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1 Introduction
This paper focuses on the Hardy’s inequalities and the boundedness of the integral operators onHerz-Morrey
spaces.

Herz-Morrey spaces are extensions of Herz spaces [1] andMorrey spaces [2]. They also include the central
Morrey spaces [3–6]. One of the pioneer studies on the Herz-Morrey spaces is from Lu and Xu [7] on the
mapping properties of the singular integral operators on the Herz-Morrey spaces. Since then, the study of
Herz-Morrey spaces inspires the introduction of a number of new function spaces including Herz-Morrey-
Hardy spaces [8, 9], Herz-Morrey spaces with variable exponents [10–15] and the Herz-Morrey-Besov spaces
[16].

In this paper, we study themapping properties of integral operators onHerz-Morrey spaces. In particular,
we are interested in Hadamard fractional integrals, the Hardy operator and the Hilbert operator. We �nd that
the mapping properties of these operators rely on the operator norms of dilation operators on Herz-Morrey
spaces.

The use of the dilation operators to study the mapping properties of integral operators is well studied,
especially for the rearrangement-invariant Banach function spaces [17]. The study in [17, Chapter 3, Section 5]
relies on the notion of Boyd’s indices. The Boyd indices are also used in the study of the mapping properties
of Fourier transform and the Hankel transform, see [18–20].

In this paper, we give some estimates for the operator norms of the dilation operators on Herz-Morrey
spaces. With these estimates, we de�ne and obtain the Boyd indices of Herz-Morrey spaces.

By using these indices, we establish the a general result on the mapping properties of integral operators
on Herz-Morrey spaces. This general result yields the boundedness of Hadamard fractional integrals, the
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Hardy operator and the Hilbert operator on Herz-Morrey spaces. We are interested in Hadamard fractional
integrals because they are fractional integrals for Mellin transform [21]. The reader is referred to [21] for the
relation between Mellin transform and Hadamard fractional integrals.

It is well known that the Hardy operator is not bounded on L1(R) = MK̇0,01,1(R). On the other hand, our
result shows that the Hardy operator is bounded on the Herz-Morrey MK̇α,λ1,1(R) when α < λ. The reader is
referred to De�nition 2.1 for the de�nition of the Herz-Morrey space MK̇α,λp,q(Rn).

Since Herz spaces and central Morrey spaces are members of Herz-Morrey spaces, our results yield the
mapping properties of Hadamard fractional integrals, the Hardy operator and the Hilbert operator on Herz
spaces and central Morrey spaces.

This paper is organized as follows. Section 2 contains the de�nition of Herz-Morrey spaces. The Boyd’s
indices of theHerz-Morrey spaces are obtained in this section. Themain result for theHardy’s inequalities and
the boundedness of integral operators on Herz-Morrey spaces is established in Section 3. As applications for
the general results on the boundedness of integral operators, we also obtain the boundedness of Hadamard
fractional integrals and the Hilbert inequalities on Herz-Morrey spaces. Notice that in this paper, the results
on dilation operators and Boyd’s indices are on Herz-Morrey spaces over Rn while the remaining results are
on Herz-Morrey spaces over R.

2 Herz-Morrey spaces and Boyd’s indices
We give the de�nition of Herz-Morrey spaces in this section. We also obtain some estimates for the operator
norms of the dilation operators on Herz-Morrey spaces. These estimates give the Boyd indices of the Herz-
Morrey spaces.

Let Bk = {x ∈ Rn : |x| ≤ 2k} and Rk = Bk\Bk−1, k ∈ Z. De�ne χk = χRk .

De�nition 2.1. Let α ∈ R, λ ≥ 0, 0 < p ≤ ∞ and 0 < q < ∞. The Herz-Morrey space MK̇α,λp,q(Rn) consists of all
Lebesgue measurable functions f satisfying

‖f‖MK̇α,λp,q(Rn) = sup
k∈Z

2−kλ
 k∑
j=−∞

2jαp‖fχj‖pLq

 1
p

< ∞.

When λ = 0, the Herz-Morrey spaceMK̇α,λp,q(Rn) becomes the Herz space K̇αp,q(Rn) studied in [22]. In addition,
when α = 0 and p = q, the Herz-Morrey space MK̇α,λp,q(Rn) reduces to the Lebesgue space Lq.

Furthermore, when α = 0, p = q and λ = nθ
q with 0 < θ < 1, the Herz-Morrey space MK̇α,λp,q(Rn) is

the central Morrey space Ḃq,θ(Rn) [3–6, 23, 24]. Recall that the central Morrey space Ḃq,θ(Rn) consists of all
Lebesgue measurable functions f satisfying

‖f‖Ḃq,θ(Rn) =

sup
R>0

1
|B(0, R)|θ

∫
B(0,R)

|f (y)|q dy


1
q

< ∞.

The reader is referred to [3–5] for the studies of central Morrey spaces. We use the de�nition of central Morrey
spaces from [5, De�nition 2] while we use the notion for the central Morrey spaces from [3, 4].

