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HARDY-POINCARÉ, RELLICH

AND UNCERTAINTY PRINCIPLE INEQUALITIES

ON RIEMANNIAN MANIFOLDS

ISMAIL KOMBE AND MURAD ÖZAYDIN

Abstract. We continue our previous study of improved Hardy, Rellich and
uncertainty principle inequalities on a Riemannian manifold M , started in
our earlier paper from 2009. In the present paper we prove new weighted
Hardy-Poincaré, Rellich type inequalities as well as an improved version of our
uncertainty principle inequalities on a Riemannian manifold M . In particular,
we obtain sharp constants for these inequalities on the hyperbolic space Hn.

1. Introduction

The classical Hardy, Rellich and Heisenberg-Pauli-Weyl (uncertainty principle)
inequalities play important roles in many questions from spectral theory, harmonic
analysis, partial differential equations, and geometry as well as quantum mechanics.
In order to motivate our work, we present these three classical (sharp) inequalities
on the Euclidean space R

n. The Hardy inequality states that for n ≥ 3

(1.1)

∫
Rn

|∇φ(x)|2dx ≥
(n− 2

2

)2
∫
Rn

|φ(x)|2
|x|2 dx,

where φ ∈ C∞
0 (Rn). Here the constant (n−2

2 )2 is sharp, in the sense that

(n− 2

2

)2

= inf
0�=φ∈C∞

0 (Rn)

∫
Rn |∇φ(x)|2dx∫
Rn

|φ(x)|2
|x|2 dx

.

Another inequality involving second-order derivatives is the Rellich inequality
[20]:

(1.2)

∫
Rn

|Δφ(x)|2dx ≥ n2(n− 4)2

16

∫
Rn

|φ(x)|2
|x|4 dx,

where φ ∈ C∞
0 (Rn), n ≥ 5 and the constant n2(n−4)2

16 is again sharp. (There are
also versions for lower dimensions under additional hypotheses.)

The classical Heisenberg-Pauli-Weyl inequality, a precise mathematical formula-
tion of the uncertainty principle of quantum mechanics, states:

(1.3)
( ∫

Rn

|x|2|f(x)|2dx
)(∫

Rn

|∇f(x)|2dx
)
≥ n2

4

( ∫
Rn

|f(x)|2dx
)2
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for all f ∈ L2(Rn). Here the constant n2

4 is sharp and also it is well known that

equality is attained in (1.3) if and only if f is Gaussian (i.e. f(x) = Ae−α|x|2 for
some A ∈ R, α > 0).

These inequalities have been extensively studied in the Euclidean setting and
now the literature on this topic is quite vast and rich, encompassing many general-
izations and refinements, e.g. [2], [10], [6], [1], [3], [12], [8], [13] and the references
therein. Many new developments are still forthcoming. For instance, Tertikas and
Zographopoulos [22] give a sharp Rellich-type inequality and its improved versions
which involves both first- and second-order derivatives:

(1.4)

∫
Rn

|Δφ(x)|2dx ≥ n2

4

∫
Rn

|∇φ(x)|2
|x|2 dx,

where φ ∈ C∞
0 (Rn), n ≥ 5 and the constant n2

4 is sharp.
On the other hand the Euclidean results mentioned above continue to be a

source of inspiration for the problem of finding analogous inequalities in the setting
of Riemannian manifolds. There has been a continuously growing literature in this
direction, e.g. [7], [9], [14], [18], [4], [23], [17], [19], and the references therein.
For instance, in an interesting paper, Carron [7] obtained the following weighted
L2-Hardy inequality on a complete noncompact Riemannian manifold M :

(1.5)

∫
M

ρα|∇φ|2dV ≥
(C + α− 1

2

)2
∫
M

ρα
φ2

ρ2
dV,

where φ ∈ C∞
c (M − ρ−1{0}), α ∈ R, C > 1, C + α − 1 > 0 and the weight

function ρ satisfies |∇ρ| = 1 and Δρ ≥ C
ρ in the sense of distribution. For complete

noncompact Riemannian manifolds, under the same geometric assumptions on the
weight function ρ, we obtained in [17] an Lp version of (1.5) (where 1 < p < ∞ and
C + 1 + α− p > 0)

(1.6)

∫
M

ρα|∇φ|pdV ≥
(C + 1 + α− p

p

)p
∫
M

ρα
|φ|p
ρp

dV,

as well as a Rellich-type inequality (where α < 2, C + α− 3 > 0)

(1.7)

∫
M

ρα|Δφ|2dV ≥ (C + α− 3)2(C − α+ 1)2

16

∫
M

ρα
φ2

ρ4
dV,

where Δ is the Laplace-Beltrami operator on M .
We also found an Lp Heisenberg-Pauli-Weyl uncertainty principle type inequal-

ity (for a complete noncompact Riemannian manifold) and an L2 version with a
(nonnegative) remainder term. In the specific case when the manifold M is the
hyperbolic space H

n, we obtained sharp constants for the Hardy and Rellich-type
inequalities, and explicit (not sharp) constants for the Heisenberg-Pauli-Weyl un-
certainty inequalities.

