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HARDY-LITTLEWOOD-SOBOLEV AND STEIN-WEISS
INEQUALITIES ON HOMOGENEOUS LIE GROUPS

AIDYN KASSYMOV, MICHAEL RUZHANSKY, AND DURVUDKHAN SURAGAN

Abstract. In this note we prove the Stein-Weiss inequality on general homoge-
neous Lie groups. The obtained results extend previously known inequalities. Spe-
cial properties of homogeneous norms play a key role in our proofs. Also, we give a
simple proof of the Hardy-Littlewood-Sobolev inequality on general homogeneous
Lie groups.

1. Introduction

Historically, in [10], Hardy and Littlewood considered the one dimensional frac-
tional integral operator on (0,∞) given by

Tλu(x) =

∫ ∞

0

u(y)

|x− y|λ
dy, 0 < λ < 1, (1.1)

and proved the following theorem:

Theorem 1.1. Let 1 < p < q < ∞ and u ∈ Lp(0,∞) with 1
q
= 1

p
+ λ− 1, then

‖Tλu‖Lq(0,∞) ≤ C‖u‖Lp(0,∞), (1.2)

where C is a positive constant independent of u.

The N -dimensional analogue of (1.1) can be written by the formula:

Iλu(x) =

∫

RN

u(y)

|x− y|λ
dy, 0 < λ < N. (1.3)

The N -dimensional case of Theorem 1.1 was extended by Sobolev in [17]:

Theorem 1.2. Let 1 < p < q < ∞, u ∈ Lp(RN) with 1
q
= 1

p
+ λ

N
− 1, then

‖Iλu‖Lq(RN ) ≤ C‖u‖Lp(RN ), (1.4)

where C is a positive constant independent of u.

Later, in [19] Stein and Weiss obtained the following two-weight extention of the
Hardy-Littlewood-Sobolev inequality, which is known as the Stein-Weiss inequality.
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Theorem 1.3. Let 0 < λ < N , 1 < p < ∞, α < N(p−1)
p

, β < N
q
, α + β ≥ 0 and

1
q
= 1

p
+ λ+α+β

N
− 1. If 1 < p ≤ q < ∞, then

‖|x|−βIλu‖Lq(RN ) ≤ C‖|x|αu‖Lp(RN ), (1.5)

where C is a positive constant independent of u.

The Hardy-Littlewood-Sobolev inequality on the Heisenberg group was obtained
by Folland and Stein in [5]. In [8] the authors studied the Stein-Weiss inequality
on the Carnot groups. Note that in [9] the authors also proved an analogue of the
Stein-Weiss inequality on the Heisenberg groups. In [20] author proved Stein-Weiss
inequality on product spaces. In [1] author proved the Stein-Weiss inequality on the
Euclidean half-space. In the works [2], [3], [12] and [13] authors were studied the
regularity of fractional integrals on Euclidean spaces. In this note we first give a
simple proof for the Hardy-Littlewood-Sobolev inequality on general homogeneous
groups, recapturing the result of [16, Theorem 4.1] where a much heavier machinery
was used. In the proof we follow the method of Stein and Weiss, however, special
properties of homogeneous norms of the homogeneous Lie groups play a key role
in our calculations. Furthermore, in Theorem 2.7 we establish the Stein-Weiss on
general homogeneous groups based on the integral Hardy inequalities established in
[16]. Of course, the obtained result recovers the previously known results of Abelian
(Euclidean), Heisenberg, Carnot groups since the class of the homogeneous Lie groups
contains those and since we can work with an arbitrary homogeneous quasi-norm.
Note that in this direction systematic studies of different functional inequalities on
general homogeneous (Lie) groups were initiated by the paper [14]. We refer to this
and other papers by the authors (e.g. [15]) for further discussions.
We also note that the best constant in the Hardy-Littlewood-Sobolev inequality on

the Heisenberg group is now known, see Frank and Lieb [7] (in the Euclidean case this
was done earlier by Lieb in [11]). The expression for the best constant depends on the
particular quasi-norm used and may change for a different choice of the quasi-norm.
The main results of this paper are as follows:

• Hardy-Littlewood-Sobolev inequality: Let G be a homogeneous group
of homogeneous dimension Q and let | · | be an arbitrary homogeneous quasi-
norm on G. Let 1 < p < q < ∞, 0 < λ < Q, 1

q
= 1

p
+ λ

Q
− 1. Then for all

u ∈ Lp(G) and h ∈ Lq′(G) we have
∣

∣

∣

∣

∫

G

∫

G

u(y)h(x)

|y−1x|λ
dxdy

∣

∣

∣

∣

≤ C‖u‖Lp(G)‖h‖Lq′ (G), (1.6)

where C is a positive constant independent of u and h.
For the formulation similar to that of Theorem 1.2 see Theorem 2.1.

• Stein-Weiss inequality: Let G be a homogeneous group of homogeneous
dimension Q and let | · | be an arbitrary homogeneous quasi-norm on G. Let
0 < λ < Q, 1 < p ≤ q < ∞, α < Q

p′
, β < Q

q
, α + β ≥ 0, 1

q
= 1

p
+ α+β+λ

Q
− 1,

where 1
p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. Then we have

∣

∣

∣

∣

∫

G

u(y)h(x)

|x|β|y−1x|λ|y|α
dxdy

∣

∣

∣

∣

≤ C‖u‖Lp(G)‖h‖Lq′(G), (1.7)
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where C is a positive constant independent of u and h.
For the formulation similar to that of Theorem 1.3 see Theorem 2.7.
Although (1.6) is clearly contained in (1.7), we still keep them as separate

statements since the Hardy-Littlewood-Sobolev inequality (1.6) allows for a
simple proof which is much more transparent than that of the Stein-Weiss
inequality (1.7). The present proof is also much simpler than the original
proof of (1.6) in [16].

Finally, let us note that the heavier machinery developed in [16] also yielded a
differential version of the Stein-Weiss inequality (which may be also called Stein-
Weiss-Sobolev inequality), however, in a more special case of graded groups as follows
(see [16, Theorem 5.12] for details and the proof):

• Differential Stein-Weiss (or Stein-Weiss-Sobolev) inequality: Let G

be a graded Lie group of homogeneous dimension Q and let | · | be an arbitrary
homogeneous quasi-norm. Let 1 < p, q < ∞, 0 ≤ a < Q/p and 0 ≤ b <
Q/q. Let 0 < λ < Q, 0 ≤ α < a + Q/p′ and 0 ≤ β ≤ b be such that
(Q− ap)/(pQ) + (Q− q(b− β))/(qQ) + (α+ λ)/Q = 2 and α+ λ ≤ Q, where
1/p+1/p′ = 1. Then there exists a positive constant C = C(Q, λ, p, α, β, a, b)
such that

∣

∣

∣

∣

∣

∫

G

∫

G

f(x)g(y)

|x|α|y−1x|λ|y|β
dxdy

∣

∣

∣

∣

∣

≤ C‖f‖L̇p
a(G)‖g‖L̇q

b
(G) (1.8)

holds for all f ∈ L̇p
a(G) and g ∈ L̇q

b(G), where L̇p
a(G) stands for a homogeneous

Sobolev space of order a over Lp on the graded Lie group G.

2. Stein-Weiss inequality on homogeneous group

Let us recall that a Lie group (on RN) G with the dilation

Dλ(x) := (λν1x1, . . . , λ
νNxN), ν1, . . . , νn > 0, Dλ : RN → R

N ,

which is an automorphism of the group G for each λ > 0, is called a homogeneous
(Lie) group. For simplicity, throughout this paper we use the notation λx for the
dilation Dλ. The homogeneous dimension of the homogeneous group G is denoted by
Q := ν1 + . . .+ νN . Also, in this note we denote a homogeneous quasi-norm on G by
|x|, which is a continuous non-negative function

G ∋ x 7→ |x| ∈ [0,∞), (2.1)

with the properties

i) |x| = |x−1| for all x ∈ G,
ii) |λx| = λ|x| for all x ∈ G and λ > 0,
iii) |x| = 0 iff x = 0.