The study of Herz-Morrey spaces had been extended to Herz-Morrey-Hardy spaces [8, 9], Herz-Morrey-
Besov spaces and the Herz-Morrey-Triebel-Lizorkin spaces [16]. Moreover, the Herz-Morrey spaces had been
further generalized to the Herz-Morrey spaces built on Lebesgue spaces with variable exponents in [11, 13, 14,
16].
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For β ∈ R, L ∈ Z, de�ne fβ,L(x) = |x|βχL(x). For any j ∈ Z, we have

‖fβ,Lχj‖Lq =

 2j∫
2j−1

rβqrn−1 dr


1
q

= C2min(j,L)(β+ n
q ),

where C is independent of j.
When α + β + n

q > λ > α, we have

2−kλ
 k∑
j=−∞

2jαp‖fβ,Lχj‖pLq

 1
p

= C2−kλ
 k∑
j=−∞

2jαp2pmin(j,L)(β+ n
q )

 1
p

≤ C2−kλ2kα2min(k,L)(β+ n
q )

for some C > 0 independent of k. For the case k ≥ L, we have

2−kλ
 k∑
j=−∞

2jαp‖fβ,Lχj‖pLq

 1
p

≤ C2−k(λ−α). (2.1)

For the case k < L, we �nd that

2−kλ
 k∑
j=−∞

2jαp‖fβ,Lχj‖pLq

 1
p

≤ C2k(−λ+α+β+
n
q ). (2.2)

Therefore, (2.1) and (2.2) conclude that

‖fβ,L‖MK̇α,λp,q(Rn) = sup
k∈Z

2−kλ
 k∑
j=−∞

2jαp‖fβ,Lχj‖pLq

 1
p

< ∞.

That is, if α + β + n
q > λ > α, fβ,L ∈ MK̇α,λp,q(Rn).

We establish the Minkowski inequality for the Herz-Morrey space MK̇α,λp,q(Rn) in the following.

Theorem 2.1. Let α ∈ R, λ ≥ 0 and 1 ≤ p, q < ∞. Let m be the Lebesgue measure and µ be a signed σ-�nite
measure on R. For any m × µ measurable function f (x, s) on Rn ×R, we have∥∥∥∥∥∥

∫
R

f (·, s) dµ

∥∥∥∥∥∥
MK̇α,λp,q(Rn)

≤
∫
R

‖f (·, s)‖MK̇α,λp,q(Rn) d|µ|.

Proof. The Minkowski inequality for Lq guarantees that∥∥∥∥∥∥
∫
R

f (·, s)χj(·) dµ

∥∥∥∥∥∥
Lq

≤
∫
R

‖f (·, s)χj(·)‖Lq d|µ|.

By applying the Minkowski inequality for `p, we obtain that for any k ∈ Z

2−kλ
 k∑
j=−∞

2jαp
∥∥∥∥∥∥
∫
R

f (·, s)χj(·) dµ

∥∥∥∥∥∥
p

Lq


1
p

≤ 2−kλ
 k∑
j=−∞

∫
R

2jα‖f (·, s)χj(·)‖Lq d|µ|

p
1
p

≤
∫
R

2−kλ
 k∑
j=−∞

2jαp‖f (·, s)‖pLq

 1
p

d|µ|
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≤
∫
R

‖f (·, s)‖MK̇α,λp,q(Rn) d|µ|.

Finally, by taking the supremum for k ∈ Z on both sides of the above inequality, we get∥∥∥∥∥∥
∫
R

f (·, s) dµ

∥∥∥∥∥∥
MK̇α,λp,q(Rn)

= sup
k∈Z

2−kλ
 k∑
j=−∞

2jαp
∥∥∥∥∥∥
∫
R

f (·, s)χj(·) dµ

∥∥∥∥∥∥
p

Lq


1
p

≤
∫
R

‖f (·, s)‖MK̇α,λp,q(Rn) d|µ|.

As a special case of Theorem 2.1, we obtain∥∥∥∥∥∥
∫
R

f (·, s) dµ

∥∥∥∥∥∥
Ḃq,θ(Rn)

≤
∫
R

‖f (·, s)‖Ḃq,θ(Rn) d|µ|

which is the Minkowski inequality for the central Morrey space Ḃq,θ(Rn).
In addition, Theorem 2.1 gives the Minkowski inequality for the Herz space. That is,∥∥∥∥∥∥

∫
R

f (·, s) dµ

∥∥∥∥∥∥
K̇αp,q(Rn)

≤
∫
R

‖f (·, s)‖K̇αp,q(Rn) d|µ|.

Next, we study dilation operators on Herz-Morrey spaces. For any s ∈ R\{0} and Lebesgue measurable
function f , the dilation operator Ds is de�ned as

(Ds f )(x) = f (x/s), x ∈ Rn .

The following theorem gives us some estimates for the operator norms of Ds on MK̇α,λp,q(Rn).