In the present paper we continue our investigation of Hardy-Poincaré, Rellich
and Heisenberg-Pauli-Weyl type inequalities. The plan of the paper is as follows.
In Section 2 we first prove a new form of weighted Hardy-Poincaré type inequality
and then we prove various improved versions of the weighted Hardy inequality
(1.5) (in the sense that nonnegative terms are added on the right-hand side of
(1.5)). We note that these improved inequalities are the main tool in proving
improved Rellich type inequalities. In Section 3 we first prove a weighted analogue
of (1.4) and then obtain improved versions. Section 4 is devoted to the study of
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Heisenberg-Pauli-Weyl (uncertainty principle) type inequalities where we obtain
better constants than those of [17] and prove a sharp analogue of the classical
uncertainty principle inequality (1.3) on the hyperbolic space H

n. In each section
we first prove inequalities in the context of a general complete Riemannian manifold.
Then, turning our attention to the hyperbolic space Hn, we consider specific weight
functions and obtain inequalities with explicit and usually sharp constants.

2. Weighted Hardy-Poincaré type inequalities

Throughout this paper, M denotes a complete noncompact Riemannian manifold
endowed with a metric g. We denote by dV , ∇, and Δ respectively the Riemannian
volume element, the Riemannian gradient and the Laplace-Beltrami operator onM .

We begin this section by proving a new form of the Hardy-Poincaré type inequal-
ity for a complete noncompact Riemannian manifold M with a weight function ρ
modelled on the distance from a point. (In this context the hypotheses |∇ρ| = 1
and Δρ ≥ C

ρ seem to be geometrically quite natural.) One advantage of this set-up

is that it implies and thus provides another (shorter) proof of (1.6) above (Theorem
2.1 in [17]) as explained in the Remark below.

Theorem 2.1. Let M be a complete noncompact Riemannian manifold of dimen-
sion n > 1. Let ρ be a nonnegative function on M such that |∇ρ| = 1 and Δρ ≥ C

ρ

in the sense of distribution where C > 0. Then the following inequality holds:

(2.1)

∫
M

ρα+p|∇ρ · ∇φ|pdV ≥
(C + α+ 1

p

)p
∫
M

ρα|φ|pdV

for all compactly supported smooth functions φ ∈ C∞
0 (M \ ρ−1{0}), 1 < p < ∞,

and C + α > −1.

Proof. It follows from the above hypothesis that

(2.2) div(ρ∇ρ) ≥ C + 1.

Multiplying both sides of (2.2) by ρα|φ|p and integrating over M yields

(C + 1)

∫
M

ρα|φ|pdV ≤
∫
M

div(ρ∇ρ)ρα|φ|pdV.

As an immediate consequence of the divergence theorem we have

(C + α+ 1)

∫
M

ρα|φ|pdV ≤ −p

∫
M

|φ|p−2φρα+1∇ρ · ∇φdV.

An application of Hölder’s and Young’s inequalities yields

(C + α+ 1)

∫
M

ρα|φ|pdV

≤ p
(∫

M

ρα|φ|pdV
)(p−1)/p( ∫

M

ρα+p|∇ρ · ∇φ|pdV
)1/p

≤ (p− 1)ε−p/(p−1)

∫
M

ρα|φ|pdV + εp
∫
M

ρα+p|∇ρ · ∇φ|pdV

for any ε > 0. Therefore

(2.3)

∫
M

ρα+p|∇ρ · ∇φ|pdV ≥ ε−p
(
C + α+ 1− (p− 1)ε−p/(p−1)

) ∫
M

ρα|φ|pdV.
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Note that the function ε −→ ε−p
(
C+α+1−(p−1)ε−p/(p−1)

)
attains the maximum

for εp/(p−1) = p
C+α+1 , and this maximum is equal to

(
C+α+1

p

)p

. Now we obtain

the desired inequality,∫
M

ρα+p|∇ρ · ∇φ|pdV ≥
(C + α+ 1

p

)p
∫
M

ρα|φ|pdV.

�

Remark. Applying the Cauchy-Schwarz inequality to |∇ρ · ∇φ|, replacing α with
α− p and using |∇ρ| = 1 yields the weighted Lp-Hardy inequality (1.6).

We will give a sharp version of Theorem 2.1 in the hyperbolic space H
n. Recall

that the hyperbolic space H
n (n ≥ 2) is a complete simply connected Riemannian

manifold having constant sectional curvature equal to −1. There are several models
for Hn and we will use the Poincaré ball model Bn in this paper.

The Poincaré ball model for the hyperbolic space is

B
n = {x = (x1, . . . , xn) ∈ R

n| |x| < 1}
endowed with the Riemannian metric ds = λ(x)|dx|, where λ(x) = 2

1−|x|2 . Hence

{λdxi}ni=1 give an orthonormal basis of the tangent space at x = (x1, . . . , xn) in
B
n. The corresponding dual basis is { 1

λ
∂

∂xi
}ni=1, thus the hyperbolic gradient and

the Laplace-Beltrami operator are

∇Hnu =
∇u

λ
,

ΔHnu = λ−ndiv(λn−2∇u),

where ∇ and div denote the Euclidean gradient and divergence in R
n, respectively.

