be more precise, let us denote by B M O p

L (Rn), 1 < p < ∞, the set of elements of

(M2,M
0 )∗ with the property that

‖ f ‖B M O p
L (Rn) := sup

Q⊂Rn

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣(I − e−l(Q)2 L)M f (x)

∣∣∣p dx

⎞
⎟⎠

1/p

(1.23)

is finite. By definition, B M O2
L(Rn) = B M OL(Rn). We have a “John–Nirenberg

Lemma”:

Theorem 1.2 For all p such that pL < p < p̃L the spaces B M O p
L (Rn) coincide.

Another important feature of classical B M O is its Carleson measure characteriza-
tion. Roughly speaking, we shall establish the following analogue of the Fefferman–
Stein criterion:

f ∈ B M OL(Rn) ⇐⇒
∣∣∣(t2L)M e−t2 L f (y)

∣∣∣2 dydt

t
is a Carleson measure;

(1.24)

see Theorem 9.1 for the precise statement, in which, as in the classical case, a certain
“controlled growth” hypothesis is needed to prove the ⇐ direction.

And finally, we prove the desired duality with the Hardy spaces.

Theorem 1.3 Suppose pL < p < p̃L , ε > 0 and M > n/4 in (1.9)–(1.10), (1.22).
Then for an operator L given by (1.4)–(1.6)

(
H1

L(Rn)
)∗ = B M OL∗(Rn). (1.25)

As we have mentioned, our results lie beyond the classical Calderón–Zygmund
setting. Moreover, the methods we have at our disposal are substantially restricted.
For instance, no analogue of the subaveraging property of harmonic functions, no
maximum principle, no regularity or pointwise bounds for the kernel of the heat or
Poisson semigroup are available. The operators we work with do not even possess a
kernel in the regular sense. In fact, we employ only certain estimates in L2 and L p

with p close to 2, controlling the growth of the heat semigroup and the resolvent.
The layout of the paper is as follows: Section 2 contains a few preliminary results,

regarding general square functions and properties of the operator L . Section 3 is
devoted to the behavior of sublinear operators, in particular, Riesz transform, acting on
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H1
L(Rn). Sections 4, 5, 6 and 7 cover the characterizations of Hardy space announced

in Theorem 1.1. Finally, in Sects. 8, 9 and 10 we discuss the spaces B M OL(Rn),
duality, connection with Carleson measures and John–Nirenberg inequality.

While this work was in preparation, we learned that much of the Hardy space theory
that we present here has also been treated independently by Auscher et al. [7]. Their
results are stated in the context of a Dirac operator on a Riemannian manifold, but
their arguments carry over to the present setting as well. To the best of our knowledge,
the theory of B M OL(Rn) spaces, in the absence of pointwise heat kernel bounds, is
unique to this paper. As mentioned above, some of this material has been developed
previously, assuming pointwise kernel bounds (see [8,15,16]).

2 Notation and preliminaries

Let �α , α > 0, be the cone of aperture α, i.e. �α(x) := {(y, t) ∈ R
n × (0,∞) :

|x − y| < αt} for x ∈ R
n . Then for a closed set F ∈ R

n we define a saw-tooth region
Rα(F) := ⋃

x∈F �α(x). For simplicity we will often write � in place of �1 and R(F)

instead of R1(F).
Suppose F is a closed set in R

n and γ ∈ (0, 1) is fixed. We set

F∗ :=
{

x ∈ R
n : for every B(x), ball in R

n centered at x,
|F ∩ B(x)|

|B(x)| ≥ γ

}
,

(2.1)

and every x as above is called a point having global γ -density with respect to F . One
can see that F∗ is closed and F∗ ⊂ F . Also,

c F∗ = {x ∈ R
n : M(χ c F )(x) > 1 − γ }, (2.2)

which implies | c F∗| ≤ C | c F | with C depending on γ and the dimension only.
Here and throughout the paper we denote by c F the complement of F , χF is the

characteristic function of F , and M is the Hardy-Littlewood maximal operator, i.e.

M f (x) := sup
r>0

1

|B(x, r)|
∫

B(x,r)

| f (y)| dy, (2.3)

where f is a locally integrable function and B(x, r) stands for the ball with radius r
centered at x ∈ R

n .

Lemma 2.1 [12] Fix some α > 0. There exists γ ∈ (0, 1), sufficiently close to 1,
such that for every closed set F whose complement has finite measure and every
non-negative function 
 the following inequality holds:
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∫

Rα(F∗)


(x, t) tn dxdt ≤ C(α, γ )

∫

F

⎡
⎢⎣
∫

�(x)


(y, t) dydt

⎤
⎥⎦ dx, (2.4)

where F∗ denotes the set of points of global γ -density with respect to F.
Conversely,

∫

F

⎡
⎢⎣
∫

�α(x)


(y, t) dydt

⎤
⎥⎦ dx ≤ C(α)

∫

Rα(F)


(x, t) tn dxdt, (2.5)

for every closed set F ⊂ R
n and every non-negative function 
.

Lemma 2.2 [12] Consider the operator

Sα F(x) :=
⎛
⎜⎝
∫ ∫

�α(x)

|F(y, t)|2 dydt

tn+1

⎞
⎟⎠

1/2

, (2.6)

where α > 0. There exists a constant C > 0 depending on the dimension only such
that

‖Sα F‖L1(Rn) ≤ C‖S1 F‖L1(Rn). (2.7)

Both lemmas above are proved in [12].
Turning to the properties of the differential operator L we start with the off-diagonal

estimates. We say that the family of operators {St }t>0 satisfies L2 off-diagonal esti-
mates (Gaffney estimates) if there exist some constants c, C, β > 0 such that for
arbitrary closed sets E, F ⊂ R

n

‖St f ‖L2(F) ≤ C e
−
(

dist (E,F)2
ct

)β

‖ f ‖L2(E), (2.8)

for every t > 0 and every f ∈ L2(Rn) supported in E .

Lemma 2.3 [19] If two families of operators, {St }t>0 and {Tt }t>0, satisfy Gaffney
estimates (2.8) then so does {St Tt }t>0. Moreover, there exist c, C > 0 such that for
arbitrary closed sets E, F ⊂ R

n

‖Ss Tt f ‖L2(F) ≤ C e
−
(

dist (E,F)2
c max{t,s}

)β

‖ f ‖L2(E), (2.9)

for all t, s > 0 and all f ∈ L2(Rn) supported in E.
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Lemma 2.4 [5,19] The families

{e−t L}t>0, {t Le−t L}t>0, {t1/2∇e−t L}t>0, (2.10)

as well as

{(1 + t L)−1}t>0, {t1/2∇(1 + t L)−1}t>0, (2.11)

satisfy Gaffney estimates with c, C > 0 depending on n,λand�only. For the operators
in (2.10), β = 1, and in (2.11), β = 1/2.

We remark that it is well known from functional calculus and ellipticity (accretivity)
that the operators in (2.10)–(2.11) are bounded from L2(Rn) to L2(Rn) uniformly in t .

Lemma 2.5 There exist pL , 1 ≤ pL < 2n
n+2 and p̃L , 2n

n−2 < p̃L ≤ ∞, such that

for every p and q with pL < p ≤ q < p̃L , the family {e−t L}t>0 satisfies L p − Lq

off-diagonal estimates, i.e. for arbitrary closed sets E, F ⊂ R
n

‖e−t L f ‖Lq (F) ≤ Ct
1
2

(
n
q − n

p

)
e− dist (E,F)2

ct ‖ f ‖L p(E), (2.12)

for every t > 0 and every f ∈ L p(Rn) supported in E. The operators e−t L , t > 0,

are bounded from L p(Rn) to Lq(Rn) with the norm Ct
1
2

(
n
q − n

p

)
and from L p(Rn) to

L p(Rn) with the norm independent of t .
In the case p = q, the statement of the Lemma remains valid with {e−t L}t>0

replaced by {(1 + t L)−1}t>0, and with exponent β = 1/2 in the exponential decay
expression.

Proof For the heat semigroup the proof of the Lemma can be found in [3] and the
result for the resolvent can be obtained following similar ideas. ��
Remark It has been shown in [3] that the interval of p such that the heat semigroup
is L p-bounded, and the interval of p, q such that it enjoys the off-diagonal bound
(2.12), have the same interior. In particular, there is no inconsistency between the
definitions of pL in (1.7) and in Lemma 2.5. We will preserve this notation for pL and
p̃L throughout the paper.

Lemma 2.6 The operator

SK
h f (x) :=

⎛
⎜⎝
∫ ∫

�(x)

|(t2L)K e−t2 L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

, x ∈ R
n, K ∈ N, (2.13)

is bounded in L p(Rn) for p ∈ (pL , p̃L).

Proof The proof closely follows an analogous argument for vertical square function
[3]. We omit the details. ��
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Finally, the solutions of strongly parabolic and elliptic systems satisfy the following
versions of Caccioppoli inequality.

Lemma 2.7 Suppose Lu = 0 in B2r (x0) = {x ∈ R
n : |x − x0| < 2r}. Then there

exists C = C(λ,�) > 0 such that

∫

Br (x0)

|∇u(x)|2 dx ≤ C

r2

∫

B2r (x0)

|u(x)|2 dx . (2.14)

Lemma 2.8 Suppose ∂t u = −Lu in I2r (x0, t0), where Ir (x0, t0) = Br (x0) × [t0 −
cr2, t0], t0 > 4cr2 and c > 0. Then there exists C = C(λ,�, c) > 0 such that

∫ ∫

Ir (x0,t0)

|∇u(x, t)|2 dxdt ≤ C

r2

∫ ∫

I2r (x0,t0)

|u(x, t)|2 dxdt. (2.15)

3 Sublinear operators in Hardy spaces

To begin, let us note that the space H1
L , defined by means of molecular decompositions,

is complete. We learned the following proof of this fact from E. Russ. We first require
a well known completeness criterion from functional analysis.

Lemma 3.1 Let X be a normed space which enjoys the property that
∑

xk converges
in X, whenever

∑ ‖xk‖ < ∞. Then, X is complete.

The lemma is well known, and we omit the proof.
Let us now use the lemma to establish completeness of H1

L . To this end, we suppose
that fk ∈ H1

L , and that
∑ ‖ fk‖H1

L
< ∞. Given the former fact, there exists for each

k a molecular decomposition fk = ∑∞
i=0 λk

i mk
i , with

∑∞
i=0 |λk

i | ≈ ‖ fk‖H1
L
. Thus,

∑
i,k

|λk
i | ≈

∑
k

‖ fk‖H1
L

< ∞.

Consequently, the sum
∑

fk = ∑
k,i λk

i mk
i converges in H1

L , as desired. ��
For certain technical reasons, we shall need to work also with a modified version

of the molecular representations. Given p ∈ (pL , p̃L), ε > 0, M > n/4, and δ > 0,

we say that f = ∑
λ j m j is a δ-representation of f if {λ j }∞j=0 ∈ �1 and each m j is a

(p, ε, M)-molecule adapted to a cube Q j of side length at least δ. We set

H1
L ,δ(R

n) ≡ { f ∈ L1(Rn) : f has a δ-representation}.

Observe that a δ-representation is also a δ
′
-representation for all δ

′
< δ. Thus, H1

L ,δ ⊆
H1

L ,δ
′ for 0 < δ

′
< δ. Set

Ĥ1
L(Rn) ≡ ∪δ>0 H1

L ,δ(R
n),
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and define

‖ f ‖Ĥ1
L (Rn) ≡ inf

⎧⎨
⎩

∞∑
j=0

|λ j | : f =
∞∑
j=0

λ j m j is a δ-representation for some δ > 0

⎫⎬
⎭ .

(3.1)

We note that for f ∈ Ĥ1
L , ‖ f ‖L1 ≤ C‖ f ‖Ĥ1

L
, since in particular, ‖m‖L1 ≤ C for

every molecule m (of course, a similar statement is true for H1
L ). Now for f ∈ Ĥ1

L , set

‖ f ‖H̃1
L (Rn) ≡ ‖ f ‖Ĥ1

L (Rn) + ‖ f ‖L1(Rn) ≈ ‖ f ‖Ĥ1
L (Rn), (3.2)

and define H̃1
L as the completion of Ĥ1

L with respect to this norm. We now show that

H1
L = H̃1

L , (3.3)

for any choice of p, ε and M , within the allowable parameters. By definition, and the
completeness of H1

L , we have

H̃1
L ⊆ H1

L and ‖ f ‖H1
L

≤ ‖ f ‖H̃1
L

(3.4)

whenever f ∈ H̃1
L . Let us now verify that these statements can be reversed (up to

a multiplicative constant). We learned the following argument from P. Auscher. Let
f ∈ H1

L , f = ∑
λi mi , with ‖ f ‖H1

L
≈ ∑ |λi |. Set fk = ∑k

i=1 λi mi . Note in

particular that fk → f in L1. Moreover, fk ∈ Ĥ1
L , so that

‖ fk‖H̃1
L

≤
k∑

i=1

|λi | ≤ C‖ f ‖H1
L
.

Also,

‖ fk − fk′ ‖H̃1
L

≤
k∑

i=k′
|λi | → 0,

so that { fk} is a Cauchy sequence in H̃1
L . Consequently, there exists f̃ such that

fk → f̃ in H̃1
L and thus also in L1. Therefore, f̃ = f a.e., so f ∈ H̃1

L .

The advantage to working with H̃1
L is that, if f = ∑

λi mi is a δ-representation
with (p, ε, M)-molecules, for some δ > 0, then the partial sums fk ≡ ∑

i≤k λi mi

converge to f in L p, since the L p norms of the molecules are uniformly bounded
(with a constant depending upon δ).

Theorem 3.2 Let pL < p ≤ 2 and assume that the sublinear operator

T : L p(Rn) −→ L p(Rn) (3.5)
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satisfies the following estimates. There exists M ∈ N, M > n/4, such that for all
closed sets E, F in R

n with dist(E, F) > 0 and every f ∈ L p(Rn) supported in E

‖T (I − e−t L)M f ‖L p(F) ≤ C

(
t

dist (E, F)2

)M

‖ f ‖L p(E), ∀ t > 0, (3.6)

‖T (t Le−t L)M f ‖L p(F) ≤ C

(
t

dist (E, F)2

)M

‖ f ‖L p(E), ∀ t > 0. (3.7)

Then

T : H1
L(Rn) −→ L1(Rn). (3.8)

Remark Of course, the estimates (3.5)–(3.7) are of interest only when t ≤ dist(E, F)2.

The proof below shows that (3.5)–(3.7) imply (3.8) with the Hardy space H1
L(Rn)

defined by linear combinations of (p, ε, M)-molecules for the same values of p and
M as in (3.5)–(3.7). We do not emphasize this fact as the space H1

L(Rn) does not
depend on the choice (within the stated allowable parameters) of p, ε and M in
(1.9)–(1.12)—see Corollary 4.3.

Proof Suppose that T : L p → L p is sublinear. We claim that for every (p, ε, M)

molecule m, we have

‖T m‖L1(Rn) ≤ C (3.9)

with constant C independent of m. Let us take this statement for granted momentarily.
The conclusion of the theorem is then an immediate consequence of the following
lemma.

Lemma 3.3 Fix p, ε, M within the allowable parameters, with pL < p ≤ 2. Suppose
that T is either a linear operator, or a positive sublinear operator, bounded on L p,
which satisfies (3.9) for all (p, ε, M) molecules. Then T extends to a bounded operator
on H1

L , and

‖T f ‖L1 ≤ C‖ f ‖H1
L
.

Proof By our previous observations, it is enough to work with the space H̃1
L . By

density, it is enough to show that

‖T f ‖1 ≤ C‖ f ‖H̃1
L

for f ∈ Ĥ1
L . Choose such an f , so that f = ∑∞

i=1 λi mi is a δ-representation, where
the mi are (p, ε, M)−molecules and

‖ f ‖H̃1
L

≈
∑

|λi |.
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Set fk = ∑k
i=1 λi mi . Then fk → f in L p ∩ L1. By hypothesis, |T fk − T f | ≤

|T ( fk − f )| → 0 in L p. On the other hand, by (3.9),

‖T fk − T fk′ ‖1 ≤ ‖T ( fk − fk′)‖1 ≤ C
k∑

i=k′
|λi | → 0,

as k, k′ → ∞. Consequently, {T fk} is a Cauchy sequence in L1 so there exists h ∈ L1

such that T fk → h in L1. Taking subsequences, we see that T f = h a.e.. Hence,

‖T f ‖1 = lim
k→∞ ‖T fk‖1 ≤ C

∑
|λi | ≤ ‖ f ‖H̃1

L
.

��
We now turn to the proof of (3.9). To begin, we write

‖T m‖L1(Rn) ≤
∥∥∥∥T
(

I − e−l(Q)2 L
)M

m

∥∥∥∥
L1(Rn)

+
∥∥∥∥T

[
I −

(
I − e−l(Q)2 L

)M
]

m

∥∥∥∥
L1(Rn)

:= I + II,

and we further split I so that

I ≤
∞∑

i=0

∥∥∥T (I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L1(Rn)

.

Here, the family of annuli {Si (Q)}∞i=0 is taken with respect to the cube Q associated
with m. Going further,

∥∥∥T (I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L1(Rn)

≤ C
∞∑
j=0

(
2i+ j l(Q)

)n− n
p
∥∥∥T (I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L p(S j (Qi ))

≤ C
∞∑
j=2

(
2i+ j l(Q)

)n− n
p
(

l(Q)2

dist (S j (Qi ), Si (Q))2

)M

‖m‖L p(Si (Q))

+ C
(

2i l(Q)
)n− n

p ‖m‖L p(Si (Q)), (3.10)

where the last inequality follows from (3.5)–(3.6) and uniform boundedness of
{e−t L}t>0 in L p(Rn). Then by the properties of (p, ε, M)-molecules the expression
above is bounded by
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C
∞∑
j=2

2i(−2M−ε)2 j (n−n/p−2M) + C 2−iε ≤ C 2−iε, (3.11)

so that I ≤ C.

As for the remaining part,

I −
(

I − e−l(Q)2 L
)M =

M∑
k=1

C M
k (−1)k+1e−kl(Q)2 L , (3.12)

where C M
k = M !

(M−k)!k! , k = 1, . . . , M , are binomial coefficients. Therefore,

∥∥∥T [I − (I − e−l(Q)2 L)M ]m
∥∥∥

L1(Rn)
≤ C sup

1≤k≤M

∥∥∥T e−kl(Q)2 Lm
∥∥∥

L1(Rn)

≤ C sup
1≤k≤M

∥∥∥∥∥T

(
k

M
l(Q)2Le− k

M l(Q)2 L
)M

(l(Q)−2L−1)M m

∥∥∥∥∥
L1(Rn)

. (3.13)

At this point we proceed as in (3.10)–(3.11) with (l(Q)−2L−1)M m in place of m,(
k
M l(Q)2Le− k

M l(Q)2 L
)M

in place of (I − e−l(Q)2 L)M , and using (3.7) and (1.10) to

obtain that

sup
1≤k≤M

∥∥∥∥∥T
(

k

M
l(Q)2Le− k

M l(Q)2 L
)M ([

(l(Q)−2L−1)M m
]
χSi (Q)

)∥∥∥∥∥
L1(Rn)

≤C2−iε.

(3.14)

Summing in i , we obtain that II ≤ C , as desired. ��
Remark The result of Theorem 3.2 holds for p ∈ (2, p̃L) as well. However, in that

case one has to take M > 1
2

(
n − n

p

)
.