Theorem 2.2. Let α ∈ R, λ ≥ 0, 0 < p ≤ ∞ and 0 < q < ∞. There is a C > 0 such that for any s ∈ R\{0}

‖Ds f‖MK̇α,λp,q(Rn) ≤ Cs
n
q +α−λ‖f‖MK̇α,λp,q(Rn). (2.3)

Proof. It su�ces to consider s > 0 since

‖f (·)‖MK̇α,λp,q(Rn) = ‖f (−·)‖MK̇α,λp,q(Rn).

For any s > 0, there is a unique J ∈ Z such that 2J ≤ 1
s < 2

J+1.
As D1/sχj ≤ χj+J−1 + χj+J + χj+J+1, j ∈ Z and

‖(Ds f )χj‖Lq = s
n
q ‖f (D1/sχj)‖Lq ,

we have

‖(Ds f )χj‖Lq ≤ Cs
n
q

1∑
i=−1

‖fχj+J+i‖Lq , ∀j ∈ Z

for some C > 0 because ‖ · ‖Lq is a norm when 1 ≤ q < ∞ and ‖ · ‖Lq is a quasi-norm when 0 < q < 1.
Consequently,

2−kλ
 k∑
j=−∞

2jαp‖(Ds f )χj‖pLq

 1
p

≤ Cs
n
q

1∑
i=−1

2−kλ
 k∑
j=−∞

2jαp‖fχj+J+i‖pLq

 1
p

≤ Cs
n
q 2Jλ

1∑
i=−1

2−(k+J+i)λ2−(J+i)α
k+J+i∑
j=−∞

2jαp‖fχj‖pLq

 1
p

≤ Cs
n
q +α−λ‖f‖MK̇α,λp,q(Rn)

for some C > 0 independent of f and s.
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We modify the de�nition of Boyd’s indices for rearrangement-invariant Banach function spaces from [17,
Chapter 3, De�nition 5.12] to de�ne the Boyd indices for Herz-Morrey spaces.

De�nition 2.2. Let α ∈ R, λ ≥ 0, 0 < p ≤ ∞ and 0 < q < ∞. De�ne

αMK̇α,λp,q(Rn) = lim
s→∞

log ‖Ds‖
log s , αMK̇α,λp,q(Rn) = lim

s→0+
log ‖Ds‖
log s ,

where ‖Ds‖ is the operator norm of Ds : MK̇α,λp,q(Rn) → MK̇α,λp,q(Rn).

We also have the corresponding de�nitions of the Boyd indices for central Morrey spaces Ḃq,θ(Rn) and Herz
spaces K̇αp,q(Rn).

Theorem 2.2 yields the formula for the Boyd indices of Herz-Morrey spaces.

Theorem 2.3. Let α ∈ R, λ ≥ 0, 0 < p ≤ ∞ and 0 < q < ∞. We have

αMK̇α,λp,q(Rn) = αMK̇α,λp,q(Rn) =
n
q + α − λ.

Proof. Since D1/sDs f = f , ∀s > 0, (2.3) gives

‖D1/sDs f‖MK̇α,λp,q(Rn) ≤ Cs
− nq −α+λ‖Ds f‖MK̇α,λp,q(Rn).

That is,
C−1s

n
q +α−λ‖f‖MK̇α,λp,q(Rn) ≤ ‖Ds f‖MK̇α,λp,q(Rn). (2.4)

The above inequality and (2.3) yield

C−1s
n
q +

1
p −λ ≤ ‖Ds‖ ≤ Cs

n
q +α−λ .

Consequently, by applying the logarithm and, then, dividing by log s on the above inequalities, we obtain

− log Clog s + nq + α − λ ≤ log ‖Ds‖log s ≤ log Clog s + nq + α − λ

when s > 1. By taking lim
s→∞

on the above inequalities, we �nd that the limit lim
s→∞

log ‖Ds‖
log s exists and

αMK̇α,λp,q(Rn) =
n
q + α − λ.

Similarly, when 0 < s < 1, we have
log C
log s + nq + α − λ ≤ log ‖Ds‖log s ≤ − log Clog s + nq + α − λ. (2.5)

The above inequalities ensure the existence of the limit lim
s→0+

log ‖Ds‖
log s and give

αMK̇α,λp,q(Rn) =
n
q + α − λ.

Since Ḃq,θ(Rn) = MK̇0,
nθ
q

q,q , we have

αḂq,θ(Rn) = αḂq,θ(Rn) =
n(1 − θ)

q .

We can also calculate the Boyd indices for K̇αp,q(Rn), namely,

αK̇αp,q(Rn) = αK̇αp,q(Rn) =
n
q + α.

Moreover, for any s ∈ R\{0}, we also have

‖Ds f‖Ḃq,θ(Rn) ≤ Cs
n(1−θ)
q ‖f‖Ḃq,θ(Rn),

‖Ds f‖K̇αp,q(Rn) ≤ Cs
n
q +α‖f‖K̇αp,q(Rn).