The hyperbolic distance dHn(x, y) between x, y ∈ B
n in the Poincaré ball model

is given by the formula

dHn(x, y) = Arc cos h
(
1 +

2|x− y|2
(1− |x|2)(1− |y|2)

)
.

From this we immediately obtain for x ∈ B
n,

d := dHn(0, x) = 2Arc tan h|x| = log(
1 + |x|
1− |x| ),

which is the distance from x ∈ B
n to the origin. Moreover, the geodesic lines

passing through the origin are the diameters of Bn along with open arcs of circles
in B

n perpendicular to the boundary at ∞, ∂Bn = S
n−1 = {x ∈ R

n : |x| = 1}.
The hyperbolic volume element is given by

dV = λn(x)dx =
( 2

1− r2

)n

rn−1drdσ,

where dx denotes the Lebesgue measure in B
n and dσ is the normalized surface

measure on S
n−1.

A hyperbolic ball in B
n with center 0 and hyperbolic radius R ∈ (0,∞) is defined

by

BR(0) = {x ∈ B
n | dHn(0, x) < R};

we note that BR(0) is also a Euclidean ball with center 0 and radius S = tanhR
2 ∈

(0, 1).
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Note that we have the following two relations for the distance function d =

log( 1+|x|
1−|x| ):

|∇Hnd| = 1,

ΔHnd ≥ n− 1

d
, x �= 0.

We are now ready to give a sharp version of Theorem 2.1 in the hyperbolic space
H

n. Here ρ is chosen to be the distance function from the origin in the Poincaré
ball model for the hyperbolic space H

n.

Theorem 2.2. Let φ ∈ C∞
0 (Hn), d = log( 1+|x|

1−|x| ), n ≥ 2, 1 < p < ∞ and α > −n.

Then we have

(2.4)

∫
Hn

dα+p|∇Hnd · ∇Hnφ|pdV ≥
(n+ α

p

)p
∫
Hn

dα|φ|pdV,

where the constant
(
n+α
p

)p
is sharp.

Proof. The inequality follows from Theorem 2.1. We show that
(
n+α
p

)p
is the best

constant in (2.4):

CH := inf
0�=φ∈C∞

0 (Hn)

∫
Hn dα+p|∇Hnd · ∇Hnφ|pdV∫

Hn dα|φ|pdV =
(n+ α

p

)p

.

It is clear that

(2.5)
(n+ α

p

)p ≤
∫
Hn dα+p|∇Hnd · ∇Hnφ|pdV∫

Hn dα|φ|pdV

holds for all φ ∈ C∞
0 (Hn). If we pass to the inf in (2.5) we get that

(
n+α
p

)p ≤ CH .

We only need to show that CH ≤
(
n+α
p

)p
and for this we use the family of radial

functions

(2.6) φε(d) =

{
d

n+α
p +ε if d ∈ [0, 1],

d−(n+α
p +ε) if d > 1,

where ε > 0. Notice that φε(d) can be approximated by smooth functions with
compact support in H

n.
A direct computation shows that

dα+p|∇Hnd · ∇Hnφε|p =

{(
n+α
p + ε

)p
dn+2α+pε if d ∈ [0, 1],(

n+α
p + ε

)p
d−n−pε if d > 1.

Let us denote by B1 = {x ∈ H
n : d ≤ 1} the unit ball with respect to the distance

d. Hence ∫
Hn

dα|φε|pdV =

∫
B1

dn+2α+pεdV +

∫
Hn\B1

d−n−pεdV,

and then we have(n+ α

p
+ ε

)p ∫
Hn

dα|φε|pdV =
(n+ α

p
+ ε

)p[ ∫
B1

dn+2α+pεdV +

∫
Hn\B1

d−n−pεdV
]

=

∫
Hn

dα+p|∇Hnd · ∇Hnφε|pdV.
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On the other hand,(
n+α
p + ε

)p
CH

∫
Hn

dα+p|∇Hnd · ∇Hnφε|pdV ≥
(n+ α

p
+ ε

)p ∫
Hn

dα|φε|pdV

=

∫
Hn

dα+p|∇Hnd · ∇Hnφε|pdV.

It is clear that
(
n+α
p + ε

)p ≥ CH , and letting ε −→ 0, we obtain
(
n+α
p

)p ≥ CH .

Therefore CH =
(
n+α
p

)p
. �

We now prove an improved L2 weighted Hardy inequality involving two weight
functions ρ and δ modeled on distance functions from a point and distance to the
boundary of a domain Ω with smooth boundary.

Theorem 2.3. Let M be a complete noncompact Riemannian manifold of dimen-
sion n > 1. Let ρ and δ be nonnegative functions on M such that |∇ρ| = 1, Δρ ≥ C

ρ

and −div(ρ1−C∇δ) ≥ 0 in the sense of distribution, where C > 1. Then we have

(2.7)

∫
Ω

ρα|∇φ|2dV ≥
(C + α− 1

2

)2
∫
Ω

ρα
φ2

ρ2
dV +

1

4

∫
Ω

ρα
|∇δ|2
δ2

φ2dV

for all φ ∈ C∞
0 (Ω \ ρ−1{0}), α ∈ R, and C + α− 1 > 0.