For f ∈ L2(Rn) consider the following vertical version of square function:

gh f (x) :=
⎛
⎝

∞∫

0

|t2Le−t2 L f (y)|2 dt

t

⎞
⎠

1/2

. (3.15)

Theorem 3.4 The operators gh and ∇L−1/2 satisfy (3.6)–(3.7) for p = 2, M > n/4,
and map H1

L(Rn) to L1(Rn).

Proof The proof rests on ideas of similar estimates for the Riesz transform (cf.
Lemma 2.2 in [19]) and Theorem 3.2. By the L p bounds, pL < p < p̃L , for gh

[3], it is enough to treat the case t < dist(E, F)2 in (3.6)–(3.7).
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First of all, the operators under consideration are obviously sublinear. Further,
L2 boundedness of the Riesz transform has been proved in [5] and boundedness of
gh in L2(Rn) follows from the quadratic estimates for operators having bounded
holomorphic calculus [1].

Let us now address the inequalities (3.6)–(3.7) for p = 2 and the operator T = gh .
An argument for the Riesz transform, viewed as

∇L−1/2 = C

∞∫

0

∇e−sL f
ds√

s
, (3.16)

is completely analogous [19]. Write

∥∥∥gh(I − e−t L)M f
∥∥∥

L2(F)
= C

∥∥∥∥∥∥∥

⎛
⎝

∞∫

0

|sLe−sL(I − e−t L)M f |2 ds

s

⎞
⎠

1/2
∥∥∥∥∥∥∥

L2(F)

≤ C

∥∥∥∥∥∥∥

⎛
⎝

∞∫

0

|sLe−s(M+1)L(I − e−t L)M f |2 ds

s

⎞
⎠

1/2
∥∥∥∥∥∥∥

L2(F)

≤ C

⎛
⎝

t∫

0

∥∥∥sLe−s(M+1)L(I − e−t L)M f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

+ C

⎛
⎝

∞∫

t

∥∥∥sLe−s(M+1)L(I − e−t L)M f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

=: I1 + I2 (3.17)

We will analyze I1 and I2 separately. Expanding (I −e−t L)M by the binomial formula,
one can see that

I1 ≤ C

⎛
⎝

t∫

0

∥∥∥sLe−s(M+1)L f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

+C sup
1≤k≤M

⎛
⎝

t∫

0

∥∥∥sLe−s(M+1)L e−kt L f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

≤ C

⎛
⎝

t∫

0

∥∥∥sLe−s(M+1)L f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

+C sup
1≤k≤M

⎛
⎝

t∫

0

∥∥∥e−s(M+1)L kt Le−kt L f
∥∥∥2

L2(F)

sds

t2

⎞
⎠

1/2
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≤ C

⎛
⎝

t∫

0

e− dist (E,F)2
cs

ds

s

⎞
⎠

1/2

‖ f ‖L2(E)

+C sup
1≤k≤M

⎛
⎝ 1

t2 e− dist (E,F)2
ct

t∫

0

sds

⎞
⎠

1/2

‖ f ‖L2(E),

where we used Lemma 2.4 and a variant of Lemma 2.3 in the last step. One may

readily check that the expression above is bounded by C
(

t
dist (E,F)2

)M ‖ f ‖L2(E), as

desired.
Turning to the second integral,

I2 ≤ C

⎛
⎝

∞∫

t

∥∥∥sLe−sL(e−sL − e−(s+t)L)M f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

. (3.18)

It was observed in [19] that

∥∥∥ s

t
(e−sL − e−(s+t)L)g

∥∥∥
L2(F)

=
∥∥∥∥∥∥

s

t

t∫

0

∂r e−(s+r)L g dr

∥∥∥∥∥∥
L2(F)

≤ C
s

t

t∫

0

∥∥∥(s + r)Le−(s+r)L g
∥∥∥

L2(F)

dr

s + r

≤ C ‖g‖L2(E)

⎛
⎝s

t

t∫

0

e− dist (E,F)2

c(s+r)
dr

s+r

⎞
⎠ . (3.19)

But s + r ≈ s for s ≥ t and r ∈ (0, t), therefore the expression above does not exceed

C ‖g‖L2(E)e
− dist (E,F)2

cs

⎛
⎝ s

t

t∫

0

dr

s + r

⎞
⎠ ≤ Ce− dist (E,F)2

cs ‖g‖L2(E). (3.20)

Now we multiply and divide the integrand in (3.18) by
( s

t

)2M and use Lemma 2.3 for
sLe−sL and M copies of s

t (e
−sL − e−(s+t)L) to get
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I2 ≤ C

⎛
⎝

∞∫

t

e− dist (E,F)2
cs

(
t

s

)2M ds

s

⎞
⎠

1/2

‖ f ‖L2(E)

≤ C

⎛
⎝

∞∫

0

e−r
(

tr

dist (E, F)2

)2M dr

r

⎞
⎠

1/2

‖ f ‖L2(E)

≤ C

(
t

dist (E, F)2

)M

‖ f ‖L2(E), (3.21)

as desired, where in the second inequality we have made the the change of variables

r := dist (E,F)2

cs .
This finishes the proof of (3.6) for the operator gh . The argument for (3.7) follows

essentially the same path. More precisely, one needs to estimate the integrals I1 and
I2 with (I − e−t L)M replaced by (t Le−t L)M . As for the first one,

⎛
⎝

t∫

0

∥∥∥sLe−s(M+1)L(t Le−t L)M f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

≤ C

⎛
⎝ 1

t2

t∫

0

∥∥∥∥∥e−s(M+1)L(t Le−t L)M−1
(

t

2
Le− t

2 L
)2

f

∥∥∥∥∥
L2(F)

sds

⎞
⎠

1/2

≤ Ce− dist (E,F)2
ct ‖ f ‖L2(E) ≤ C

(
t

dist (E, F)2

)M

‖ f ‖L2(E), (3.22)

by Lemma 2.3. Concerning to the analogue of I2, one can write

⎛
⎝

∞∫

t

∥∥∥sLe−s(M+1)L(t Le−t L)M f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

≤
⎛
⎝

∞∫

t

(
t

s

)2M ∥∥∥sLe−sL(sLe−(t+s)L)M f
∥∥∥2

L2(F)

ds

s

⎞
⎠

1/2

. (3.23)

At this stage, similarly to (3.19),

∥∥∥sLe−(s+t)L g
∥∥∥

L2(F)
=
∥∥∥∥∥∥

s

t
e−sL

t∫

0

∂r (r Le−r L)g dr

∥∥∥∥∥∥
L2(F)

≤ C

∥∥∥∥∥∥
s

t
e−sL

t∫

0

(Le−r L − r L2e−r L)g dr

∥∥∥∥∥∥
L2(F)
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≤ C
s

t

t∫

0

‖(r + s)Le−(r+s)L g‖L2(F)

dr

r + s

+C
s

t

t∫

0

‖(r + s)2L2e−(r+s)L g‖L2(F)

rdr

(r + s)2

≤ C ‖g‖L2(E)

⎛
⎝ s

t

t∫

0

e− dist (E,F)2

c(s+r)
dr

s + r

⎞
⎠

≤ Ce− dist (E,F)2
cs ‖g‖L2(E), (3.24)

and following (3.21) we complete the proof. ��

Remark Using the same line of reasoning and L p − L2 off-diagonal estimates (pL <

p ≤ 2) one can show for all closed sets E , F in R
n with dist(E, F) > 0 and every

f ∈ L p(Rn) supported in E

∥∥∥gh(I − e−t L)M f
∥∥∥

L2(F)
≤ C t

1
2

(
n
2 − n

p

) (
t

dist (E, F)2

)M

‖ f ‖L p(E), ∀ t > 0,

(3.25)
∥∥∥gh(t Le−t L)M f

∥∥∥
L2(F)

≤ C t
1
2

(
n
2 − n

p

) (
t

dist (E, F)2

)M

‖ f ‖L p(E), ∀ t > 0.

(3.26)

4 Characterization by the square function associated to the heat semigroup

Theorem 4.1 The spaces H1
L and H1

Sh
are the same; in particular,

‖ f ‖H1
L (Rn) ≈ ‖Sh f ‖L1(Rn). (4.1)

In light of (3.3), the theorem is an immediate consequence of the following lemma.

Lemma 4.2 We have the containments H1
L ⊆ H1

Sh
⊆ H̃1

L . Moreover,

(i) If f ∈ L2 ∩ H1
Sh

, then f is the limit in H̃1
L of fN ∈ Ĥ1

L . Furthermore, for every
ε > 0, M ∈ N, pL < p < p̃L there exists a family of (p, ε, M)-molecules
{mi }∞i=0 and a sequence of numbers {λi }∞i=0 such that f can be represented in
the form f = ∑∞

i=0 λi mi , with

‖ f ‖H̃1
L (Rn) ≤ C

∞∑
i=0

|λi | ≤ C‖ f ‖H1
Sh

(Rn). (4.2)

123



Hardy and BMO spaces 57

(ii) Conversely, given ε > 0, M > n/4 and pL < p < p̃L , let f ≡ ∑∞
i=0 λi mi ,

where {mi }∞i=0 is a family of (p, ε, M)-molecules and
∑∞

i=0 |λi | < ∞. Then the
series

∑∞
i=0 λi mi converges in H1

Sh
(Rn) and

∥∥∥∥∥
∞∑

i=0

λi mi

∥∥∥∥∥
H1

Sh
(Rn)

≤ C
∞∑

i=0

|λi |.

In particular, we have that

‖ f ‖H1
Sh

(Rn) ≤ C‖ f ‖H1
L (Rn). (4.3)

The proof follows that of [12], and is based on the tent space decomposition of that
paper, as well as on the ideas of the proof of the atomic decomposition of the classical
Hardy spaces (as in [29]).

Proof Step I. Let f ∈ H1
Sh

(Rn)∩L2(Rn). We shall construct a family { fN }∞N=1 ⊆ Ĥ1
L

such that fN → f in H̃1
L and in H1

Sh
, with

sup
N

‖ fN ‖H̃1
L (Rn) ≤ C‖ f ‖H1

Sh
(Rn).

In particular, this will show that f ∈ H̃1
L , with norm controlled by ‖ f ‖H1

Sh
. The

claimed molecular decomposition will be established in the course of the proof.
We start with a suitable version of the Calderón reproducing formula. By L2 func-

tional calculus, for every f ∈ L2(Rn) one can write

f = CM

∞∫

0

(t2Le−t2 L)M+2 f
dt

t

= CM lim
N→∞

N∫

1/N

(t2Le−t2 L)M+2 f
dt

t
≡ lim

N→∞ fN , (4.4)

with the integral converging in L2(Rn).
Now define the family of sets Ok := {x ∈ R

n : Sh f (x) > 2k}, k ∈ Z, and consider
O∗

k := {x ∈ R
n : M(χOk ) > 1 − γ } for some fixed 0 < γ < 1. Then Ok ⊂ O∗

k

and |O∗
k | ≤ C(γ )|Ok | for every k ∈ Z. Next let {Q j

k } j be a Whitney decomposition
of O∗

k and Ô∗
k be a tent region, that is

Ô∗
k := {(x, t) ∈ R

n × (0,∞) : dist(x, c O∗
k ) ≥ t}. (4.5)

For every k, j ∈ Z we define

T j
k :=

(
Q j

k × (0,∞)
)

∩ Ô∗
k ∩ c Ô∗

k+1, (4.6)
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and then recall the formula (4.4) to write

fN = CM

∑
j,k∈Z

N∫

1/N

(t2Le−t2 L)M+1
(
χ

T j
k

t2Le−t2 L
)

f
dt

t
=:

∑
j,k∈Z

λ
j
k m j

k (N ),

(4.7)

where λ
j
k = CM 2k |Q j

k | and

m j
k (N ) = 1

λ
j
k

N∫

1/N

(t2Le−t2 L)M+1
(
χ

T j
k

t2Le−t2 L
)

f
dt

t
. (4.8)

We claim that, up to a normalization by a harmless multiplicative constant, the
m j

k (N ) are molecules. Assuming the claim, we note that by definition of T j
k , m j

k (N ) =
0 if C�(Q j

k ) < 1/N , so that (4.7) is a δ-representation with δ ≈ 1/N . Thus, once the
claim is established, we shall have

sup
N

‖ fN ‖H̃1
L (Rn) ≤ C

∑
j,k∈Z

λ
j
k = C

∑
j,k∈Z

2k |Q j
k | ≤ C

∑
k∈Z

2k |O∗
k |

≤ C
∑
k∈Z

2k |Ok | ≤ C‖Sh f ‖L1(Rn), (4.9)

as desired. Let us now prove the claim: that is, we will show that for every j, k ∈ Z,
and N ∈ N the function C−1m j

k (N ) is a (p, ε, M)- molecule associated with the cube

Q j
k , 2 ≤ p < p̃L , for some harmless constant C . The case p ≤ 2 follows from this

one by Hölder’s inequality.
To this end, fix j, k ∈ Z and i ∈ N ∪ {0} and consider some h ∈ L p′

(Si (Q j
k )) such

that ‖h‖
L p′

(Si (Q j
k ))

= 1, 1
p + 1

p′ = 1. Set

χ
j

k := χ(
Q j

k ×(0,∞)
)
∩Ô∗

k
. (4.10)

Then

∣∣∣∣∣∣

∫

Rn

m j
k (N )(x)h(x) dx

∣∣∣∣∣∣
≤ 1

λ
j
k

∫∫

T j
k

∣∣∣t2Le−t2 L f (x)
(
(t2Le−t2 L)M+1

)∗
h(x)

∣∣∣ dt

t
dx

≤ C

λ
j
k

∫

c Ok+1

∫ ∫

�(x)

χ
j

k (y, t)
∣∣∣t2Le−t2 L f (y)

(
(t2Le−t2 L)M+1

)∗
h(y)

∣∣∣ dtdy

tn+1 dx
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≤ C

λ
j
k

⎛
⎜⎜⎝

∫

c Ok+1∩cQ j
k

⎛
⎜⎝
∫ ∫

�(x)

∣∣∣t2Le−t2 L f (y)

∣∣∣2 dydt

tn+1

⎞
⎟⎠

p
2

dx

⎞
⎟⎟⎠

1
p

×

⎛
⎜⎜⎜⎜⎜⎝

∫

c Ok+1∩cQ j
k

⎛
⎜⎜⎜⎝
∫ ∫

�(x)∩
(

Q j
k ×(0,∞)

)
∩Ô∗

k

∣∣∣
(
(t2Le−t2 L)M+1

)∗
h(y)

∣∣∣
2 dydt

tn+1

⎞
⎟⎟⎟⎠

p′
2

dx

⎞
⎟⎟⎟⎟⎟⎠

1
p′

=: I1 × I2. (4.11)

Some comments are in order here. For the second inequality we used Lemma 2.1 with
F = c Ok+1 (so that F∗ = c O∗

k+1 and R1(F∗) = c Ô∗
k+1) and


(x, t) := χ
j

k (y, t)
∣∣∣t2Le−t2 L f (x)

(
(t2Le−t2 L)M+1

)∗
h(x)

∣∣∣ t−n−1. (4.12)

The third estimate above is based on Hölder’s inequality and the fact that whenever

y ∈ �(x) ∩
(

Q j
k × (0,∞)

)
∩ Ô∗

k we have x ∈ c Q j
k , where the constant c is related

to the implicit constant in Whitney decomposition. Without loss of generality we will
assume that c ≤ 3.

Observe now that

I1 ≤ C
1

λ
j
k

⎛
⎜⎜⎝

∫

cQ j
k ∩ c Ok+1

(Sh f (x))p dx

⎞
⎟⎟⎠

1/p

, (4.13)

and Sh f (x) is bounded by 2k+1 for every x ∈ c Ok+1. Therefore

I1 ≤ C
1

λ
j
k

2k+1 |Q j
k |

1
p ≤ C |Q j

k |
1
p −1

. (4.14)

Turning to I2, recall that supp h ⊂ Si (Q j
k ). Then to handle i ≤ 4 it is enough to

notice that

I2 ≤ C
∥∥∥SM+1

h h
∥∥∥

L p′
(Rn)

≤ C‖h‖
L p′

(Si (Q j
k ))

≤ C, (4.15)

using Lemma 2.6. Then
When i ≥ 5, we proceed as follows. We invoke Hölder’s inequality to estimate L p′

norm by L2 norm and then apply (2.5) with F = c Ok+1 ∩ c Q j
k and


(y, t) = χ
(0, c l(Q j

k ))
(t)
∣∣∣
(
(t2Le−t2 L)M+1

)∗
h(y)

∣∣∣
2

t−n−1. (4.16)
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Then

I2 ≤ C |Q j
k |

1
p′ − 1

2

⎛
⎜⎜⎝

∫

3c Q j
k

c l(Q j
k )∫

0

∣∣∣
(
(t2Le−t2 L)M+1

)∗
h(x)

∣∣∣
2 dxdt

t

⎞
⎟⎟⎠

1
2

(4.17)

By Lemmas 2.5 and 2.3 applied to the operator L∗ the expression in (4.17) is bounded
by

C |Q j
k |

1
p′ − 1

2

⎛
⎜⎜⎝

c l(Q j
k )∫

0

e
− dist (3cQ

j
k ,Si (Q

j
k ))2

ct2 t
2
(

n
2 − n

p′
)

dt

t

⎞
⎟⎟⎠

1/2

‖h‖
L p′

(Si (Q j
k ))

≤ C |Q j
k |

1
p′ − 1

2

⎛
⎜⎜⎝

c l(Q j
k )∫

0

(
t

2i l(Q j
k )

)2
(

n
p′ +ε

)

t
2
(

n
2 − n

p′
)

dt

t

⎞
⎟⎟⎠

1/2

≤ C2
−i
(

n− n
p +ε

)
.

(4.18)

All in all,

∣∣∣∣∣∣

∫

Rn

m j
k (N )(x)h(x) dx

∣∣∣∣∣∣
≤ C2−i(n−n/p+ε)|Q j

k |1/p−1 (4.19)

for every h ∈ L p′
(Si (Q j

k )) with ‖h‖
L p′

(Si (Q j
k ))

= 1. Taking the supremum over all

such h we arrive at (1.9).
The condition (1.10) can be verified directly applying (l(Q j

k )
−2L−1)k , 1 ≤ k ≤ M ,

to the molecule and arguing along the lines (4.11)–(4.19). A few modifications relate
solely to I2 which is majorized by

⎛
⎜⎜⎜⎝

∫

c Ok+1∩cQ j
k

⎛
⎜⎝
∫ ∫

�(x)

χ
j

k

∣∣∣
(

e−kt2 L(t2Le−t2 L)M+1−k
)∗

h(y)

∣∣∣
2 dydt

tn+1

⎞
⎟⎠

p′
2

dx

⎞
⎟⎟⎟⎠

1
p′

(cf. (4.10)), and the rest of the argument follows verbatim. We have therefore establi-
shed that fN ∈ Ĥ1

L , and that fN satisfies the desired bounds in H̃1
L , uniformly in N . It

remains to verify that fN → f in H̃1
L and in H1

Sh
, and also that f = ∑

λ
j
k m j

k , where

the m j
k = limN→∞ m j

k (N ) exist and are molecules (up to a harmless normalization).
We defer consideration of this matter for the moment, and proceed to:
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Step II. Let us now move to part (i i) of the lemma. To begin, observe that it is enough
to consider the case p ≤ 2.