The above inequalities give estimates for the dilation operators on central Morrey spaces and Herz spaces.
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3 Integral operators
In this section, we establish the main result of this paper, a general principle on the boundedness of integral
operators and Hardy’s inequalities on Herz-Morrey spaces on R. As applications of this principle, we get
the boundedness of the Hadamard fractional integrals on Herz-Morrey spaces. We also obtain the Hilbert
inequalities on Herz-Morrey spaces.

We consider the integral operator

Tf (t) =
∞∫
0

K(s, t)f (s) ds, t ≥ 0

and Tf (t) = 0, t < 0where f is a Lebesguemeasurable function onR and K is a Lebesguemeasurable function
on (0,∞)×(0,∞). Themappingproperty of this operator onLebesgue space is namedas theHardy-Littlewood-
Pólya inequalities [25, Chapter IX].

The following theorem gives the boundedness of T on Herz-Morrey spaces.

Theorem 3.1. Let α ∈ R, λ ≥ 0, 1 ≤ p, q < ∞ and K : (0,∞) × (0,∞) → R be a Lebesgue measurable function.
Suppose that

K(λs, λt) = λ−1K(s, t), (3.1)
∞∫
0

|K(x, 1)|x−
1
q −α+λ dx < ∞. (3.2)

There exists a constant C > 0 such that for any f ∈ MK̇α,λp,q(R)

‖Tf‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R).

Proof. By using the substitution u = s
t , we �nd that

|Tf (t)| ≤
∞∫
0

|K(ut, t)||(D 1
u
f )(t)| tdu =

∞∫
0

|K(u, 1)||(D 1
u
f )(t)| du

because K(·, ·) satis�es (3.1).
Theorem 2.1 guarantees that

‖Tf‖MK̇α,λp,q(R) ≤

∥∥∥∥∥∥
∞∫
0

|K(u, 1)||(D 1
u
f )(·)| du

∥∥∥∥∥∥
MK̇α,λp,q(R)

≤
∞∫
0

|K(u, 1)|‖(D 1
u
f )(·)‖MK̇α,λp,q(R) du.

Theorem 2.3 yields

‖Tf‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R)

∞∫
0

|K(u, 1)|u−
1
q −α+λ du

for some C > 0 because K(·, ·) ful�lls (3.2).

We give an estimate for the lower bound of the operator norm T : MK̇α,λp,q(R) → MK̇α,λp,q(R) when α + 1
q > λ > α

and K is a nonnegative Lebesgue measurable function satisfying (3.1), (3.2) and
∞∫
0

K(u, 1)u−
1
q −α+λ du > 0.
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Let β ∈ (λ − α − 1
q , 0). As α + β +

1
q > λ > α, fβ,0 ∈ MK̇α,λp,q(R). For any M ∈ N, by using the substitution u = s

t ,
we �nd that

Tfβ,0(t) =
∞∫
0

K(u, 1)(D 1
u
fβ,0)(t) du

≥
2M∫
0

K(u, 1)(ut)βχ(0,1)(ut) du

≥ tβχ(0,2−M)(t)
2M∫
0

K(u, 1)uβ du

= 2−MβD2−M (fβ,0(t))
2M∫
0

K(u, 1)uβ du.

Consequently, (2.4) yields

‖Tfβ,0‖MK̇α,λp,q(R) ≥ 2
−Mβ‖D2−M fβ,0‖MK̇α,λp,q(R)

2M∫
0

K(u, 1)uβ du

≥ C2−M( 1q +α−λ+β)‖f‖MK̇α,λp,q(Rn)

2M∫
0

K(u, 1)uβ du

for some C > 0 independent of M and β. For any β ∈ (λ − α − 1
q , 0), we have

‖T‖MK̇α,λp,q(R)→MK̇α,λp,q(R)
= sup

‖f‖
MK̇α,λp,q (R)

≤1

‖Tf‖MK̇α,λp,q(R)
‖f‖MK̇α,λp,q(R)

≥ C2−M( 1q +α−λ+β)
2M∫
0

K(u, 1)uβ du

for some C > 0 independent of M and β.
By applying the limit lim

β→λ−α− 1
q

on both sides of the above inequalities, the dominated convergence

theorem yields

‖T‖MK̇α,λp,q(R)→MK̇α,λp,q(R)
≥ C lim

β→λ−α− 1
q

2M∫
0

K(u, 1)uβ du

= C
2M∫
0

K(u, 1)u−
1
q −α+λ du

for some C > 0 independent of M because uβ ≤ 2M(β+ 1
q +α−λ)u−

1
q −α+λ when u ∈ (0, 2M).

Finally, by letting M trending to in�nity, we have

‖T‖MK̇α,λp,q(R)→MK̇α,λp,q(R)
≥ C

∞∫
0

K(u, 1)u−
1
q −α+λ du.

For the estimates of the operator norms of integral operators on weighted Morrey spaces, see [26].
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The boundedness of T on MK̇α,λp,q(R) relies on the integral condition (3.2) where the Boyd’s indices of
MK̇α,λp,q(R), − 1q − α + λ, involve in (3.2). This is the main reason for the introduction of the Boyd’s indices for
Herz-Morrey spaces in the previous section.

