

Tohoku Math. J.
57 (2005), 147-170

HARDY SPACES ASSOCIATED TO THE SECTIONS

Yong Ding and Chin-Cheng Lin

(Received April 16, 2003, revised September 6, 2004)

Abstract

In this paper we define the Hardy space $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ associated with a family \mathcal{F} of sections and a doubling measure μ, where \mathcal{F} is closely related to the Monge-Ampère equation. Furthermore, we show that the dual space of $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ is just the space $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$, which was first defined by Caffarelli and Gutiérrez. We also prove that the Monge-Ampère singular integral operator is bounded from $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ to $L^{1}\left(\boldsymbol{R}^{n}, d \mu\right)$.

1. Introduction. In 1996, Caffarelli and Gutiérrez [CG1] studied real variable theory related to the Monge-Ampère equation. They gave a Besicovitch type covering lemma for a family \mathcal{F} of convex sets in Euclidean n-space \boldsymbol{R}^{n}, where $\mathcal{F}=\left\{S(x, t) ; x \in \boldsymbol{R}^{n}\right.$ and $\left.t>0\right\}$ and $S(x, t)$ is called a section (see the definition below) satisfying certain axioms of affine invariance. In terms of the sections, Caffarelli and Gutiérrez set up a variant of the CalderónZygmund decomposition by applying this covering lemma and the doubling condition of a Borel measure μ. The decomposition plays an important role in the study of the linearized Monge-Ampère equation [CG2]. As an application of the above decomposition, Caffarelli and Gutiérrez defined the Hardy-Littlewood maximal operator M and $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ space associated to a family \mathcal{F} of sections and the doubling measure μ, and obtained the weak type $(1,1)$ boundedness of M and the John-Nirenberg inequality for $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ in [CG1].

Let us recall the definition of sections and the doubling measure listed below. For $x \in \boldsymbol{R}^{n}$ and $t>0$, let $S(x, t)$ denote an open and bounded convex set containing x. We call $S(x, t)$ a section if the family $\left\{S(x, t) ; x \in \boldsymbol{R}^{n}, t>0\right\}$ is monotone increasing in t, i.e., $S(x, t) \subset$ $S\left(x, t^{\prime}\right)$ for $t \leq t^{\prime}$, and satisfies the following three conditions:
(A) There exist positive constants K_{1}, K_{2}, K_{3} and $\epsilon_{1}, \epsilon_{2}$ such that given two sections $S\left(x_{0}, t_{0}\right), S(x, t)$ with $t \leq t_{0}$ satisfying

$$
S\left(x_{0}, t_{0}\right) \cap S(x, t) \neq \emptyset
$$

and an affine transformation T that "normalizes" $S\left(x_{0}, t_{0}\right)$, that is,

$$
B(0,1 / n) \subset T\left(S\left(x_{0}, t_{0}\right)\right) \subset B(0,1)
$$

there exists $z \in B\left(0, K_{3}\right)$ depending on $S\left(x_{0}, t_{0}\right)$ and $S(x, t)$, which satisfies

$$
B\left(z, K_{2}\left(t / t_{0}\right)^{\epsilon_{2}}\right) \subset T(S(x, t)) \subset B\left(z, K_{1}\left(t / t_{0}\right)^{\epsilon_{1}}\right),
$$

[^0]
and
$$
T(z) \in B\left(z,(1 / 2) K_{2}\left(t / t_{0}\right)^{\epsilon_{2}}\right)
$$

Here and below $B(x, t)$ denotes the Euclidean ball centered at x with radius t.
(B) There exists a constant $\delta>0$ such that given a section $S(x, t)$ and $y \notin S(x, t)$, if T is an affine transformation that "normalizes" $S(x, t)$, then for any $0<\epsilon<1$

$$
B\left(T(y), \epsilon^{\delta}\right) \cap T(S(x,(1-\epsilon) t))=\emptyset
$$

(C) $\bigcap_{t>0} S(x, t)=\{x\}$ and $\bigcup_{t>0} S(x, t)=\boldsymbol{R}^{n}$.

In addition, we also assume that a Borel measure μ which is finite on compact sets is given, $\mu\left(\boldsymbol{R}^{n}\right)=\infty$, and satisfies the following doubling property with respect to \mathcal{F}, that is, there exists a constant A such that

$$
\begin{equation*}
\mu(S(x, 2 t)) \leq A \mu(S(x, t)) \quad \text { for any section } S(x, t) \in \mathcal{F} . \tag{1.1}
\end{equation*}
$$

An important example of the family \mathcal{F} of sections is given as follows. Let $\phi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ be a convex smooth function. For any given point $x \in \boldsymbol{R}^{n}$, let $\mathcal{L}(x)$ be a supporting hyperplane of ϕ at the point $(x, \phi(x))$. For $t>0$, define the set

$$
S_{\phi}(x, t)=\left\{y \in \boldsymbol{R}^{n} ; \phi(y)<\mathcal{L}(x)+t\right\}
$$

Then

$$
\mathcal{F}=\left\{S_{\phi}(x, t) ; x \in \boldsymbol{R}^{n} \text { and } t>0\right\}
$$

is a family of sections that satisfies the properties (A), (B) and (C). Moreover, the MongeAmpère measure generated by the convex function ϕ

$$
\operatorname{det} D^{2} \phi=\mu
$$

satisfies the doubling condition (1.1) under certain condition of ϕ. For instance, if the graph of ϕ contains no lines, then μ satisfies the doubling condition (1.1) (see [C, CG1]). The terminology section comes from the fact that $S_{\phi}(x, t)$ is obtained by projecting on \boldsymbol{R}^{n} the bounded part of the graph of ϕ cut by a hyperplane parallel to the supporting hyperplane at $(x, \phi(x))$.

In [CG1], Caffarelli and Gutiérrez defined the space $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ associated with the family \mathcal{F} and the Borel measure μ satisfying the doubling condition (1.1). Let f be a realvalued function defined on \boldsymbol{R}^{n}. We say that $f \in B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ if

$$
\|f\|_{*}:=\sup _{S \in \mathcal{F}} \frac{1}{\mu(S)} \int_{S}\left|f(x)-m_{S}(f)\right| d \mu(x)<\infty
$$

where $m_{S}(f)$ denotes the mean of f over the section S defined by

$$
m_{S}(f)=\frac{1}{\mu(S)} \int_{S} f(x) d \mu(x)
$$

Similar to the classic case, Caffarelli and Gutiérrez [CG1] also proved the following JohnNirenberg inequality for $B M O_{\mathcal{F}}$:

There exist positive constants C_{1} and C_{2} dependent only on the measure μ such that, for every continuous $f \in B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ and every section S,

$$
\frac{1}{\mu(S)} \int_{S} \exp \left(C_{1} \frac{\left|f(x)-m_{S}(f)\right|}{\|f\|_{*}}\right) d \mu(x) \leq C_{2}
$$

Hence, it is an important and interesting problem to ask whether it is possible to set up a Hardy space with respect to the family of sections \mathcal{F} and a doubling measure. In this paper we are going to construct such a Hardy space. We first introduce $(1, q)$-atoms and the atomic Hardy space $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$ for $q>1$ with respect to the family \mathcal{F}. Then we show that the atomic Hardy spaces $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$ are all equivalent for any $q>1$. Thus we may define the Hardy space $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$. We will further prove that the dual space of $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ is just the space $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$, which was defined by Caffarelli and Gutiérrez in [CG1]. Moreover, as an application of the atomic decomposition, we will also prove that the Monge-Ampère singular integral operator (defined later) is bounded from $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ to $L^{1}\left(\boldsymbol{R}^{n}, d \mu\right)$.

We now define a $(1, q)$-atom and the atomic Hardy space with respect to a family \mathcal{F} of sections and a doubling measure μ.

Definition 1.1. Let $1<q \leq \infty$. A function $a(x) \in L^{q}\left(\boldsymbol{R}^{n}, d \mu\right)$ is called a $(1, q)$ atom if there exists a section $S\left(x_{0}, t_{0}\right) \in \mathcal{F}$ such that
(i) $\operatorname{supp}(a) \subset S\left(x_{0}, t_{0}\right)$;
(ii) $\quad \int_{\boldsymbol{R}^{n}} a(x) d \mu(x)=0$;
(iii) $\|a\|_{L_{\mu}^{q}} \leq\left[\mu\left(S\left(x_{0}, t_{0}\right)\right)\right]^{-1 / q^{\prime}}$, where $\|a\|_{L_{\mu}^{q}}=\left(\int_{R^{n}}|a(x)|^{q} d \mu(x)\right)^{1 / q}$ and $1 / q+$ $1 / q^{\prime}=1$.
The atomic Hardy space $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$ is defined by

$$
\begin{align*}
& H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right) \\
& \quad=\left\{f \in \mathcal{S}^{\prime} ; f(x) \stackrel{\mathcal{S}^{\prime}}{=} \sum_{j} \lambda_{j} a_{j}(x), \text { each } a_{j} \text { is a }(1, q) \text {-atom and } \sum_{j}\left|\lambda_{j}\right|<\infty\right\}, \tag{1.2}
\end{align*}
$$

where $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$ denotes the space of Schwartz functions and $\mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ is the dual space of $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$. Define the $H_{\mathcal{F}}^{1, q}$ norm of f by

$$
\|f\|_{H_{\mathcal{F}}^{1, q}}=\inf \left\{\sum_{j}\left|\lambda_{j}\right|\right\},
$$

where the infimum is taken over all decompositions of $f=\sum_{j} \lambda_{j} a_{j}$ above.
The first result of this paper is
THEOREM 1.1. For $q>1, H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)=H_{\mathcal{F}}^{1, \infty}\left(\boldsymbol{R}^{n}\right)$.
By Theorem 1.1, we may take the atomic Hardy space $H_{\mathcal{F}}^{1, q}$ for any $q>1$ as the definition of the Hardy space $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$. Our second task is to show the following duality.

THEOREM 1.2. The dual space of $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ is the space $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$.

In 1997, Caffarelli and Gutiérrez [CG3] defined a class of the Monge-Ampère singular integral operators as follows. Suppose that $0<\alpha \leq 1$ and $c_{1}, c_{2}>0$. Let $\left\{k_{i}(x, y)\right\}_{i=1}^{\infty}$ be a sequence of kernels satisfying the following conditions:
(1.3) $\operatorname{supp} k_{i}(\cdot, y) \subset S\left(y, 2^{i}\right)$ for all $y \in \boldsymbol{R}^{n}$;
(1.4) $\operatorname{supp} k_{i}(x, \cdot) \subset S\left(x, 2^{i}\right)$ for all $x \in \boldsymbol{R}^{n}$;
(1.5) $\quad \int_{\boldsymbol{R}^{n}} k_{i}(x, y) d \mu(y)=\int_{\boldsymbol{R}^{n}} k_{i}(x, y) d \mu(x)=0$ for all $x, y \in \boldsymbol{R}^{n}$;
(1.6) $\sup _{i} \int_{\boldsymbol{R}^{n}}\left|k_{i}(x, y)\right| d \mu(y) \leq c_{1}$ for all $x \in \boldsymbol{R}^{n}$;
(1.7) $\sup _{i} \int_{\boldsymbol{R}^{n}}\left|k_{i}(x, y)\right| d \mu(x) \leq c_{2}$ for all $y \in \boldsymbol{R}^{n}$;
(1.8) If T is an affine transformation that normalizes the section $S\left(y, 2^{i}\right)$, then

$$
\left|k_{i}(u, y)-k_{i}(v, y)\right| \leq \frac{c_{2}}{\mu\left(S\left(y, 2^{i}\right)\right)}|T(u)-T(v)|^{\alpha}
$$

(1.9) If T is an affine transformation that normalizes the section $S\left(x, 2^{i}\right)$, then

$$
\left|k_{i}(x, u)-k_{i}(x, v)\right| \leq \frac{c_{2}}{\mu\left(S\left(x, 2^{i}\right)\right)}|T(u)-T(v)|^{\alpha}
$$

Denote $K(x, y)=\sum_{i} k_{i}(x, y)$. The Monge-Ampère singular integral operator H is defined by

$$
H(f)(x)=\int_{\boldsymbol{R}^{n}} K(x, y) f(y) d \mu(y)
$$

Caffarelli and Gutiérrez [CG3] proved that H is bounded from $L^{2}\left(\boldsymbol{R}^{n}, d \mu\right)$ to $L^{2}\left(\boldsymbol{R}^{n}, d \mu\right)$. Subsequently, Incognito [In] gave the weak type $(1,1)$ estimate of H. Using the atomic decomposition of $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$, we have the following result for the operator H.