Moreover, the following polarisation formula on homogeneous Lie groups will be used
in our proofs: there is a (unique) positive Borel measure σ on the unit quasi-sphere
S := {x ∈ G : |x| = 1}, so that for every f ∈ L1(G) we have

∫

G

f(x)dx =

∫ ∞

0

∫

S

f(ry)rQ−1dσ(y)dr. (2.2)
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The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x,R) := {y ∈ G : |x−1y| < R}. (2.3)

We refer to [6] for the original appearance of such groups, and to [4] for a recent
comprehensive treatment.
Let us consider the integral operator

Iλ,|·|u(x) =

∫

G

u(y)

|y−1x|λ
dy, 0 < λ < Q. (2.4)

Note that when Q > α > 0 and λ = Q− α we get the Riesz potential Iλ,|·| = IQ−α,|·|.
First we give a short proof of a version of the Hardy-Littlewood-Sobolev inequality
on G.

Theorem 2.1. Let G be a homogeneous group of homogeneous dimension Q and let
| · | be an arbitrary homogeneous quasi-norm on G. Let 1 < p < q < ∞, 0 < λ < Q,
1
q
= 1

p
+ λ

Q
− 1, and u ∈ Lp(G). Then we have

‖Iλ,|·|u‖Lq(G) ≤ C‖u‖Lp(G), (2.5)

where C is a positive constant independent of u.

Remark 2.2. With the assumptions of Theorem 2.1 and h ∈ Lq′(G), we have the
following Hardy-Littlewood-Sobolev inequality

∣

∣

∣

∣

∫

G

∫

G

u(y)h(x)

|y−1x|λ
dxdy

∣

∣

∣

∣

≤ C‖u‖Lp(G)‖h‖Lq′ (G), (2.6)

where C is a positive constant independent of u and h. This gives (1.6).

Proof of Theorem 2.1. As in the Euclidean case we will show that there is a constant
C > 0, such that

m{x : |K ∗ u(x)| > ζ} ≤ C
‖u‖q

Lp(G)

ζq
, (2.7)

where m is the Haar measure on G, K(x) = |x|−λ and Iλ,|·|u(x) = K ∗ u(x), where
∗ is convolution. This implies inequality (2.5) via the Marcinkiewicz interpolation
theorem. Let K(x) = K1(x) +K2(x), where

K1(x) :=

{

K(x), if |x| ≤ µ,

0, if |x| > µ,
and K2(x) :=

{

K(x), if |x| > µ,

0, if |x| ≤ µ.
(2.8)

Here µ is a positive constant. We have Iλ,|·|u(x) = K ∗ u(x) = K1 ∗ u(x) +K2 ∗ u(x),
so

m{x : |K ∗ u(x)| > 2ζ} ≤ m{x : |K1 ∗ u(x)| > ζ}+m{x : |K2 ∗ u(x)| > ζ}. (2.9)

It is enough to prove inequality (2.7) with 2ζ instead of ζ in the left-hand side of
the inequality. Without loss of generality we can assume ‖u‖Lp(G) = 1 and by using
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Chebychev’s and Minkowski’s inequalities, we get

m{x : |K1 ∗ u(x)| > ζ} ≤

∫

|K1∗u|>ζ
|K1 ∗ u|

pdx

ζp

≤
‖K1 ∗ u‖

p

Lp(G)

ζp
≤

‖K1‖
p

L1(G)‖u‖
p

Lp(G)

ζp
=

‖K1‖
p

L1(G)

ζp
. (2.10)

By using (2.2) and (2.8), we compute

‖K1‖L1(G) =

∫

0<|x|≤µ

|x|−λdx =

∫ µ

0

rQ−1r−λdR

∫

S

|y|−λdσ(y)

= |S|

∫ µ

0

rQ−λ−1dr =
|S|

Q− λ
(rQ−λ|µ0 ) =

|S|

Q− λ
µQ−λ, (2.11)

where |S| is the Q − 1 dimensional surface measure of the unit quasi-sphere S. By
using this in (2.10), we obtain

m{x : |K1 ∗ u(x)| > ζ} ≤

(

|S|

Q− λ

)p
µ(Q−λ)p

ζp
. (2.12)