For the boundedness of the above integral operator on Morrey spaces, block spaces, amalgam spaces,
function space of bounded mean oscillation BMO, Campanato spaces and ball Banach function spaces, see
[27–31], respectively.

As a consequence of Theorem 3.1, we have the following boundedness result for the integral operator T
on central Morrey spaces.

Corollary 3.2. Let 0 < θ < 1, 1 ≤ q < ∞ and K : (0,∞) × (0,∞) → R be a Lebesgue measurable function.
Suppose that K satis�es (3.1) and

∞∫
0

|K(x, 1)|x−
1−θ
q dx < ∞.

There exists a constant C > 0 such that for any f ∈ Ḃq,θ(R)

‖Tf‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R).

Similar to the discussion on the lower estimate of the operator norm of T : MK̇α,λp,q(R) → MK̇α,λp,q(R), we also
have the lower estimate of the operator norm of T : Ḃq,θ(R) → Ḃq,θ(R). We have

‖T‖Ḃq,θ(R)→Ḃq,θ(R) ≥ C
∞∫
0

K(x, 1)x−
1−θ
q dx

when K is nonnegative.
In addition, we have the following result for Herz spaces.

Corollary 3.3. Let α ∈ R, 1 ≤ p, q < ∞ and K : (0,∞) × (0,∞) → R be a Lebesgue measurable function.
Suppose that K satis�es (3.1) and

∞∫
0

|K(x, 1)|x−
1
q −α dx < ∞.

There exists a constant C > 0 such that for any f ∈ K̇αp,q(R)

‖Tf‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R).

3.1 Hardy’s inequality and Hilbert’s inequality

In this section, we present another main result of this paper, the Hardy’s inequalities on Herz-Morrey spaces.
Wealso study theHilbert inequality on theHerz-Morrey spaceMK̇α,λp,q(R). They are applications of Theorem3.1.

We begin with the de�nitions of the Hardy operators

Hf (t) = 1
t

t∫
0

f (s) ds,

H̃f (t) =
∞∫
t

f (s)
s ds.

For the history, development and applications of the Hardy’s inequality, the reader is referred to [32–34].
For the Hardy’s inequalities on non-Lebesgue space such as the Morrey spaces, the block spaces, the

amalgam spaces, Hardy type spaces and rearrangement-invariant Banach function spaces, see [28–30, 35–
40].

The following is the Hardy’s inequality on Herz-Morrey spaces.
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Theorem 3.4. Let α ∈ R, λ ≥ 0 and 1 ≤ p, q < ∞. If 1
q + α − λ < 1, then there is a constant C > 0 such that for

any f ∈ MK̇α,λp,q(R)
‖Hf‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R).

Proof. Let K(s, t) = t−1χE(s, t) where E = {(s, t) : s < t}. We �nd that for any λ > 0, K(λs, λt) = λ−1K(s, t).
Moreover, K satis�es

∞∫
0

|K(x, 1)|x−
1
q −α+λ dx =

1∫
0

x−
1
q −α+λ dx

= x−
1
q −α+λ+1

− 1q − α + λ + 1

∣∣∣∣1
0
< ∞

because 1
q + α − λ < 1. Theorem 3.1 gives the Hardy’s inequality on MK̇α,λp,q(R).

We also have the corresponding result for the operator H̃.

Theorem 3.5. Let α ∈ R, λ ≥ 0 and 1 ≤ p, q < ∞. If 0 < 1
q + α − λ, there is a constant C > 0 such that for any

f ∈ MK̇α,λp,q(R)
‖H̃f‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R).

Since the proof of the preceding theorem is similar to the proof of Theorem 3.4, for simplicity, we leave the
details to the reader.

Next, we establish the Hilbert’s inequality on the Herz-Morrey spaces. For any Lebesgue measurable
function f , the Hilbert operator is de�ned as

Hf (t) =
∞∫
0

f (s)
s + t ds.

Theorem 3.6. Let α ∈ R, λ ≥ 0 and 1 ≤ p, q < ∞. If 0 < 1
q + α − λ < 1, then there is a constant C > 0 such that

for any f ∈ MK̇α,λp,q(R)
‖Hf‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R).

Proof. We have

Hf (t) =
∞∫
0

K(s, t)f (s) ds

where K(s, t) = 1
s+t . K obviously satis�es (3.1). Since 0 < 1

q + α − λ < 1, we obtain
∞∫
0

|K(x, 1)|x−
1
q −α+λ dx =

∞∫
0

(x + 1)−1x−
1
q −α+λ dx

≤
1∫

0

x−
1
q −α+λ dx +

∞∫
1

x−
1
q −α+λ−1 dx < ∞.

Consequently, the boundedness ofH on MK̇α,λp,q(R) is assured by Theorem 3.1.

In particular, we have the following results for central Morrey spaces and Herz spaces.

Corollary 3.7. Let 0 < θ < 1 and 1 ≤ q < ∞.