THEOREM 1.3. The operator H is a bounded operator from $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ to $L^{1}\left(\boldsymbol{R}^{n}, d \mu\right)$.
As an application of Theorem 1.3, we have a different method from [In] to obtain the following corollary.

Corollary 1.1. The operator H is bounded on $L^{p}\left(\boldsymbol{R}^{n}, d \mu\right), 1<p<\infty$.
Indeed, it follows from Theorem 1.3 and the $L^{2}\left(\boldsymbol{R}^{n}, d \mu\right)$ boundedness of H (see [CG3]) that we can easily get the $L^{p}\left(\boldsymbol{R}^{n}, d \mu\right)$ boundedness of H for $1<p<2$ by applying the interpolation theorem. We then use the duality to get the $L^{p}\left(\boldsymbol{R}^{n}, d \mu\right)$ boundedness of H for $2<p<\infty$.

The organization of this paper is as follows. In Section 2 we recall some elementary properties of the Hardy-Littlewood maximal operator with respect to sections, and two covering lemmas. The equivalence of all atomic Hardy spaces $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$ will be proved in Section 3. In Section 4, we will show that the dual space of $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$ is $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$. Finally, the ($H_{\mathcal{F}}^{1}, L_{\mu}^{1}$) boundedness of the Monge-Ampère singular integral operator H will be proved in Section 5. Finally, we would like to point out that the basic idea of proving our main results in this paper is based on a noted paper [CW2] by Coifman and Weiss.

2. Elementary properties of sections and covering lemmas. From the properties (A) and (B) of sections, Aimar, Forzani, and Toledano [AFT] obtained the following engulfing property: There exists a constant $\theta \geq 1$, depending only on δ, K_{1}, and ϵ_{1}, such that for each $y \in S(x, t)$,
(D) $\quad S(x, t) \subset S(y, \theta t)$ and $S(y, t) \subset S(x, \theta t)$.

Define a function ρ on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ by

$$
\rho(x, y)=\inf \{t>0 ; y \in S(x, t)\}
$$

Using the engulfing property (D), Incognito [In] obtained the following conclusions:
(E) $\quad \rho(x, y) \leq \theta \rho(y, x)$ for all $x, y \in \boldsymbol{R}^{n}$.
(F) $\quad \rho(x, y) \leq \theta^{2}(\rho(x, z)+\rho(z, y))$ for all $x, y, z \in \boldsymbol{R}^{n}$.

Obviously, from the definition of ρ, it is easy to see that
(G) for a given section $S(x, t), y \in S(x, t)$ if and only if $\rho(x, y)<t$.

In [CG1], Caffarelli and Gutiérrez defined the Hardy-Littlewood maximal operator M with respect to a family \mathcal{F} of sections and the doubling measure μ by

$$
\begin{equation*}
M f(x)=\sup _{t>0} \frac{1}{\mu(S(x, t))} \int_{S(x, t)}|f(y)| d \mu(y) \tag{2.1}
\end{equation*}
$$

We now give some elementary properties of the operator M.
Lemma 2.1. Let M be the Hardy-Littlewood maximal operator defined by (2.1).
(i) M is of weak type $(1,1)$, that is, there exists a constant C_{0} such that for all $\lambda>0$ and any $f \in L^{1}\left(\boldsymbol{R}^{n}, d \mu\right)$

$$
\mu\left(\left\{x \in \boldsymbol{R}^{n} ; M f(x)>\lambda\right\}\right) \leq \frac{C_{0}}{\lambda}\|f\|_{L_{\mu}^{1}}
$$

(ii) M is of type (p, p) for $1<p \leq \infty$, that is, there exists a constant C_{1} such that for any $f \in L^{p}\left(\boldsymbol{R}^{n}, d \mu\right)$

$$
\|M f\|_{L_{\mu}^{p}} \leq C_{1}\|f\|_{L_{\mu}^{p}}
$$

(iii) For all $\lambda>0$, the set $P^{\lambda}=\left\{x \in \boldsymbol{R}^{n} ; M f(x)>\lambda\right\}$ is a open set in \boldsymbol{R}^{n}.
(iv) Let $f \in L^{1}\left(\boldsymbol{R}^{n}, d \mu\right)$ and $\operatorname{supp}(f) \subset S_{0}:=S\left(x_{0}, t_{0}\right) \in \mathcal{F}$. Then there exists a constant $C_{2}=C_{2}(A, \theta)$ such that, when $\lambda>C_{2} \cdot m_{S_{0}}(|f|)$,

$$
P^{\lambda}=\left\{x \in \boldsymbol{R}^{n} ; M f(x)>\lambda\right\} \subset S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right)
$$

where $m_{S_{0}}(|f|)$ is the mean of $|f|$ over the section S_{0}.
Proof. See [CG1] for the proof of conclusion (i). From (i) and the obvious boundedness of M on $L^{\infty}\left(\boldsymbol{R}^{n}, d \mu\right)$, by applying the Marcinkiewicz interpolation theorem, we get (ii).

Now let us turn to the proof of (iii). Denote by E^{c} the complement of $E \subset \boldsymbol{R}^{n}$. It suffices to show that $\left(P^{\lambda}\right)^{c}=\left\{x \in \boldsymbol{R}^{n} ; M f(x) \leq \lambda\right\}$ is a closed set for all $\lambda>0$. Let $\left\{x_{k}\right\}_{k=1}^{\infty} \subset\left(P^{\lambda}\right)^{c}$ be a sequence of points such that $x_{k} \rightarrow x$ as $k \rightarrow \infty$. We have to show that,
for any $t>0$ and $S(x, t) \in \mathcal{F}$,

$$
\begin{equation*}
\frac{1}{\mu(S(x, t))} \int_{S(x, t)}|f(y)| d \mu(y) \leq \lambda . \tag{2.2}
\end{equation*}
$$

Denote $S_{k}=S\left(x_{k}, t\right)$ and $f_{k}(y)=f(y) \chi_{S(x, t) \Delta S_{k}}(y)$ for all $k=1,2, \ldots$, where

$$
S(x, t) \Delta S_{k}=\left(S(x, t) \backslash S_{k}\right) \cup\left(S_{k} \backslash S(x, t)\right)
$$

Thus, $\left|f_{k}(y)\right| \leq|f(y)|$ for all k and $\lim _{k \rightarrow \infty} f_{k}(y)=0$ (μ-a.e.). Applying the Lebesgue dominated convergence theorem, we have

$$
\lim _{k \rightarrow \infty} \frac{1}{\mu(S(x, t))} \int_{S(x, t)}\left|f_{k}(y)\right| d \mu(y)=0
$$

On the other hand,

$$
\frac{1}{\mu(S(x, t))} \int_{S_{k}}|f(y)| d \mu(y)=\frac{\mu\left(S_{k}\right)}{\mu(S(x, t))} \frac{1}{\mu\left(S_{k}\right)} \int_{S_{k}}|f(y)| d \mu(y) \leq \frac{\mu\left(S_{k}\right)}{\mu(S(x, t))} \cdot \lambda .
$$

Hence

$$
\begin{aligned}
\frac{1}{\mu(S(x, t))} \int_{S(x, t)}|f(y)| d \mu(y) \leq & \frac{1}{\mu(S(x, t))} \int_{S(x, t) \Delta S_{k}}|f(y)| d \mu(y) \\
& +\frac{1}{\mu(S(x, t))} \int_{S_{k}}|f(y)| d \mu(y) \\
\leq & \frac{1}{\mu(S(x, t))} \int_{S(x, t)}\left|f_{k}(y)\right| d \mu(y)+\frac{\mu\left(S_{k}\right)}{\mu(S(x, t))} \cdot \lambda .
\end{aligned}
$$

Taking $k \rightarrow \infty$, we obtain (2.2).
Finally, we prove the conclusion (iv). Let $x \in \boldsymbol{R}^{n}$ and suppose $\rho\left(x_{0}, x\right) \geq 2 \theta^{2}(1+\theta) t_{0}$ (equivalently, $x \notin S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right)$ by the property (G) of sections). Then for any $t \leq t_{0}$, $S(x, t) \cap S\left(x_{0}, t_{0}\right)=\emptyset$. Indeed, if $y \in S(x, t) \cap S\left(x_{0}, t_{0}\right)$, then by the properties (E), (F) and (G) of sections

$$
\begin{aligned}
2 \theta^{2}(1+\theta) t_{0} \leq \rho\left(x_{0}, x\right) & \leq \theta^{2}\left(\rho\left(x_{0}, y\right)+\rho(y, x)\right) \leq \theta^{2}\left(\rho\left(x_{0}, y\right)+\theta \rho(x, y)\right) \\
& <\theta^{2}\left(t_{0}+\theta t\right) \leq \theta^{2}(1+\theta) t_{0}
\end{aligned}
$$

The contradiction shows that such y cannot exist. Thus $\int_{S(x, t)}|f(y)| d \mu(y)=0$ for any section $S(x, t)$ with $t \leq t_{0}$. Hence, whenever $x \notin S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right)$,

$$
M f(x)=\sup _{t>t_{0}} \frac{1}{\mu(S(x, t))} \int_{S(x, t)}|f(y)| d \mu(y) .
$$

On the other hand, for a section $S(x, t)$ with $t>t_{0}$, we only consider the case that $S(x, t) \cap$ $S\left(x_{0}, t_{0}\right) \neq \emptyset$. In this case, we take $z \in S(x, t) \cap S\left(x_{0}, t_{0}\right)$. Using the properties (E) and (F) of sections again, we have

$$
S\left(x_{0}, t_{0}\right) \subset S\left(z, \theta t_{0}\right) \subset S(z, \theta t)
$$

On the other hand, by $z \in S(x, t) \subset S(x, \theta t)$ we get $S(z, \theta t) \subset S\left(x, \theta^{2} t\right)$. Hence

$$
\begin{equation*}
S\left(x_{0}, t_{0}\right) \subset S\left(x, \theta^{2} t\right) \tag{2.3}
\end{equation*}
$$

By (2.3) and the doubling condition (1.1) of the measure μ,

$$
\begin{equation*}
\frac{\mu\left(S\left(x_{0}, t_{0}\right)\right)}{\mu(S(x, t))} \leq \frac{\mu\left(S\left(x, \theta^{2} t\right)\right)}{\mu(S(x, t))} \leq A^{1+2 \log _{2} \theta} \tag{2.4}
\end{equation*}
$$

Denoting $C_{2}=A^{1+2 \log _{2} \theta}$, we obtain by (2.4) that for $x \notin S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right)$ and $t>t_{0}$

$$
\begin{aligned}
\frac{1}{\mu(S(x, t))} \int_{S(x, t)}|f(y)| d \mu(y) & \leq \frac{\mu\left(S\left(x_{0}, t_{0}\right)\right)}{\mu(S(x, t))} \frac{1}{\mu\left(S\left(x_{0}, t_{0}\right)\right)} \int_{S\left(x_{0}, t_{0}\right)}|f(y)| d \mu(y) \\
& \leq C_{2} \cdot m_{S_{0}}(|f|)
\end{aligned}
$$

This shows that whenever $x \notin S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right)$, we have $M f(x) \leq C_{2} \cdot m_{S_{0}}(|f|)$. Therefore, if $\lambda>C_{2} \cdot m_{S_{0}}(|f|)$, then $P^{\lambda} \subset S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right)$. This completes the proof of Lemma 2.1.