Proof. Let φ ∈ C∞
0 and define ψ = ρβφ, where β < 0. A direct calculation shows

that

(2.8) |∇φ|2 = β2ρ2β−2|∇ρ|2ψ2 + 2βρ2β−1ψ∇ρ · ∇ψ + ρ2β|∇ψ|2.

Multiplying both sides of (2.8) by ρα and applying integration by parts over M
gives

(2.9)

∫
M

ρα|∇φ|2dV = β2

∫
M

ρα+2β−2ψ2dV − β

α+ 2β

∫
M

Δ(ρα+2β)ψ2dV

+

∫
M

ρα+2β |∇ψ|2dV

≥ −β2 − β(α+ C − 1)

∫
M

ρα−2φ2dV +

∫
M

ρα+2β |∇ψ|2dV.

Choosing

β =
1− α− C

2

gives

(2.10)

∫
M

ρα|∇φ|2dV ≥
∫
M

ρα
φ2

ρ2
dV +

∫
M

ρ1−C |∇ψ|2dV.

We now focus on the second term on the right-hand side of this inequality. Let us
define a new variable ϕ(x) := δ(x)−1/2ψ(x), where δ(x) is a nonnegative function
and δ(x) ∈ C2

0 (M). It is clear that

|∇ψ|2 =
1

4

ϕ2

δ
|∇δ|2 + ϕ∇δ · ∇ϕ+ δ|∇ϕ|2.
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Therefore∫
M

ρ1−C |∇ψ|2dV ≥ 1

4

∫
M

ρ1−C ϕ2

δ
|∇δ|2dV +

∫
M

ρ1−Cϕ∇δ · ∇ϕdV

=
1

4

∫
M

ρ1−C |∇δ|2
δ2

ψ2dV − 1

2

∫
M

div(ρ1−C∇δ)ϕ2dV.

Since −div(ρ1−C∇δ) ≥ 0 and ψ = ρ
C+α−1

2 φ, then we get

(2.11)

∫
M

ρ1−C |∇ψ|2dV ≥ 1

4

∫
M

ρα
|∇δ|2
δ2

φ2dV.

Substituting (2.11) into (2.10) gives the desired inequality:∫
M

ρα|∇φ|2dV ≥
(C + α− 1

2

)2
∫
M

ρα
φ2

ρ2
dV +

1

4

∫
M

ρα
|∇δ|2
δ2

φ2dV.

�
Our next goal is to find model functions which satisfy the assumption of the

above theorem. A straightforward computation shows that δ = log(Rρ ) satisfies the

differential inequality −div(ρ1−C∇δ) ≥ 0. As a consequence of Theorem 2.3 we
have the following weighted L2-Hardy-type inequality on the hyperbolic space H

n

which has a logarithmic remainder term. The sharpness of the constant (n+α−2
2 )2

follows as in [17, Theorem 3.1].

Corollary 2.1. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n. Let

ρ = d = log( 1+|x|
1−|x| ) and δ := log(Rd ), R > supΩ

(
d
)
, α ∈ R, n+ α− 2 > 0. Then we

have

(2.12)

∫
Ω

dα|∇Hnφ|2dV ≥
(n+ α− 2

2

)2
∫
Ω

dα
φ2

d2
dV +

1

4

∫
Ω

dα
φ2

d2(log R
d )

2
dV

for all φ ∈ C∞
0 (Ω) and the constant

(
n+α−2

2

)2
is sharp.

Let BR = {x ∈ B
n | d < R} be a hyperbolic ball with center 0 and hyperbolic

radius R. It is clear that δ := R − d is the distance function of the point x ∈ BR

to the boundary of BR and satisfies the differential inequality in Theorem 2.4.
Therefore we have

Corollary 2.2. Let BR be a hyperbolic ball with center 0 and hyperbolic radius R.

Let d = log( 1+|x|
1−|x| ) and δ := R− d, α ∈ R, n+ α− 2 > 0. Then we have

(2.13)

∫
BR

dα|∇Hnφ|2dV ≥
(n+ α− 2

2

)2
∫
BR

dα
φ2

d2
dV +

1

4

∫
BR

dα
φ2

(R− d)2
dV

for all φ ∈ C∞
0 (BR) and the constant

(
n+α−2

2

)2
is sharp.

Hardy-Sobolev-Poincaré inequalities. The following sharp form of the Sobolev
inequality on the hyperbolic space H

n is due to [16]. It states that for all φ ∈
C∞

0 (Hn):

(2.14)

∫
Hn

|∇Hnφ|2dV ≥ n(n− 2)

4
|Sn| 2

n

( ∫
Hn

|φ| 2n
n−2 dV

)n−2
n

+
n(n− 2)

4

∫
Hn

φ2dV,

where φ ∈ C∞
0 (Hn). Here An = n(n−2)

4 |S| 2
n is the sharp constant for the Sobolev

inequality on R
n, |Sn| is the volume of the n-dimensional unit sphere in R

n+1 and
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the constant Bn = n(n−2)
4 is sharp for n ≥ 4. Recently, sharp form of the inequality

(2.14) in three-dimensional hyperbolic space H
n has been proved by Benguria,

Frank and Loss in [5].
The Sobolev inequality (2.14) and the Hardy inequality in [17] yield the following

Hardy-Sobolev inequality on the hyperbolic space H
n.