1. There is a constant C > 0 such that for any f ∈ Ḃq,θ(R), we have

‖Hf‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R).
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2. There is a constant C > 0 such that for any f ∈ Ḃq,θ(R),

‖H̃f‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R).

3. There is a constant C > 0 such that for any f ∈ Ḃq,θ(R),

‖Hf‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R).

We have the above results because 0 < 1−θ
q < 1 is valid when 0 < θ < 1 and 1 ≤ q < ∞.

Corollary 3.8. Let α ∈ R and 1 ≤ p, q < ∞.

1. If 1
q + α < 1, then there is a constant C > 0 such that for any f ∈ K̇αp,q(R), we have

‖Hf‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R).

2. If 0 < 1
q + α, there is a constant C > 0 such that for any f ∈ K̇αp,q(R),

‖H̃f‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R).

3. If 0 < 1
q + α < 1, then there is a constant C > 0 such that for any f ∈ K̇αp,q(R),

‖Hf‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R).

In particular, when α < 1 − 1
q , we have

‖Hf‖K̇αq,q(R) ≤ C‖f‖K̇αq,q(R).

Notice that K̇αq,q(R) is the power weighted Lebesgue space Lq((0,∞), |x|αq) [22, Remark 1.1.3]. This result
recovers the well known results for the Hardy’s inequality on power weighted Lebesgue spaces, see [40–42].

Furthermore, Corollary 3.8 also gives the Hilbert inequality on power weighted Lebesgue spaces
Lq((0,∞), |x|αq) when 0 < 1

q + α < 1.

3.2 Hadamard fractional integrals

The Hadamard fractional integrals are the fractional integrals corresponding to the Mellin transform

Mf (s) =
∞∫
0

us−1f (u) du, s = c + it, c, t ∈ R,

see [43].
In [43], Butzer, Kilbas and Trujillo introduce and study the following generalizations of Hadamard

fractional integrals. They are de�ned by using the con�uent hypergeometric function, which is also named
as Kummer function. The con�uent hypergeometric functionΦ[a, c; z] is de�ned for |z| < 1, c > 0 and a ≠ −j,
j ∈ N ∪ {0} by

Φ[a, c; z] =
∞∑
k=0

(a)k
(c)k

zk
k! ,

where (a)k, k ∈ N ∪ {0}, is the Pochhammer symbol [44, Section 6.1] given by

(a)0 = 1, (a)k = a(a + 1) · · · (a + k − 1), k ∈ N.

For β > 0, γ ∈ R and µ, σ ∈ C, the generalized Hadamard fractional integrals J
β
0+,µ;γ,σ f , J

β
−,µ;γ,σ f ,

I
β
0+,µ;γ,σ f and I

β
−,µ;γ,σ f are de�ned as

J
β
0+,µ;γ,σ f (x) =

1
Γ(β)

x∫
0

(
t
x

)µ (
log xt

)β−1
Φ
[
γ, β; σ log xt

]
f (t)dtt ,



116 | Tat-Leung Yee and Kwok-Pun Ho

J
β
−,µ;γ,σ f (x) =

1
Γ(β)

∞∫
x

( x
t

)µ (
log tx

)β−1
Φ
[
γ, β; σ log tx

]
f (t)dtt ,

I
β
0+,µ;γ,σ f (x) =

1
Γ(β)

x∫
0

(
t
x

)µ (
log xt

)β−1
Φ
[
γ, β; σ log xt

]
f (t)dtx ,

I
β
−,µ;γ,σ f (x) =

1
Γ(β)

∞∫
x

( x
t

)µ (
log tx

)β−1
Φ
[
γ, β; σ log tx

]
f (t)dtx ,

and

(Jβ0+,µ;γ,σ f )(x) = (Jβ−,µ;γ,σ f )(x) = (Iβ0+,µ;γ,σ f )(x)

= (Iβ−,µ;γ,σ f )(x) = 0, x ≤ 0,

where Γ(β) is the Gamma function.
Note that Φ[a, c; 0] = 1, when σ = 0, the above Hadamard fractional integral Jβ0+,µ;γ,0 becomes

the Hadamard fractional integral Jβ0+. Additionally, J
β
−,µ;γ,σ, I

β
0+,µ;γ,σ and I

β
−,µ;γ,σ are the Hadamard type

fractional integrals introduced and studied in [21]. For the studies of these integrals and their applications
on fractional calculus, see [21, 43, 45].

In order to obtain the mapping of the generalized Hadamard fractional integrals, we need to use the
following asymptotic behaviours for Φ[a, c; x]

Φ[a, c; x] = Γ(c)
Γ(a) e

xxa−c
(
1 + O

(
1
x

))
as x →∞. (3.3)

Moreover, the limit

lim
k→∞

(a)k+1
(c)k+1(k+1)!

(a)k
(c)kk!

= lim
k→∞

a + k
c + k

1
k + 1 = 0

assures that
Φ[a, c; x] = 1 + O(x) as x → 0+. (3.4)

We are now ready to establish the boundedness of the generalized Hadamard fractional integrals on
Herz-Morrey spaces.