The proof follows that of Theorem 3.2 above. We recall that Sh : L p → L p, pL <

p < p̃L (Lemma 2.6). By Lemma 3.3, it will therefore be enough to show that Sh

maps allowable (p, ε, M) molecules uniformly into L1. To this end, we show that Sh

satisfies certain estimates arising in the proof of Theorem 3.2, which may be inserted
directly into the appropriate places in the argument to establish (3.9). More precisely,
the combination of estimates (3.10) and (3.11) amounts to showing that

∥∥∥Sh(I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L1(Rn)

≤ C2−iε, (4.20)

while (3.14), with T = Sh , becomes

sup
1≤k≤M

∥∥∥∥∥Sh

(
k

M
l(Q)2Le− k

M l(Q)2 L
)M (

χSi (Q)(l(Q)−2L−1)M m
)∥∥∥∥∥

L1(Rn)

≤ C2−iε.

(4.21)

Given the latter two estimates, the remainder of the proof of Theorem 3.2 carries over
verbatim.

We begin with (4.20). We first note that since Sh and (I − e−l(Q)2 L)M are bounded
in L p (in the latter case with constant independent of l(Q)), we have for j = 0, 1, 2,

‖Sh(I − e−l(Q)2 L)M (mχSi (Q))‖L p(S j (Qi )) ≤ C‖m‖L p(Si (Q)). (4.22)

Assume now that j ≥ 3. By Hölder’s inequality and Lemma 2.1

∥∥∥Sh(I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥2

L p(S j (Qi ))

≤C(2i+ j l(Q))
2
(

n
p−n

2

)∫ ∫

R(S j (Qi ))

∣∣∣t2Le−t2 L(I −e−l(Q)2 L)M (mχSi (Q))(x)

∣∣∣2 dtdx

t

≤C(2i+ j l(Q))
2
(

n
p − n

2

) ∫

Rn\Q j−2+i

∞∫

0

∣∣∣t2Le−t2 L(I−e−l(Q)2 L)M(mχSi (Q))(x)

∣∣∣2 dtdx

t

+C(2i+ j l(Q))
2
(

n
p − n

2

)

×
j−2∑
k=0

∫

Sk (Qi )

∞∫

(2 j−1−2k )2i l(Q)

|t2Le−t2 L(I − e−l(Q)2 L)M (mχSi (Q))(x)|2 dtdx

t

=: I +
j−2∑
k=0

Ik . (4.23)
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We observe that

I ≤ C(2i+ j l(Q))
2
(

n
p − n

2

)
‖gh(I − e−l(Q)2 L)M (mχSi (Q))‖2

L2(Rn\Q j−2+i )

≤ C(2i+ jl(Q))
2
(

n
p − n

2

)
l(Q)

2
(

n
2 − n

p

)(
l(Q)2

dist(Si (Q), Rn\Q j−2+i )2

)2M

‖m‖2
L p(Si (Q))

≤ C

(
1

2i+ j

)4M+2
(

n
2 − n

p

)

‖m‖2
L p(Si (Q)), (4.24)

where the second inequality follows from (3.25). Turning to Ik , k = 0, 1, . . . , j − 2,
we make a change of variables s := t2/(m + 1), so that s ≥ [(2 j−1 − 2k)2i l(Q)]2/

(m + 1) ≈ [2i+ j l(Q)]2 and

Ik ≤ C(2i+ j l(Q))
2
(

n
p − n

2

)

×
∞∫

c[2i+ j l(Q)]2

∥∥∥sLe−(m+1)sL(I −e−l(Q)2 L)M (mχSi (Q))

∥∥∥2

L2(Sk (Qi ))

ds

s

≤ C(2i+ j l(Q))
2
(

n
p − n

2

)
×

∞∫

c [2i+ j l(Q)]2

(
l(Q)2

s

)2M

×
∥∥∥∥∥sLe−sL

[
s

l(Q)2 (e−sL − e−(l(Q)2+s)L)

]M

(mχSi (Q))

∥∥∥∥∥
2

L2(Sk (Qi ))

ds

s
. (4.25)

At this point we apply (3.19)–(3.20) with t = l(Q)2 combined with L p − L2 off-
diagonal estimates for sLe−sL and obtain

Ik ≤ C(2i+ j l(Q))
2
(

n
p − n

2

)
‖m‖2

L2(Si (Q))

×
∞∫

c [2i+ j l(Q)]2

s

(
n
2 − n

p

)
e− dist (Si (Q),Sk (Qi ))

2

cs

(
l(Q)2

s

)2M
ds

s

≤ C

⎛
⎜⎝

∞∫

c [2i+ j l(Q)]2

(
l(Q)2

s

)2M
ds

s

⎞
⎟⎠ ‖m‖2

L p(Si (Q))

≤ C

(
1

2i+ j

)4M

‖m‖2
L p(Si (Q)). (4.26)
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Combining (4.24) and (4.26), one can see that

∥∥∥Sh(I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥2

L p(S j (Qi ))
≤C j

(
1

2i+ j

)4M+2
(

n
2 − n

p

)

‖m‖2
L p(Si (Q)).

(4.27)

Finally, using (4.22) and (4.27) we obtain (4.20) as follows:

∥∥∥Sh(I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L1(Rn)

≤ C
∞∑
j=3

(2i+ j l(Q))
n− n

p
√

j

(
1

2i+ j

)2M+
(

n
2 − n

p

)

‖m‖L p(Si (Q))

+C(2i l(Q))
n− n

p ‖m‖L p(Si (Q))

≤ C2
i
(

n
p − n

2 −2M−ε
) ∞∑

j=3

√
j 2 j (n/2−2M) + C 2−iε ≤ C 2−iε.

A similar argument establishes (4.21). This time we use (3.26) to control an analogue
of (4.24), and (3.24) instead of (3.19) at the step corresponding to (4.25)–(4.26). This
completes the proof of part (i i) of the lemma.

To finish part (i), it remains to show that fN → f in H̃1
L and in H1

Sh
, and that f has

the claimed molecular decomposition. To this end, we recall that fN → f in L2. We
claim that { fN } is a Cauchy sequence in H̃1

L . Let us postpone establishing this claim
until the end of the proof. Assuming the claim, we see that there exists g ∈ H̃1

L such
that fN → g in H̃1

L , and, in particular, in L1. By taking subsequences which converge
a.e., we see that the L1 and L2 limits are the same, i.e., g = f , and fN → f in H̃1

L .
Since we have already established part (i i), we may use (4.3) to extend Sh to all

of H1
L (thus in particular by (3.4) to H̃1

L ) by continuity. Let us momentarily call this
extension S̃h . Then by (4.3) and (3.4), we have

‖S̃h( fN − f )‖L1(Rn) → 0.

Thus, by sublinearity, Sh fN → S̃h f in L1. But also, Sh fN → Sh f in L2, so Sh f =
S̃h f almost everywhere. Therefore, using (4.9), we have that

‖ f ‖H̃1
L (Rn) = lim

N→∞ ‖ fN ‖H̃1
L (Rn) ≤ C

∑
λ

j
k ≤ ‖Sh f ‖L1(Rn)

= ‖S̃h f ‖L1(Rn) ≤ C‖ f ‖H1
L (Rn).

Next, we show that m j
k (N ) converges weakly in each L p, pL < p < p̃L , and

that the limits are molecules (up to a harmless multiplicative constant). Indeed, let
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h ∈ L p′ ∩ L2. Then

〈m j
k (N ), h〉 = 1

λ
j
k

∫

Rn

⎛
⎜⎝

N∫

1/N

(t2Le−t2 L)M+1χ
T j

k
t2Le−t2 L f (x)

dt

t

⎞
⎟⎠ h(x) dx

= 1

λ
j
k

N∫

1/N

〈
χ

T j
k

t2Le−t2 L f, (t2L∗e−t2 L∗
)M+1h

〉 dt

t

→ 1

λ
j
k

∞∫

0

〈
χ

T j
k

t2Le−t2 L f, (t2 L∗e−t2 L∗
)M+1h

〉 dt

t
,

by dominated convergence, since the square functions

⎛
⎝

∞∫

0

|t2Le−t2 L f |2 dt

t

⎞
⎠

1/2

,

⎛
⎝

∞∫

0

|(t2L∗e−t2 L∗
)M+1h|2 dt

t

⎞
⎠

1/2

,

belong, in particular, to L2. Similarly, but even more crudely, we may obtain existence
of

lim
N→∞〈(�(Q j

k )
2L)−i m j

k (N ), h〉, 1 ≤ i ≤ M,

since t ≤ C�(Q j
k ) in T j

k . On the other hand, we have shown that, up to a multiplicative

constant, the m j
k (N ) are molecules, i.e., the bounds (1.9) and (1.10) hold uniformly

in N , for m j
k (N ), with Q = Q j

k . In particular,

sup
N

‖m j
k (N )‖L p(Rn) ≤ C |Q j

k |1/p−1.

Taking a supremum over h ∈ L p′
(Rn), with norm 1, we therefore obtain by the Riesz

representation theorem that the weak limit m j
k belongs to L p. The desired bounds (1.9)

and (1.10) follow by taking h ∈ L p′
(Si (Q j

k )), and using the corresponding uniform

bounds for m j
k (N ). Thus, up to a multiplicative constant, the m j

k are molecules.

We now show that f = ∑
λ

j
k m j

k . Let ϕ ∈ C∞
0 . Then, using absolute convergence,

and the fact that m j
k (N ) → m j

k weakly in L p, we obtain

∫
ϕ
(∑

λ
j
k m j

k

)
=
∑

λ
j
k

∫
ϕ m j

k

=
∑

λ
j
k lim

N→∞

∫
ϕ m j

k (N )
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= lim
N→∞

∑
λ

j
k

∫
ϕ m j

k (N ) (by dominated convergence)

= lim
N→∞

∫
ϕ
(∑

λ
j
k m j

k (N )
)

≡ lim
N→∞

∫
ϕ fN =

∫
ϕ f.

Since this equality holds for all ϕ ∈ C∞
0 , we have that f = ∑

λ
j
k m j

k almost every-
where.

To complete the proof of the lemma, it remains to show that { fN } is a Cauchy
sequence in H̃1

L . We recall that fN = ∑
λ

j
k m j

k (N ) where λ
j
k = C2k |Q j

k |, and

m j
k (N ) ≡ 1

λ
j
k

N∫

1/N

(
t2Le−t2 L

)M+1
χ

T j
k

t2Le−t2 L f
dt

t
.

For K ∈ N, we write

fN =
∑

j+k≤K

λ
j
k m j

k (N ) +
∑

j+k>K

λ
j
k m j

k (N )

= σK (N ) + RK (N ).

Then

sup
N

‖RK (N )‖H̃1
L (Rn) ≤

∑
j+k>K

|λ j
k | → 0 (4.28)

as K → ∞. Thus, it suffices to consider

‖σK (N ) − σK (N ′)‖H̃1
L (Rn) =

∥∥∥∥∥∥
∑

j+k≤K

λ
j
k

(
m j

k (N ) − m j
k (N ′)

)
∥∥∥∥∥∥

H̃1
L (Rn)

.

Let η > 0 be given, and choose K so that (4.28) is bounded by η. It is enough to show
that for all p ∈ (pL , p̃L), for every ε > 0, M > n/4, and every K ∈ N, there exists
an integer N1 = N1(η, K , p, ε, M) such that

max
j+k≤K

‖m j
k (N ) − m j

k (N ′)‖
p,ε,M,Q j

k
< η, (4.29)

whenever N ′ ≥ N ≥ N1, where the “(p, ε, M)-molecular norm adapted to Q” is
defined as

‖µ‖p,ε,M,Q ≡ sup
i≥0

2i(n−n/p+ε)|Q|1−1/p
M∑

ν=0

‖(�(Q)2L)−νµ‖L p(Si (Q)).
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To this end, we note that, for N , N ′ sufficiently large,

µ
j
k (N , N ′) ≡ m j

k (N ′) − m j
k (N ) = 1

λ
j
k

1/N∫

1/N ′
(t2Le−t2 L)M+1χ

T j
k

t2Le−t2 L f
dt

t
,

since t ≤ C�(Q j
k ) in T k

j . Let h ∈ L p′
(Si (Q j

k )), with ‖h‖p′ = 1. Then, following the
argument from (4.11) to (4.19), we obtain that

|〈µ j
k (N , N ′), h〉| =

∣∣∣∣∣∣∣
1

λ
j
k

1/N∫

1/N ′

〈
χ

T j
k

t2Le−t2 L f, (t2 L∗e−t2 L∗
)M+1h

〉 dt

t

∣∣∣∣∣∣∣

≤ C
1

λ
j
k

⎛
⎜⎜⎝

∫

C Q j
k ∩ c Ok+1

(S1/N
h f )pdx

⎞
⎟⎟⎠

1/p

2−i(n−n/p+ε),

where

S1/N
h f ≡

⎛
⎜⎝
∫ ∫

|x−y|<t<1/N

|t2Le−t2 L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

.

Now, since f ∈ L2, S1/N
h f → 0 in L2. We choose N1 so large that

‖S1/N
h f ‖L2(Rn) ≤ 1

C
ηR min

j+k≤K
λ

j
k |Q j

k |−1/2, (4.30)

whenever N ≥ N1, where R will be chosen depending on p. If p = 2, taking R = 1,
and taking the surpemum over h as above, we obtain immediately that

‖µ j
k (N , N ′)‖

L2(Si (Q j
k ))

≤ η2−i(n/2+ε)|Q j
k |−1/2.

The case pL < p < 2 follows by Hölder’s inequality. For 2 < p < p̃L , we choose
r ∈ (p, p̃L), and using that Sh f ≤ 2k+1 on c Ok+1 by definition, we interpolate
between (4.30) and the crude bound

⎛
⎜⎜⎝

∫

C Q j
k ∩ c Ok+1

(S1/N
h f (x))r dx

⎞
⎟⎟⎠

1/r

≤ C2k |Q j
k |1/r ,
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to deduce that

|〈µ j
k (N , N ′), h〉| ≤ η2−i(n−n/p+ε)|Q j

k |1/p−1,

for R chosen large enough depending on p. We now obtain (4.29), by applying
(�(Q j

k )
2L)−ν to µ

j
k (N , N ′), and then repeating the previous argument with minor

changes. It follows that { fN } is a Cauchy sequence in H̃1
L . This concludes the proof

of Lemma 4.2 and therefore also that of Theorem 4.1. ��

We conclude this section with

Corollary 4.3 The spaces H1
L(Rn) coincide for different choices of ε > 0, pL <

p < p̃L and M ∈ N such that M > n/4.

Indeed, for all permissible values of these parameters, we have established that the
corresponding H1

L space is equivalent to H1
Sh

.

5 Characterization by the square function associated to the Poisson semigroup

We start with the following auxiliary result.

Lemma 5.1 Fix K ∈ N. For all closed sets E, F in R
n with dist(E, F) > 0

∥∥∥∥
(

t
√

L
)2K

e−t
√

L
∥∥∥∥

L2(F)

≤ C

(
t

dist (E, F)

)2K+1

‖ f ‖L2(E), ∀ t > 0, (5.1)

if f ∈ L2(Rn) is supported in E.

Proof The subordination formula

e−t
√

L f = C

∞∫

0

e−u

√
u

e− t2 L
4u f du (5.2)

allows us to write

∥∥∥(t
√

L)2K e−t
√

L
∥∥∥

L2(F)
≤ C

∞∫

0

e−u

√
u

∥∥∥∥∥
(

t2L

4u

)K

e− t2 L
4u f

∥∥∥∥∥
L2(F)

uK du

≤ C‖ f ‖L2(E)

∞∫

0

e−u e
− dist (E,F)2

cu2 uK−1/2 du. (5.3)
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Then we make the change of variables u �→ s := u dist (E,F)2

t2 to bound (5.3) by

C‖ f ‖L2(E)

∞∫

0

e
−s t2

dist(E,F)2 e−s
(

s
t2

dist(E, F)2

)K−1/2
t2

dist(E, F)2 ds

≤ C‖ f ‖L2(E)

(
t

dist(E, F)

)2K+1 ∞∫

0

e−ssK−1/2ds

≤ C

(
t

dist(E, F)

)2K+1

‖ f ‖L2(E), (5.4)

as desired. ��
Theorem 5.2 Consider the operator

SK
P f (x) :=

⎛
⎜⎝
∫ ∫

�(x)

|
(

t
√

L
)2K

e−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

, x ∈R
n, f ∈ L2(Rn). (5.5)

Suppose K ∈ N, M ∈ N, M + K > n/4 − 1/2, and ε = 2M + 2K + 1 − n/2.
If f ∈ L2(Rn), with ‖SK

P f ‖L1(Rn) < ∞, then f ∈ H1
L . Furthermore, there exists a

family of (2, ε, M)-molecules {mi }∞i=0 and a sequence of numbers {λi }∞i=0 such that
f can be represented in the form f = ∑∞

i=0 λi mi , with

‖ f ‖H1
L (Rn) ≤ C

∞∑
i=0

|λi | ≤ C‖SK
P f ‖L1(Rn). (5.6)

Proof The lemma can be proved following the argument of Theorem 4.1 with minor
modifications. To be more precise, we use the Calderón reproducing formula in the
form

f = C

∞∫

0

(
(t2L)M+K e−t

√
L
)2

f
dt

t
= C

∞∫

0

(t2L)2M+K e−t
√

L(t2L)K e−t
√

L f
dt

t
,

(5.7)

for f ∈ L2(Rn). To be completely rigorous, we should truncate and approximate by
fN as in the proof of Theorem 4.1. As the details are similar in the present case, we
shall merely sketch a formal proof, and leave the details of the limiting arguments to
the reader.

To begin, we define

Ok := {x ∈ R
n : SK

P f (x) > 2k}, (5.8)
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and

m j
k = 1

λ
j
k

∞∫

0

(t2L)2M+K e−t
√

L
(
χ

T j
k
(t2L)K e−t

√
L
)

f
dt

t
, (5.9)

with T j
k , k, j ∈ Z, given analogously to (4.6). The rest of the proof follows the same

path, using Lemma 5.1 instead of Gaffney relations, which allows to derive the estimate

‖m j
k‖L2(Si (Q j

k ))
≤ C 2−i(4M+2K+1)|Q j

k |−1/2, i = 0, 1, 2, . . . , (5.10)

for all k, j ∈ Z.
As for the vanishing moment condition,

(
l(Q j

k )
−2L−1

)M
m j

k = 1

λ
j
k

∞∫

0

(
t

l(Q j
k )

)2M

(t2L)M+K e−t
√

L

×
(
χ

T j
k
(t2L)K e−t

√
L
)

f
dt

t
, (5.11)

and hence

∥∥∥(l(Q j
k )

−2L−1)M m j
k

∥∥∥
L2(Si (Q j

k ))
≤ C2−i(2M+2K+1)|Q j

k |−1/2, i = 0, 1, 2, . . .

(5.12)

Combined with (5.10), this finishes the argument. ��
Theorem 5.3 Let ε > 0 and M > n/4. Then for every representation

∑∞
i=0 λi mi ,

where {mi }∞i=0 is a family of (2, ε, M)-molecules and
∑∞

i=0 |λi | < ∞, the series∑∞
i=0 λi mi converges in H1

SP
(Rn) and

∥∥∥∥∥
∞∑

i=0

λi mi

∥∥∥∥∥
H1

SP
(Rn)

≤ C
∞∑

i=0

|λi |. (5.13)

Proof We will follow the argument of Theorem 4.1, Step II, and mention only neces-
sary changes.