LEMMA 2.2 (Vitali-Wiener type covering lemma for sections). Let $E \subset \boldsymbol{R}^{n}$ be a bounded set. If for each $x \in E$ there exists a section $S(x, t(x)) \subset E$ with $t(x)>0$, then there exists a sequence $\left\{x_{j}\right\}_{j=1}^{\infty} \subset E$ such that
(i) $\left\{S\left(x_{j}, t\left(x_{j}\right)\right)\right\}_{j=1}^{\infty}$ is a disjoint sequence of sections;
(ii) $\bigcup_{j=1}^{\infty} S\left(x_{j}, 4 \theta^{3} t\left(x_{j}\right)\right) \supset E$.

Proof. Denote $\mathcal{F}_{E}=\{S(x, t(x)) ; x \in E\}$. Since E is a bounded set, we may assume that

$$
L=\sup \left\{t(x) ; S(x, t(x)) \in \mathcal{F}_{E}\right\}<\infty
$$

Take $x_{1} \in E$ such that $t\left(x_{1}\right)>L / 2$. If $E \backslash S\left(x_{1}, 4 \theta^{3} t\left(x_{1}\right)\right)=\emptyset$, then we stop. Otherwise, we take $x_{2} \in E \backslash S\left(x_{1}, 4 \theta^{3} t\left(x_{1}\right)\right)$ such that

$$
t\left(x_{2}\right)>\frac{1}{2} \sup \left\{t(x) ; S(x, t(x)) \in \mathcal{F}_{E} \text { and } x \in E \backslash S\left(x_{1}, 4 \theta^{3} t\left(x_{1}\right)\right)\right\}
$$

If $E \backslash\left\{S\left(x_{1}, 4 \theta^{3} t\left(x_{1}\right)\right) \cup S\left(x_{2}, 4 \theta^{3} t\left(x_{2}\right)\right)\right\}=\emptyset$, then we stop. Otherwise, we take $x_{3} \in$ $E \backslash\left\{S\left(x_{1}, 4 \theta^{3} t\left(x_{1}\right)\right) \cup S\left(x_{2}, 4 \theta^{3} t\left(x_{2}\right)\right)\right\}$ such that

$$
t\left(x_{3}\right)>\frac{1}{2} \sup \left\{t(x) ; S(x, t(x)) \in \mathcal{F}_{E} \text { and } x \in E \backslash\left\{S\left(x_{1}, 4 \theta^{3} t\left(x_{1}\right)\right) \cup S\left(x_{2}, 4 \theta^{3} t\left(x_{2}\right)\right)\right\}\right\}
$$

If $E \subset \bigcup_{j=1}^{3} S\left(x_{j}, 4 \theta^{3} t\left(x_{j}\right)\right)$, then we stop. Otherwise, we will continue the same process. In general, for the j th-stage we pick $x_{j} \in E \backslash \bigcup_{i=1}^{j-1} S\left(x_{i}, 4 \theta^{3} t\left(x_{i}\right)\right)$ such that

$$
\begin{equation*}
t\left(x_{j}\right)>\frac{1}{2} \sup \left\{t(x) ; S(x, t(x)) \in \mathcal{F}_{E} \text { and } x \in E \backslash \bigcup_{i=1}^{j-1} S\left(x_{i}, 4 \theta^{3} t\left(x_{i}\right)\right)\right\} \tag{2.5}
\end{equation*}
$$

Continuing in this way, we construct a sequence of sections in \mathcal{F}_{E}, possibly infinite and denoted by $\left\{S\left(x_{j}, t\left(x_{j}\right)\right)\right\}_{j=1}^{\infty}$, satisfying the following conditions:
(a) For $j>1, x_{j} \notin \bigcup_{i=1}^{j-1} S\left(x_{i}, 4 \theta^{3} t\left(x_{i}\right)\right)$.
(b) For $i<j, t\left(x_{i}\right)>(1 / 2) t\left(x_{j}\right)$.

We first show that $\left\{S\left(x_{j}, t\left(x_{j}\right)\right)\right\}$ is disjoint. Suppose that $y \in S\left(x_{i}, t\left(x_{i}\right)\right) \cap S\left(x_{j}, t\left(x_{j}\right)\right)$. Without loss of generality, we may assume that $i<j$. Hence $t\left(x_{i}\right)>(1 / 2) t\left(x_{j}\right)$. By the properties (E), (F) and (G), we have

$$
\begin{aligned}
\rho\left(x_{i}, x_{j}\right) & \leq \theta^{2}\left(\rho\left(x_{i}, y\right)+\rho\left(y, x_{j}\right)\right) \leq \theta^{2}\left(\rho\left(x_{i}, y\right)+\theta \rho\left(x_{j}, y\right)\right) \\
& <\theta^{2}\left(t\left(x_{i}\right)+\theta t\left(x_{j}\right)\right)<\theta^{2}(1+2 \theta) t\left(x_{i}\right) \\
& <4 \theta^{3} t\left(x_{i}\right)
\end{aligned}
$$

Using the property (G) again, we get $x_{j} \in S\left(x_{i}, 4 \theta^{3} t\left(x_{i}\right)\right)$. However, this contradicts the condition (a).

Now we prove that $E \subset \bigcup_{j=1}^{\infty} S\left(x_{j}, 4 \theta^{3} t\left(x_{j}\right)\right)$. If it is not the case, then there exists $x_{0} \in E$ such that $x_{0} \notin \bigcup_{j=1}^{\infty} S\left(x_{j}, 4 \theta^{3} t\left(x_{j}\right)\right)$. So, there exists a section $S\left(x_{0}, t\left(x_{0}\right)\right) \in \mathcal{F}_{E}$ with $t\left(x_{0}\right)>0$. Since $\left\{S\left(x_{j}, t\left(x_{j}\right)\right)\right\}_{j=1}^{\infty}$ is disjoint and $\bigcup_{j=1}^{\infty} S\left(x_{j}, t\left(x_{j}\right)\right) \subset E$ is bounded, we have

$$
\infty>|E| \geq\left|\bigcup_{j=1}^{\infty} S\left(x_{j}, t\left(x_{j}\right)\right)\right|=\sum_{j=1}^{\infty}\left|S\left(x_{j}, t\left(x_{j}\right)\right)\right|,
$$

where $|E|$ denotes the Lebesgue measure of the set E. From this we get

$$
\lim _{j \rightarrow \infty}\left|S\left(x_{j}, t\left(x_{j}\right)\right)\right|=0
$$

and hence

$$
\begin{equation*}
\lim _{j \rightarrow \infty} t\left(x_{j}\right)=0 \tag{2.6}
\end{equation*}
$$

because, for each $j, S\left(x_{j}, t\left(x_{j}\right)\right)$ is a bounded, convex, open set in \boldsymbol{R}^{n}. By (2.6) we may choose j large enough such that $2 t\left(x_{j}\right)<t\left(x_{0}\right)$. However, this contradicts $t\left(x_{j}\right)>(1 / 2) t\left(x_{0}\right)$ by (2.5), because

$$
x_{0} \in E \backslash \bigcup_{k=1}^{\infty} S\left(x_{k}, 4 \theta^{3} t\left(x_{k}\right)\right) \subset E \backslash \bigcup_{i=1}^{j-1} S\left(x_{i}, 4 \theta^{3} t\left(x_{i}\right)\right)
$$

Thus we finish the proof of Lemma 2.2.
Before proving the following covering lemma, let us recall another property of sections. In [AFT], the authors proved that if a family \mathcal{F} of sections satisfies the properties (A), (B) and (C), then there exists a quasi-metric $d(x, y)$ on \boldsymbol{R}^{n} with respect to \mathcal{F} defined by

$$
d(x, y)=\inf \{r ; x \in S(y, r) \text { and } y \in S(x, r)\}
$$

The triangular constant of the quasi-metric d is just the θ appeared in the property (D), that is,

$$
d(x, y) \leq \theta(d(x, z)+d(z, y)) \quad \text { for any } x, y, z \in \boldsymbol{R}^{n} .
$$

Moreover, denoting by $B_{d}(x, r)=\left\{y \in \boldsymbol{R}^{n} ; d(x, y)<r\right\}$ the d-ball of center x with radius r, we have the following facts.

Lemma 2.3. Let E be an open set in \boldsymbol{R}^{n} and E^{c} denote the complement of E. For any $x \in E$, write $r=d\left(x, E^{c}\right)=\inf \left\{d(x, y) ; y \in E^{c}\right\}$. Then
(i) $d\left(x, E^{c}\right)>0$;
(ii) $\quad B_{d}(x, r) \subset E$;
(iii) $\quad B_{d}(x, 2 r) \cap E^{c} \neq \emptyset$.

Proof. (i) If $d\left(x, E^{c}\right)=0$, then there exists a sequence $\left\{y_{n}\right\} \in E^{c}$ such that $d\left(x, y_{n}\right)<1 / n$ for each n. Hence, $y_{n} \in S(x, 1 / n)$ for every n. On the other hand, since E is open, there is an $\varepsilon>0$ such that $B(x, \varepsilon)=\left\{y \in \boldsymbol{R}^{n} ;|x-y|<\varepsilon\right\} \subset E$. By the property (C) of sections,

$$
y_{n} \in S(x, 1 / n) \subset B(x, \varepsilon) \subset E \quad \text { when } n \text { is large enough . }
$$

But this is impossible because $\left\{y_{n}\right\} \in E^{c}$ for all n.
(ii) If $B_{d}(x, r) \cap E^{c} \neq \emptyset$, then there exists $y_{0} \in B_{d}(x, r) \cap E^{c}$. Thus

$$
r=d\left(x, E^{c}\right)=\inf \left\{d(x, y) ; y \in E^{c}\right\} \leq d\left(x, y_{0}\right)<r
$$

This contradiction shows that $B_{d}(x, r) \subset E$.
(iii) If $B_{d}(x, 2 r) \subset E$, then we have $y \in B_{d}(x, 2 r) \subset E$ whenever $d(x, y)<2 r$. On the other hand, there exists a sequence $\left\{y_{n}\right\} \subset E^{c}$ such that $d\left(x, y_{n}\right)<d\left(x, E^{c}\right)+1 / n=$ $r+1 / n$ for all $n \in N$. Since $r>0$, we have $r+1 / n<2 r$, when n is large enough. Thus $y_{n} \in B_{d}(x, 2 r) \subset E$ for n large enough. However, this contradicts $\left\{y_{n}\right\} \subset E^{c}$ for all n.

The following relationship between a section and a d-ball can be found in [AFT].
(H) For any $x \in \boldsymbol{R}^{n}$ and any $r>0, S(x, r / 2 \theta) \subset B_{d}(x, r) \subset S(x, r)$.

Now let us state and prove the Whitney type covering lemma for sections.
Lemma 2.4 (Whitney type covering lemma for sections). Suppose that $E \subset \boldsymbol{R}^{n}$ is a bounded open set in \boldsymbol{R}^{n} and $C \geq 1$. Then there exists a sequence of sections $\left\{S\left(x_{k}, t_{k}\right)\right\}_{k=1}^{\infty}$ satisfying the following:
(i) Let $\underset{\tilde{S}_{k}}{ }=S\left(x_{k}, t_{k}\right)$. Then $E=\bigcup_{k=1}^{\infty} S_{k}$.
(ii) Let $\tilde{S}_{k}=S\left(x_{k}, 16 C \theta^{3} t_{k}\right)$. Then for each $k, \tilde{S}_{k} \cap E^{c} \neq \emptyset$.
(iii) Let $\bar{S}_{k}=S\left(x_{k}, 2 C \theta t_{k}\right)$. Then $\left\{\bar{S}_{k}\right\}_{k=1}^{\infty}$ is a Θ-disjoint collection, that is, there exists a constant $\Theta=\Theta(A, \theta, C)$ such that $\sum_{k=1}^{\infty} \chi_{\bar{S}_{k}}(x) \leq \Theta$.