Corollary 2.3. Let φ ∈ C∞
0 (Hn), d = log( 1+|x|

1−|x| ) and n ≥ 3. Then we have

∫
Hn

|∇Hnφ|2dV ≥
(n− 2

2

) 2s
p∗(s)

(n(n− 2)

4
|Sn| 2

n

)n(2−s)
2(n−s)

( ∫
Hn

|φ|p∗(s)

ds
dV

) 2
p∗(s)

,

where 0 ≤ s ≤ 2 and p∗(s) = 2(n−s
n−2 ).

Before we state and prove our next theorem, we first recall the (Euclidean)
weighted Sobolev inequality of Fabes, Kenig and Serapino [11], which plays an
important role in our proof. They proved the following inequality:
(2.15)( 1

w(Br)

∫
Br

|∇φ|pw(x)dx
)1/p

≥ 1

c(diamBr)

( 1

w(Br)

∫
Br

|φ|kpw(x)dx
)1/kp

,

where Br is a ball in R
n, φ ∈ C∞

0 (Br), w(Br) =
∫
Br

w(x)dx, 1 < p < ∞, 1 ≤
k ≤ n

n−1 + ε, ε > 0 and the weight function w belongs to Muckenhoupt’s class Ap.
In particular, if the weight function w belongs to Muckenhoupt’s class A2, then k
can be taken equal to n

n−1 + ε and this is sharp. Recall that a weight function w

belongs to Muckenhoupt’s class Ap (1 < p < ∞) if

sup
( 1

|B|

∫
B

w(x)dx
)( 1

|B|

∫
B

w(x)
1

1−p dx
)p−1

= Cp,w < ∞,

where the supremum is taken over all balls B in R
n (see [21]).

Motivated by the classical work of Brezis and Vázquez [6], our next theorem
shows that a sharp weighted Hardy inequality on the hyperbolic space H

n can be
improved by a weighted Sobolev term.

Theorem 2.4. Let φ ∈ C∞
0 (Hn), d = log( 1+|x|

1−|x| ), α ∈ R, n > 2 and n+ α− 2 > 0.

Then we have
(2.16)∫

Hn

dα|∇Hnφ|2dV ≥
(n+ α− 2

2

)2
∫
Hn

dα
φ2

d2
dV + c̃

( ∫
Hn

d
(2−n)(2−q)+αq

2 φqdx
)2/q

,

where 2 ≤ q ≤ 2n
n−1+2ε, ε > 0, c̃ = 2n−2

c2

( |Sn|
2

) q−2
q , c > 0 and the constant (n+α−2

2 )2

is sharp.

Proof. Let φ ∈ C∞
0 and define ψ = d−βφ, where β < 0. A direct calculation shows

that

(2.17)
dα|∇φ|2λn−2 = β2dα+2β−2|∇d|2ψ2λn−2

+ 2βdα+2β−1ψλn−2∇d · ∇ψ + dα+2β |∇ψ|2λn−2.

It is easy to see that

|∇d|2 = λ2,
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and integrating (2.17) over Bn, we get
(2.18)∫

Bn

dα|∇φ|2λn−2dx =

∫
Bn

β2dα+2β−2ψ2λndx+

∫
Bn

2βdα+2β−1ψλn−2∇d · ∇ψdx

+

∫
Bn

dα+2β |∇ψ|2λn−2dx.

Applying integration by parts to the middle integral on the right-hand side of (2.18),
we obtain
(2.19)∫

Bn

dα|∇φ|2λn−2dx =

∫
Bn

β2dα+2β−2ψ2λndx− β

α+ 2β

∫
Bn

div
(
λn−2∇(d2β+α)

)
dx

+

∫
Bn

dα+2β |∇ψ|2λn−2dx.

One can show that

(2.20)

− β

α+ 2β

∫
Bn

div
(
λn−2∇(d2β+α)

)
dx

=− β(2β + α− 1)

∫
Bn

d2β+α−2λnψ2dx− β

∫
Bn

d2β+α−1λn−2ψ2(Δd)dx

− β(n− 2)

∫
Bn

d2β+α−1λn−3(∇d · ∇λ)dx.

A direct computation shows that

Δd = λ2r +
n− 1

r
λ

and

∇d · ∇λ = λ3r.

Substituting these above

(2.21)

− β

α+ 2β

∫
Bn

div
(
λn−2∇(d2β+α)

)
dx

= −β(2β + α− 1)

∫
Bn

d2β+α−2λnψ2dx

− (2β + α)

∫
Bn

d2β+α−1λn
( (n− 1)(λr2 + 1)

λr

)
ψ2dx.

We can easily show that
λr2 + 1

λr
≥ 1

d
.