First, by Lemma 3.3, it will be enough to establish a uniform L1 bound on molecules.
To this end, we observe that the operator

gP f :=
⎛
⎝

∞∫

0

|t∇e−t
√

L f |2 dt

t

⎞
⎠

1/2

, (5.14)
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is bounded in L2(Rn). This follows from the estimates on the operators having bounded
holomorphic functional calculus in L2 [1] and integration by parts. Then SP is bounded
in L2(Rn), since

‖SP f ‖L2(Rn) ≤ C

⎛
⎜⎝
∫ ∫

Rn×(0,∞)

⎡
⎢⎣

∫

|x−y|<t

dx

⎤
⎥⎦ |t∇e−t

√
L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

≤ C

⎛
⎜⎝
∫ ∫

Rn×(0,∞)

|t∇e−t
√

L f (y)|2 dydt

t

⎞
⎟⎠

1/2

≤ C‖gP f ‖L2(Rn) ≤ C‖ f ‖L2(Rn). (5.15)

Therefore, for j = 0, 1, 2,

∥∥∥SP (I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L2(S j (Qi ))

≤ C‖m‖L2(Si (Q)). (5.16)

Turning to the case j ≥ 3, we write

∥∥∥SP (I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥2

L2(S j (Qi ))
≤ I +

j−2∑
k=0

Ik, (5.17)

where

I = C
∫

Rn\Q j−2+i

∞∫

0

∣∣∣t∇e−t
√

L(I − e−l(Q)2 L)M (mχSi (Q))(x)

∣∣∣2 dtdx

t
(5.18)

and

Ik =C
∫

Sk (Qi )

∞∫

(2 j−1−2k )2i l(Q)

∣∣∣t∇e−t
√

L(I − e−l(Q)2 L)M (mχSi (Q))(x)

∣∣∣2 dtdx

t
(5.19)

for k = 0, . . . , j − 2. Then by the subordination formula and Minkowski’s inequality
we have that I 1/2 ≤ C

∫∞
0 e−u J 1/2du, where

J =
∫

c Q j−2+i

∞∫

0

∣∣∣∣
t√
4u

∇e− t2 L
4u (I − e−l(Q)2 L)2M (mχSi (Q))(x)

∣∣∣∣
2 dtdx

t

=
∫

c Q j−2+i

∞∫

0

∣∣∣s∇e−s2 L(I − e−l(Q)2 L)4M (mχSi (Q))(x)

∣∣∣2 dsdx

s
,
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and where in the last step we have made the change of variable t �→ s := t/
√

4u.

However, it can be proved along the lines of Theorem 3.4 that g̃h f :=
( ∫∞

0 |t∇e−t2 L

f |2 dt
t

)1/2
(similarly to gh f ) satisfies the estimates (3.6) with p = 2 and therefore

I ≤ C

(
l(Q)2

dist(Si (Q), Rn\ j−2+i )
2

)2M

‖m‖2
L2(Si (Q))

≤
(

1

2i+ j

)4M

‖m‖2
L2(Si (Q))

.

Concerning Ik , k = 0, 1, . . . , j − 2, we use the subordination formula once again
to write

I 1/2
k ≤ C

∞∫

0

e−u

⎛
⎜⎝

∫

Sk (Qi )

∞∫

(2 j−1−2k )2i l(Q)

∣∣∣∣
t√
4u

∇e− t2 L
4u

×(I − e−l(Q)2 L)M (mχSi (Q))(x)

∣∣∣2 dtdx

t

⎞
⎟⎠

1/2

du. (5.20)

Then one can make a change of variables s := t2

4u(m+1)
, so that following (4.25) and

(4.26)

I 1/2
k ≤ C

∞∫

0

e−u

⎛
⎜⎜⎝

∞∫

[(2 j−1−2k )2i l(Q)]2
cu

‖√s∇e−(m+1)sL

×(I − e−l(Q)2 L)M (mχSi (Q))‖2
L2(Sk (Qi ))

ds

s

⎞
⎟⎟⎠

1/2

du

≤ C

∞∫

0

e−u

⎛
⎜⎜⎝

∞∫

[(2 j−1−2k )2i l(Q)]2
cu

e− dist(Si (Q),Sk (Qi ))
2

cs(1+u)

(
l(Q)2

s

)2M
ds

s

⎞
⎟⎟⎠

1/2

du

×‖m‖L2(Si (Q)), (5.21)

and hence

Ik ≤ C

(
1

2i+ j

)4M

‖m‖2
L2(Si (Q))

. (5.22)
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Then

∥∥∥SP (I − e−l(Q)2 L)M (mχSi (Q))

∥∥∥
L1(Rn)

≤ C
∞∑
j=3

(
2i+ j l(Q)

)n/2 √
j

(
1

2i+ j

)2M

‖m‖L2(Si (Q))

+ C
(

2i l(Q)
)n/2 ‖m‖L2(Si (Q)) ≤ C 2−iε.

A similar argument provides an estimate for ‖SP [I − (I − e−l(Q)2 L)]M m‖L1(Rn) and
finishes the proof. ��

Lemma 5.4 For all f ∈ L2(Rn)

‖S1
P f ‖L1(Rn) ≤ C‖SP f ‖L1(Rn). (5.23)

Proof To start, let us define the family of truncated cones

�ε,R,α(x) := {(y, t) ∈ R
n × (ε, R) : |x − y| < tα}, x ∈ R

n . (5.24)

Then for every function η ∈ C∞
0 (�ε/2,2R,3/2(x)) such that η ≡ 1 on �ε,R,1(x) and

0 ≤ η ≤ 1

⎛
⎜⎝
∫ ∫

�ε,R,1(x)

|t2Le−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

≤
⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

t2Le−t
√

L f (y) t2 Le−t
√

L f (y)η(y, t)
dydt

tn+1

⎞
⎟⎠

1/2

≤
⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

t A∇e−t
√

L f (y) · t∇
[

t2Le−t
√

L f (y)
]
η(y, t)

dydt

tn+1

⎞
⎟⎠

1/2

+
⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

t A∇e−t
√

L f (y) · t2Le−t
√

L f (y) t∇η(y, t)
dydt

tn+1

⎞
⎟⎠

1/2

.

(5.25)
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We can always assume that ‖∇η‖L∞(�ε/2,2R,2(x)) ≤ 1/t , so that the expression above
is bounded by

⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

|t∇e−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/4⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

|t∇t2Le−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/4

+
⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

|t∇e−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/4⎛
⎜⎝
∫ ∫

�ε/2,2R,3/2(x)

|t2Le−t
√

L f (y)|2 dydt

tn+1

⎞
⎟⎠

1/4

.

Consider now a covering of the set �ε/2,2R,3/2(x) given by collection of balls
{B(zk, rk)}∞k=0 in R

n+1, such that

�ε/2,2R,3/2(x) ⊆
∞⋃

k=0

B(zk, rk) ⊆
∞⋃

k=0

B(zk, 2rk) ⊆ �ε/4,3R,2(x),

dist
(

zk,
c(�ε/4,3R,2(x))

)
≈ rk ≈ dist (B(zk, rk), {t = 0}) , (5.26)

and the collection {B(zk, 2rk)}, has bounded overlaps. Such a collection {B(zk, rk)}
can be constructed using the Whitney decomposition (for the latter see [13,24]). Then
we use Caccioppoli’s inequality (Lemma 2.7) for the operator

L̃ f = −divy,t (B ∇y,t f ),

where L̃ is understood in the usual weak sense, B is the (n+1)×(n+1) block diagonal
matrix with components 1 and A and divy,t , ∇y,t denote, respectively, divergence and

gradient taken in space and time variables. Clearly, L̃e−t
√

L f = 0. We obtain

∫ ∫

�ε/2,2R,3/2(x)

∣∣∣t∇t2Le−t
√

L f (y)

∣∣∣2 dydt

tn+1

≤
∞∑

k=0

∫ ∫

B(zk ,rk )

∣∣∣t∇y,t t
2Le−t

√
L f (y)

∣∣∣2 dydt

tn+1

≤ C
∞∑

k=0

∫ ∫

B(zk ,2rk )

∣∣∣∣
t

rk
t2Le−t

√
L f (y)

∣∣∣∣
2 dydt

tn+1

≤ C
∫ ∫

�ε/4,3R,2(x)

∣∣∣t2Le−t
√

L f (y)

∣∣∣2 dydt

tn+1 . (5.27)
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Combining this with the formulae above and passing to the limit as ε → 0 and
R → ∞, we arrive at

S1
P f (x) ≤ C(SP f (x))1/2(S1

P f (x))1/2, (5.28)

and hence (5.23), as desired. ��
Corollary 5.5 H1

L(Rn) = H1
SP

(Rn), in particular, ‖ f ‖H1
L (Rn) ≈ ‖SP f ‖L1(Rn).

Proof The left-to-the-right inclusion follows from Theorem 5.3, the converse from
Theorem 5.2 combined with Lemma 5.4; in addition, we use Corollary 4.3 to guarantee
that the molecular spaces H1

L(Rn) coincide for different choices of p ∈ (pL , p̃L) and
ε > 0, thus removing the constraints on ε and p in Theorem 5.2. We omit the details.

��
Finally, consider two more versions of the square function:

S̄P f (x) :=
⎛
⎜⎝
∫ ∫

�(x)

∣∣∣t
√

Le−t
√

L f (y)

∣∣∣2 dydt

tn+1

⎞
⎟⎠

1/2

, (5.29)

ŜP f (x) :=
⎛
⎜⎝
∫ ∫

�(x)

∣∣∣t∇x,t e
−t

√
L f (y)

∣∣∣2 dydt

tn+1

⎞
⎟⎠

1/2

, (5.30)

where f ∈ L2(Rn), x ∈ R
n and ∇y,t stands for the gradient in space and time

variables.

Theorem 5.6 We have the equivalence

‖ f ‖H1
L (Rn) ≈ ‖S̄P f ‖L1(Rn) ≈ ‖ŜP f ‖L1(Rn). (5.31)

This result is just a slight modification of the previous ones in this section. In fact,
the argument for S̄P follows the same lines as the proofs of Theorems 5.2 and 5.3 ones
we observe that t

√
Le−t

√
L = −t∂t e−t

√
L , and the result for ŜP is a combination of

those for SP and S̄P .

6 Characterization by the non-tangential maximal function associated to the
heat semigroup

Theorem 6.1 For every f ∈ L2(Rn)

‖Sh f ‖L1(Rn) ≤ C‖Nh f ‖L1(Rn). (6.1)

123



Hardy and BMO spaces 75

Proof The idea of the proof is based on the analogous argument for the maximal and
square functions associated to the Poisson semigroup for the Laplacian that appeared
in [17], with some technical modifications owing to the parabolic nature of the heat
semigroup. Similar ideas have also been used in [8].

To begin, notice that the argument of Lemma 5.4 also provides the estimate

‖Sh f ‖L1(Rn) ≤ C‖S̃h f ‖L1(Rn), (6.2)

for S̃h = S̃1
h , where

S̃β
h f (x) :=

⎛
⎜⎝
∫ ∫

�β(x)

∣∣∣t∇e−t2 L f (y)

∣∣∣2 dydt

tn+1

⎞
⎟⎠

1/2

, f ∈ L2(Rn), x ∈ R
n . (6.3)

Therefore, it is enough to prove (6.1) with S̃h in place of Sh . Also, recall the definition
of truncated cone (5.24) and denote

S̃ε,R,β
h f (x) :=

⎛
⎜⎝
∫ ∫

�ε,R,β (x)

∣∣∣t∇e−t2 L f (y)

∣∣∣2 dydt

tn+1

⎞
⎟⎠

1/2

, f ∈ L2(Rn), x ∈ R
n . (6.4)

In what follows we will work with S̃ε,R,β
h rather than S̃β

h and then pass to the limit
as ε → 0, R → ∞, all constants in estimates will not depend on ε and R unless
explicitly stated.

Consider the non-tangential maximal function

N β
h f (x) := sup

(y,t)∈�β(x)

⎛
⎜⎝ 1

(βt)n

∫

B(y,βt)

∣∣∣e−t2 L f (z)
∣∣∣2 dz

⎞
⎟⎠

1/2

, f ∈ L2(Rn), (6.5)

where �β(x), x ∈ R
n , β > 0, is the cone of aperture β. Let us introduce the following

sets:

E := {x ∈ R
n : N β

h f (x) ≤ σ }, σ ∈ R, (6.6)

where β is some fixed constant to be determined later, and

E∗ :=
{

x ∈ R
n : for every B(x), ball in R

n centered at x,
|E ∩ B(x)|

|B(x)| ≥ 1

2

}
, (6.7)

the set of points having global 1/2 density with respect to E . Also,

B := cE, B∗ := cE∗. (6.8)
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Finally, denote

Rε,R,β(E∗) :=
⋃

x∈E∗
�ε,R,β(x), (6.9)

Bε,R,β(E∗)—the boundary of Rε,R,β(E∗), (6.10)

and

u(y, t) := e−t2 L f (y), t ∈ (0,∞), y ∈ R
n . (6.11)

It is not hard to see that

∫

E∗

(
S̃ 2ε,R,1/2

h f (x)
)2

dx ≤
∫

E∗

(
S̃αε,αR,1/α

h f (x)
)2

dx

≤ C
∫ ∫

Rαε,αR,1/α(E∗)

t |∇u(y, t)|2 dydt, ∀α ∈ (1, 2),

(6.12)

by Lemma 2.1. Going further,

∫ ∫

Rαε,αR,1/α(E∗)

t |∇u(y, t)|2 dydt =
∫ ∫

Rαε,αR,1/α(E∗)

t∇u(y, t) · ∇u(y, t) dydt

≤ C	e
∫ ∫

Rαε,αR,1/α(E∗)

[
t A(y)∇u(y, t) · ∇u(y, t)+∇u(y, t) · t A(y)∇u(y, t)

]
dydt,

(6.13)

using the ellipticity of A. Now we integrate by parts to bound (6.13) by

C	e
∫ ∫

Rαε,αR,1/α(E∗)

[
− t divA(y)∇u(y, t)u(y, t) − u(y, t)t divA(y)∇u(y, t)

]
dydt

+C	e
∫

Bαε,αR,1/α(E∗)

[
t A(y)∇u(y, t)·νy(y, t)u(y, t)

+u(y, t)νy(y, t) · t A(y)∇u(y, t)
]

dσy,t ,

where νy(y, t), y ∈ R
n , t ∈ R, is the projection of normal vector to Bαε,αR,1/α(E∗) on

R
n (similarly, νt will denote projection on R). However, u given by (6.11) is a solution

of system ∂t u = −2t divA∇u, and hence the first integral above can be represented
modulo multiplicative constant as

123



Hardy and BMO spaces 77

∫ ∫

Rαε,αR,1/α(E∗)

[
∂t u(y, t) · u(y, t) + u(y, t) · ∂t u(y, t)

]
dydt

=
∫ ∫

Rαε,αR,1/α(E∗)

∂t |u(y, t)|2 dydt =
∫

Bαε,αR,1/α(E∗)

|u(y, t)|2νt (y, t) dσy,t .

(6.14)

Combining (6.13) and (6.14), one can write

2∫

1

∫ ∫

Rαε,αR,1/α(E∗)

t |∇u(y, t)|2 dydt dα

≤ C

2∫

1

∫

Bαε,αR,1/α(E∗)

t |∇u(y, t)| |u(y, t)|dσy,t dα

+ C

2∫

1

∫

Bαε,αR,1/α(E∗)

|u(y, t)|2 dσy,t dα

≤ C
∫ ∫

B̃ε,R(E∗)

|∇u(y, t)| |u(y, t)| dydt + C
∫ ∫

B̃ε,R(E∗)

|u(y, t)|2 dydt

t

≤ C

⎛
⎜⎝
∫ ∫

B̃ε,R(E∗)

t |∇u(y, t)|2 dydt

⎞
⎟⎠

1/2 ⎛
⎜⎝
∫ ∫

B̃ε,R(E∗)

|u(y, t)|2 dydt

t

⎞
⎟⎠

1/2

+ C
∫ ∫

B̃ε,R(E∗)

|u(y, t)|2 dydt

t
(6.15)

where

B̃ε,R(E∗) :={(x, t) ∈ R
n ×(0,∞) : (x, t) ∈ Bαε,αR,1/α(E∗) for some 1 < α < 2}.

(6.16)

Consider the following three regions:

B̃ε(E∗) := {(x, t) ∈ R
n × (ε, 2ε) : dist(x, E∗) < t}, (6.17)

B̃R(E∗) := {(x, t) ∈ R
n × (R, 2R) : dist(x, E∗) < t}, (6.18)

B̃′(E∗) := {(x, t) ∈ B∗ × (ε, 2R) : dist(x, E∗) < t < 2 dist(x, E∗)}, (6.19)
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and observe that

B̃ε,R(E∗) ⊂ B̃ε(E∗) ∪ B̃R(E∗) ∪ B̃′(E∗). (6.20)

Below we will analyze separately the parts of integrals in (6.15) corresponding to the
regions (6.17)–(6.19).

Let us start with

I ε
1 :=

∫ ∫

B̃ε(E∗)

|u(y, t)|2 dydt

t
. (6.21)

For every (y, t) ∈ B̃ε(E∗) there exists y∗ ∈ E∗ such that y∗ ∈ B(y, t). By definition of
E∗ this implies that |E ∩ B(y∗, t)| ≥ C |B(y∗, t)| and therefore |E ∩ B(y, 2t)| ≥ Ctn .
Then

I ε
1 ≤ C

∫ ∫

B̃ε(E∗)

∫

E∩B(y,2t)

|u(y, t)|2 dz
dydt

tn+1

≤ C

2ε∫

ε

∫

E

⎛
⎜⎝ 1

tn

∫

B(z,2t)

|u(y, t)|2 dy

⎞
⎟⎠ dz

dt

t

≤ C

2ε∫

ε

∫

E

∣∣∣N β
h f (z)

∣∣∣2 dz
dt

t
≤ C

∫

E

∣∣∣N β
h f (z)

∣∣∣2 dz, (6.22)

for every β ≥ 2.
Using similar ideas,

I ε
2 :=

∫ ∫

B̃ε(E∗)

t |∇u(y, t)|2 dydt ≤ C

2ε∫

ε

∫

E

⎛
⎜⎝ 1

tn−2

∫

B(z,2t)

|∇u(y, t)|2 dy

⎞
⎟⎠ dz

dt

t
.

(6.23)

Recall now parabolic Caccioppoli inequality (2.15). By definition u(y, t) = e−t2 L

f (y), therefore, making the change of variables in (2.15), one can see that

t0∫

t0−cr

∫

B(x0,r)

t |∇u(x, t)|2 dxdt ≤ C

r2

t0∫

t0−2cr

∫

B(x0,2r)

t |u(x, t)|2 dxdt, (6.24)

for every x0 ∈ R
n , r > 0, t0 > 2cr . Here c > 0 and the constant C depends on c.