Proof. Let $r(x)=d\left(x, E^{c}\right)$ for $x \in E$. By property (H), we have

$$
\begin{align*}
S\left(x, \frac{r(x)}{8 \theta^{3} C}\right) & \subset B_{d}\left(x, \frac{r(x)}{4 \theta^{2}}\right) \subset S\left(x, \frac{r(x)}{4 \theta^{2}}\right) \subset B_{d}\left(x, \frac{r(x)}{2 \theta}\right) \tag{2.7}\\
& \subset S\left(x, \frac{r(x)}{2 \theta}\right) \subset B_{d}(x, r(x)) \subset E
\end{align*}
$$

Therefore, the family of sections $\left\{S\left(x, r(x) / 4 \theta^{3} 8 \theta^{3} C\right) ; x \in E\right\}$ satisfies the condition of Lemma 2.2. By the conclusions of Lemma 2.2, there exists a sequence $\left\{x_{k}\right\}_{k=1}^{\infty} \subset E$ such that
(a) $\left\{S\left(x_{k}, r_{k} / 4 \theta^{3} 8 \theta^{3} C\right)\right\}_{k=1}^{\infty}$ is a disjoint sequence of sections,
(b) $\bigcup_{k=1}^{\infty} S\left(x_{k}, r_{k} / 8 \theta^{3} C\right) \supset E$,

where and below we denote $r\left(x_{k}\right)$ by r_{k} for simplicity. By (2.7) and (b) we obtain

$$
\begin{equation*}
E \subset \bigcup_{k=1}^{\infty} S\left(x_{k}, \frac{r_{k}}{8 \theta^{3} C}\right) \subset \bigcup_{k=1}^{\infty} S\left(x_{k}, \frac{r_{k}}{4 \theta^{2}}\right) \subset \bigcup_{k=1}^{\infty} B_{d}\left(x_{k}, \frac{r_{k}}{2 \theta}\right) \subset E \tag{2.8}
\end{equation*}
$$

We first prove that $\left\{B_{d}\left(x_{k}, r_{k} / 2 \theta\right)\right\}_{k=1}^{\infty}$ is a Θ-disjoint collection. Let $z_{0} \in B_{d}\left(x_{k}, r_{k} / 2 \theta\right)$ and denote $R_{0}=d\left(z_{0}, E^{c}\right)$. Then

$$
r_{k}=d\left(z_{k}, E^{c}\right) \leq \theta\left[d\left(x_{k}, z_{0}\right)+d\left(z_{0}, E^{c}\right)\right] \leq \theta\left(\frac{r_{k}}{2 \theta}+R_{0}\right)=\frac{r_{k}}{2}+\theta R_{0}
$$

Thus $r_{k} \leq 2 \theta R_{0}$. From this, we have

$$
\begin{equation*}
B_{d}\left(x_{k}, r_{k} / 2 \theta\right) \subset B_{d}\left(z_{0}, 2 \theta R_{0}\right) \quad \text { for each } k \tag{2.9}
\end{equation*}
$$

Indeed, for any $y \in B_{d}\left(x_{k}, r_{k} / 2 \theta\right)$,

$$
d\left(z_{0}, y\right) \leq \theta\left[d\left(z_{0}, x_{k}\right)+d\left(x_{k}, y\right)\right] \leq \theta\left(r_{k} / 2 \theta+r_{k} / 2 \theta\right) \leq 2 \theta R_{0}
$$

On the other hand, we see that

$$
\begin{aligned}
R_{0}=d\left(z_{0}, E^{c}\right) & \leq \theta\left[d\left(z_{0}, x_{k}\right)+d\left(x_{k}, E^{c}\right)\right] \\
& \leq \theta\left(\frac{r_{k}}{2 \theta}+r_{k}\right)=\left(\frac{1}{2}+\theta\right) r_{k}=\left(\frac{1}{2}+\theta\right) 4 \theta^{3} 8 \theta^{3} C \cdot \frac{r_{k}}{4 \theta^{3} 8 \theta^{3} C} .
\end{aligned}
$$

Equivalently,

$$
\begin{equation*}
\frac{r_{k}}{4 \theta^{3} 8 \theta^{3} C} \geq \frac{R_{0}}{(1 / 2+\theta) 4 \theta^{3} 8 \theta^{3} C} \tag{2.10}
\end{equation*}
$$

Now we assume that

$$
\begin{equation*}
z_{0} \in \bigcap_{j} B_{d}\left(x_{k_{j}}, r_{k_{j}} / 2 \theta\right) . \tag{2.11}
\end{equation*}
$$

To simplify the notation we denote $x_{j}=x_{k_{j}}$ and $r_{j}=r_{k_{j}}$. Then by (2.9), for each j,

$$
B_{d}\left(x_{j}, \frac{r_{j}}{4 \theta^{3} 8 \theta^{3} C}\right) \subset B_{d}\left(x_{j}, \frac{r_{j}}{2 \theta}\right) \subset B_{d}\left(z_{0}, 2 \theta R_{0}\right)
$$

Note that for each $j, B_{d}\left(x_{j}, r_{j} / 4 \theta^{3} 8 \theta^{3} C\right) \subset S\left(x_{j}, r_{j} / 4 \theta^{3} 8 \theta^{3} C\right)$ by (H). Hence, the sequence $\left\{B_{d}\left(x_{j}, r_{j} / 4 \theta^{3} 8 \theta^{3} C\right)\right\}_{j=1}^{\infty}$ is also disjoint by (a). Thus by (2.10)

$$
d\left(x_{i}, x_{j}\right) \geq \min \left\{\frac{r_{i}}{4 \theta^{3} 8 \theta^{3} C}, \frac{r_{j}}{4 \theta^{3} 8 \theta^{3} C}\right\} \geq \frac{R_{0}}{(1 / 2+\theta) 4 \theta^{3} 8 \theta^{3} C} .
$$

By Lemma 1.1 in [CW1], there exists a constant $\Theta=\Theta(A, \theta, C)$ such that the numbers of j in (2.11) cannot be greater than K. By the Θ-disjointness of $\left\{B_{d}\left(x_{k}, r_{k} / 2 \theta\right)\right\}_{k=1}^{\infty}$ and (2.7), we obtain the Θ-disjointness of $\left\{S\left(x_{k}, r_{k} / 4 \theta^{2}\right)\right\}_{k=1}^{\infty}$.

Finally, we take $t_{k}=r_{k} / 8 \theta^{3} C$. Then by (2.8) we get the conclusions (i) and (iii) of Lemma 2.4. As for the conclusion (ii), it is a direct result of Lemma 2.3 (iii), because

$$
\tilde{S}_{k}=S\left(x_{k}, 16 C \theta^{3} t_{k}\right)=S\left(x_{k}, 2 r_{k}\right) \supset B_{d}\left(x_{k}, 2 r_{k}\right)
$$

Therefore we complete the proof of Lemma 2.4.
The following fact is obvious.
Lemma 2.5. Suppose that $F_{k} \subset E_{k}$ for each k, and $\left\{E_{k}\right\}_{k=1}^{\infty}$ is a Θ-disjoint collection. Then $\left\{F_{k}\right\}_{k=1}^{\infty}$ is also a Θ-disjoint collection.

REMARK 2.1. By the conclusion (iii) of Lemma 2.4 and Lemma $2.5,\left\{S_{k}\right\}_{k=1}^{\infty}$ is also a Θ-disjoint collection, since $S_{k} \subset \bar{S}_{k}$ for each k.
3. Proof of theorem 1.1. First it is easy to see that for all $q>1, H_{\mathcal{F}}^{1, \infty}\left(\boldsymbol{R}^{n}\right) \subset$ $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$. We now show that the opposite inclusion also holds. It suffices to prove that every $(1, q)$-atom $a(x)$ has the representation

$$
\begin{equation*}
a(x)=\sum_{j} \alpha_{j} a_{j}(x) \tag{3.1}
\end{equation*}
$$

where each $a_{j}(x)$ is a $(1, \infty)$-atom and $\sum_{j}\left|\alpha_{j}\right|<\infty$.
Since $a(x)$ is a $(1, q)$-atom, there exists a section $S_{0}=S\left(x_{0}, t_{0}\right) \in \mathcal{F}$ such that $\operatorname{supp}(a) \subset$ $S\left(x_{0}, t_{0}\right)$. We denote $b(x)=\mu\left(S_{0}\right) a(x)$. Then
(i) $\operatorname{supp}(b) \subset S_{0}$,
(ii) $\int b(x) d \mu(x)=0, \quad$ and
(iii) $\|b\|_{L^{q}(\mu)} \leq\left(\mu\left(S_{0}\right)\right)^{1 / q}$.

On the other hand, we take the constant $C=\theta(1+\theta)$ in Lemma 2.4. Then by (1.1) we have

$$
\begin{equation*}
\frac{\mu\left(\bar{S}_{k}\right)}{\mu\left(S_{k}\right)} \leq A^{2+\log _{2} \theta^{2}(1+\theta)}:=K_{0} \quad \text { for every } k \tag{3.3}
\end{equation*}
$$

For a positive integer m, let $\boldsymbol{N}^{m}=\boldsymbol{N} \times \boldsymbol{N} \times \cdots \times \boldsymbol{N}$ and $\boldsymbol{N}^{0}=\{0\}$. We denote the general element in \boldsymbol{N}^{m} by j_{m}. We prove the following proposition by an inductive argument on m.

Proposition 3.1. There exists a sequence of sections $\left\{S_{j_{\ell}}\right\} \subset \mathcal{F}, j_{\ell} \in N^{\ell}, \ell=$ $0,1, \ldots$, such that for each natural number m

$$
\begin{equation*}
b(x)=D_{0} \Theta \alpha \sum_{\ell=0}^{m-1} \alpha^{\ell} \sum_{j_{\ell} \in N^{\ell}} \mu\left(\bar{S}_{j_{\ell}}\right) a_{j_{\ell}}(x)+\sum_{j_{m} \in N^{m}} h_{j_{m}}(x) \tag{3.4}
\end{equation*}
$$

where $\alpha=\alpha(q, A, \theta), D_{0}=D_{0}(A, \theta)$, and
(I) $a_{j_{\ell}}(x)$ is a $(1, \infty)$-atom supported in $\bar{S}_{j_{\ell}}, j_{\ell} \in N^{\ell}, \ell=0,1, \ldots, m-1$;
(II) $\bigcup_{j_{m} \in N^{m}} S_{j_{m}} \subset\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} b\right)(x)>\alpha^{m} / 2\right\}$, and $\left(M_{q} b\right)(x)=\left[M\left(|b|^{q}\right)(x)\right]^{1 / q}$;
(III) $\left\{\bar{S}_{j_{\ell}}\right\}$ is a Θ^{ℓ}-disjoint collection;
(IV) the functions $h_{j_{m}}(x)$ are supported in $S_{j_{m}}$;
(V) $\int h_{j_{m}}(x) d \mu(x)=0$;
(VI) $\quad\left|h_{j_{m}}(x)\right| \leq|b(x)|+D_{0} \alpha^{m} \chi_{S_{j_{m}}}(x)$;
(VII) $\left[m_{S_{j m}}\left(\left|h_{j_{m}}\right|^{q}\right)\right]^{1 / q} \leq 2 D_{0} \alpha^{m}$.