If 2β + α < 0, then we have
(2.22)

− β

α+ 2β

∫
Bn

div
(
λn−2∇(d2β+α)

)
dx ≥ −β(2β + α+ n− 2)

∫
Bn

d2β+α−2λnψ2dx.

Now we substitute (2.22) into (2.19) and we get∫
Bn

dα|∇φ|2λn−2 ≥ (−β2 − β(α+ n− 2))

∫
Bn

d2β+α−2ψ2λndx

+

∫
Bn

dα+2β |∇ψ|2λn−2dx.
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Note that the function β −→ −β2 − β(α + n − 2) attains the maximum for
β = 2−α−n

2 , and this maximum is equal to (n+α−2
2 )2. Therefore we have the

following inequality:∫
Bn

dα|∇φ|2λn−2dx ≥
(n+ α− 2

2

)2
∫
Bn

dα
φ2

d2
λndx+

∫
Bn

d2−n|∇ψ|2λn−2dx.

Using the fact d ≤ λr, we get

(2.23)

∫
Bn

dα|∇φ|2λn−2dx ≥
(n+ α− 2

2

)2
∫
Bn

dα
φ2

d2
λndx+

∫
Bn

r2−n|∇ψ|2dx.

Notice that the weight function r2−n is in the Muckenhoupt A2 class. We now apply
weighted Sobolev inequality (2.15) to the second integral term on the right-hand
side of (2.23) and obtain∫

Bn

dα|∇φ|2λn−2dx

≥
(n+ α− 2

2

)2
∫
Bn

dα
φ2

d2
λndx+ c1

( ∫
Bn

r2−nψqdx
)2/q

≥
(n+ α− 2

2

)2
∫
Bn

dα
φ2

d2
λndx+ c1

( ∫
Bn

r2−nd
(n+α−2)q

2 φqdx
)2/q

,

where q > 2 and c1 = 1
c2

( |Sn|
2

)1− 1
k . Furthermore, using the inequality 2r ≤ d ≤ λr,

we get∫
Bn

dα|∇φ|2λn−2dx ≥
(n+ α− 2

2

)2
∫
Bn

dα
φ2

d2
λndx+c̃

( ∫
Bn

d
(n−2)(q−2)+αq

2 φqdx
)2/q

,

where q > 2 and c̃ = 2n−2

c2

( |Sn|
2

) q−2
q . This completes the proof. �

3. Rellich-type inequalities

In this section we prove the weighted Rellich-type inequality and its improved
versions, which connects first to the second-order derivatives. The following is the
weighted analogue of (1.4) in the setting of Riemannian manifold M .

Theorem 3.1. Let M be a complete Riemannian manifold of dimension n > 1.
Let ρ be a nonnegative function on M such that |∇ρ| = 1 and Δρ ≥ C

ρ in the sense

of distribution where C > 1. Then the following inequality is valid:

(3.1)

∫
M

ρα|Δφ|2dV ≥ (C + 1− α)2

4

∫
M

ρα
|∇φ|2
ρ2

dV

for all compactly supported smooth functions φ ∈ C∞
0 (M \ ρ−1{0}), 7−C

3 < α < 2.

Proof. A straightforward computation shows that

(3.2) Δρα−2 ≤ (α− 2)(C + α− 3)ρα−4.

Multiplying both sides of (3.2) by φ2 and integrating over M , we obtain

(3.3)

(C + α− 3)(α− 2)

∫
M

ρα−4φ2dV ≥
∫
M

ρα−2Δ(φ2)dV

=

∫
M

ρα−2(2|∇φ|2 + 2φΔφ)dV.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INEQUALITIES ON RIEMANNIAN MANIFOLDS 5045

Therefore

(3.4) −
∫
M

(φΔφ)ρα−2 ≥
∫
M

ρα−2|∇φ|2dV − (C + α− 3)(α− 2)

2

∫
M

ρα−4φ2dV.

Let us apply Young’s inequality to expression −
∫
M

ρα−2φΔφ dx,

(3.5) −
∫
M

ρα−2φΔφdV ≤ ε

∫
M

ρα−4φ2dV +
1

4ε

∫
M

ρα|Δφ|2dV,

where ε > 0 and will be chosen later. Combining (3.5) and (3.4), we get
(3.6)∫

M

ρα−2|∇φ|2dV ≤
(
ε+

(C + α− 3)(α− 2)

2

)∫
M

ρα−4φ2dV +
1

4ε

∫
M

ρα|Δφ|2dV.

Notice that the case of ε + (C+α−3)(α−2)
2 < 0 gives the Rellich inequality (1.6).

Therefore we only need to consider the cases ε + (C+α−3)(α−2)
2 = 0 and ε +

(C+α−3)(α−2)
2 > 0, respectively. The first case gives the following inequality:

(3.7)

∫
M

ρα|Δφ|2dV ≥ 2(C + α− 3)(2− α)

∫
M

ρα−2|∇φ|2dV.