Next, we divide the integral in t ∈ (ε, 2ε) from (6.21) into integrals over (ε, 3ε/2) and
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(3ε/2, 2ε), and apply (6.24) with t0 = 2ε and t0 = 3ε/2, r = 2ε, c = 1/4 to obtain
the bound

I ε
2 ≤ C

2ε∫

ε/2

∫

E

⎛
⎜⎝ 1

tn

∫

B(z,8ε)

|u(y, t)|2 dy

⎞
⎟⎠ dz

dt

t

≤ C

2ε∫

ε/2

∫

E

⎛
⎜⎝ 1

tn

∫

B(z,16t)

|u(y, t)|2 dy

⎞
⎟⎠ dz

dt

t
≤ C

∫

E

|N β
h f (z)|2 dz, (6.25)

where β ≥ 16.
Observe that the same argument applies to estimates

∫ ∫

B̃R(E∗)

|u(y, t)|2 dydt

t
≤ C

∫

E

|N β
h f (z)|2 dz, (6.26)

∫ ∫

B̃R(E∗)

t |∇u(y, t)|2 dydt ≤ C
∫

E

|N β
h f (z)|2 dz, (6.27)

with β ≥ 16.
To control the integral over B̃′(E∗), we first decompose B∗ into a family of Whit-

ney balls, {B(xk, rk)}∞k=0, such that ∪∞
k=0 B(xk, rk) = B∗, c1 dist(xk, E∗) ≤ rk ≤

c2 dist(xk, E∗), and every point x ∈ B∗ belongs at most to c3 balls, 0 < c1 < c2 < 1
and c3 ∈ N are some fixed constants, independent of B∗ [13,24]. Then

I ′
1 :=

∫ ∫

B̃′(E∗)

|u(y, t)|2 dydt

t
≤

∞∑
k=0

2rk (1/c1+1)∫

rk (1/c2−1)

∫

B(xk ,rk )

|u(y, t)|2 dydt

t

≤ C
∞∑

k=0

rn
k

2rk (1/c1+1)∫

rk (1/c2−1)

⎡
⎢⎢⎣

1

tn

∫

B(xk ,
c2

1−c2
t)

|u(y, t)|2dy

⎤
⎥⎥⎦

dt

t
. (6.28)

On the other side, E∗ ⊂ E , hence, dist(xk, E) ≤ dist(xk, E∗) ≤ c2
(1−c2)c1

t and the
expression in brackets above can be majorized by the square of non-tangential maximal
function N β f (z) for some z ∈ E and β ≥ c2

(1−c2)c1
. Hence,

I ′
1 ≤ C

∞∑
k=0

rn
k

(
sup
z∈E

N β
h f (z)

)2

≤ C |B∗|
(

sup
z∈E

N β
h f (z)

)2

. (6.29)

123



80 S. Hofmann, S. Mayboroda

Similarly to (6.28) and (6.29) we can prove that there exists C0 = C0(c1, c2) > 0
such that

I ′
2 :=

∫ ∫

B̃′(E∗)

t |∇u(y, t)|2 dydt ≤ C |B∗|
(

sup
z∈E

N β
h f (z)

)2

, (6.30)

for β ≥ C0, using (6.24) to control the gradient of u.
Let us choose now

β := max

{
16,

c2

(1 − c2)c1
, C0

}
(6.31)

in (6.6). Then

I ′
1 ≤ Cσ 2|B∗| and I ′

2 ≤ Cσ 2|B∗|. (6.32)

Combining all the estimates above allows us to write

∫

E∗

(
S̃2ε,R,1/2

h f (x)
)2

dx ≤ Cσ 2|B∗| + C
∫

E

|N β
h f (z)|2dz, (6.33)

and therefore, passing to the limit as ε → 0 and R → ∞,

∫

E∗

(
S̃1/2

h f (x)
)2

dx ≤ Cσ 2|B∗| + C
∫

E

|N β
h f (z)|2dz. (6.34)

Denote by λN β
h f

the distribution function of N β
h f and recall that N β

h ≤ σ on E .

Then

∫

E∗

(
S̃1/2

h f (x)
)2

dx ≤ Cσ 2λN β
h f

(σ ) + C

σ∫

0

tλN β
h f

(t)dt, (6.35)

since |B∗| ≤ C |B| ≤ CλN β
h f

(σ ). Next,

λ
S̃1/2

h f
(σ ) ≤

∣∣∣
{

x ∈ E∗ : S̃1/2
h f (x) > σ

}∣∣∣+ |c E∗|

≤ C
1

σ 2

∫

E∗

(
S̃1/2

h f (x)
)2

dx + CλN β
h f

(σ )

≤ C
1

σ 2

σ∫

0

tλN β
h f

(t) dt + CλN β
h f

(σ ), (6.36)
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and therefore,

‖S̃1/2
h f ‖L1(Rn) =

∞∫

0

λ
S̃1/2

h f
(σ ) dσ ≤ C‖N β

h f ‖L1(Rn), (6.37)

for β as in (6.31). In view of Lemma 2.2 and (6.2) the theorem is proved modulo the
result we present below. ��

Lemma 6.2 For all f ∈ L2(Rn) and β ≥ 1

‖N β
h f ‖L1(Rn) ≤ Cβn‖N 1

h f ‖L1(Rn). (6.38)

Proof Fix σ ∈ (0,∞) and consider the following sets:

Eσ := {x ∈ R
n : N 1

h f (x) > σ } and E∗
σ := {x ∈ R

n : M(χEσ )(x) > C/βn}.
(6.39)

It is not hard to see that |E∗
σ | ≤ Cβn|Eσ |.

Assume now that x �∈ E∗
σ . Then B(y, t) �⊂ Eσ for every (y, t) ∈ �2β(x). Indeed, if

B(y, t) ⊂ Eσ , then

M(χEσ )(x) > C
|B(y, t)|

|B(x, 2βt)| ≥ C/βn, (6.40)

which implies x ∈ E∗
σ .

Therefore, there exists z ∈ B(y, t) such that N 1
h f (z) ≤ σ , in particular,

⎛
⎜⎝ 1

tn

∫

B(y,t)

|e−t2 L f (z)|2 dz

⎞
⎟⎠

1/2

≤ σ. (6.41)

Recall that the above inequality holds for all (y, t) ∈ �2β(x). Now for every w ∈
B(x, βt) one can cover B(w, βt) by Cβn balls B(yi , t), where yi ∈ �2β(x), to prove
that

1

(βt)n

∫

B(w,βt)

|e−t2 L f (z)|2 dz ≤ C

βn

∑
i

1

tn

∫

B(yi ,t)

|e−t2 L f (z)|2 dz ≤ Cσ 2, (6.42)

hence,

N β
h f (x) ≤ Cσ for every x �∈ E∗

σ . (6.43)
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Having this at hand, we simply write

‖N β
h f ‖L1(Rn) ≤ C

∞∫

0

∣∣∣{x ∈ R
n : N β

h f > Cσ }
∣∣∣ dσ

≤ C

∞∫

0

|E∗
σ |dσ ≤ C

∞∫

0

βn|Eσ |dσ ≤ Cβn‖N 1
h f ‖L1(Rn), (6.44)

and finish the argument. ��
Theorem 6.3 Let ε > 0 and M > n/4. Then for every representation

∑∞
i=0 λi mi ,

where {mi }∞i=0 is a family of (2, ε, M)-molecules and
∑∞

i=0 |λi | < ∞, the series∑∞
i=0 λi mi converges in H1

Nh
(Rn) and

∥∥∥∥∥
∞∑

i=0

λi mi

∥∥∥∥∥
H1

Nh
(Rn)

≤ C
∞∑

i=0

|λi |. (6.45)

Proof As usual, by Lemma 3.3 we need only establish a uniform L1 bound on mole-
cules. Consider the following modifications of the non-tangential maximal function

N ∗
h f (y) = sup

t>0

⎛
⎜⎝ 1

tn

∫

|x−y|<t

|e−t2 L f (x)|2dx

⎞
⎟⎠

1/2

, (6.46)

N ∗,M
h f (y) = sup

t>0

⎛
⎜⎝ 1

tn

∫

|x−y|<t

|t2M L M e−t2 L f (x)|2dx

⎞
⎟⎠

1/2

, (6.47)

where y ∈ R
n , M ∈ N and f ∈ L2(Rn). Both of the operators above are bounded on

L2(Rn).
Indeed

‖N ∗
h f ‖2

L2(Rn)

≤ C
∫

Rn

⎡
⎢⎣sup

t>0

∞∑
j=0

⎛
⎜⎝ 1

tn

∫

B(y,t)

|e−t2 L( f χS j (B(y,t)))(x)|2dx

⎞
⎟⎠

1/2⎤
⎥⎦

2

dy

≤ C
∫

Rn

⎡
⎣sup

t>0

∞∑
j=0

1

tn/p
e
− dist (B(y,t),S j (B(y,t)))2

ct2 ‖ f ‖L p(S j (B(y,t)))

⎤
⎦

2

dy,

(6.48)
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for every pL < p ≤ 2 by L p − L2 off-diagonal estimates. Therefore, for every ε > 0
and p < 2 as above

‖N ∗
h f ‖2

L2(Rn)
≤ C

∫

Rn

⎡
⎣sup

t>0

∞∑
j=0

1

tn/p
2− j (n/p+ε)‖ f ‖L p(S j (B(y,t)))

⎤
⎦

2

dy

≤ C
∫

Rn

[M(| f |p)(y)
]2/p

dy ≤ C
∫

Rn

| f (y)|2 dy, (6.49)

using L2/p(Rn) boundedness of the Hardy–Littlewood maximal function.
Along the same lines we can prove L2 boundedness of the function N ∗,M

h .
On the other side, by Lemma 6.2

‖Nh f ‖L1(Rn) ≤ C‖N 1/2
h f ‖L1(Rn) ≤ C‖N ∗

h f ‖L1(Rn), (6.50)

and therefore, by Lemma 3.3, it is enough to show that

‖N ∗
h m‖L1(Rn) ≤ C (6.51)

for every m a (2, ε, M)-molecule associated to some cube Q.
To this end, we use the annular decomposition of R

n along with Hölder’s inequality
to write

‖N ∗
h m‖L1(Rn) ≤ C

∞∑
j=0

(2 j l(Q))n/2‖N ∗
h m‖L2(S j (Q))

≤ C
10∑
j=0

(2 j l(Q))n/2‖N ∗
h m‖L2(S j (Q))

+ C
∞∑

j=10

(2 j l(Q))n/2‖N ∗
h m‖L2(S j (Q)). (6.52)

The finite sum above is bounded by some constant in view of L2(Rn) boundedness of
N ∗

h and (1.9) condition on molecules.
To handle the second sum in (6.52), we fix some number 0 < a < 1 such that

n/2 − 2aM < 0 and split N ∗
h m according to whether t ≤ c 2aj l(Q) or t ≥ c 2aj l(Q).

Consider the former case first. Set

U j (Q) :=2 j+3 Q\2 j−3 Q, R j (Q) :=2 j+5 Q\2 j−5 Q, and E j (Q) =c R j (Q),

(6.53)

for every j ≥ 10 and split m = mχR j (Q) + mχE j (Q).
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For x ∈ S j (Q), |x − y| < t and t ≤ c 2aj l(Q) we have y ∈ U j (Q). Moreover,
dist(U j (Q), E j (Q)) ≈ C2 j l(Q). Then the Gaffney estimates (Lemma 2.4) guarantee
that for every such t , y ∈ R

n , a < 1 and N ∈ N

⎛
⎜⎝ 1

tn

∫

|x−y|<t

∣∣∣e−t2 L(mχE j (Q))(x)

∣∣∣2 dx

⎞
⎟⎠

1/2

≤ C

tn/2 e
− (2 j l(Q))2

ct2 ‖m‖L2(E j (Q)) ≤ C

tn/2

(
t

2 j l(Q)

)N

‖m‖L2(Rn), (6.54)

so that

∞∑
j=10

(2 j l(Q))n/2

∥∥∥∥∥∥∥
sup

t≤c 2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−·| <t

∣∣∣e−t2 L(mχE j (Q))(x)

∣∣∣2 dx

⎞
⎟⎠

1/2∥∥∥∥∥∥∥
L2(S j (Q))

≤
∞∑

j=10

2 j (1−a)(n/2−N ) ≤ C, (6.55)

when N > n/2.
As for the contribution of mχR j (Q), by L2 boundedness of N ∗

h we have

∞∑
j=10

(2 j l(Q))n/2‖N ∗
h (mχR j (Q))‖L2(S j (Q))

≤ C
∞∑

j=10

(2 j l(Q))n/2‖mχR j (Q)‖L2(R j (Q)) ≤ C
∞∑

j=10

2− jε ≤ C. (6.56)

Now we consider the case t ≥ c 2aj l(Q). For every y ∈ R
n

sup
t≥c2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−y|<t

|e−t2 Lm(x)|2dx

⎞
⎟⎠

1/2

= sup
t≥c 2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−y|<t

∣∣∣(t2M L M e−t2 L)(t−2M L−M m)(x)

∣∣∣2 dx

⎞
⎟⎠

1/2

≤ C2−2aM jN ∗,M
h (l(Q)−2M L−M m)(y), (6.57)

so we use the boundedness of N ∗,M
h on L2(Rn) to finish the argument. ��
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Corollary 6.4 H1
L(Rn) = H1

Nh
(Rn), in particular, ‖ f ‖H1

L (Rn) ≈ ‖Nh f ‖L1(Rn).

Proof The right-to-the-left inclusion is a direct consequence of Theorems 4.1 and 6.1,
the converse follows from Theorem 6.3 and Corollary 4.3. ��

7 Characterization by the non-tangential maximal function associated to the
Poisson semigroup

Theorem 7.1 For every f ∈ L2(Rn)

‖ŜP f ‖L1(Rn) ≤ C‖NP f ‖L1(Rn), (7.1)

where ŜP is the operator defined in (5.30).

Proof We follow the proof in [17] for the case of the Laplacian, and also the proof of
our Theorem 6.1. More precisely, at the step corresponding to (6.11) we assign

u(y, t) := e−t
√

L f (y), t ∈ (0,∞), y ∈ R
n . (7.2)

The analogue of (6.13) and (6.14) can be obtained observing that −divy,t B∇y,t u = 0,
where as before B is the (n + 1) × (n + 1) block diagonal matrix with entries 1 and
A and divy,t is divergence in space and time variables. Concretely, we can write

∫ ∫

Rαε,αR, 1
α (E∗)

t |∇y,t u(y, t)|2 dydt

≤ C	e
∫ ∫

Rαε,αR, 1
α (E∗)

[
− divy,t [t B(y)∇y,t u(y, t)]u(y, t)

− u(y, t)divy,t [t B(y)∇y,t u(y, t)]
]

dydt

+ C	e
∫

Bαε,αR, 1
α (E∗)

[
t B(y)∇y,t u(y, t) · ν(y, t)u(y, t)

+ u(y, t)ν(y, t) · t B(y)∇y,t u(y, t)
]

dσy,t

≤ C	e
∫ ∫

Rαε,αR, 1
α (E∗)

[
−∂t u(y, t) · u(y, t) − u(y, t) · ∂t u(y, t)

]
dydt

+C	e
∫

Bαε,αR, 1
α (E∗)

[
t B(y)∇y,t u(y, t) · ν(y, t)u(y, t)

+ u(y, t)ν(y, t) · t B(y)∇y,t u(y, t)
]

dσy,t ,

so that (6.14) and (6.15) with ∇y,t in place of space gradient holds.
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The rest of the argument is essentially the same as the proof of Theorem 6.1, just
employing elliptic instead of parabolic Caccioppoli inequality. ��

To handle the converse to (7.1), we start with two auxiliary Lemmas.

Lemma 7.2 Define

ḡP f (x) :=
⎛
⎝

∞∫

0

∣∣∣t
√

Le−t
√

L f (x)

∣∣∣2 dt

t

⎞
⎠

1/2

. (7.3)

Then

ḡP f (x) ≤ Cgh f (x), x ∈ R
n, (7.4)

for every f ∈ L2(Rn).

Proof By subordination formula (5.2) and Minkowski inequality

ḡP f (x) =
⎛
⎝

∞∫

0

∣∣∣t∂t e
−t

√
L f (x)

∣∣∣2 dt

t

⎞
⎠

1/2

≤ C

∞∫

0

e−u

√
u

⎛
⎝

∞∫

0

∣∣∣∣t∂t e
− t2 L

4u f (x)

∣∣∣∣
2 dt

t

⎞
⎠

1/2

du. (7.5)

After the change of variables t �→ s = t2

4u , s ∈ (0,∞), dt
t = ds

2s , the expression above
can be written as

C

∞∫

0

e−u

√
u

⎛
⎝

∞∫

0

|sLe−sL f (x)|2 ds

s

⎞
⎠

1/2

du ≤ Cgh(x), (7.6)

as desired. ��
Lemma 7.3 Define

gaux
P f (x) :=

⎛
⎝

∞∫

0

∣∣∣(e−t
√

L − e−t2 L) f (x)

∣∣∣2 dt

t

⎞
⎠

1/2

. (7.7)

Then

gaux
P f (x) ≤ Cgh f (x), x ∈ R

n, (7.8)

for every f ∈ L2(Rn).
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Proof By the subordination formula (5.2)

gaux
P f (x) = C

⎛
⎜⎝

∞∫

0

∣∣∣∣∣∣

∞∫

0

e−u

√
u

(e− t2 L
4u − e−t2 L) f (x) du

∣∣∣∣∣∣

2
dt

t

⎞
⎟⎠

1/2

= C

⎛
⎜⎜⎝

∞∫

0

∣∣∣∣∣∣∣

∞∫

0

e−u

√
u

t/
√

4u∫

t

2r Le−r2 L f (x) drdu

∣∣∣∣∣∣∣

2

dt

t

⎞
⎟⎟⎠

1/2

. (7.9)

We now split the integral in u according to whether u < 1/4 or u > 1/4. In the first
case,

∣∣∣∣∣∣∣

1/4∫

0

e−u

√
u

t/
√

4u∫

t

2r Le−r2 L f (x) drdu

∣∣∣∣∣∣∣
≤

∞∫

t

∣∣∣∣∣∣∣

t2/(4r2)∫

0

e−u

√
u

du

∣∣∣∣∣∣∣
|2r Le−r2 L f (x)| dr

≤
∞∫

t

∣∣∣t Le−r2 L f (x)

∣∣∣ dr. (7.10)

As for the second part,

∣∣∣∣∣∣∣

∞∫

1/4

e−u

√
u

t∫

t/
√

4u

2r Le−r2 L f (x) drdu

∣∣∣∣∣∣∣
=

t∫

0

∣∣∣∣∣∣∣

∞∫

t2/(4r2)

e−u

√
u

du

∣∣∣∣∣∣∣
|2r Le−r2 L f (x)| dr

≤ C

t∫

0

∣∣∣(r2/t) Le−r2 L f (x)

∣∣∣ dr. (7.11)

Inserting the results into (7.9), we get

gaux
P f (x) ≤ C

⎛
⎜⎝

∞∫

0

t2

⎛
⎝

∞∫

t

|r Le−r2 L f (x)| dr

r

⎞
⎠

2
dt

t

⎞
⎟⎠

1/2

+ C

⎛
⎜⎝

∞∫

0

1

t2

⎛
⎝

t∫

0

|r2Le−r2 L f (x)| dr

⎞
⎠

2

dt

t

⎞
⎟⎠

1/2
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≤ C

⎛
⎝

∞∫

0

∞∫

t

|r Le−r2 L f (x)|2 drdt

⎞
⎠

1/2

+ C

⎛
⎝

∞∫

0

t∫

0

|r2Le−r2 L f (x)|2 dr
dt

t2

⎞
⎠

1/2

≤ C

⎛
⎝

∞∫

0

|r2Le−r2 L f (x)|2 dr

r

⎞
⎠

1/2

= Cgh f (x).