We first show that if the properties from (I) to (VII) hold for each $m \in N$, then (3.1) holds. By (3.3), (II), (III), Lemma 2.5 and Lemma 2.1 (i), we have

$$
\begin{align*}
\sum_{j_{m} \in N^{m}} \mu\left(\bar{S}_{j_{m}}\right) \leq K_{0} \sum_{j_{m} \in N^{m}} \mu\left(S_{j_{m}}\right) & \leq K_{0} \Theta^{m} \mu\left(\bigcup_{j_{m} \in N^{m}} S_{j_{m}}\right) \\
& \leq K_{0} \Theta^{m} \mu\left(\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} b\right)(x)>\alpha^{m} / 2\right\}\right) \tag{3.5}\\
& \leq K_{0} \Theta^{m} C_{0}\left(2 / \alpha^{m}\right)^{q}\|b\|_{L_{\mu}^{q}}^{q}
\end{align*}
$$

In the last inequality, we use the conclusion (i) of Lemma 2.1. By (iii) in (3.2)

$$
\sum_{m=1}^{\infty} \alpha^{m} \sum_{j_{m} \in N^{m}} \mu\left(\bar{S}_{j_{m}}\right) \leq C_{0} K_{0} 2^{q} \sum_{m=1}^{\infty}\left(\Theta \alpha^{1-q}\right)^{m} \mu\left(S_{0}\right)
$$

Hence, if we choose α such that $\alpha>\Theta^{1 /(q-1)}$, then

$$
\begin{equation*}
\sum_{m=1}^{\infty} \alpha^{m} \sum_{j_{m} \in N^{m}} \mu\left(\bar{S}_{j_{m}}\right) \leq B \mu\left(S_{0}\right), \tag{3.6}
\end{equation*}
$$

where $B=B(q, A, \theta, \alpha)$ is independent of $a(x)$.
By (IV) and (VII) we have
(3.7) $\int\left|h_{j_{m}}(x)\right| d \mu(x) \leq \mu\left(S_{j_{m}}\right)\left(\frac{1}{\mu\left(S_{j_{m}}\right)} \int_{S_{j_{m}}}\left|h_{j_{m}}(x)\right|^{q} d \mu(x)\right)^{1 / q} \leq \mu\left(S_{j_{m}}\right) \cdot 2 D_{0} \alpha^{m}$.

Denote $H_{m}(x)=\sum_{j_{m} \in N^{m}} h_{j_{m}}(x)$. Then (3.5) and (3.7) imply

$$
\begin{align*}
\int\left|H_{m}(x)\right| d \mu(x) & \leq \sum_{j_{m} \in N^{m}} \int\left|h_{j_{m}}(x)\right| d \mu(x) \tag{3.8}\\
& \leq 2 D_{0} \alpha^{m} \sum_{j_{m} \in N^{m}} \mu\left(S_{j_{m}}\right) \leq 2^{q+1} C_{0} K_{0} D_{0}\left(\Theta \alpha^{1-q}\right)^{m}\|b\|_{L_{\mu}^{q}}^{q}
\end{align*}
$$

Thus, if $\alpha>\Theta^{1 /(q-1)}$, then by (3.8)

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int\left|H_{m}(x)\right| d \mu(x) \leq C \mu\left(S_{0}\right) \cdot \lim _{m \rightarrow \infty}\left(\Theta \alpha^{1-q}\right)^{m}=0 \tag{3.9}
\end{equation*}
$$

On the other hand, by (I) and (3.6),

$$
\begin{align*}
& \int D_{0} \Theta \alpha \sum_{i=m}^{\infty} \alpha^{i} \sum_{j_{i} \in N^{i}} \mu\left(\bar{S}_{j_{i}}\right)\left|a_{j_{i}}(x)\right| d \mu(x) \\
& \quad=\int_{\bar{S}_{j_{i}}} D_{0} \Theta \alpha \sum_{i=m}^{\infty} \alpha^{i} \sum_{j_{i} \in N^{i}} \mu\left(\bar{S}_{j_{i}}\right)\left|a_{j_{i}}(x)\right| d \mu(x) \tag{3.10}
\end{align*}
$$

$$
\begin{aligned}
& \leq D_{0} \Theta \alpha \sum_{i=m}^{\infty} \alpha^{i} \sum_{j_{i} \in N^{i}} \mu\left(\bar{S}_{j_{i}}\right)\left\|a_{j_{i}}\right\|_{L_{\mu}^{\infty}} \cdot \mu\left(\bar{S}_{j_{i}}\right) \\
& \leq D_{0} \Theta \alpha \sum_{i=m}^{\infty} \alpha^{i} \sum_{j_{i} \in N^{i}} \mu\left(\bar{S}_{j_{i}}\right) \rightarrow 0 \quad(m \rightarrow \infty)
\end{aligned}
$$

It follows from (3.9) and (3.10) that, when $m \rightarrow \infty$,

$$
\frac{D_{0} \Theta \alpha}{\mu\left(S_{0}\right)} \sum_{\ell=0}^{m-1} \alpha^{\ell} \sum_{j_{\ell} \in N^{\ell}} \mu\left(\bar{S}_{j_{\ell}}\right) a_{j_{\ell}}(x)+\frac{1}{\mu\left(S_{0}\right)} \sum_{j_{m} \in N^{m}} h_{j_{m}}(x)
$$

converges to $b(x) / \mu\left(S_{0}\right)=a(x)$ in the L_{μ}^{1} norm. Thus, in the sense of distribution we have

$$
a(x)=\frac{D_{0} \Theta \alpha}{\mu\left(S_{0}\right)} \sum_{m=1}^{\infty} \alpha^{m} \sum_{j_{m} \in N^{m}} \mu\left(\bar{S}_{j_{m}}\right) a_{j_{m}}(x)
$$

where each $a_{j_{m}}(x)$ is a $(1, \infty)$-atom and

$$
\frac{D_{0} \Theta \alpha}{\mu\left(S_{0}\right)} \sum_{m=0}^{\infty} \alpha^{m} \sum_{j_{m} \in N^{m}} \mu\left(\bar{S}_{j_{m}}\right) \leq B<\infty
$$

From this, we obtain $a(x) \in H_{\mathcal{F}}^{1, \infty}\left(\boldsymbol{R}^{n}\right)$. Hence, to prove Theorem 1.1, it remains only to show that the properties from (I) to (VII) hold for each $m \in N$.

Proof of Proposition 3.1. We first show that these properties are valid for $m=1$. Let $E^{\alpha}=\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} b\right)(x)>\alpha\right\}$. By (iii) in (3.2) and Lemma 2.1 (iv), if $\alpha^{q}>C_{2} \geq$ $C_{2} \cdot m_{S_{0}}\left(|b|^{q}\right)$, then

$$
E^{\alpha} \subset S\left(x_{0}, 2 \theta^{2}(1+\theta) t_{0}\right):=\bar{S}_{0}
$$

From this and Lemma 2.1 (iii), E^{α} is a bounded open set if $\alpha^{q}>C_{2}$. By Lemma 2.1 (i), we have

$$
\begin{equation*}
\mu\left(E^{\alpha}\right) \leq C_{0}\left(\|b\|_{L_{\mu}^{q}} / \alpha\right)^{q} \leq C_{0} \alpha^{-q} \mu\left(S_{0}\right) . \tag{3.11}
\end{equation*}
$$

Applying Lemma 2.4 to E^{α} with the constant $C=\theta(1+\theta)$, we obtain a sequence of sections $\left\{S_{j}=S\left(x_{j}, t_{j}\right)\right\}_{j=1}^{\infty}$ satisfying
(II) $\bigcup_{j} S_{j}=E^{\alpha} \subset\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} b\right)(x)>\alpha^{m} / 2\right\}$,
(III) $\left\{\bar{S}_{j}=S\left(x_{j}, 2 \theta^{2}(1+\theta) t_{j}\right)\right\}$ is a Θ-disjoint collection, and for each j

$$
\begin{equation*}
\tilde{S}_{j} \cap\left(E^{\alpha}\right)^{c} \neq \emptyset, \quad \text { where } \quad \tilde{S}_{j}=S\left(x_{j}, 16 \theta^{4}(1+\theta) t_{j}\right) \tag{3.12}
\end{equation*}
$$

If we denote by $\chi_{j}(x)$ the characteristic function of S_{j}, then $\sum_{j=1}^{\infty} \chi_{j}(x) \leq \Theta$ by Remark 2.1. Let

$$
\eta_{j}(x)= \begin{cases}\chi_{j}(x) / \sum_{j} \chi_{j}(x) & \text { if } x \in E^{\alpha} \\ 0 & \text { if } x \notin E^{\alpha}\end{cases}
$$

and

$$
g_{0}(x)= \begin{cases}b(x) & \text { if } x \notin E^{\alpha} \\ \sum_{j} m_{S_{j}}\left(\eta_{j} b\right) \chi_{j}(x) & \text { if } x \in E^{\alpha}\end{cases}
$$

In addition, $h_{j}(x)=b(x) \eta_{j}(x)-m_{S_{j}}\left(\eta_{j} b\right) \chi_{j}(x)$ for any $x \in \boldsymbol{R}^{n}$. Then $b(x)=g_{0}(x)+$ $\sum_{j=1}^{\infty} h_{j}(x)$ for any $x \in \boldsymbol{R}^{n}$.

By the property (C) of sections and the fact that the Hardy-Littlewood maximal operator M related to sections is of weak type (1,1) (see Lemma 2.1 (i)), it is easy to check that the Lebesgue differential theorem holds for the family \mathcal{F} of sections. So, if $x \notin E^{\alpha}$, we have

$$
\left|g_{0}(x)\right| \leq|b(x)| \leq\left(M_{q} b\right)(x) \leq \alpha .
$$

On the other hand, by (3.12) there exists $z_{j} \in \tilde{S}_{j} \cap\left(E^{\alpha}\right)^{c}$. By the property (D) of sections, we have

$$
\begin{equation*}
\tilde{S}_{j}=S\left(x_{j}, 16 \theta^{4}(1+\theta) t_{j}\right) \subset S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(z_{j}, 16 \theta^{4}(1+\theta) t_{j}\right) \subset S\left(x_{j}, 16 \theta^{5}(1+\theta) t_{j}\right) \tag{3.14}
\end{equation*}
$$

The above (3.13) yields

$$
\begin{equation*}
S\left(x_{j}, t_{j}\right) \subset \tilde{S}_{j} \subset S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right) \tag{3.15}
\end{equation*}
$$

which implies

$$
\begin{aligned}
& \left(\frac{1}{\mu\left(S_{j}\right)} \int_{S_{j}}|b(x)|^{q} d \mu(x)\right)^{1 / q} \leq\left(\frac{\mu\left(S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)}{\mu\left(S_{j}\right)}\right)^{1 / q} \\
& \quad \times\left(\frac{1}{\mu\left(S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)} \int_{S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)}|b(x)|^{q} d \mu(x)\right)^{1 / q} \\
& \quad \leq\left(\frac{\mu\left(S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)}{\mu\left(S_{j}\right)}\right)^{1 / q} \cdot\left(M_{q} b\right)\left(z_{j}\right)
\end{aligned}
$$

Using the inclusion relations (3.14) and (3.15) again, we have

$$
\begin{aligned}
\frac{\mu\left(S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)}{\mu\left(S_{j}\right)}= & \frac{\mu\left(S\left(z_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)}{\mu\left(S\left(z_{j}, 16 \theta^{4}(1+\theta) t_{j}\right)\right)} \\
& \times \frac{\mu\left(S\left(z_{j}, 16 \theta^{4}(1+\theta) t_{j}\right)\right)}{\mu\left(S\left(x_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)} \cdot \frac{\mu\left(S\left(x_{j}, 16 \theta^{5}(1+\theta) t_{j}\right)\right)}{\mu\left(S_{j}\right)} \\
\leq & A^{1+\log _{2} \theta} \cdot A^{5+\log _{2} \theta^{5}(1+\theta)},
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left(\frac{1}{\mu\left(S_{j}\right)} \int_{S_{j}}|b(x)|^{q} d \mu(x)\right)^{1 / q} \leq\left(A^{6+\log _{2} \theta^{6}(1+\theta)}\right)^{1 / q}\left(M_{q} b\right)\left(z_{j}\right) . \tag{3.16}
\end{equation*}
$$

Thus, if $x \in E^{\alpha}$, by Remark 2.1 together with (3.16) and noting that $z_{j} \in\left(E^{\alpha}\right)^{c}$, we obtain

$$
\begin{aligned}
\left|g_{0}(x)\right| & \leq \sum_{\substack{\text { at most }}} \frac{1}{\mu\left(S_{j}\right)} \int_{S_{j}}\left|b(x) \eta_{j}(x)\right| d \mu(x) \\
& \leq \sum_{\text {ibid }}\left(\frac{1}{\mu\left(S_{j}\right)} \int_{S_{j}}|b(x)|^{q} d \mu(x)\right)^{1 / q} \leq \Theta D_{0} \alpha
\end{aligned}
$$

where $D_{0}=\left(A^{6+\log _{2} \theta^{6}(1+\theta)}\right)^{1 / q}$. This shows that
(1) $\left|g_{0}(x)\right| \leq \Theta D_{0} \alpha$ for any $x \in \boldsymbol{R}^{n}$.