Similarly by using Young’s inequality, (2.2) and the assumptions, we get

‖K2 ∗ u‖L∞(G) ≤ ‖K2‖Lp′ (G)‖u‖Lp(G) =

(
∫ ∞

µ

r−λp′rQ−1dr

∫

S

|y|−λp′dσ(y)

)
1
p′

=

(

|S|

Q− λp′

)
1
p′
(
∫ ∞

µ

rQ−λp′−1dr

)
1
p′

=

(

|S|

Q− λp′

)
1
p′

(rQ−λp′|∞µ )
1
p′

=

(

|S|

λp′ −Q

)
1
p′

µ−Q

q , (2.13)

since from the assumptions, we get Q−λp′

p′
= Q

p′
−λ = Q(1− 1

p
− λ

Q
) = −Q

q
. Moreover, if

(

|S|
λp′−Q

)
1
p′

µ−Q

q = ζ , then µ =
(

|S|
λp′−Q

)− q

Qp′

ζ−
θ
Q , so we have ‖K2∗u‖L∞(G) ≤ ζ . Thus,

we have m{x : |K2 ∗ u| > ζ} = 0. Combining these facts with (2.9), ‖u‖Lp(G) = 1 and
the assumptions we establish

m{x : |K ∗ u| > 2ζ} ≤

(

|S|

Q− λ

)p
µ(Q−λ)p

ζp

=

(

|S|

Q− λ

)p(
|S|

λp′ −Q

)−
q(Q−λ)p

Qp′

ζ
−(Q−λ)pq

Q
−p ≤ Cζ

−(Q−λ)pq
Q

−p = Cζ (
λ
Q
−1)pq−p

= Cζ (
1
q
− 1

p
)pq−p = Cζp−q−p = C

‖u‖q
Lp(G)

ζq
. (2.14)

For completeness, let us recall two well-known ingredients.
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Definition 2.3 ([18]). Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and V : Lp(G) → Lq(G) be a
operator, then V is called an operator of weak type (p, q) if

m{x : |V u| > ζ} ≤ C

(

‖u‖Lp(G)

ζ

)q

, ζ > 0, (2.15)

where C is a positive constant and independent by u.

Let us also recall the classical Marcinkiewicz interpolation theorem:

Theorem 2.4. Let V be sublinear operator of weak type (pk, qk) with 1 ≤ pk ≤ qk <
∞, k = 0, 1 and q0 < q1. Then V is bounded from Lp(G) to Lq(G) with

1

p
=

1− γ

p0
+

γ

p1
,

1

q
=

1− γ

q0
+

γ

q1
, (2.16)

for any 0 < γ < 1, namely,

‖V u‖Lq(G) ≤ C‖u‖Lp(G), (2.17)

for any u ∈ Lp(G) and C is a positive constant.

From assumptions 1
q
= 1

p
+ λ

Q
− 1 < 1

p
, then q > p. According to Definition 2.3,

Iλ,|·|u is of weak type (p, q), so by using the Marcinkiewicz interpolation theorem, we
prove (2.5).
The proof of Theorem 2.1 is complete. �

The following statements will be useful to prove the homogeneous group version of
the Stein-Weiss inequality ([19, Theorem B*]). The next proposition is well-known,
see e.g. [4, Theorem 3.1.39 and Proposition 3.1.35] and historical references therein.

Proposition 2.5. Let G be a homogeneous Lie group. Then there exists a homo-
geneous quasi-norm on G which is a norm, that is, a homogeneous quasi-norm | · |
which satisfies the triangle inequality

|xy| ≤ |x|+ |y|, ∀x, y ∈ G. (2.18)

Furthermore, all homogeneous quasi-norms on G are equivalent.

The next theorem is the integral version of Hardy inequalities on general homoge-
neous groups that will be instrumental in our proof.