Theorem 3.9. Let 1 ≤ p, q < ∞, β > 0, λ ≥ 0, α ∈ R, γ ∈ R and µ, σ ∈ C.

1. If Re(µ − σ) > 1
q + α − λ, then there exists a constant C > 0 such that for any f ∈ MK̇α,λp,q(R), we have

‖Jβ0+,µ;γ,σ f‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R). (3.5)

2. If Re(µ − σ) > − 1q − α + λ, then there exists a constant C > 0 such that for any f ∈ MK̇α,λp,q(R), we have

‖Jβ−,µ;γ,σ f‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R). (3.6)

3. If Re(µ − σ) > 1
q + α − λ − 1, then there exists a constant C > 0 such that for any f ∈ MK̇α,λp,q(R), we have

‖Iβ0+,µ;γ,σ f‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R). (3.7)

4. If Re(µ − σ) > 1 − 1
q − α + λ, then there exists a constant C > 0 such that for any f ∈ MK̇α,λp,q(R), we have

‖Iβ−,µ;γ,σ f‖MK̇α,λp,q(R) ≤ C‖f‖MK̇α,λp,q(R). (3.8)
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Proof. Let E = {(u, x) ∈ (0,∞) × (0,∞) : u < x} and F = {(u, x) ∈ (0,∞) × (0,∞) : x < u}. We �rst consider
integral Jβ0+,µ;γ,σ. We have

J
β
0+,µ;γ,σ f (x) =

∞∫
0

K1(u, x)f (u) du,

where
K1(u, x) =

1
Γ(β)

(u
x

)µ (
log xu

)β−1
Φ
[
γ, β; σ log xu

] 1
u χE(u, x).

For any λ > 0, we �nd that

K1(λu, λx) =
1
Γ(β)

(
λu
λx

)µ (
log λxλu

)β−1
Φ
[
γ, β; σ log λxλu

]
1
λu χE(λu, λx)

= λ−1K1(u, x)

since χE(λu, λx) = χE(u, x). Therefore, (3.1) is ful�lled.
Since

K1(u, 1) =
1
Γ(β)u

µ−1(− log u)β−1Φ
[
γ, β; σ log 1u

]
χ{u:0<u<1},

(3.3) and (3.4) give

K1(u, 1) =
1
Γ(γ)u

µ−σ−1(− log u)β−1+γ−βσγ−β
(
1 + O

(
1

σ log 1
u

))
as u → 0+ and

K1(u, 1) =
1
Γ(β)u

µ−σ−1(− log u)β−1
(
1 + O

(
σ log 1u

))
as u → 1.

By using the substitution y = − log u, we have
∞∫
0

|K1(u, 1)|u−
1
q −α+λ du =

1∫
0

|K1(u, 1)|u−
1
q −α+λ du

=
∞∫
0

|K1(e−y , 1)|e−y(−
1
q −α+λ+1) dy

≤C
( 2∫

0

e−y(Re(µ−σ)−
1
q −α+λ)yβ−1 dy +

∞∫
2

e−y(Re(µ−σ)−
1
q −α+λ)y−1+γ dy

)
.

Since Re(µ − σ) > 1
q + α − λ, we have a constant C > 0 such that

2∫
0

e−y(Re(µ−σ)−
1
q −α+λ)yβ−1 dy ≤ C

2∫
0

yβ−1 dy < C.

Furthermore, we also have an ϵ > 0 such that Re(µ − σ) > 1
q + α − λ + ϵ and

∞∫
2

e−y(Re(µ−σ)−
1
q −α+λ)y−1+γ dy <

∞∫
2

e−y(Re(µ−σ)−
1
q −α+λ−ϵ) dy < C.

Consequently, (3.2) is ful�lled and Theorem 3.1 guarantees (3.5).
Next, we consider Jβ−,µ;γ,σ. We have

J
β
−,µ;γ,σ f (x) =

∞∫
0

K2(u, x)f (u) du,
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where
K2(u, x) =

1
Γ(β)

( x
u

)µ (
log ux

)β−1
Φ
[
γ, β; σ log ux

] 1
u χF(u, x).

Obviously, for any λ > 0, K2(λu, λx) = λ−1K2(u, x) and

K2(u, 1) =
1
Γ(β)u

−µ(log u)β−1Φ [γ, β; σ log u] u−1χ{u:1<u}.

By using the substitution y = log u, we �nd that

∞∫
0

|K2(u, 1)|u−
1
q −α+λ du =

∞∫
1

|K2(u, 1)|u−
1
q −α+λ du =

∞∫
0

|K2(ey , 1)|ey(−
1
q −α+λ+1) dy.