Since $E^{\alpha} \subset \bar{S}_{0}$ and $g_{0}(x)=b(x)$ for $x \notin E^{\alpha}$, by (i) in (3.2), we have
(2) $\operatorname{supp}\left(g_{0}\right) \subset \bar{S}_{0}$.

By the definition of $h_{j}(x)$, we have
(IV) $\operatorname{supp}\left(h_{j}\right) \subset S_{j}$ for each j,
(V) $\int h_{j}(x) d \mu(x)=0$ for each j.

Noting that $\left\|h_{j}\right\|_{L_{\mu}^{1}} \leq 2\left\|b \chi_{j}\right\|_{L_{\mu}^{1}}=2 \int_{S_{j}}|b(x)| d \mu(x)$ and by Remark 2.1, we have

$$
\begin{aligned}
\sum_{j}\left\|h_{j}\right\|_{L_{\mu}^{1}} & \leq 2 \sum_{j} \int_{S_{j}}|b(x)| d \mu(x) \leq 2 \Theta \int_{\bigcup_{j} S_{j}}|b(x)| d \mu(x) \\
& \leq 2 \Theta\|b\|_{L_{\mu}^{1}} \leq 2 \Theta\|b\|_{L_{\mu}^{q}}\left(\mu\left(S_{0}\right)\right)^{1 / q^{\prime}} \leq 2 \Theta \mu\left(S_{0}\right)
\end{aligned}
$$

Hence $g_{0}(x)+\sum_{j=1}^{\infty} h_{j}(x)$ converges to $b(x)$ in the L_{μ}^{1} norm. In fact, it is also convergent almost everywhere, since the sum has at most Θ terms. Thus, by (V) and (ii) in (3.2), we obtain
(3) $\int g_{0}(x) d \mu(x)=0$.

Set $a_{0}(x)=g_{0}(x)\left(D_{0} \Theta \alpha \mu\left(\bar{S}_{0}\right)\right)^{-1}$. From the facts (1), (2), and (3), we see that $a_{0}(x)$ is a $(1, \infty)$-atom supported in the section \bar{S}_{0}, which is just (I). So, we have

$$
b(x)=D_{0} \Theta \alpha \mu\left(\bar{S}_{0}\right) a_{0}(x)+\sum_{j=1}^{\infty} h_{j}(x)
$$

which is (3.4) for $m=1$. It follows from (3.16) that

$$
\begin{equation*}
m_{S_{j}}\left(\left|b \eta_{j}\right|\right) \leq\left(\frac{1}{\mu\left(S_{j}\right)} \int_{S_{j}}|b(x)|^{q} d \mu(x)\right)^{1 / q} \leq D_{0} \cdot\left(M_{q} b\right)\left(z_{j}\right) \leq D_{0} \alpha \tag{3.17}
\end{equation*}
$$

since $z_{j} \notin E^{\alpha}$. Hence $\left|h_{j}(x)\right| \leq|b(x)|+m_{S_{j}}\left(\left|b \eta_{j}\right|\right) \chi_{j}(x) \leq|b(x)|+D_{0} \alpha \chi_{j}(x)$ by (3.17), and (VI) holds. Finally, using (3.17) again, it is easy to check that (VII) is also valid. Thus we prove Proposition 3.1 for $m=1$.

We now assume that Proposition 3.1 holds for m, and show that it is also true for $m+1$. Let $E_{j_{m}}=\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} h_{j_{m}}\right)(x)>\alpha^{m+1}\right\}$. By the hypothesis (IV), $\operatorname{supp}\left(h_{j_{m}}\right) \subset S_{j_{m}}=$ $S\left(x_{j_{m}}, t_{j_{m}}\right)$. If $\alpha^{q}>C_{2}\left(2 D_{0}\right)^{q}$, then by (VII) we have

$$
C_{2} m_{S_{j_{m}}}\left(\left|h_{j_{m}}\right|^{q}\right) \leq C_{2}\left(\left(2 D_{0} \alpha^{m}\right)^{q}<\alpha^{q(m+1)}\right.
$$

Apply Lemma 2.1 (iv) to get $E_{j_{m}} \subset \bar{S}_{j_{m}}:=S\left(x_{j_{m}}, 2 \theta^{2}(1+\theta) t_{j_{m}}\right)$. Thus $E_{j_{m}}$ is a bounded open set if $\alpha^{q}>C_{2}\left(2 D_{0}\right)^{q}$ by Lemma 2.1 (iii). Applying Lemma 2.4 for $E_{j_{m}}$ with the constant $C=\theta(1+\theta)$, we obtain a sequence of sections $\left\{S_{j_{m}}^{i}=S\left(x_{j_{m}}^{i}, t_{j_{m}}^{i}\right)\right\}_{i=1}^{\infty}$ such that
(4) $\bigcup_{i} S_{j_{m}}^{i}=E_{j_{m}} \subset\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} h_{j_{m}}\right)(x)>\alpha^{m+1} / 2\right\}$,
(5) $\left\{\bar{S}_{j_{m}}^{i}:=S\left(x_{j_{m}}^{i}, 2 \theta^{2}(1+\theta) t_{j_{m}}^{i}\right)\right\}_{i=1}^{\infty}$ is a Θ-disjoint collection,
(6) for each $i, \tilde{S}_{j_{m}}^{i} \cap\left(E_{j_{m}}\right)^{c} \neq \emptyset$, where $\tilde{S}_{j_{m}}^{i}:=S\left(x_{j_{m}}^{i}, 16 \theta^{4}(1+\theta) t_{j_{m}}^{i}\right)$.

By the hypothesis (III) for m, we know that $\left\{\bar{S}_{j_{m}}\right\}$ is a Θ^{m}-disjoint collection, since the totality of sections in the family $\left\{\bar{S}_{j_{m}}^{i}\right\}$ is Θ^{m+1}-disjoint for all $j_{m} \in N^{m}$ and $i \in N$. This shows that (III) holds for $m+1$.

Now denote the characteristic function of section $S_{j_{m}}^{i}$ by $\chi_{j_{m}}^{i}(x)$. Then it follows from (5) and Lemma 2.5 that $\sum_{i=1}^{\infty} \chi_{j_{m}}^{i}(x) \leq \Theta$. Let

$$
\eta_{j_{m}}^{i}(x)= \begin{cases}\chi_{j_{m}}^{i}(x) / \sum_{\ell} \chi_{j_{m}}^{\ell}(x) & \text { if } x \in E_{j_{m}} \\ 0 & \text { if } x \notin E_{j_{m}}\end{cases}
$$

and

$$
g_{j_{m}}(x)= \begin{cases}h_{j_{m}}(x) & \text { if } x \notin E_{j_{m}} \\ \sum_{i} m_{S_{j_{m}}^{i}}\left(h_{j_{m}} \eta_{j_{m}}^{i}\right) \chi_{j_{m}}^{i}(x) & \text { if } x \in E_{j_{m}}\end{cases}
$$

In addition, we have $h_{j_{m}}^{i}(x)=h_{j_{m}}(x) \eta_{j_{m}}^{i}(x)-m_{S_{j_{m}}^{i}}\left(h_{j_{m}} \eta_{j_{m}}^{i}\right) \chi_{j_{m}}^{i}(x)$ for any $x \in \boldsymbol{R}^{n}$.
If $x \notin E_{j_{m}}$, then

$$
\left|g_{j_{m}}(x)\right| \leq\left|h_{j_{m}}(x)\right| \leq\left(M_{q} h_{j_{m}}\right)(x) \leq \alpha^{m+1}
$$

On the other hand, by (6) and by making use of the properties of sections and the same idea as in proving (3.16), we may get

$$
\begin{align*}
\left(\frac{1}{\mu\left(S_{j_{m}}^{i}\right)} \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right|^{q} d \mu(x)\right)^{1 / q} & \leq\left(A^{6+\log _{2} \theta^{6}(1+\theta)}\right)^{1 / q}\left(M_{q} h_{j_{m}}\right)\left(z_{j}\right) \tag{3.18}\\
& \leq D_{0} \alpha^{m+1}
\end{align*}
$$

where $z_{j} \in \tilde{S}_{j_{m}}^{i} \cap\left(E_{j_{m}}\right)^{c}$ and $D_{0}=\left(A^{6+\log _{2} \theta^{6}(1+\theta)}\right)^{1 / q}$. Hence, if $x \in E_{j_{m}}$, then by (5), Lemma 2.5 and (3.18) we have

$$
\begin{aligned}
\left|g_{j_{m}}(x)\right| & \leq \sum_{\substack{\text { at most } \\
\Theta \text { terms }}} \frac{1}{\mu\left(S_{j_{m}}^{i}\right)} \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x) \eta_{j_{m}}^{i}(x)\right| d \mu(x) \\
& \leq \sum_{\text {ibid }}\left(\frac{1}{\mu\left(S_{j_{m}}^{i}\right)} \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right|^{q} d \mu(x)\right)^{1 / q} \\
& \leq \Theta D_{0} \alpha^{m+1}
\end{aligned}
$$

Thus we obtain
(7) $\left|g_{j_{m}}(x)\right| \leq \Theta D_{0} \alpha^{m+1}$ for any $x \in \boldsymbol{R}^{n}$.

Since $E_{j_{m}} \subset \bar{S}_{j_{m}}$, by the definition of $g_{j_{m}}(x)$ we have
(8) $\operatorname{supp}\left(g_{j_{m}}\right) \subset \bar{S}_{j_{m}}$.

In addition, it is obvious that $\operatorname{supp}\left(h_{j_{m}}^{i}\right) \subset S_{j_{m}}^{i}$ and $\int h_{j_{m}}^{i}(x) d \mu(x)=0$ for each j. Thus (IV) and (V) hold for $m+1$. Since $\left\|h_{j_{m}}^{i}\right\|_{L_{\mu}^{1}} \leq 2\left\|h_{j_{m}} \chi_{j_{m}}^{i}\right\|_{L_{\mu}^{1}}=2 \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right| d \mu(x)$, by (5) together with Lemma 2.5 we have

$$
\begin{aligned}
\sum_{i}\left\|h_{j_{m}}^{i}\right\|_{L_{\mu}^{1}} & \leq 2 \sum_{i} \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right| d \mu(x) \leq 2 \Theta \int_{\bigcup_{i} S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right| d \mu(x) \\
& \leq 2 \Theta\left\|h_{j_{m}}\right\|_{L_{\mu}^{1}} \leq 2 \Theta\left\|h_{j_{m}}\right\|_{L_{\mu}^{q}}\left(\mu\left(S_{j_{m}}\right)\right)^{1 / q^{\prime}} \leq 2 \Theta \mu\left(S_{j_{m}}\right)
\end{aligned}
$$

Hence $g_{j_{m}}(x)+\sum_{i=1}^{\infty} h_{j_{m}}^{i}(x)$ converges to $h_{j_{m}}(x)$ in the L_{μ}^{1} norm (it is also convergent almost everywhere). Thus, by the cancellation properties of $h_{j_{m}}(x)$ and $h_{j_{m}}^{i}(x)$ for each i, we have
(9) $\int g_{j_{m}}(x) d \mu(x)=0$.