Theorem 2.6 ([16]). Let G be a homogeneous group of homogeneous dimension Q
and let 1 < p ≤ q < ∞. Let W (x) and U(x), be positive functions on G. Then we
have the following properties:
(1) The inequality

(
∫

G

(
∫

B(0,|x|)

f(z)dz

)q

W (x)dx

)
1
q

≤ C1

(
∫

G

f p(x)U(x)dx

)
1
p

(2.19)

holds for all f ≥ 0 a.e. on G if only if

A1 := sup
R>0

(
∫

G\B(0,|x|)

W (x)dx

)
1
q
(
∫

B(0,|x|)

U1−p′(x)dx

)
1
p′

< ∞. (2.20)
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(2) The inequality
(
∫

G

(
∫

G\B(0,|x|)

f(z)dz

)q

W (x)dx

)
1
q

≤ C2

(
∫

G

f p(x)U(x)dx

)
1
p

, (2.21)

holds for all f ≥ 0 if and only if

A2 := sup
R>0

(
∫

B(0,|x|)

W (x)dx

)
1
q
(
∫

G\B(0,|x|)

U1−p′(x)dx

)
1
p′

< ∞. (2.22)

(3) If {Ci}
2
i=1 are the smallest constants for which (2.19) and (2.21) hold, then

Ai ≤ Ci ≤ (p′)
1
p′ p

1
qAi, i = 1, 2. (2.23)

Now we formulate the Stein-Weiss inequality on G.

Theorem 2.7. Let G be a homogeneous group of homogeneous dimension Q and let
| · | be an arbitrary homogeneous quasi-norm on G. Let 0 < λ < Q, 1 < p < ∞,
α < Q

p′
, β < Q

q
, α+β ≥ 0, 1

q
= 1

p
+ α+β+λ

Q
− 1, where 1

p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. Then

for 1 < p ≤ q < ∞, we have

‖|x|−βIλ,|·|u‖Lq(G) ≤ C‖|x|αu‖Lp(G). (2.24)

where C is positive constant and independent by u.

In inequality (2.24) with α = 0 we get the weighted Hardy-Littlewood-Sobolev
inequality established in [16, Theorem 4.1]. Thus, by setting α = β = 0 we get
Hardy-Littlewood-Sobolev inequality on the homogeneous Lie groups. In the Abelian
(Euclidean) case G = (RN ,+), we have Q = N and | · | can be any homogeneous
quasi-norm on RN , so with the usual Euclidean distance, i.e. | · | = ‖ · ‖E , Theorem
2.7 gives the classical result of Stein and Weiss (Theorem 1.3).

Proof of Theorem 2.7. Define

‖|x|−βIλ,|·|u‖
q

Lq(G) =

∫

G

(
∫

G

u(y)

|x|β|y−1x|λ
dy

)q

dx = I1 + I2 + I3, (2.25)

where

I1 =

∫

G

(

∫

B(0, |x|2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx, (2.26)

I2 =

∫

G

(

∫

B(0,2|x|)\B(0, |x|2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx, (2.27)

and

I3 =

∫

G

(
∫

G\B(0,2|x|)

u(y)

|x|β|y−1x|λdy

)q

dx. (2.28)

From now on, in view of Proposition 2.5 we can assume that our quasi-norm is
actually a norm.
Step 1. Let us consider I1. By using Proposition 2.5 and the properties of the

quasi-norm with |y| ≤ |x|
2
, we get

|x| = |x−1| = |x−1yy−1|
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≤ |x−1y|+ |y−1| = |y−1x|+ |y|

≤ |y−1x|+
|x|

2
.

Then for any λ > 0, we have

2λ|x|−λ ≥ |y−1x|−λ.

Therefore, we get

I1 =

∫

G

(

∫

B(0, |x|2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx ≤ 2λ
∫

G

(

∫

B(0, |x|2 )

u(y)

|x|β+λ
dy

)q

dx

= 2λ
∫

G

(

∫

B(0, |x|2 )
u(y)dy

)q

|x|−(β+λ)qdx. (2.29)

If condition (2.20) in Theorem 2.6 with W (x) = |x|−(β+λ)q and U(y) = |y|αp in (2.19)
is satisfied, then we have

I1 ≤ 2λ
∫

G

(

∫

B(0,
|x|
2
)

u(y)dy

)q

|x|−(β+λ)qdx ≤ C1‖|x|
αu‖q

Lp(G). (2.30)

Let us verify condition (2.20). So from the assumption we have α < Q

p′
, then

1

q
=

1

p
+

α+ β + λ

Q
− 1 <

1

p
+

Q

p′
+ β + λ

Q
− 1 =

1

p
+

1

p′
+

β + λ

Q
− 1 =

β + λ

Q
,

that is, Q− (β + λ)q < 0 and by the using polar decomposition (2.2):

(
∫

G\B(0,|x|)

W (x)dx

)
1
q

=

(
∫

G\B(0,|x|)

|x|−(β+λ)qdx

)
1
q

=

(
∫ ∞

R

∫

S

rQ−1r−(β+λ)qdrdσ(y)

)
1
q

=

(

|S|

∫ ∞

R

rQ−1−(β+λ)qdr

)
1
q

≤ CR
Q−(β+λ)q

q .