If ε+ (C+α−3)(α−2)
2 > 0, then we apply the Rellich inequality (1.6) to the first term

on the right-hand side of (3.6) and get

(3.8)

∫
M

ρα−2|∇φ|2dV ≤ PC,α(ε)

∫
M

ρα|Δφ|2dV,

where

PC,α(ε) =
16ε

(C + α− 3)2(C − α+ 1)2
+

8(α− 2)

(C + α− 3)(C − α+ 1)2
+

1

4ε
.

Note that the function PC,α(ε) attains the minumum for ε = (C+α−3)(C−α+1)
8 , and

this minimum is equal to 4
(C−α+1)2 . Therefore we have the following inequality:∫

M

ρα|Δφ|2dV ≥ (C − α+ 1)2

4

∫
M

ρα−2|∇φ|2dV.

�

We are now ready to give a sharp version of Theorem 3.1 in the hyperbolic space
H

n. Here ρ is chosen to be the distance function from the origin in the Poincaré
ball model for the hyperbolic space.

Theorem 3.2. Let φ ∈ C∞
0 (Hn), d = log( 1+|x|

1−|x| ), n > 2, 8−n
3 < α < 2. Then we

have

(3.9)

∫
Hn

dα|ΔHnφ|2dV ≥ (n− α)2

4

∫
Hn

dα
|∇Hnφ|2

d2
dV.

Proof. The inequality follows from Theorem 3.1. To show that the constant (n−α
2 )2

is sharp, we use the following family of functions as in [17]:

φε(d) =

{
−(n+α−4

2 + ε)
(
d− 1

)
+ 1 if d ∈ [0, 1],

d−(n+α−4
2 +ε) if d > 1.
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Notice that φε(d) can be well approximated by smooth functions with compact

support in H
n, and direct computation shows that (n−α)2

4 is the best constant in
(3.9): (

n− α
)2

4
= lim

ε−→0

∫
Hn dα|ΔHnφε|2dV∫
Hn dα |∇Hnφε|2

d2 dV
.

�

The following inequality is an improved version of the Rellich-type inequality
(3.1) for bounded domains.

Theorem 3.3. Let Ω be a bounded domain with smooth boundary ∂Ω in a complete
Riemannian manifold of dimension n > 1. Let ρ be a nonnegative function on M
such that |∇ρ| = 1, Δρ ≥ C

ρ and −div(ρ1−C∇δ) ≥ 0 in the sense of distribution,

where C > 1. Then the following inequality is valid:
(3.10)∫

Ω

ρα|Δφ|2dV ≥ (C + 1− α)2

4

∫
Ω

ρα
|∇φ|2
ρ2

dV +K(C,α)

∫
Ω

ρα−2 |∇δ|2
δ2

φ2dV

for all compactly supported smooth functions φ ∈ C∞
0 (M \ ρ−1{0}), 7−C

3 < α < 2

and K(C,α) = (C+1−α)(C+3α−7)
16 .

Proof. The proof is similar to the proof of Theorem 3.1. The only difference is
that we apply the improved Hardy-type inequality (2.7) to the first term on the
right-hand side of (3.6). �

The following corollaries are the direct consequences of Theorem 3.3.

Corollary 3.1. Let Ω be a bounded domain with smooth boundary in H
n. Let

d = log( 1+|x|
1−|x| ) and δ := log(Rd ) and R > supΩ

(
d
)
. Then the following inequality is

valid:
(3.11)∫

Ω

dα|ΔHnφ|2dV ≥ (n− α)2

4

∫
Ω

dα
|∇Hnφ|2

d2
dV +K(C,α)

∫
Ω

dα−4 φ2

(ln R
d )

2
dV

for all compactly supported smooth functions φ ∈ C∞
0 (Ω), 8−n

3 < α < 2 and K =
(n−α)(n+3α−8)

16 .

Corollary 3.2. Let BR be a hyperbolic ball with center 0 and hyperbolic radius R.

Let d = log( 1+|x|
1−|x| ) and δ := R− d. Then the following inequality is valid:

(3.12)∫
Ω

dα|ΔHnφ|2dV ≥ (n− α)2

4

∫
Ω

dα
|∇Hnφ|2

d2
dV +K(C,α)

∫
Ω

dα−2 φ2

(R− d)2
dV

for all compactly supported smooth functions φ ∈ C∞
0 (Ω), 8−n

3 < α < 2 and K =
(n−α)(n+3α−8)

16 .
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Using the same argument as in the proof of Theorem 3.1 and improved Hardy-
Sobolev type inequality (2.16), we obtain the following improved Rellich-Sobolev
type inequality on the hyperbolic space H

n.

Corollary 3.3. Let φ ∈ C∞
0 (Hn) and d = log( 1+|x|

1−|x| ). Then the following inequality

is valid:

(3.13)

∫
Hn

dα|ΔHnφ|2dV ≥ (n− α)2

4

∫
Hn

dα
|∇Hnφ|2

d2
dV

+K
( ∫

Hn

d
(n−2)(q−2)+(α−2)q

2 φqdx
)2/q

,

where 8−n
3 < α < 2, K = (n−α)(n+3α−8)2n−2

4c2

( |Sn|
2

) q−2
q , 2 ≤ q ≤ 2n

n−1 + 2ε, ε > 0,
and c > 0.