Consequently, (3.3) and (3.4) yield

∞∫
0

|K2(u, 1)|u−
1
q −α+λ du ≤ C

 2∫
0

yβ−1dy +
∞∫
2

ey(−Re(µ−σ)−
1
q −α+λ)y−1+γ dy

 < ∞

because Re(µ − σ) > − 1q − α + λ. Therefore, Theorem 3.1 yields (3.6).
We consider the operator Iβ0+,µ;γ,σ. We have

I
β
0+,µ;γ,σ f (x) =

∞∫
0

K3(u, x)f (u) du,

where
K3(u, x) =

1
Γ(β)

(u
x

)µ (
log xu

)β−1
Φ
[
γ, β; σ log xu

] 1
x χE(u, x).

The function K3 ful�lls (3.1) and

K3(u, 1) =
1
Γ(β)u

µ(− log u)β−1Φ
[
γ, β; σ log 1u

]
χ{u:0<u<1}.

As Re(µ − σ) > 1
q + α − λ − 1, by using the substitution y = − log u, we get

∞∫
0

|K3(u, 1)|u−
1
q −α+λ du =

1∫
0

|K3(u, 1)|u−
1
q −α+λ du

=
∞∫
0

|K3(e−y , 1)|e−y(−
1
q −α+λ+1) dy

≤ C

 2∫
0

yβ−1 dy +
∞∫
2

e−y(Re(µ−σ)−
1
q −α+λ+1)y−1+γ dy

 < ∞

because Re(µ − σ) > 1
q + α − λ − 1. Theorem 3.1 gives the boundedness of Iβ0+,µ;γ,σ.

Finally, we consider Iβ−,µ;γ,σ. We have

I
β
−,µ;γ,σ f (x) =

∞∫
0

K4(u, x)f (u) du,

where
K4(u, x) =

1
Γ(β)

( x
u

)µ (
log ux

)β−1
Φ
[
γ, β; σ log ux

] 1
x χF(u, x).
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We see that K4 satis�es (3.1) and

K4(u, 1) =
1
Γ(β)u

−µ(log u)β−1Φ [γ, β; σ log u] χ{u:1<u}.

Since Re(µ − σ) > 1 − 1
q − α + λ, by using the substitution y = log u, we obtain

∞∫
0

|K4(u, 1)|u−
1
q −α+λ du =

∞∫
1

|K4(u, 1)|u−
1
q −α+λ du

=
∞∫
0

|K4(e−y , 1)|ey(−
1
q −α+λ+1) dy

≤ C

 2∫
0

yβ−1 dy +
∞∫
2

ey(−Re(µ−σ)−
1
q −α+λ+1)y−1+γ dy

 < ∞

Theorem 3.1 guarantees the validity of (3.8).

Since the central Morrey space Ḃq,θ(R) and the Herz space K̇αp,q(R) are members of Her-Morrey spaces, as
special cases of Theorem 3.9, we have themapping properties of the Hadamard fractional integrals on central
Morrey spaces and Herz spaces.

Corollary 3.10. Let 1 ≤ q < ∞, β > 0, 0 < θ < 1, γ ∈ R and µ, σ ∈ C.

1. If Re(µ − σ) > 1−θ
q , then there exists a constant C > 0 such that for any f ∈ Ḃq,θ(R), we have

‖Jβ0+,µ;γ,σ f‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R). (3.9)

2. If Re(µ − σ) > −1−θq , then there exists a constant C > 0 such that for any f ∈ Ḃq,θ(R), we have

‖Jβ−,µ;γ,σ f‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R). (3.10)

3. If Re(µ − σ) > 1−θ
q − 1, then there exists a constant C > 0 such that for any f ∈ Ḃq,θ(R), we have

‖Iβ0+,µ;γ,σ f‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R). (3.11)

4. If Re(µ − σ) > 1 − 1−θ
q , then there exists a constant C > 0 such that for any f ∈ Ḃq,θ(R), we have

‖Iβ−,µ;γ,σ f‖Ḃq,θ(R) ≤ C‖f‖Ḃq,θ(R). (3.12)

Corollary 3.11. Let 1 ≤ p, q < ∞, β > 0, α ∈ R, γ ∈ R and µ, σ ∈ C.

1. If Re(µ − σ) > 1
q + α, then there exists a constant C > 0 such that for any f ∈ K̇αp,q(R), we have

‖Jβ0+,µ;γ,σ f‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R). (3.13)

2. If Re(µ − σ) > − 1q − α, then there exists a constant C > 0 such that for any f ∈ K̇αp,q(R), we have

‖Jβ−,µ;γ,σ f‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R). (3.14)

3. If Re(µ − σ) > 1
q + α − 1, then there exists a constant C > 0 such that for any f ∈ K̇αp,q(R), we have

‖Iβ0+,µ;γ,σ f‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R). (3.15)

4. If Re(µ − σ) > 1 − 1
q − α, then there exists a constant C > 0 such that for any f ∈ K̇αp,q(R), we have

‖Iβ−,µ;γ,σ f‖K̇αp,q(R) ≤ C‖f‖K̇αp,q(R). (3.16)
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For the studies of fractional Hadamard integrals on other function spaces such as amalgam spaces, BMO
and modular spaces, see [27, 30, 46].

Acknowledgments: The authors would like to thank the referees for careful reading of the paper and
valuable suggestions.
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