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Abstract

In probabilistic terms Hardy’s condition is written as follows: E[ec
√

X ] < ∞, where
X is a nonnegative random variable and c > 0 a constant. If this holds, then all
moments of X are finite and the distribution of X is uniquely determined by the mo-
ments. This condition, based on two papers by G. H. Hardy (1917/1918), is weaker
than Cramér’s condition requiring the existence of a moment generating function
of X. We elaborate Hardy’s condition and show that the constant 1

2 (square root)
is the best possible for the moment determinacy of X. We describe relationships
between Hardy’s condition and properties of the moments of X. We use this new con-
dition to establish a result on the moment determinacy of an arbitrary multivariate
distribution.
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1. Introduction

A web-search for ‘Hardy’s condition in the moment problem for probability distribu-
tions’ shows that nothing is available. The reader is invited to check and eventually
confirm that this is the case.

In this paper we provide details about a not so well-known criterion for unique-
ness of a probability distribution by its moments. The criterion is based on two
old papers by G. H. Hardy, and to the best of our knowledge it is not explicitly
described in the probabilistic literature. Hardy’s condition has a simple form, often
it is relatively easy to check and it allows us to derive new results or provide new
proofs of known results.

Hardy’s criterion is intrinsically related to other well-known classical criteria
based on conditions of Cramér, Carleman, Krein (see, e.g., Shiryaev (1996), Stoyanov
(1997)) and also to more recent developments achieved in Lin (1997), Stoyanov
(2000), Pakes (2001), Pakes et al. (2001), De Jeu (2003) and Stoyanov (2004).

G. H. Hardy (1877-1947), who is recognized as one of the greatest analysts of
20th century, never showed an interest in probability theory, never tried to solve a
probabilistic problem and never used probabilistic language. However, in a recent
paper, P. Diaconis (2002) convincingly concluded that several analytical results by
G. H. Hardy have been instrumental later when building some areas of modern prob-
ability theory. Diaconis did not refer to the two papers by Hardy which are in the
base of the present paper. The new criterion described here shows that in fact the
analytical results in Hardy (1917, 1918), though not intended to be probabilistic,
are, when appropriately reformulated and annotated, definitely another contribu-
tion to probability theory, in particular, to the moment problem for probability
distributions.

2. Notations, notions and preliminary facts

Suppose that X is a random variable with values on the whole real line R1. If F



denotes the distribution function of X, we write X ∼ F. We assume that X has all
moments finite, i.e. E[|X|k] < ∞ for k = 1, 2, . . . , and use the notation mk for the
moment of order k:

mk = E[Xk] =
∫

R1

xkdF (x), k = 1, 2, . . . .

Thus the moment sequence {mk, k = 1, 2, . . .} of X, and F, is well-defined. If F is
the only distribution function with the moments {mk}, we say that F is uniquely
determined by its moments, or that F (or X) is M-determinate. Otherwise F is non-
unique, or F (or X) is M-indeterminate in which case there is at least one distribution
function, say G, such that F 6= G, but mk(F ) = mk(G) for all k = 1, 2, . . ..

According to well-known Cramér’s criterion, if X is an arbitrary random variable,
X ∼ F , whose moment generating function exists, i.e. for some t0 > 0, the function
M(t) = E[etX ] < ∞ for all t ∈ (−t0, t0) (Cramér’s condition), then all moments of
X are finite, and F is M-determinate. If there is no moment generating function,
i.e. E[etnX ] = ∞ for some points tn converging to zero, we say that F has heavy
tail(s). Still, we may have all moments mk finite and F either M-determinate or
M-indeterminate.

There are criteria for uniqueness and for non-uniqueness of a distribution in terms
of the moments. They depend on the range of values of X, X ∼ F , equivalently,
on the support of F . Two cases are of importance, when the support is a subset
of the positive semi-real line R+ = [0,∞) (Stieltjes moment problem), and when
the support is a subset of the whole real line R1 = (−∞,∞) (Hamburger moment
problem).

It is possible that a distribution F on R+ is unique for the Stieltjes moment
problem, but non-unique for the Hamburger moment problem. This can eventually
happen only for discrete distributions with unbounded support which includes the
origin; for details see Chihara (1968), p. 481. In this paper we focus our attention
on the Stieltjes moment problem.

3. Results

We are now in a position to formulate the results discussed in this paper.

Theorem 1 (Hardy’s Criterion). Let X be a nonnegative random variable
with distribution function F . Suppose that the following condition is satisfied for
some c > 0 :

E[ec
√

X ] < ∞ (Hardy’s condition). (1)

Then all positive integer order moments of X are finite, i.e. mk = E[Xk] =∫∞
0 xkdF (x) < ∞, k = 1, 2, . . ., and moreover, F is M-determinate, i.e. F is the

only distribution function with the moment sequence {mk, k = 1, 2, . . .}.