This finishes the argument. ��

Theorem 7.4 Let ε > 0 and M > n/4. Then for every representation
∑∞

i=0 λi mi ,
where {mi }∞i=0 is a family of (2, ε, M)-molecules and

∑∞
i=0 |λi | < ∞, the series∑∞

i=0 λi mi converges in H1
NP

(Rn) and

∥∥∥∥∥
∞∑

i=0

λi mi

∥∥∥∥∥
H1

NP
(Rn)

≤ C
∞∑

i=0

|λi |. (7.12)

Proof Let 2 < p < p̃L , ε > 0, M > n
4 . Similarly to Theorem 6.3, it is enough to

prove that

‖N ∗
P m‖L1(Rn) ≤ C, (7.13)

for every (p, ε, M)-molecule m, where

N ∗
P f (x) := sup

t>0

⎛
⎜⎝1

tn

∫

|x−y|<t

∣∣∣e−t
√

L f (y)

∣∣∣2 dy

⎞
⎟⎠

1/2

, x ∈ R
n, f ∈ L2(Rn). (7.14)

To this end, by the standard dyadic annular decomposition and Hölder’s inequality, it
will suffice to establish the estimate

‖N ∗
P m‖L p(S j (Q)) ≤ C(2 j l(Q))

n
(

1
p −1

)
2− jγ , j ∈ N ∪ {0}, (7.15)

where Q is a cube associated to the molecule m and γ is some fixed positive number.
Fix some a such that n

( n
2 + 2M

)−1
< a < 1. Then

123



Hardy and BMO spaces 89

∥∥∥∥∥∥∥
sup

t≥2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

|e−t
√

Lm(y)|2dy

⎞
⎟⎠

1/2∥∥∥∥∥∥∥
L p(S j (Q))

=

∥∥∥∥∥∥∥∥
sup

t≥2aj l(Q)

(
l(Q)

t

)2M

⎛
⎜⎝1

tn

∫

|·−y|<t

∣∣∣(t2L)M e−t
√

L(l(Q)2L)−M m(y)

∣∣∣2 dy

⎞
⎟⎠

1
2

∥∥∥∥∥∥∥∥
L p(S j (Q))

≤ C

(
1

2aj

)2M ( 1

2aj l(Q)

)n/2

×

∥∥∥∥∥∥∥
sup
t>0

⎛
⎝
∫

Rn

|(t2L)M e−t
√

L(l(Q)2L)−M m(y)|2dy

⎞
⎠

1/2
∥∥∥∥∥∥∥

L p(S j (Q))

.

Resting on Lemma 5.1, one can prove that for M > n/4 the family of operators
(t2L)M e−t

√
L is uniformly bounded in L2(Rn). Also,

‖(l(Q)2L)−M m‖L2(Rn) ≤ C |Q|−1/2, j ∈ N, (7.16)

by the definition of molecule and Hölder’s inequality. Then

∥∥∥∥∥∥∥
sup

t≥2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

|e−t
√

Lm(y)|2dy

⎞
⎟⎠

1/2∥∥∥∥∥∥∥
L p(S j (Q))

≤ C2aj (−2M−n/2)2 jn/pl(Q)n/p−n = C(2 j l(Q))
n
(

1
p −1

)
2− jε1 , (7.17)

for ε1 = a(2M + n/2) − n > 0 by the assumptions on a.
Turning to the case t ≤ 2aj l(Q), we follow a suggestion of P. Auscher, and split

sup
t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−y|<t

|e−t
√

Lm(y)|2dy

⎞
⎟⎠

1/2

≤ sup
t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−y|<t

|(e−t
√

L − e−t2 L)m(y)|2dy

⎞
⎟⎠

1/2

+ Nhm(x). (7.18)

We remark that Auscher has observed [2] that this splitting yields L2 boundedness of
NP ; a similar idea has appeared previously in the work of Stein [26]. An argument
similar to the proof of Theorem 6.3 shows that Nhm satisfies the desired estimate, so
we will concentrate on the first term on the right hand side of (7.18). Observe that
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t
∣∣∣(e−t

√
L − e−t2 L)m(y)

∣∣∣2

=
∣∣∣∣∣∣

t∫

0

∂s

(
s1/2(e−s

√
L − e−s2 L)m(y)

)
ds

∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣

t∫

0

s1/2∂s(e
−s

√
L − e−s2 L)m(y) ds + 1

2

t∫

0

s−1/2(e−s
√

L − e−s2 L)m(y) ds

∣∣∣∣∣∣

2

≤ Ct

⎛
⎝

t∫

0

∣∣∣(e−s
√

L − e−s2 L)m(y)

∣∣∣2 ds

s

+
t∫

0

∣∣∣s
√

Le−s
√

Lm(y)

∣∣∣2 ds

s
+

t∫

0

∣∣∣s2Le−s2 Lm(y)

∣∣∣2 ds

s

⎞
⎠ . (7.19)

Given Lemmas 7.2 and 7.3, this allows to control the first term in (7.18) by

sup
t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−y|<t

∞∫

0

|s2Le−s2 Lm(y)|2 ds

s
dy

⎞
⎟⎠

1/2

, x ∈ R
n . (7.20)

Much as for t ≥ 2aj l(Q), we have

sup
t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|x−y|<t

∞∫

2aj l(Q)

∣∣∣s2Le−s2 Lm(y)

∣∣∣2 ds

s
dy

⎞
⎟⎠

1/2

≤
⎛
⎜⎝M

⎛
⎜⎝

∞∫

2aj l(Q)

(
l(Q)

s

)4M ∣∣∣(s2L)M e−s2 L(l(Q)2L)−M m(y)

∣∣∣2 ds

s

⎞
⎟⎠ (x)

⎞
⎟⎠

1/2

,

(7.21)

where M denotes the Hardy–Littlewood maximal operator. Thus,

∥∥∥∥∥∥∥
sup

t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

∞∫

2aj l(Q)

∣∣∣s2Le−s2 Lm(y)

∣∣∣2 ds

s
dy

⎞
⎟⎠

1/2∥∥∥∥∥∥∥
L p(S j (Q))

≤ C

⎛
⎜⎝

∞∫

2aj l(Q)

(
l(Q)

s

)4M
⎛
⎝
∫

Rn

∣∣∣(s2L)M e−s2 L(l(Q)2L)−M m(x)

∣∣∣p dx

⎞
⎠

2/p

ds

s

⎞
⎟⎠

1/2
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≤ C

⎛
⎜⎝

∞∫

2aj l(Q)

(
l(Q)

s

)4M

s
−2
(

n
2 − n

p

)
ds

s

⎞
⎟⎠

1/2

‖(l(Q)2L)−M m‖L2(Rn)

≤ C2aj (−2M−n/2+n/p)l(Q)
n
(

1
p −1

)
= C(2 j l(Q))

n
(

1
p −1

)
2− jε2 , (7.22)

where ε2 = a(2M + n/2) − n + (1 − a)n/p > ε1 > 0 by our assumptions on a.
It remains to estimate

∥∥∥∥∥∥∥∥
sup

t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

2aj l(Q)∫

0

∣∣∣s2 Le−s2 Lm(y)

∣∣∣2 ds

s
dy

⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥

L p(S j (Q))

. (7.23)

Consider first the case j ≥ 10. Observe that for x ∈ S j (Q), j ≥ 10, and |x − y| < t
we have y ∈ U j (Q), a slightly fattened version of S j (Q) (see (6.53)). Then, in the
notation of (6.53),

∥∥∥∥∥∥∥∥
sup

t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

2aj l(Q)∫

0

|s2Le−s2 L(mχR j (Q))(y)|2 ds

s
dy

⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥

L p(S j (Q))

≤ C

∥∥∥∥∥∥∥∥

⎛
⎜⎝M

⎛
⎜⎝

2aj l(Q)∫

0

|s2Le−s2 L(mχR j (Q))|2 ds

s

⎞
⎟⎠

⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥

L p(S j (Q))

≤ C
∥∥gh(mχR j (Q))

∥∥
L p(Rn)

≤ C ‖m‖L p(R j (Q)) ≤ C(2 j l(Q))
n
(

1
p −1

)
2− jε,

(7.24)

where the next-to-the-last inequality follows from L p-boundedness of gh for pL <

p < p̃L [3] and the last inequality follows from the definition of molecule. On the
other hand,

∥∥∥∥∥∥∥∥
sup

t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

2aj l(Q)∫

0

∣∣∣s2Le−s2 L(mχE j (Q))(y)

∣∣∣2 ds

s
dy

⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥

L p(S j (Q))

≤ C

∥∥∥∥∥∥∥∥

⎛
⎜⎝M

⎛
⎜⎝χU j (Q)

2aj l(Q)∫

0

∣∣∣s2Le−s2 L(mχE j (Q))

∣∣∣2 ds

s

⎞
⎟⎠

⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥

L p(S j (Q))
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≤ C

⎛
⎜⎝

2aj l(Q)∫

0

∥∥∥s2Le−s2 L(mχE j (Q))

∥∥∥2

L p(U j (Q))

ds

s

⎞
⎟⎠

1/2

≤ C2(a−1) j N ‖m‖L p(Rn),

where N is any natural number and the last inequality follows from the Gaffney
estimates. Clearly, we can take N large enough to bound the expression above by

C(2 j l(Q))
n
(

1
p −1

)
2− jε .

Finally, in the case j ≤ 10 following (7.24) we show

∥∥∥∥∥∥∥∥
sup

t≤2aj l(Q)

⎛
⎜⎝ 1

tn

∫

|·−y|<t

2aj l(Q)∫

0

|s2Le−s2 Lm(y)|2 ds

s
dy

⎞
⎟⎠

1/2
∥∥∥∥∥∥∥∥

L p(S j (Q))

≤ C ‖ghm‖L p(Rn) ≤ C ‖m‖L p(Rn) ≤ Cl(Q)
n
(

1
p −1

)
, (7.25)

as desired.
Collecting all the terms, we arrive at (7.15) with γ = min{ε1, ε}. ��

Corollary 7.5 H1
L(Rn) = H1

NP
(Rn), in particular, ‖ f ‖H1

L (Rn) ≈ ‖NP f ‖L1(Rn).

Proof The Corollary follows from Theorems 7.1, 7.4 and 5.6. ��

8 BM OL(Rn): duality with Hardy spaces

We start with an auxiliary lemma that gives an equivalent characterization of
B M OL(Rn) using the resolvent in place of the heat semigroup. In the sequel we shall
frequently use the characterization below as the definition of B M OL(Rn) without
additional comments. In addition, by the results of Sect. 4, we are at liberty to choose
the molecular parameters ε > 0 and M > n/4 at our convenience. In the sequel, we
shall use this fact without further comment.

Lemma 8.1 An element f ∈ ∩ε>0(M
2,ε,M
0 (L∗))∗ ≡ (M2,M

0 (L∗))∗ belongs to
B M OL(Rn) if and only if

sup
Q⊂Rn

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣(I − (1 + l(Q)2L)−1)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

< ∞, (8.1)

where M > n/4 and Q stands for a cube in R
n.

Proof For brevity in this proof we shall distinguish (8.1) as ‖ f ‖B M Ores
L (Rn). In the

rest of the paper both the norm based on the heat semigroup and the one based on the
resolvent will be denoted by ‖ f ‖B M OL (Rn).
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Step I. Let us start with the “≤” inequality. To this end, we split

f =
(

I − (1 + l(Q)2L)−1
)M

f +
[

I −
(

I − (1 + l(Q)2L)−1
)M
]

f. (8.2)

For every Q ⊂ R
n

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣(I − e−l(Q)2 L)M (I − (1 + l(Q)2L)−1)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

≤ C
M∑

k=0

∞∑
j=0

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣e−kl(Q)2 L
[
χS j (Q)(I − (1 + l(Q)2L)−1)M f

]
(x)

∣∣∣2 dx

⎞
⎟⎠

1/2

≤ C‖ f ‖B M Ores
L (Rn)

+C
∞∑
j=2

e
− (2 j l(Q))2

cl(Q)2

⎛
⎜⎝ 1

|Q|
∫

S j (Q)

∣∣∣(I − (1 + l(Q)2L)−1)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

, (8.3)

where we used Lemmas 2.3, 2.4 for the second inequality. Now one can cover S j (Q)

by approximately 2 jn cubes of the sidelength l(Q), this allows to bound the second
term in the expression above by

C
∞∑
j=2

e−c 22 j
2 jn/2 ‖ f ‖B M Ores

L (Rn) ≤ C‖ f ‖B M Ores
L (Rn), (8.4)

as desired.
As for the remaining term, observe that

I − (I − (1 + l(Q)2L)−1)M

(I − (1 + l(Q)2L)−1)M
=
(

I − (1 + l(Q)2L)−1
)−M − I

=
(

1 + l(Q)2L

l(Q)2L

)M

− I

=
(

1 + (l(Q)2L)−1
)M − I

=
M∑

k=1

M !
(M − k)! k! (l(Q)2L)−k, (8.5)

and therefore,
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⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣(I − e−l(Q)2 L)M [I − (I − (1 + l(Q)2L)−1)M ] f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

≤ C
M∑

k=1

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣∣∣∣∣
(I − e−l(Q)2 L)M−k

⎛
⎝−

l(Q)∫

0

∂τ e−τ 2 L dτ

⎞
⎠

k

(l(Q)2L)−k

×(I − (1 + l(Q)2L)−1)M f (x)

∣∣∣∣∣∣

2

dx

⎞
⎟⎠

1/2

≤ C
M∑

k=1

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣∣∣∣∣
(I − e−l(Q)2 L)M−k

⎛
⎝

l(Q)∫

0

τ

l(Q)2 e−τ 2 L dτ

⎞
⎠

k

×(I − (1 + l(Q)2L)−1)M f (x)

∣∣∣∣∣∣

2

dx

⎞
⎟⎠

1/2

. (8.6)

Having this at hand, we obtain the required estimate changing the order of integration
above and using the annular decomposition and Gaffney estimates, much as in (8.3)
and (8.4).

Step II. Let us now consider the “≥” part of (8.1). For every x ∈ R
n

f (x) = 2M

⎛
⎜⎝l(Q)−2

√
2l(Q)∫

l(Q)

s ds

⎞
⎟⎠

M

f (x)

= 2M l(Q)−2

√
2l(Q)∫

l(Q)

s1(I − e−s2
1 L)M ds1

⎛
⎜⎝l(Q)−2

√
2l(Q)∫

l(Q)

s ds

⎞
⎟⎠

M−1

f (x)

+
M∑

k=1

Ck,Ml(Q)−2

√
2l(Q)∫

l(Q)

s1e−ks2
1 L ds1

⎛
⎜⎝l(Q)−2

√
2l(Q)∫

l(Q)

s ds

⎞
⎟⎠

M−1

f (x),

(8.7)

where Ck,M ∈ R are some constants depending on k and M only. However, ∂se−ks2 L =
−2kLse−ks2 L and therefore,
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2kL

√
2l(Q)∫

l(Q)

se−ks2 L ds = e−kl(Q)2 L − e−2kl(Q)2 L

= e−kl(Q)2 L(I − e−kl(Q)2 L)

= e−kl(Q)2 L(I − e−l(Q)2 L)

k−1∑
i=0

e−il(Q)2 L . (8.8)

Applying the procedure outlined in (8.7) and (8.8) M times, we arrive at the following
formula

f (x) =
(M+1)M∑

i=1

l(Q)−2M L−Ni

M∏
k=1

C(i, k, M) pi,k f (x), (8.9)

where 0 ≤ Ni ≤ M and for all i, k as above either

pi,k =
√

2l(Q)∫

l(Q)

s(I − e−s2 L)M ds (8.10)

or pi,k is of the form (8.8).
Fix some Q ⊂ R

n and x ∈ Q and consider (I − (1 + l(Q)2L)−1)M f (x) with f
represented in the form (8.9). The negative powers of L can be handled writing

(
I − (1 + l(Q)2L)−1

)Ni
l(Q)−2Ni L−Ni =

(
1 + l(Q)2L

)−Ni
. (8.11)

Then the new expression for (I − (1 + l(Q)2L)−1)M f (x) is a linear combination of
terms, with the property that each term contains

either l(Q)−2

√
2l(Q)∫

l(Q)

s(I − e−s2 L)M ds or (I − e−l(Q)2 L)M , (8.12)

and a finite number of factors (almost) in the form of resolvent or heat semigroup
corresponding to t ≈ l(Q). One can now build an argument similar to Step I, (8.3)
and (8.4), using dyadic annular decomposition and Gaffney estimates, to single out
(I − e−l(Q)2 L)M or (I − e−s2 L)M , s ≈ l(Q), and obtain the desired estimate. We
leave the details to the interested reader. ��
Theorem 8.2 Let f ∈ B M OL∗(Rn) for some M ∈ N. Then the linear functional
given by

l(g) = 〈 f, g〉, (8.13)
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initially defined on the dense subspace of finite linear combinations of (2, ε, M)-
molecules, ε > 0, via the pairing of M2,ε,M

0 with its dual, has a unique bounded
extention to H1

L(Rn) with

‖l‖ ≤ C‖ f ‖B M OL∗ (Rn). (8.14)

Proof Let us prove first that for every (2, ε, M)-molecule m

|〈 f, m〉| ≤ C‖ f ‖B M OL∗ (Rn). (8.15)

By definition, f ∈ (M2,M
0 (L))∗, so in particular (I − (1 + l(Q)2L∗)−1)M f ∈ L2

loc
(see the discussion preceding (1.21)). Thus, we may write

〈 f, m〉 =
∫

Rn

(
I − (1 + l(Q)2L∗)−1

)M
f (x)m(x) dx

+
〈[

I − (I − (1 + l(Q)2L∗)−1)M
]

f, m
〉

=: I1 + I2, (8.16)

where Q is the cube associated to m. Then

|I1| ≤
∞∑
j=0

⎛
⎜⎝

∫

S j (Q)

∣∣∣(I − (1 + l(Q)2L∗)−1)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

×
⎛
⎜⎝

∫

S j (Q)

|m(x)|2 dx

⎞
⎟⎠

1/2

≤
∞∑
j=0

2− jε

⎛
⎜⎝ 1

(2 j l(Q))n

∫

S j (Q)

∣∣∣(I − (1 + l(Q)2L∗)−1)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

≤ C‖ f ‖B M OL∗ (Rn), (8.17)

where we used (1.9) for the second inequality, and the third one follows by covering
S j (Q) by C2 jn cubes of the sidelength l(Q). ��
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To analyze I2 recall (8.5) (with L∗ in place of L), and write

|I2| ≤ C
M∑

k=1

∣∣∣∣∣∣

∫

Rn

(I − (1 + l(Q)2L∗)−1)M f (x) (l(Q)2 L)−km(x) dx

∣∣∣∣∣∣

≤ C
M∑

k=1

∞∑
j=0

⎛
⎜⎝

∫

S j (Q)

∣∣∣(I − (1 + l(Q)2L∗)−1)M f (x)

∣∣∣2 dx

⎞
⎟⎠

1/2

×
⎛
⎜⎝

∫

S j (Q)

|(l(Q)2L)−km(x)|2 dx

⎞
⎟⎠

1/2

. (8.18)

We finish as in (8.17) using (1.10). Thus, (8.15) is now established.
Having at hand (8.15), our goal is to show that for every N ∈ N and for every

g = ∑N
j=0 λ j m j , where {m j }N

j=0 are (2, ε, M ′)-molecules, and M ′ > n/4 is chosen
large enough relative to M , we have

|〈 f, g〉| ≤ C‖g‖H1
L (Rn)‖ f ‖B M OL∗ (Rn). (8.19)

Since the space of finite linear combinations of (2, ε, M ′)-molecules is dense in
H1

L(Rn), the linear functional l will then have a unique bounded extension to H1
L(Rn)

defined in a standard fashion by continuity. We point out that this extension by conti-
nuity depends on having a bound in terms of ‖g‖H1

L (Rn) in (8.19), as opposed to∑N
j=0 |λ j |. The latter bound is immediately obtainable from (8.15) (since in particu-

lar, a (2, ε, M ′)-molecule is a (2, ε, M)-molecule whenever M ′ ≥ M), but may be
much larger than the H1

L norm. To obtain the sharper bound (8.19) will be somew-
hat delicate. In the classical setting, the same issue arises, but may be handled in a
fairly routine fashion by truncating the BMO function so that it may be approxima-
ted in (H1)∗ by bounded functions (see, e.g. [25, pp. 142–143]). This avenue is not
available to us, as we cannot expect that any L∞ truncation will interact well with
our operator L . Instead, we should seek a “truncation” in L p, p ∈ (pL , p̃L). In fact,
approximating by L2 functions will be most convenient, and this is what we shall do.
We note that it is to deal with this difficulty that we have been forced to introduce
the equivalent norm ‖ · ‖H̃1

L
. The reason for our doing so will become apparent in the

sequel.
We shall require some rather extensive preliminaries. In particular, we shall use

the “tent space” approach of Coifman–Meyer–Stein [12]. Let us now recall the basic
theory.
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For some F : R
n+1+ → C, R

n+1+ = R
n × (0,∞), consider the square function

SF := S1 F , where Sα F , α > 0, was defined in (2.6) and

C F(x) := sup
B: x∈B

⎛
⎜⎝ 1

|B|
∫∫

B̂

|F(y, t)|2 dydt

t

⎞
⎟⎠

1/2

, x ∈ R
n, (8.20)

where B stands for a ball in R
n and

B̂ := {(x, t) ∈ R
n × (0,∞) : dist(x, c B) ≥ t}, (8.21)

is the tent region above ball B. Define the tent spaces

T 1(Rn+1+ ) := {F : R
n+1+ −→ C;

‖F‖T 1(Rn+1+ )
:= ‖SF‖L1(Rn) < ∞}, (8.22)

and

T ∞(Rn+1+ ) := {F : R
n+1+ −→ C;

‖F‖T ∞(Rn+1+ )
:= ‖C F‖L∞(Rn) < ∞}, (8.23)

and recall from [12] that (T 1(Rn+1+ ))∗ = T ∞(Rn+1+ ).
We now prove the following analogue of a classical estimate of [17].