If we set $a_{j_{m}}(x)=g_{j_{m}}(x)\left(D_{0} \Theta \alpha^{m+1} \mu\left(\bar{S}_{j_{\underline{m}}}\right)\right)^{-1}$, then from (7), (8) and (9) we see that $a_{j_{m}}(x)$ is a $(1, \infty)$-atom supported in the section $\bar{S}_{j_{m}}$. This shows that (I) is valid for $m+1$. By the definition of $h_{j_{m}}^{i}(x)$, the hypothesis on $h_{j_{m}}(x)$ for m, and (3.18), we have

$$
\begin{aligned}
\left|h_{j_{m}}^{i}(x)\right| & \leq\left\{\left|h_{j_{m}}(x)\right|+\frac{1}{\mu\left(S_{j_{m}}^{i}\right)} \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right| d \mu(x)\right\} \chi_{j_{m}}^{i}(x) \\
& \leq\left\{|b(x)|+2 D_{0} \alpha^{m}+\left(\frac{1}{\mu\left(S_{j_{m}}^{i}\right)} \int_{S_{j_{m}}^{i}}\left|h_{j_{m}}(x)\right|^{q} d \mu(x)\right)^{1 / q}\right\} \chi_{j_{m}}^{i}(x) \\
& \leq\left\{|b(x)|+2 D_{0} \alpha^{m}+D_{0} \alpha^{m+1}\right\} \chi_{j_{m}}^{i}(x) \\
& \leq|b(x)|+2 D_{0} \alpha^{m+1} \chi_{j_{m}}^{i}(x)
\end{aligned}
$$

provided $\alpha>2$, which means that (VI) holds for $m+1$. By (3.18), we see that (VII) is also valid for $m+1$, since by the definition of $h_{j_{m}}^{i}$ we know that $\left(m_{S_{j_{m}}^{i}}\left(\left|h_{j_{m}}^{i}\right|^{q}\right)\right)^{1 / q} \leq$ $2\left(m_{S_{j_{m}}^{i}}\left(\left|h_{j_{m}} \eta_{j_{m}}^{i}\right|^{q}\right)\right)^{1 / q}$.

Finally, by (VI) we see that

$$
\left(M_{q} h_{j_{m}}\right)(x) \leq\left(M_{q} b\right)(x)+2 D_{0} \alpha^{m} \quad \text { for all } x \in \boldsymbol{R}^{n}
$$

Thus, for any $x \in E_{j_{m}}$, we have

$$
\begin{equation*}
\alpha^{m+1}<\left(M_{q} h_{j_{m}}\right)(x) \leq\left(M_{q} b\right)(x)+2 D_{0} \alpha^{m}<\left(M_{q} b\right)(x)+\alpha^{m+1} / 2 \tag{3.19}
\end{equation*}
$$

as long as $\alpha>4 D_{0}$. Then, by (4) and (3.19), we obtain

$$
\bigcup_{\substack{j_{m} \in N^{m} \\ i \in N}} S_{j_{m}}^{i}=\bigcup_{j_{m} \in N^{m}}\left(\bigcup_{i \in N} S_{j_{m}}^{i}\right) \subset \bigcup_{j_{m} \in N^{m}} E_{j_{m}} \subset\left\{x \in \boldsymbol{R}^{n} ;\left(M_{q} b\right)(x)>\alpha^{m+1} / 2\right\}
$$

So, (II) holds for $m+1$.
In consequence, to complete the proof of Proposition 3.1 we only need to take α to be

$$
\alpha>\max \left\{\Theta^{1 /(q-1)}, C_{2}^{1 / q}, 2 D_{0} C_{2}^{1 / q}, 2,4 D_{0}\right\}
$$

since each of these numbers depends only on q, A and θ and is independent of m.

4. Proof of theorem 1.2. We need to give an equivalent definition of $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ with respect to the family \mathcal{F} and the doubling Borel measure μ. Let f be a real-valued function defined on \boldsymbol{R}^{n}. We say that $f \in B M O_{\mathcal{F}}^{q}\left(\boldsymbol{R}^{n}\right), 1<q<\infty$, if

$$
\|f\|_{q, *}=\sup _{S \in \mathcal{F}}\left(\frac{1}{\mu(S)} \int_{S}\left|f(x)-m_{S}(f)\right|^{q} d \mu(x)\right)^{1 / q}<\infty
$$

Proposition 4.1. For any $1<q<\infty, B M O_{\mathcal{F}}^{q}\left(\boldsymbol{R}^{n}\right)=B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$.
Proof. By Hölder's inequality, it is easy to get $B M O_{\mathcal{F}}^{q}\left(\boldsymbol{R}^{n}\right) \subset B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$. On the other hand, we assume that $f \in B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ with $\|f\|_{*}=1$. Then there exist positive numbers $\varepsilon_{0}<1$ and Γ depending only on A in (1.1) and the constants in the properties (A) and (B) of sections, such that, for any section $S \in \mathcal{F}$ and each $k=0,1,2, \ldots$,
(4.1) $\mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\Gamma+k \Gamma\right\}\right) \leq \varepsilon_{0}^{k} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\Gamma\right\}\right)$.
(See (6-6) in [CG1, p. 1091] for the proof.) Thus

$$
\begin{aligned}
\frac{1}{\mu(S)} \int_{S}\left|f(x)-m_{S}(f)\right|^{q} d \mu(x)= & \frac{q}{\mu(S)} \int_{0}^{\infty} \alpha^{q-1} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\alpha\right\}\right) d \alpha \\
= & \frac{q}{\mu(S)} \int_{0}^{\Gamma} \alpha^{q-1} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\alpha\right\}\right) d \alpha \\
& +\frac{q}{\mu(S)} \int_{\Gamma}^{\infty} \alpha^{q-1} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\alpha\right\}\right) d \alpha \\
:= & I_{1}+I_{2}
\end{aligned}
$$

Here we have

$$
\begin{equation*}
I_{1} \leq \frac{q}{\mu(S)} \int_{0}^{\Gamma} \alpha^{q-1} \cdot \mu(S) d \alpha \leq \Gamma^{q}<\infty \tag{4.2}
\end{equation*}
$$

On the other hand, by (4.1) and noting that $\varepsilon_{0}<1$, we get

$$
\begin{align*}
I_{2} & =\frac{q}{\mu(S)} \int_{0}^{\infty}(\alpha+\Gamma)^{q-1} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\alpha+\Gamma\right\}\right) d \alpha \\
& =\frac{q}{\mu(S)} \sum_{k=0}^{\infty} \int_{k \Gamma}^{(k+1) \Gamma}(\alpha+\Gamma)^{q-1} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\alpha+\Gamma\right\}\right) d \alpha \\
& \leq \frac{q}{\mu(S)} \sum_{k=0}^{\infty}[(k+1) \Gamma+\Gamma]^{q-1} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>k \Gamma+\Gamma\right\}\right) \cdot \Gamma \tag{4.3}\\
& \leq \frac{q}{\mu(S)} \sum_{k=0}^{\infty}(k+2)^{q-1} \Gamma^{q} \varepsilon_{0}^{k} \mu\left(\left\{x \in S ;\left|f(x)-m_{S}(f)\right|>\Gamma\right\}\right) \\
& \leq q \Gamma^{q} \sum_{k=0}^{\infty}(k+2)^{q-1} \varepsilon_{0}^{k} \leq C q \Gamma^{q} .
\end{align*}
$$

From (4.2) and (4.3), we conclude that $B M O_{\mathcal{F}}^{q}\left(\boldsymbol{R}^{n}\right) \supset B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$.

Proof of Theorem 1.2. To prove Theorem 1.2, we need to show that if $g \in$ $B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$, then

$$
\begin{equation*}
l_{g}(f)=\int_{\boldsymbol{R}^{n}} f(x) g(x) d \mu(x) \tag{4.4}
\end{equation*}
$$

is a bounded linear functional on $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$, and conversely that for any bounded linear functional l on $H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)$, there exists $b \in B M O_{\mathcal{F}}\left(\boldsymbol{R}^{n}\right)$ such that

$$
l(f)=\int_{\boldsymbol{R}^{n}} f(x) b(x) d \mu(x) \quad \text { for all } f \in H_{\mathcal{F}}^{1}\left(\boldsymbol{R}^{n}\right)
$$

By the conclusions of Theorem 1.1 and Proposition 4.1, it suffices to show that the dual space of the atomic Hardy space $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$ is $B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$ for some q with $1<q<\infty$, that is, $\left(H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)\right)^{\prime}=B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$, where $1 / q+1 / q^{\prime}=1$.

We first prove that $B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right) \subset\left(H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)\right)^{\prime}$. Write $D=H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right) \cap L_{c}^{q}\left(\boldsymbol{R}^{n}, d \mu\right)$, where $L_{c}^{q}\left(\boldsymbol{R}^{n}, d \mu\right)$ consists of all functions in $L^{q}\left(\boldsymbol{R}^{n}, d \mu\right)$ with compact supports. Since the set of all functions with the form $\sum_{k=1}^{N} \lambda_{k} a_{k}(x)$ is dense in $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right), D$ is a dense subset of $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$. Then we will see that, for any $g \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$, the linear functional l_{g} defined in (4.4) is bounded on the dense subset D of $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$.

For $N \in \boldsymbol{N}$, we set

$$
g_{N}(x)= \begin{cases}N & \text { if } g(x) \geq N \\ g(x) & \text { if }|g(x)|<N \\ -N & \text { if } g(x) \leq-N\end{cases}
$$

Then it is easy to verify that $g_{N}(x) \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$ and $\left\|g_{N}\right\|_{q^{\prime}, *} \leq 4\|g\|_{q^{\prime}, *}$.
Set $f(x)=\sum_{k=1}^{\infty} \lambda_{k} a_{k}(x) \in D$, where $a_{k}(x)$ is a $(1, q)$-atom supported in a section $S_{k} \in \mathcal{F}$. Thus, by the definition of the $(1, q)$-atom, we have

$$
\begin{aligned}
\left|\int_{\mathbf{R}^{n}} f(x) g_{N}(x) d \mu(x)\right| & \leq \sum_{k=1}^{\infty}\left|\lambda_{k}\right|\left|\int_{\mathbf{R}^{n}} a_{k}(x) g_{N}(x) d \mu(x)\right| \\
& \leq \sum_{k=1}^{\infty}\left|\lambda_{k}\right|\left|\int_{S_{k}} a_{k}(x)\left[g_{N}(x)-m_{S_{k}}\left(g_{N}\right)\right] d \mu(x)\right| \\
& \leq \sum_{k=1}^{\infty}\left|\lambda_{k}\right|\left\|a_{k}\right\|_{L_{\mu}^{q}}\left(\int_{S_{k}}\left|g_{N}(x)-m_{S_{k}}\left(g_{N}\right)\right|^{q^{\prime}} d \mu(x)\right)^{1 / q^{\prime}} \\
& \leq \sum_{k=1}^{\infty}\left|\lambda_{k}\right|\left(\frac{1}{\mu\left(S_{k}\right)} \int_{S_{k}}\left|g_{N}(x)-m_{S_{k}}\left(g_{N}\right)\right|^{q^{\prime}} d \mu(x)\right)^{1 / q^{\prime}} \\
& \leq\|f\|_{H_{\mathcal{F}}^{1, q}} \cdot 4\|g\|_{q^{\prime}, *}
\end{aligned}
$$

Since $g(x) \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$ is a locally q^{\prime}-th integrable function on \boldsymbol{R}^{n},

$$
\left|f(x) g_{N}(x)\right| \leq|f(x) g(x)| \in L^{1}\left(\boldsymbol{R}^{n}, d \mu\right)
$$

By the Lebesgue dominated convergence theorem and (4.5),

$$
\left|\int_{\boldsymbol{R}^{n}} f(x) g(x) d \mu(x)\right|=\left|\lim _{N \rightarrow \infty} \int_{\boldsymbol{R}^{n}} f(x) g_{N}(x) d \mu(x)\right| \leq\|f\|_{H_{\mathcal{F}}^{1, q}} \cdot 4\|g\|_{q^{\prime}, *}
$$

This shows that the linear functional l_{g} is bounded on D, and $\left\|l_{g}\right\| \leq 4\|g\|_{q^{\prime}, *}$. Consequently, l_{g} has a unique bounded extension on $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$, since D is a dense subset of $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$. In this sense we then have $B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right) \subset\left(H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)\right)^{\prime}$.