Remark. Let us emphasize that the required condition is on
√

X, i.e. we require
the 1

2 -Cramér’s condition for X, or Cramér’s condition for
√

X. This implies that√
X is M-determinate. However, the conclusion in the theorem is about X itself.

Equivalently, under Hardy’s condition, F is the only distribution function with the
moment sequence {mk, k = 1, 2, . . .}.

Corollary 1. If the random variable X ≥ 0 satisfies Cramér’s condition E[ecX ] < ∞
for some c > 0, then X2 is M-determinate.

Corollary 2. If X ≥ 0 is a random variable with E[exp(cXδ)] < ∞ for some c > 0,
then the transformed random variable X2δ is M-determinate.

Theorem 2. The constant 1
2 (square root) in Hardy’s condition (1) is the best

possible. In other words, for each ρ ∈ (0, 1
2), there exists a random variable X ≥ 0

such that E[ecXρ
] < ∞ for some c > 0, however X is M-indeterminate.



Theorem 3. Let a > 0 and X ∼ F be a nonnegative random variable.
(i) If E[ecXa

] < ∞ for some constant c > 0, then mk ≤ Γ(k/a + 1)ck
0, k = 1, 2, . . . ,

for some constant c0 > 0 (independent of k).
(ii) Conversely, if, in addition, a ≤ 1, and mk ≤ Γ(k/a+1)ck

0, k = 1, 2, . . . , for some
constant c0 > 0 (independent of k), then E[ecXa

] < ∞ for some c > 0.

Corollary 3. Let X ∼ F be a nonnegative random variable. Then:
(i) E[ec

√
X ] < ∞ for some c > 0 if and only if mk ≤ (2k)! ck

0, k = 1, 2, . . . , for some
c0 > 0;
(ii) E[ecX ] < ∞ for some c > 0 if and only if mk ≤ k! ck

0, k = 1, 2, . . . , for some
c0 > 0.

The moment condition in Theorem 3 has the following equivalent form.

Theorem 4. Let a > 0 and X ∼ F be a nonnegative random variable. Then
lim supk→∞

1
k m

a/k
k < ∞ if and only if mk ≤ Γ(k/a + 1) ck

0, k = 1, 2, . . ., for some
c0 > 0 (independent of k).

Corollary 4. Let a ∈ (0, 1] and X ∼ F be a nonnegative random variable. Then
E[ecXa

] < ∞ for some c > 0 if and only if lim supk→∞
1
k m

a/k
k < ∞.

Corollary 5. Let X ∼ F be a nonnegative random variable whose moments satisfy
the condition lim supk→∞

1
k m

1/k
k < ∞. Then X2 is M-determinate.

The following surprising result demonstrates the power and usefulness of Hardy’s
condition.

Theorem 5. Let Y, Y ∼ G, be an arbitrary random variable on R1 satisfying
Cramér’s condition, i.e. the moment generating function of Y exists. Then:
(i) The random variable Y 2 is M-determinate on R+.
(ii) If, in addition, G does not have a mass at the origin, the random variable Y 2 is
M-determinate on R1.

Corollary 6. If X > 0 satisfies Cramér’s condition, then X2 is M-determinate on
R+ and also on R1.

While the problem of moments for one-dimensional distributions is in general well
developed and several results are available in the literature, very little is done for mul-
tivariate distributions. The paper Kleiber and Stoyanov (2013) summarizes known
analytical results and contains some new results. Now, having to hand Hardy’s
criterion, we can establish a new and quite general result.

Suppose X = (X1, . . . , Xn) is an arbitrary random vector in n-dimensional Eu-
clidean space Rn with all multi-indexed moments

mk1,...,kn = E[Xk1
1 · · ·Xkn

n ], kj = 1, 2, . . . , j = 1, 2, . . . , n,

finite. We are interested in the determinacy of the vector X ∈ Rn by the multi-
indexed moment sequence {mk1,...,kn , kj = 1, 2, . . . , j = 1, 2, . . . , n}. Since the dis-
tribution of X is arbitrary, this is a Hamburger moment problem.

Denote by ||X|| the Euclidean length of X, i.e.

||X|| =
√
||X||2 =

√
X2

1 + · · ·+ X2
n.

Theorem 6. With the notations introduced above, suppose that the one-dimensional
nonnegative random variable ||X|| satisfies Cramér’s condition:

E[ec||X||] < ∞ for some c > 0.



Then the random vector X ∈ Rn, or equivalently, its n-dimensional distribution func-
tion, is uniquely determined by the set of multi-indexed moments {mk1,...,kn , kj =
1, 2, . . . , j = 1, 2, . . . , n}.
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