(2.31)

Since α < Q

p′
, we have

αp(1− p′) +Q > αp(1− p′) + αp′ = αp+ αp′(1− p) = αp− αp = 0.

So, αp(1− p′) +Q > 0. Then, let us consider

(
∫

B(0,|x|)

U1−p′(x)dx

)
1
p′

=

(
∫

B(0,|x|)

|x|(1−p′)αpdx

)
1
p′

=

(
∫ R

0

∫

S

r(1−p′)αprQ−1drdσ(y)

)

1
p′

≤ C

(

|S|

∫ R

0

r(1−p′)αp+Q−1dr

)

1
p′

≤ CR
(1−p′)αp+Q

p′ = CR
Q−αp′

p′ . (2.32)
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Moreover, the assumptions imply

A1 = sup
R>0

(
∫

G\B(0,|x|)

W (x)dx

)
1
q
(
∫

B(0,|x|)

U1−p′(x)dx

)
1
p′

≤ CR
Q−(β+λ)q

q
+Q−αp′

p′

= CRQ( 1
q
− 1

p
−α+β+λ

Q
+1) = C < ∞,

where C = C(α, β, p, λ) is a positive constant. Then by using (2.19), we obtain

I1 ≤ C

∫

G

(

∫

B(0, |x|2 )
u(y)dy

)q

|x|−(β+λ)qdx ≤ C1‖|x|
αu‖q

Lp(G). (2.33)

Step 2. As in the previous case I1, now we consider I3. From 2|x| ≤ |y|, we
calculate

|y| = |y−1| = |y−1xx−1| ≤ |y−1x|+ |x|

≤ |y−1x|+
|y|

2
,

that is,

|y|

2
≤ |y−1x|.

Then, if condition (2.22) with W (x) = |x|−βq and U(y) = |y|(α+λ)p is satisfied, then
we have

I3 =

∫

G

(
∫

G\B(0,2|x|)

u(y)

|x|β|y−1x|λ
dy

)q

dx ≤ C

∫

G

(
∫

G\B(0,2|x|)

u(y)

|x|β|y|λ
dy

)q

dx

= C

∫

G

(
∫

G\B(0,2|x|)

u(y)|y|−λdy

)q

|x|−βqdx ≤ C‖|x|αu‖q
Lp(G). (2.34)

Now let us check condition (2.22). We have

(
∫

B(0,|x|)

W (x)dx

)
1
q

=

(
∫

B(0,|x|)

|x|−βqdx

)
1
q

=

(
∫ R

0

∫

S

r−βqrQ−1drdσ(y)

)

1
q

≤ CR
Q−βq

q , (2.35)

where Q− βq > 0, and

(
∫

G\B(0,|x|)

U1−p′(x)dx

)
1
p′

=

(
∫

G\B(0,|x|)

|x|(α+λ)(1−p′)pdx

)
1
p′

=

(
∫ ∞

R

∫

S

rQ−1r(α+λ)(1−p′)pdrdσ(y)

)
1
p′

≤ CR
Q−p′(α+λ)

p′ , (2.36)

where from β < Q

q
, we obtain Q− p′(α + λ) < 0.
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Combining these facts we have

A2 := sup
R>0

(
∫

B(0,|x|)

W (x)dx

)
1
θ
(
∫

G\B(0,|x|)

U1−p′(x)dx

)
1
p′

≤ CR
Q−p′(α+λ)

p′
+Q−βq

q

= CR
Q

p′
−(α+β+λ)+Q

q = CR
Q( 1

p′
−α+β+λ

Q
+ 1

q
)
= C < ∞, (2.37)

where C = C(α, β, p, λ) is a positive constant. Then we establish

I3 =

∫

G

(
∫

G\B(0,2|x|)

u(y)

|x|β|y−1x|λ
dy

)q

dx ≤ C‖|x|αu‖q
Lp(G). (2.38)

Step 3. Let us estimate I2 now.