Lemma 8.3 The operator

f �→ C
(
(t2L)M e−t2 L f

)

maps B M OL(Rn) → T ∞(Rn+1+ ); i.e.,

sup
B

⎛
⎜⎝ 1

|B|
∫∫

B̂

∣∣∣(t2L)M e−t2 L f (x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C‖ f ‖B M OL (Rn).
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Proof For every cube Q ⊂ R
n

⎛
⎜⎝ 1

|Q|

l(Q)∫

0

∫

Q

∣∣∣(t2L)M e−t2 L f (y)

∣∣∣2 dydt

t

⎞
⎟⎠

1/2

=
⎛
⎜⎝ 1

|Q|

l(Q)∫

0

∫

Q

∣∣∣(t2L)M e−t2 L(I − (1 + l(Q)2L)−1)M f (y)

∣∣∣2 dydt

t

⎞
⎟⎠

1/2

+
⎛
⎜⎝ 1

|Q|

l(Q)∫

0

∫

Q

∣∣∣(t2L)M e−t2 L
[
I − (I − (1 + l(Q)2L)−1)M

]
f (y)

∣∣∣2 dydt

t

⎞
⎟⎠

1/2

=: I1 + I2. (8.24)

Then

I1 ≤
∞∑
j=0

⎛
⎜⎝ 1

|Q|

l(Q)∫

0

∫

Q

∣∣∣(t2L)M e−t2 L
[
χS j (Q)(I −(1 + l(Q)2L)−1)M f

]
(y)

∣∣∣2 dydt

t

⎞
⎟⎠

1/2

≤ 1

|Q|1/2

∥∥∥gM
h

(
χ2Q(I − (1 + l(Q)2L)−1)M f

)∥∥∥
L2(Rn)

+
∞∑
j=2

C

|Q|1/2

⎛
⎝

l(Q)∫

0

e
− (2 j l(Q))2

ct2
dt

t

⎞
⎠

1/2∥∥∥(I − (1 + l(Q)2L)−1)M f
∥∥∥

L2(S j (Q))
,

(8.25)

where

gM
h f (x) :=

⎛
⎝

∞∫

0

|(t2L)M e−t2 L f (x)|2 dt

t

⎞
⎠

1/2

, M ∈ N, x ∈ R
n, (8.26)

is bounded in L2(Rn) according to [1]. Therefore, for every N ∈ N

I1 ≤ C

|Q|1/2

∥∥∥(I − (1 + l(Q)2L)−1)M f
∥∥∥

L2(2Q)

+
∞∑
j=2

2− j N C

(2 j l(Q))n/2

∥∥∥(I − (1 + l(Q)2L)−1)M f
∥∥∥

L2(S j (Q))

≤ C‖ f ‖B M OL (Rn). (8.27)
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To estimate I2 we use (8.5) and write

I2 ≤ C sup
1≤k≤M

⎛
⎜⎝ 1

|Q|

l(Q)∫

0

∫

Q

∣∣∣(t2 L)M e−t2 L (l(Q)2 L)−k(I −(1+l(Q)2 L)−1)M f (y)

∣∣∣2 dydt

t

⎞
⎟⎠

1/2

≤ C sup
1≤k≤M

⎛
⎜⎝ 1

|Q|

l(Q)∫

0

(
t

l(Q)

)2k∫

Q

∣∣∣(t2 L)M−ke−t2 L (I −(1+l(Q)2 L)−1)M f (y)

∣∣∣2 dydt

t

⎞
⎟⎠

1/2

,

the rest of the argument is similar to (8.25)–(8.27). This finishes the proof of
Lemma 8.3. ��

We shall also require an extension of the “Calderón reproducing formula”:

Lemma 8.4 Suppose that f ∈ (M2,M
0 (L))∗ satisfies the “controlled growth estimate”

∫

Rn

|(I − (1 + L∗)−1)M f (x)|2
1 + |x |n+ε1

dx < ∞, (8.28)

for some ε1 > 0 (in particular, this holds trivially for every ε1 > 0 if f ∈ B M OL∗ ).
Then for every g ∈ H1

L that can be represented as a finite linear combination of
(2, ε, M ′) molecules, with ε, M ′ sufficiently large compared to ε1, M, we have

〈 f, g〉 = CM

∫ ∫

R
n+1+

(t2L∗)M e−t2 L∗
f (x) t2 Le−t2 L g(x)

dtdx

t
. (8.29)

Proof For δ, R > 0 consider

∫

Rn

R∫

δ

(t2L∗)M e−t2 L∗
f (x) t2 Le−t2 L g(x)

dtdx

t

=
〈

f,

⎛
⎝

R∫

δ

(
t2L

)M+1
e−2t2 L g

dt

t

⎞
⎠
〉

= C−1
M 〈 f, g〉 −

〈
f,

⎛
⎝C−1

M g −
R∫

δ

(
t2L

)M+1
e−2t2 L g

dt

t

⎞
⎠
〉

. (8.30)
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We will now write f in the following way

f =
(

I − (1 + L∗)−1 + (1 + L∗)−1
)M

f

=
M∑

k=0

M !
(M − k)! k!

(
I − (1 + L∗)−1

)M−k
(1 + L∗)−k f

=
M∑

k=0

M !
(M − k)! k! (L∗)−k

(
I − (1 + L∗)−1

)M
f (8.31)

Thus, the last expression in (8.30) equals
∑M

k=0 Ck,M times

〈
(I − (1 + L∗)−1)M f,

⎛
⎝C−1

M L−k g −
R∫

δ

(
t2L

)M+1
e−2t2 L L−k g

dt

t

⎞
⎠
〉

=
〈
(I − (1 + L∗)−1)M f,

δ∫

0

(
t2L

)M+1
e−2t2 L L−k g

dt

t

〉

+
〈
(I − (1 + L∗)−1)M f,

∞∫

R

(
t2L

)M+1
e−2t2 L L−k g

dt

t

〉
, (8.32)

since for L−k g ∈ L2(Rn) the Calderón reproducing formula is valid. The last term in
(8.32) is bounded by a constant times

⎛
⎝
∫

Rn

|(I − (1 + L∗)−1)M f (x)|2
1 + |x |n+ε1

dx

⎞
⎠

1/2

× sup
0≤k≤M

⎛
⎜⎝
∫

Rn

∣∣∣∣∣∣

∞∫

R

(
t2L

)M+1
e−2t2 L L−k g(x)

dt

t

∣∣∣∣∣∣

2

(1 + |x |n+ε1) dx

⎞
⎟⎠

1/2

≤Cϒ sup
0≤k≤M

∞∑
j=0

2 j (n+ε1)/2

⎛
⎜⎝

∫

S j (Q0)

∣∣∣∣∣∣

∞∫

R

(
t2L
)M+1

e−2t2 L L−k g(x)
dt

t

∣∣∣∣∣∣

2

dx

⎞
⎟⎠

1/2

≤ Cϒ sup
0≤k≤M

∞∑
j=0

2 j (n+ε1)/2

×
∞∫

R

∥∥∥∥
(
t2L
)M+M ′−k+1

e−2t2 L L−M ′
g

∥∥∥∥
L2(S j (Q0))

dt

t2(M ′−k)+1
, (8.33)
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where ϒ is the finite quantity defined in (8.28), and Q0 is the cube centered at 0 with
the sidelength 1. Then the expression under the sup sign above is bounded modulo
multiplicative constant by

∞∫

R

∥∥∥∥
(

t2L
)M+M ′−k+1

e−2t2 L L−M ′
g

∥∥∥∥
L2(4Q0)

dt

t2(M ′−k)+1

+
∞∑
j=3

2 j (n+ε1)/2

∞∫

R

∥∥∥∥
(

t2L
)M+M ′−k+1

e−2t2 L
[
χRn\2 j−2 Q0

L−M ′
g
]∥∥∥∥

L2(S j (Q0))

dt

t2(M ′−k)+1

+
∞∑
j=3

2 j (n+ε1)/2

∞∫

R

∥∥∥∥
(

t2L
)M+M ′−k+1

e−2t2 L
[
χ2 j−2 Q0

L−M ′
g
]∥∥∥∥

L2(S j (Q0))

dt

t2(M ′−k)+1

≤ C

R2(M ′−k)

∥∥∥L−M ′
g
∥∥∥

L2(Rn)
+ C

R2(M ′−k)

∞∑
j=3

2 j (n+ε1)/2
∥∥∥L−M ′

g
∥∥∥

L2(Rn\2 j−2 Q0)

+
∞∑
j=3

2 j (n+ε1)/2

⎛
⎝

∞∫

R

e
− 22 j

ct2
dt

t2(M ′−k)+1

⎞
⎠
∥∥∥L−M ′

g
∥∥∥

L2(Rn)
. (8.34)

However,

∞∫

R

e
− 22 j

ct2
dt

t2(M ′−k)+1
≤ C

1

22(M ′−k) j

∞∫

R/2 j

e
− 1

s2
ds

s2(M ′−k)+1
≤ C

1

22(M ′−k) j
(2 j/R)ε

′

(8.35)

for every ε′ > 0. Also, g is a finite linear combination of (2, ε, M ′)- molecules,
therefore for large j

∥∥∥L−k′
g
∥∥∥

L2(S j (Q0))
≤ C2− j (n/2+ε), 0 ≤ k′ ≤ M ′, (8.36)

which allows to estimate the second term in (8.34). Without loss of generality we can
assume that ε > ε1/2 and M ′ > n+ε1

4 + M . Then there exists ε0 > 0 such that the
quantity in (8.34), and hence the one in (8.33), does not exceed C/Rε0 .

We now turn to the integral over (0, δ). For convenience of notation, we set

f̃ ≡
(

I − (1 + L∗)−1
)M

f.
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Since −2t Le−t2 L = ∂t e−t2 L , we may write

∣∣∣∣∣∣

〈
f̃ ,

δ∫

0

(
t2L

)M+1
e−2t2 L L−k g(x)

dt

t

〉∣∣∣∣∣∣
=C

∣∣∣∣∣∣

〈
f̃ ,

δ∫

0

(
t2L

)M
∂te

−2t2 L L−k g(x)dt

〉∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣

〈
f̃ ,

δ∫

0

(
t2L

)M
e−2t2 L L−k g(x)

dt

t

〉∣∣∣∣∣∣
+ C

∣∣∣∣
〈

f̃ ,
(
δ2 L

)M
e−2δ2 L L−k g(x)

〉∣∣∣∣

≤ C
M∑

k=1

∣∣∣∣
〈

f̃ ,
(
δ2L

)k
e−2δ2 L L−k g(x)

〉∣∣∣∣+ C
∣∣∣
〈

f̃ ,
(

e−2δ2 L − I
)

L−k g(x)
〉∣∣∣ ,

repeatedly integrating by parts in t . Therefore, as in (8.33),

∣∣∣∣∣∣

〈
f̃ ,

δ∫

0

(
t2L

)M+1
e−2t2 L L−k g(x)

dt

t

〉∣∣∣∣∣∣

≤ Cϒ sup
0≤k′≤M

M∑
k=1

∞∑
j=0

2 j (n+ε1)/2
∥∥∥∥
(
δ2L

)k
e−2δ2 L L−k′

g

∥∥∥∥
L2(S j (Q0))

+ Cϒ sup
0≤k′≤M

∞∑
j=0

2 j (n+ε1)/2
∥∥∥
(

e−2δ2 L − I
)

L−k′
g
∥∥∥

L2(S j (Q0))
. (8.37)

Now let us split L−k′
g = χR j L−k′

g + χ c R j L−k′
g where

R j = 2 j+2 Q0, if j = 0, 1, 2,

R j = 2 j+2 Q0\2 j−2 Q0, if j = 3, 4, . . . ,

and start with the part of (8.37) corresponding to χR j L−k′
g. Fix some η > 0. Then

for N ∈ N and for all 0 ≤ k′ ≤ M

C
M∑

k=1

∞∑
j=N

2 j (n+ε1)/2

(∥∥∥∥
(
δ2 L

)k
e−2δ2 L(χR j L−k′

g)

∥∥∥∥
L2(S j (Q0))

+
∥∥∥∥
(

e−2δ2 L − I

)
(χR j L−k′

g)

∥∥∥∥
L2(S j (Q0))

)
(8.38)

≤ C
∞∑

j=N

2 j (n+ε1)/2‖L−k′
g‖L2(R j )

≤ C
∞∑

j=N

2 j (n+ε1)/22− j (n/2+ε), (8.39)

123



104 S. Hofmann, S. Mayboroda

where the last inequality uses (8.36). Recall that ε > ε1/2. Then choosing N ≈ − ln η,
we can control the expression above by η. As for the remaining part, for δ small enough

C
M∑

k=1

N∑
j=0

2 j (n+ε1)/2

(∥∥∥∥
(
δ2L

)k
e−2δ2 L(χR j L−k′

g)

∥∥∥∥
L2(S j (Q0))

+
∥∥∥
(

e−2δ2 L − I
)

(χR j L−k′
g)

∥∥∥
L2(S j (Q0))

)
≤ Cη (8.40)

using that
(
δ2L

)k
e−2δ2 L → 0 and e−2δ2 L − I → 0 in the strong operator topology

as δ → 0.
The integral corresponding to χ c R j L−k′

g is analyzed similarly, with the only dif-

ference that the Gaffney estimates instead of L2-decay of L−k′
g are used to control

an analogue of (8.39).
We have proved that the second term in (8.30) vanishes as δ → 0 and R → ∞.

Therefore, the formula (8.29) is justified for every g belonging to the space of finite
linear combinations of molecules. ��

We return now to the proof of (8.19). We shall approximate f by

fK ≡
K∫

1/K

t2L∗e−t2 L∗ (
χBK (t2L∗)M e−t2 L∗

f
) dt

t
,

where BK ≡ {x ∈ R
n : |x | < K }. We claim that fK ∈ L2, and that

sup
K

‖ fK ‖B M OL∗ (Rn) ≤ C
∥∥∥(t2L∗)M e−t2 L∗

f
∥∥∥

T ∞(Rn+1+ )
≤ C‖ f ‖B M OL∗ (Rn).

(8.41)

We note that the second inequality in (8.41) is just Lemma 8.3, so the key issue
is the first inequality. Let us take the claim for granted momentarily. Since g is a
finite linear combination of (2, ε, M ′)-molecules, in particular we have thatg ∈ Ĥ1

L .

Consequently, there is a δ > 0 and a δ-representation g = ∑
λi mi , converging in L2,

with
∑ |λi | ≈ ‖g‖H̃1

L
≈ ‖g‖H1

L
(by (3.3)). Thus, for fK ∈ L2, we have that

|〈 fK , g〉| =
∣∣∣
∑

λi 〈 fK , mi 〉
∣∣∣

≤ C
∑

|λi | ‖ fK ‖B M OL∗ ≤ C‖ f ‖B M OL∗ ‖g‖H1
L
, (8.42)

where we have used the claim (8.41). Now, we also have that

〈 fK , g〉 →
∫ ∫

R
n+1+

(t2L∗)M e−t2 L∗
f (x) t2 Le−t2 L g(x)

dxdt

t
,
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by a dominated convergence argument which uses Lemma 4.2 (ii), Lemma 8.3, and the
duality of T 1 and T ∞ [12]. But by Lemma 8.4, the last expression equals 〈 f, g〉; i.e.,

〈 fK , g〉 → 〈 f, g〉,

so that (8.19) follows from (8.42).
To complete the proof of Theorem 8.2, it remains only to establish the claims

concerning fK . To see that fK ∈ L2(Rn), it suffices by Lemma 8.3 to observe that
for all Ft ∈ T ∞(Rn+1+ ), we have

∥∥∥∥∥∥∥

K∫

1/K

t2L∗e−t2 L∗ (
χBK Ft

) dt

t

∥∥∥∥∥∥∥
L2(Rn)

≤ C

K∫

1/K

‖Ft‖L2(BK )

dt

t

≤ CK

⎛
⎜⎝

K∫

0

∫

BK

|Ft (x)|2dx
dt

t

⎞
⎟⎠

1/2

≤ CK ‖Ft‖T ∞(Rn+1+ )
|BK |1/2. (8.43)

To prove the claim (8.41), again by Lemma 8.3 it suffices to prove the following

Lemma 8.5 Suppose that Ft ∈ T ∞(Rn+1+ ), and set

fK ≡
K∫

1/K

t2L∗e−t2 L∗ (
χBK Ft

) dt

t
.

Then

sup
K

‖ fK ‖B M OL∗ (Rn) ≤ C‖Ft‖T ∞(Rn+1+ )
.

Proof We need to prove that for every cube Q ⊂ R
n

⎛
⎜⎝ 1

|Q|
∫

Q

∣∣∣∣∣∣∣
(I − (1 + l(Q)2L∗)−1)M

K∫

1/K

t L∗e−t2 L∗ (
χBK Ft

)
dt

∣∣∣∣∣∣∣

2

dx

⎞
⎟⎠

1
2

≤ C‖Ft‖T ∞(Rn+1+ )
, (8.44)

uniformly in K . To this end, we split the integral in t in (8.44) into two integrals
over (1/K , l(Q)] and (l(Q), K ) (these are of course vacuous if �(Q) < 1/K , or
if �(Q) > K , respectively), and consider first the case t ≤ l(Q). Let h ∈ L2(Rn)

such that supp h ⊂ Q and ‖h‖L2(Rn) = 1. The left hand side of (8.44), restricted to
t ≤ l(Q), is bounded by the supremum over all such h of the following:
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1

|Q|1/2

∣∣∣∣∣∣∣

∫

Q

(
I − (1 + l(Q)2L∗)−1

)M
l(Q)∫

1/K

t L∗e−t2 L∗ (
χBK Ft

)
(x) dt h(x) dx

∣∣∣∣∣∣∣

≤ C

|Q|1/2

∣∣∣∣∣∣∣

l(Q)∫

1/K

∫

Rn

(
χBK Ft (x)

)
t2Le−t2 L(I − (1 + l(Q)2L)−1)M h(x)

dxdt

t

∣∣∣∣∣∣∣

≤ C
∞∑
j=0

⎛
⎜⎝ 1

|Q|

l(Q)∫

0

∫

S j (Q)

|Ft (x)|2 dxdt

t

⎞
⎟⎠

1/2

×
⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

∣∣∣t2Le−t2 L(I − (1 + l(Q)2L)−1)M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C
∞∑
j=0

2 jn/2‖Ft‖T ∞(Rn+1+ )

×
⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

∣∣∣t2Le−t2 L(I − (1 + l(Q)2L)−1)M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

, (8.45)

where we majorized the integral over S j (Q) × (0, l(Q)) by the integral over B̂ for
some ball B with size comparable to (2 j l(Q))n in the last inequality.