4. Uncertainty principle inequality

The first and most famous uncertainty principle goes back to Heisenberg’s sem-
inal work, which was developed in the context of quantum mechanics [15]. It says
that the position and momentum of a particle cannot be determined exactly at
the same time but only with an “uncertainty”. The mathematical version of this
principle (stating that a function and its Fourier transform cannot be well localized
simultaneously) was formulated afterwards by Pauli and Weyl [24] and it is some-
times referred to as the Heisenberg-Pauli-Weyl inequality. Uncertainty principle
type inequalities are central to harmonic analysis and such considerations of the
time-frequency domain are crucial in signal and image processing [10].

In a previous work [17], we obtained a Heisenberg-Pauli-Weyl inequality on a
compete noncompact Riemannian manifold M and found an explicit constant when
M is the hyperbolic space H

n. In the present paper we first prove a Heisenberg-
Pauli-Weyl inequality for general Riemannian manifolds which has a better constant
than those of [17] and then we obtain the sharp constant in the hyperbolic case.
The following is the first result of this section.

Theorem 4.1. Let M be a complete Riemannian manifold of dimension n ≥ 2.
Let ρ be a nonnegative function on M such that |∇ρ| = 1 and Δρ ≥ C

ρ in the sense

of distribution where C > 0. Then the following inequality holds:

(4.1)
(∫

M

ρ2φ2dV
)( ∫

M

|∇φ|2dV
)
≥ (C + 1)2

4

( ∫
M

φ2dV
)2

for all compactly supported smooth functions φ ∈ C∞
0 (M).

Proof. Using the assumptions |∇ρ| = 1 and Δρ ≥ C
ρ , we get

(4.2)

∫
M

(Δρ2)φ2dV ≥ (2C + 2)

∫
M

φ2dV.

By integration by parts and the Cauchy-Schwarz inequality, we have(∫
M

ρ2φ2dV
)( ∫

M

|∇φ|2dV
)
≥ (C + 1)2

4

( ∫
M

φ2dV
)2

.

This completes the proof. �
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We now prove a sharp analogue of the Heisenberg-Pauli-Weyl inequality (1.3) on
the hyperbolic space H

n.

Theorem 4.2. Let φ ∈ C∞
0 (Hn), d = log( 1+|x|

1−|x| ) and n > 2. Then

(4.3)
( ∫

Hn

d2φ2dV
)(∫

Hn

|∇Hnφ|2dV
)
≥ n2

4

( ∫
Hn

φ2dV
)2

.

Moreover, equality holds in (4.3) if φ(x) = Ae−αd2

, where A ∈ R, α = (n−1
n−2 )

(
n −

1 + 2πCn−2

Cn

)
and Cn =

∫
Hn e−αd2

dV .

Proof. The inequality follows from Theorem 4.1. In order to achieve equality
inspired by the Euclidean case, we consider hyperbolic analogues of Gaussians:

φ(x) = Ae−αd2

where A ∈ R and α > 0. A straightforward but tedious calculation

shows that φ(x) = Ae−αd2

is the minimizer where α = (n−1
n−2 )

(
n− 1+ 2πCn−2

Cn

)
and

Cn =
∫
Hn e−αd2

dV . �

Remark. Note that even though φ(x) = Ae−αd2

does not have a compact support,
it can be approximated by such functions yielding that (4.3) is sharp.

There is a natural link between Hardy, Heisenberg-Pauli-Weyl and Rellich type
inequalities. For instance, using the Rellich-type inequality II (3.1), we have the
following second-order Heisenberg-Pauli-Weyl inequality.

Theorem 4.3. Let M be a complete Riemannian manifold of dimension n ≥ 2.
Let ρ be a nonnegative function on M such that |∇ρ| = 1 and Δρ ≥ C

ρ in the sense

of distribution where C > 7. Then the following inequality holds:

(4.4)
(∫

M

ρ4φ2dV
)( ∫

M

|Δφ|2dV
)
≥ (C + 1)4

16

( ∫
M

φ2dV
)2

for all compactly supported smooth functions φ ∈ C∞
0 (M − ρ−1{0}).

Proof. By equation (4.2) and the Cauchy-Schwarz inequality, we get

( ∫
M

ρ4φ2dV
)1/2( ∫

M

|∇φ|2
ρ2

dV
)1/2

≥ C + 1

4

∫
M

φ2dV.

Using the Rellich-type inequality II (3.1), we obtain the desired inequality:

(∫
M

ρ4φ2dV
)( ∫

M

|Δφ|2dV
)
≥ (C + 1)4

16

( ∫
M

φ2dV
)2

.

�

As an immediate consequence of the Theorem 4.3 we have the following second-
order Heisenberg-Pauli-Weyl inequality with an explicit constant on the hyperbolic
space H

n.
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Corollary 4.1. Let φ ∈ C∞
0 (Hn − {0}), d = log( 1+|x|

1−|x| ) and n > 8. Then the

following inequality holds:

(4.5)
( ∫

Hn

d4φ2dV
)(∫

Hn

|ΔHnφ|2dV
)
≥ n4

16

( ∫
Hn

φ2dV
)2

.
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