Case 1: p < q. From |x|
2
< |y| < 2|x|, we obtain

|y−1x|

2
≤

|x|+ |y|

2
=

|x|

2
+

|y|

2
<

3

2
|y|,

that is,

|y−1x| < 3|y|.

For all α + β ≥ 0, we have

|y−1x|α+β < 3α+β|y|α+β = 3α+β|y|α|y|β ≤ 3α+β2|β||x|β|y|α.

Therefore,

I2 =

∫

G

(

∫

B(0,2|x|)\B(0, |x|2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx

≤ C

∫

G

(

∫

B(0,2|x|)\B(0, |x|2 )

|y|αu(y)

|y−1x|α+β+λ
dy

)q

dx

≤ C

∫

G

(
∫

G

|y|αu(y)

|y−1x|α+β+λ
dy

)q

dx = C‖Iλ+α+β,|·|ũ‖
q

Lq(G),

where ũ(x) = |x|αu(x).
By assumption 1

q
− 1

p
= λ+α+β

Q
− 1 < 0, then Q > λ+α+ β and by using Theorem

2.1 with p < q, we establish

I2 ≤ C‖Iλ+α+β,|·|ũ‖
q

Lq(G) ≤ C‖ũ‖q
Lp(G) = C‖|x|αu‖q

Lp(G). (2.39)

Case 2: p = q. We decompose I2 as

I2 =
∑

k∈Z

∫

2k≤|x|≤2k+1

(

∫

B(0,2|x|)\B(0, |x|2 )

u(y)

|x|β|y−1x|λ
dy

)p

dx. (2.40)

From |x| ≤ 2|y| ≤ 4|x| and 2k ≤ |x| ≤ 2k+1, we have 2k−1 ≤ |y| ≤ 2k+2 and
0 ≤ |y−1x| ≤ 3|x| ≤ 3 · 2k+1.
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By using Young’s inequality with 1
p
+ 1

r
= 1 + 1

q
(our case p = q, hence r = 1), we

calculate

I2 =
∑

k∈Z

∫

2k≤|x|≤2k+1

(

∫

B(0,2|x|)\B(0, |x|2 )

u(y)

|x|β|y−1x|λ
dy

)p

dx

=
∑

k∈Z

∫

2k≤|x|≤2k+1

(

∫

B(0,2|x|)\B(0, |x|2 )

u(y)

|y−1x|λ
dy

)p

dx

|x|βp

≤
∑

k∈Z

2−βpk‖u · χ{2k−1≤|y|≤2k+2} ∗ |x|
−λ‖p

Lp(G)

≤
∑

k∈Z

2−βpk‖|x|−λ · χ{0≤|y|≤3·2k+1}‖
p

L1(G)‖u · χ{2k−1≤|y|≤2k+2}‖
p

Lp(G)

≤ C
∑

k∈Z

2(Q−λ−β)kp‖u · χ{2k−1≤|y|≤2k+2}‖
p

Lp(G) = C
∑

k∈Z

2αkp‖u · χ{2k−1≤|y|≤2k+2}‖
p

Lp(G)

= C
∑

k∈Z

‖2α(k−1)u · χ{2k−1≤|y|≤2k+2}‖
p

Lp(G) ≤ C
∑

k∈Z

‖|y|αu · χ{2k−1≤|y|≤2k+2}‖
p

Lp(G)

= C‖|x|αu‖p
Lp(G).

Theorem 2.7 is proved. �

Remark 2.8. With assumptions Theorem 2.7 and h ∈ Lq′(G), we have the following
Stein-Weiss inequality

∣

∣

∣

∣

∫

G

u(y)h(x)

|x|β|y−1x|λ|y|α
dxdy

∣

∣

∣

∣

≤ C‖u‖Lp(G)‖h‖Lq′(G), (2.41)

where C is a positive constant independent of u and h. This gives (1.7).
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