If j = 0, 1

⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

∣∣∣t2Le−t2 L(I − (1 + l(Q)2L)−1)M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C sup
0≤k≤M

‖gh(1 + l(Q)2L)−kh‖L2(Rn) ≤ C, (8.46)

since gh is bounded on L2(Rn) (see [1]) and (1 + l(Q)2L)−1 is uniformly bounded
on L2(Rn) (see Lemma 2.4).

Assume now that j ≥ 2. Then

⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

∣∣∣t2Le−t2 L(I − (1 + l(Q)2L)−1)M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2
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≤ C sup
0≤k≤M

⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

∣∣∣t2Le−t2 L(1 + l(Q)2L)−kh(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

. (8.47)

When k = 0,

⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

∣∣∣t2Le−t2 L h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C

⎛
⎝

l(Q)∫

0

e
− (2 j l(Q))2

ct2
dt

t

⎞
⎠

1/2

≤ C2− j N ,

(8.48)

for every N ∈ N. Here we used Gaffney estimates and the fact that supp h ⊂ Q,
‖h‖L2(Rn) = 1.

When 1 ≤ k ≤ M , the quantity under the sup sign in (8.47) can be rewritten as

⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

t4

l(Q)4

∣∣∣e−t2 L
[
(l(Q)2L)(1+l(Q)2 L)−1

]
(1+l(Q)2 L)−k+1h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C

⎛
⎜⎝

l(Q)∫

0

∫

S j (Q)

t4

l(Q)4

∣∣∣e−t2 L(I − (1 + l(Q)2L)−1)(1+l(Q)2 L)−k+1h(x)

∣∣∣2dxdt

t

⎞
⎟⎠

1/2

≤ C

⎛
⎝

l(Q)∫

0

t4

l(Q)4 e
− (2 j l(Q))2

ct2
dt

t

⎞
⎠

1/2

+ C

⎛
⎝

l(Q)∫

0

t4

l(Q)4 e
− (2 j l(Q))2

cl(Q)2
dt

t

⎞
⎠

1/2

,

where the first term above comes from the case k = 1 and we use Lemmas 2.4 and
2.3. The last sum in (8.49) is bounded by C2− j N for every N ∈ N, and combining
(8.45)–(8.49) we deduce the desired estimate for (8.45) when t ≤ l(Q).

As for the case t ∈ (l(Q), K ),

1

|Q|1/2

∫

Q

(
I − (1 + l(Q)2L∗)−1

)M
K∫

l(Q)

t L∗e−t2 L∗ (
χBK Ft

)
(x) dt h(x) dx

≤ C
∞∑

k=0

∞∑
j=0

⎛
⎜⎝ 1

|Q|

2k+1l(Q)∫

2kl(Q)

∫

S j (2k Q)

|Ft (x)|2 dxdt

t

⎞
⎟⎠

1/2
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×
⎛
⎜⎝

2k+1l(Q)∫

2kl(Q)

∫

S j (2k Q)

∣∣∣t2Le−t2 L(I − (1 + l(Q)2L)−1)M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C
∞∑

k=0

∞∑
j=0

2( j+k)n/2‖Ft‖T ∞(Rn+1+ )

×
⎛
⎜⎝

2k+1l(Q)∫

2kl(Q)

∫

S j (2k Q)

(
l(Q)

t

)4M ∣∣∣(t2L)M+1e−t2 L(1+l(Q)2 L)−M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

≤ C
∞∑

k=0

∞∑
j=0

2 jn/22k(n/2−2M)‖Ft‖T ∞(Rn+1+ )

×
⎛
⎜⎝

2k+1l(Q)∫

2kl(Q)

∫

S j (2k Q)

∣∣∣(t2L)M+1e−t2 L(1 + l(Q)2L)−M h(x)

∣∣∣2 dxdt

t

⎞
⎟⎠

1/2

.

(8.49)

From this point the argument is essentially the same as the one for small t . For
j = 0, 1 the expression in the parentheses above is bounded by C‖h‖2

L2(Rn)
≤ C , and

the sum in k converges for M > n/4. For j ≥ 2 we use Gaffney estimates to bound
the quantity in (8.49) by

∞∑
k=0

∞∑
j=2

2 jn/22k(n/2−2M)‖Ft‖T ∞(Rn+1+ )

⎛
⎜⎝

2k+1l(Q)∫

2kl(Q)

e
− (2 j+k )2

ct2
dt

t

⎞
⎟⎠

1/2

≤C‖Ft‖T ∞(Rn+1+ )
.

(8.50)

Therefore, (8.44) is valid for all M > n/4. This concludes the proof of Lemma 8.5,
and thus also that of Theorem 8.2. ��

Next, we prove the converse:

Theorem 8.6 Suppose M > n/4, ε > 0, and that l is a bounded linear functional
on H1

L(Rn). Then in fact, l ∈ B M OL∗(Rn) and for all g ∈ H1
L(Rn) which can be

represented as finite linear combinations of (2, ε, M)-molecules, we have

l(g) = 〈l, g〉, (8.51)

where the latter pairing is in the sense of M2,ε,M
0 (L) and its dual. Moreover,

‖l‖B M OL∗ (Rn) ≤ C‖l‖. (8.52)
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We observe that the combination of Theorems 8.2 and 8.6 gives Theorem 1.3.

Proof By Theorem 4.1 and its proof, we have in particular that for any (2, ε, M)-
molecule m, ‖m‖H1

L
≤ C. Thus,

l(m) ≤ C‖l‖

for every (2, ε, M)-molecule m. In particular, l defines a linear functional on
M2,ε,M

0 (L) for every ε > 0, M > n/4. Thus, (I − (I + t2L∗)−1)Ml is well defi-
ned and belongs to L2

loc for every t > 0 (recall (1.20) and the related discussion). Fix
a cube Q, and let ϕ ∈ L2(Q), with ‖ϕ‖L2(Q) ≤ |Q|−1/2. As we have observed above
(1.13),

m̃ ≡ (I − (I + �(Q)2L)−1)Mϕ

is (up to a harmless multiplicative constant) a (2, ε, M)-molecule for every ε > 0.

Thus,

∣∣∣
〈
(I − (I + t2L∗)−1)Ml, ϕ

〉∣∣∣ ≡
∣∣∣
〈
l, (I − (I + t2L)−1)Mϕ

〉∣∣∣
= |〈l, m̃〉| ≤ C‖l‖.

Taking a supremum over all such ϕ supported in Q, we obtain that

1

|Q|
∫

Q

∣∣∣(I − (I + t2L∗)−1)Ml(x)

∣∣∣2 dx ≤ C‖l‖2.

Since Q was arbitrary, the conclusion of the theorem follows. ��
Corollary 8.7 The operator (L∗)−1/2 div = (∇L−1/2

)∗
is bounded from L∞(Rn) to

B M OL∗(Rn).

Proof The corollary follows from Theorems 3.4 and 1.3 or can be proved directly.
The argument is standard, we leave the details to the interested reader. ��

We conclude this section with the following consequence of Theorems 8.2 and 8.6,
and Corollary 4.3.

Corollary 8.8 For every M > n/4, the spaces B M OL(Rn) defined by the norms
(1.22) are equivalent.

9 BM OL(Rn): connection with Carleson measures

A Carleson measure is a positive measure µ on R
n+1+ such that

‖µ‖C := sup
B

1

|B| µ
(
B̂
)

< ∞, (9.1)

123



110 S. Hofmann, S. Mayboroda

where B denotes a ball in R
n and B̂ is a tent over B (see (8.21)). Recall the definition

of the operator C in (8.20) and observe that

‖C F‖2
L∞(Rn) =

∥∥∥∥|F(y, t)|2 dydt

t

∥∥∥∥C
. (9.2)

Theorem 9.1 Assume that M ∈ N, M > n/4. Then for every f ∈ B M OL(Rn)

µ f :=
∣∣∣(t2L)M e−t2 L f (y)

∣∣∣2 dydt

t
(9.3)

is a Carleson measure and

∥∥µ f
∥∥C ≤ C‖ f ‖2

B M OL (Rn). (9.4)

Conversely, if f ∈ (M2,M
0 (L∗))∗ satisfies the controlled growth bound (8.28) (with

L in place of L∗) for some ε1 > 0, and if µ f defined in (9.3) is a Carleson measure,
then f ∈ B M OL(Rn) and

‖ f ‖2
B M OL (Rn) ≤ C

∥∥µ f
∥∥C . (9.5)

Proof The direction B M OL implies (9.4) is just a restatement of Lemma 8.3.
For the converse we follow [12], using the duality of the tent spaces. More precisely,

for f satisfying (8.28) and every g ∈ H1
L∗(Rn) that can be represented as a finite linear

combination of (2, ε, M ′)-molecules, ε > ε1/2 and M ′ > n/4 large enough compared
to M , we have by Lemma 8.4 that

〈 f, g〉 = CM

∫ ∫

R
n+1+

(t2L)M e−t2 L f (x) t2 L∗e−t2 L∗ g(x)
dtdx

t
. (9.6)

Now according to Theorem 1 in [12]

∫ ∫

R
n+1+

∣∣∣(t2L)M e−t2 L f (x) t2 L∗e−t2 L∗ g(x)

∣∣∣ dx

≤ C
∫

Rn

C((t2L)M e−t2 L f )(x) S(t2 L∗e−t2 L∗
g)(x) dx

≤ C
∥∥∥C
(
(t2L)M e−t2 L f

)∥∥∥
L∞(Rn)

∥∥∥S(t2L∗e−t2 L∗
g)

∥∥∥
L1(Rn)

. (9.7)

Then using (9.2) and Theorem 4.1, we have

|〈 f, g〉| ≤ C

∥∥∥∥
∣∣∣(t2L)M e−t2 L f (y)

∣∣∣2 dydt

t

∥∥∥∥
1/2

C
‖g‖H1

L∗ (Rn), (9.8)

123



Hardy and BMO spaces 111

for every g ∈ H1
L∗(Rn). By Theorem 8.6 this gives the desired conclusion (9.5). ��

Remark Fix some p ∈ (pL , 2). Using the finite linear combinations of (p′, ε, M ′)-
molecules in the proof of Lemma 8.4, 1

p + 1
p′ = 1, we can prove that the condition

(8.28) can be replaced by

∫

Rn

|(I − (1 + L)−1)M f (x)|p

1 + |x |n+ε1
dx < ∞ (9.9)

for some ε1 > 0. We will use this fact later in conjunction with the fact that every
f ∈ B M O p

L (Rn) satisfies (9.9).

10 John–Nirenberg inequality

We start with the following auxiliary result, which is a modification of Lemma 2.14
in [6].

Lemma 10.1 Suppose there exist numbers 0 < α < 1 and 0 < N < ∞ such that for
some function F ∈ L2

loc((0,∞) × R
n), some a ∈ R and every cube Q ⊂ R

n

∣∣∣∣∣∣∣

⎧⎪⎨
⎪⎩

x ∈ Q :
⎛
⎜⎝
∫ ∫

|x−y|<3at<3al(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎠

1/2

> N

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
≤ α|Q|. (10.1)

Then there exists C > 0 such that

sup
Q⊂Rn

1

|Q|
∫

Q

⎛
⎜⎝
∫ ∫

|x−y|<at<al(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎠

p/2

dx ≤ C, (10.2)

for all p ∈ (1,∞).

Proof Denote the set on the left-hand side of (10.1) by �, so that |�| ≤ α|Q|, and let
∪Q j be a Whitney decomposition of �. Also,

M(δ) := sup
Q′⊆Q

1

|Q′|
∫

Q′

⎛
⎜⎜⎜⎝
∫ ∫

|x−y|<a(t−δ)

δ<t<l(Q′)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

dx,
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where the integral is set to be zero whenever l(Q′) ≤ δ. Then

∫

Q

⎛
⎜⎜⎜⎝
∫ ∫

|x−y|<a(t−δ)

δ<t<l(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

dx

≤
∫

Q\�

⎛
⎜⎜⎜⎝
∫ ∫

|x−y|<3at
t<l(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

dx

+
∑

j : l(Q j )>δ

∫

Q j

⎛
⎜⎜⎜⎝
∫ ∫

|x−y|<a(t−δ)

δ<t<l(Q j )

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

dx

+
∑

j

∫

Q j

⎛
⎜⎜⎜⎝
∫ ∫

|x−y|<a(t−δ)

max{l(Q j ),δ}<t<l(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

dx

≤ N p|Q| + M(δ)α|Q| +
∑

j

∫

Q j

⎛
⎜⎜⎜⎝
∫ ∫

|x−y|<a(t−δ)

max{l(Q j ),δ}<t<l(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

dx .

(10.3)

By the properties of the Whitney decomposition dist (x ′, Q j ) ≈ l(Q j ) for some
x ′ ∈ Q\�. Therefore, without loss of generality we can assume that for every x ∈ Q j

there exists x ′ ∈ Q\� such that

{
y : |x − y| < a(t − δ), max{l(Q j ), δ} < t < l(Q)

}

⊂ {
y : |x ′ − y| < 3at, t < l(Q)

}
. (10.4)

Then the last term in (10.3) can be bounded by

|Q| sup
x ′∈Q\�

⎛
⎜⎜⎜⎝
∫ ∫

|x ′−y|<3at
t<l(Q)

|F(t, y)|2 dydt

tn+1

⎞
⎟⎟⎟⎠

p/2

≤ N p|Q|. (10.5)
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Repeating the procedure in (10.3)–(10.5) for every cube Q′ ⊂ Q, we arrive at

(1 − α)M(δ) ≤ C N p, (10.6)

and the argument can be finished taking limit as δ → 0. ��
Proof of Theorem 1.2 Step I. It is an easy consequence of Hölder’s inequality that

‖ f ‖B M O p
L (Rn) ≤ C‖ f ‖B M OL (Rn) ≤ C‖ f ‖B M Oq

L (Rn) for pL < p < 2 < q < p̃L ,

(10.7)

so we will concentrate on the reverse estimates.

Step II. In this part we will show that f ∈ B M O p0
L (Rn) implies f ∈ B M OL(Rn)

with pL < p0 < 2. Let us first prove that whenever f ∈ B M O p0
L the inequality (10.1)

holds with p = p0, a = 1. We split f as in (8.2). Then the contribution of the first
part is handled as follows. Making the dyadic annular decomposition,

⎛
⎜⎝ 1

|Q|
∫

Q

⎛
⎜⎝
∫ ∫

|x−y|<t<l(Q)

|(t2L)M e−t2 L

× (I − (1 + l(Q)2L)−1)M f (y)|2 dydt

tn+1

⎞
⎟⎠

p0
2

dx

⎞
⎟⎟⎠

1
p0

≤ C
∞∑
j=0

⎛
⎜⎝ 1

|Q|
∫

Q

⎛
⎜⎝
∫ ∫

|x−y|<t<l(Q)

|(t2L)M e−t2 L

×
[
χS j (Q)(I − (1 + l(Q)2L)−1)M f

]
(y)|2 dydt

tn+1

⎞
⎟⎠

p0
2

dx

⎞
⎟⎟⎠

1
p0

≤ C
1

|Q|1/p0

⎛
⎜⎝
∫

4Q

|(I − (1 + l(Q)2L)−1)M f (x)|p0 dx

⎞
⎟⎠

1
p0

+ C
∞∑
j=3

1

|Q|1/2

⎛
⎜⎝
∫ ∫

2Q×(0,l(Q))

|(t2L)M e−t2 L

×
[
χS j (Q)(I − (1 + l(Q)2L)−1)M f

]
(x)|2 dxdt

t

⎞
⎟⎠

1
2

. (10.8)
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Here we have used L p0(Rn) boundedness of the conical square function (see
Lemma 2.6) for the first term above. To handle the second one we have applied
Hölder’s inequality to pass from the L p0 to the L2 norm and then Lemma 2.1. Using
L p0 − L2 off-diagonal estimates (Lemma 2.5) the second term can be further bounded
by

C
∞∑
j=3

1

|Q|1/2

⎛
⎜⎝

l(Q)∫

0

e
− (2 j l(Q))2

ct2

⎛
⎜⎝
∫

S j (Q)

|(I −(1+l(Q)2 L)−1)M f (x)|p0dx

⎞
⎟⎠

2
p0

dt

t
1− n

2+ n
p0

⎞
⎟⎠

1
2

.

(10.9)

Covering S j (Q) by approximately 2 jn cubes of the sidelength l(Q) and integrating
in t , we control (10.9) and hence (10.8) by ‖ f ‖B M O

p0
L (Rn)

.
The contribution of

[
I − (I − (1 + l(Q)2L)−1)M

]
f =

M∑
k=1

Ck,M (l(Q)2L)−k(I − (1 + l(Q)2L)−1)M f

(10.10)

(cf. (8.5)) can be estimated in the same way as (10.8)–(10.9), first combining L−k ,
1 ≤ k ≤ M , with L M .

We have thus proved that F := F(t, y) = t2Le−t2 L f (y) satisfies (10.2) for some
p = p0 and a = 1. Then by Chebyshev’s inequality F satisfies (10.1) with a = 1/3.
Hence (10.2) holds for p = 2, a = 1/3 and F as above by Lemma 10.1. The latter fact
implies that f ∈ B M OL(Rn) using Theorem 9.1 and the Remark after Theorem 9.1.

Step III. Let us consider the estimate

‖ f ‖B M Oq
L (Rn) ≤ C‖ f ‖B M OL (Rn) for 2 < q < p̃L . (10.11)

Fix a cube Q, and let ϕ ∈ L2(Q) ⊇ L p(Q), where p = q ′, i.e.,

( p̃L)′ ≡ p̃L/( p̃L − 1) < p ≡ q/(q − 1) < 2,

and suppose that

‖ϕ‖p ≤ |Q|1/p−1.

We claim that for some harmless constant C0,

m ≡ 1

C0

(
I − (I + �(Q)2L∗)−1

)M
ϕ
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is a (p, ε, M)-molecule, for the operator L∗, adapted to Q, for every ε > 0. Indeed,
by a simple duality argument, we have that

( p̃L)′ = pL∗ , p′
L = p̃L∗ .

Thus, for ( p̃L)′ = pL∗ < p < 2, the resolvent kernel (I + t2L∗)−1 satisfies the
L p − L p off-diagonal estimates by Lemma 2.5. Taking E = Q, and F = Si (Q), the
reader may then readily verify that m is a molecule as claimed. We omit the details.

Now, suppose that f ∈ B M OL . Then by Theorem 8.2, f ∈ (H1
L∗)∗. Thus, since

‖m‖H1
L∗ ≤ C , we have that

1

C0

∣∣∣∣
〈(

I − (I + �(Q)2L)−1
)M

f, ϕ

〉∣∣∣∣ ≡ |〈 f, m〉| ≤ C‖ f ‖B M OL (Rn).

Thus, taking a supremum over all ϕ as above, we obtain (10.11). ��
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