In order to prove the inverse inclusion $\left(H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)\right)^{\prime} \subset B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$, we need to show that if l is a bounded linear functional on $H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$, then there exists $b(x) \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$ such that for any $f \in H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$

$$
l(f)=\int_{\boldsymbol{R}^{n}} f(x) b(x) d \mu(x) .
$$

The proof will be divided into the following three steps.
Step 1. Let us first prove $\left(H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)\right)^{\prime} \subset\left(L_{0}^{q}(S, d \mu)\right)^{\prime}$, where $S=S(x, t) \in \mathcal{F}$ is any section in \boldsymbol{R}^{n} and

$$
L_{0}^{q}(S, d \mu)=\left\{f \in L^{q}\left(\boldsymbol{R}^{n}, d \mu\right) ; f=0 \mu \text {-a.e. on } S^{c} \text { and } \int_{S} f(x) d \mu(x)=0\right\}
$$

Indeed, when $f(x) \in L_{0}^{q}(S, d \mu)$, it is easy to check that $a(x)=f(x)(\mu(S))^{-1 / q^{\prime}}\|f\|_{L_{\mu}^{q}(S)}^{-1}$ is a $(1, q)$-atom. Thus $f(x)=a(x)(\mu(S))^{1 / q^{\prime}}\|f\|_{L_{\mu}^{q}(S)} \in H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$ and $\|f\|_{H_{\mathcal{F}}^{1, q}} \leq$ $(\mu(S))^{1 / q^{\prime}}\|f\|_{L_{\mu}^{q}(S)}$. Therefore, we have

$$
\begin{equation*}
|l(f)| \leq\|l\| \cdot(\mu(S))^{1 / q^{\prime}}\|f\|_{L_{\mu}^{q}(S)} \tag{4.6}
\end{equation*}
$$

which shows that l is also a bounded linear functional on $L_{0}^{q}(S, d \mu)$. Since $L_{0}^{q}(S, d \mu) \subset$ $L^{q}(S, d \mu)$, using the Hahn-Banach extension theorem, we know that l has a unique bounded extension on $L^{q}(S, d \mu)$. Since $1<q<\infty$, by the Riesz representation theorem, there exists $b(x) \in L^{q^{\prime}}(S, d \mu)$ such that

$$
\begin{equation*}
l(f)=\int_{S} f(x) b(x) d \mu(x) \quad \text { for all } f \in L_{0}^{q}(S, d \mu) \tag{4.7}
\end{equation*}
$$

Furthermore, we have the following fact:
If $\int_{S} f(x) b(x) d \mu(x)=0$ for all $f \in L_{0}^{q}(S, d \mu)$, then $b(x)$ is constant for almost every $x \in S$.

Indeed, since S is a bounded convex set, for any $h(x) \in L^{q}(S, d \mu)$ we have $h(x)-m_{S}(h) \in$ $L_{0}^{q}(S, d \mu)$. Thus
$0=\int_{S} b(x)\left[h(x)-m_{S}(h)\right] d \mu(x)=\int_{S} h(x)\left[b(x)-m_{S}(b)\right] d \mu(x) \quad$ for all $h \in L^{q}(S, d \mu)$. Hence $b(x)=m_{S}(b)$ almost every $x \in S$.

Step 2. Fix $x_{0} \in \boldsymbol{R}^{n}$ and choose a sequence of positive increasing numbers $\left\{t_{j}\right\}_{j=1}^{\infty}$ such that $\lim _{j \rightarrow \infty} t_{j}=\infty$. Then, by the property (C) of sections, $\left\{S\left(x_{0}, t_{j}\right)\right\}_{j=1}^{\infty}$ is a sequence

of sections with $\bigcup_{j=1}^{\infty} S_{j}=\boldsymbol{R}^{n}$, where $S_{j}=S\left(x_{0}, t_{j}\right)$. By (4.7), for each S_{j}, there exists $b_{j}(x) \in L^{q^{\prime}}\left(S_{j}, d \mu\right)$ satisfying (4.7).

Consider an arbitrary $f \in L_{0}^{q}\left(S_{1}, d \mu\right)$. There exists $b_{1}(x) \in L^{q^{\prime}}\left(S_{1}, d \mu\right)$ such that

$$
\begin{equation*}
l(f)=\int_{S_{1}} f(x) b_{1}(x) d \mu(x) \tag{4.8}
\end{equation*}
$$

By $S_{2} \supset S_{1}$, we have $L_{0}^{q}\left(S_{2}, d \mu\right) \supset L_{0}^{q}\left(S_{1}, d \mu\right)$ and $f \in L_{0}^{q}\left(S_{2}, d \mu\right)$. Therefore, there exists $b_{2}(x) \in L^{q^{\prime}}\left(S_{2}, d \mu\right)$ such that

$$
\begin{equation*}
l(f)=\int_{S_{2}} f(x) b_{2}(x) d \mu(x)=\int_{S_{1}} f(x) b_{2}(x) d \mu(x) \tag{4.9}
\end{equation*}
$$

since $\operatorname{supp}(f) \subset S_{1}$. From (4.8) and (4.9), we get

$$
\begin{equation*}
\int_{S_{1}} f(x)\left[b_{1}(x)-b_{2}(x)\right] d \mu(x)=0 \quad \text { for all } f \in L_{0}^{q}\left(S_{1}, d \mu\right) \tag{4.10}
\end{equation*}
$$

Applying the fact shown in Step 1, we have $b_{1}(x)-b_{2}(x)=C_{1}$ for almost every $x \in S_{1}$. Now we write

$$
b(x)= \begin{cases}b_{1}(x) & \text { if } x \in S_{1} \\ b_{2}(x)+C_{1} & \text { if } x \in S_{2} \backslash S_{1}\end{cases}
$$

Then we obtain

$$
l(f)=\int_{S_{j}} f(x) b(x) d \mu(x) \quad \text { for any } f \in L_{0}^{q}\left(S_{j}, d \mu\right), j=1,2
$$

By a method quite similar to the above, we may obtain a function $b(x)$ satisfying

$$
\begin{equation*}
l(f)=\int_{S_{j}} f(x) b(x) d \mu(x) \quad \text { for any } f \in L_{0}^{q}\left(S_{j}, d \mu\right), j=1,2, \ldots \tag{4.11}
\end{equation*}
$$

Step 3. Now we prove that the above $b(x) \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$ and satisfies

$$
\begin{equation*}
l(f)=\int_{\boldsymbol{R}^{n}} f(x) b(x) d \mu(x) \quad \text { for any } f \in H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right) \tag{4.12}
\end{equation*}
$$

We need the following fact about sections in \boldsymbol{R}^{n}.
Assume that $S_{0}=S\left(y_{0}, r\right) \in \mathcal{F}$ is an arbitrary section in \boldsymbol{R}^{n}. Then there exists j_{0} such that $S_{j_{0}} \supset S_{0}$, where $S_{j_{0}}=S\left(x_{0}, t_{j_{0}}\right)$ is the j_{0}-th section of the sequence in Step 2.

Indeed, by $\bigcup_{j=1}^{\infty} S_{j}=\boldsymbol{R}^{n}$, there exists a section $S_{i}=S\left(x_{0}, t_{i}\right)$ such that $S\left(x_{0}, t_{i}\right) \cap$ $S\left(y_{0}, r\right) \neq \emptyset$ with $t_{i} \geq r$. Then there exists $z \in S\left(x_{0}, t_{i}\right) \cap S\left(y_{0}, r\right)$. From the property (D) of sections, we have $S\left(y_{0}, r\right) \subset S(z, \theta r) \subset S\left(z, \theta t_{i}\right)$. Since $z \in S\left(x_{0}, t_{i}\right) \subset S\left(x_{0}, \theta t_{i}\right)$, using the property (D) again, we know $S\left(z, \theta t_{i}\right) \subset S\left(x_{0}, \theta^{2} t_{i}\right)$ and therefore $S\left(y_{0}, r\right) \subset S\left(x_{0}, \theta^{2} t_{i}\right)$. Now if we take j_{0} such that $t_{j_{0}} \geq \theta^{2} t_{i}$, then $S\left(y_{0}, r\right) \subset S\left(x_{0}, t_{j_{0}}\right)$.

Now, let us return to the proof of (4.12). For any $f \in H_{\mathcal{F}}^{1, q}\left(\boldsymbol{R}^{n}\right)$, we may write $f(x)=$ $\sum_{k=1}^{\infty} \lambda_{k} a_{k}(x)$, where $a_{k}(x)$ is a $(1, q)$-atom supported in the section $S_{k} \in \mathcal{F}$. By the fact
above, for each k there exists j_{k} such that $S_{k} \subset S_{j_{k}}=S\left(x_{0}, t_{j_{k}}\right)$. By the definition of $(1, q)$ atom, we have $a_{k}(x) \in L_{0}^{q}\left(S_{j_{k}}, d \mu\right)$. Thus by (4.11),

$$
\begin{equation*}
l\left(a_{k}\right)=\int_{S_{j_{k}}} a_{k}(x) b(x) d \mu(x)=\int_{\mathbf{R}^{n}} a_{k}(x) b(x) d \mu(x) . \tag{4.13}
\end{equation*}
$$

Since the functional l is linear, by (4.13) we obtain

$$
l(f)=\sum_{k=1}^{\infty} \lambda_{k} l\left(a_{k}\right)=\sum_{k=1}^{\infty} \lambda_{k} \int_{\boldsymbol{R}^{n}} a_{k}(x) b(x) d \mu(x)=\int_{\boldsymbol{R}^{n}} f(x) b(x) d \mu(x)
$$

Finally, to finish the proof of Step 3, it remains to show that $b(x) \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$. For any section $S \in \mathcal{F}$, let $h(x) \in L^{q}(S, d \mu)$ with $\operatorname{supp}(h) \subset S$ and $\|h\|_{L_{\mu}^{q}} \leq 1$. Then $a(x)=$ $(1 / 2)(\mu(S))^{-1 / q^{\prime}}\left[h(x)-m_{S}(h)\right] \chi_{S}(x)$ is a $(1, q)$-atom supported in S and $\|a\|_{L_{\mu}^{q}} \leq 1$. Thus, (4.13) implies that

$$
\left|\int_{S} a(x) b(x) d \mu(x)\right|=|l(a)| \leq\|l\| .
$$

Hence

$$
(\mu(S))^{-1 / q^{\prime}}\left|\int_{S}\left[h(x)-m_{S}(h)\right] b(x) d \mu(x)\right| \leq 2\|l\| .
$$

That is,

$$
\begin{equation*}
(\mu(S))^{-1 / q^{\prime}}\left|\int_{S} h(x)\left[b(x)-m_{S}(b)\right] d \mu(x)\right| \leq 2\|l\| . \tag{4.14}
\end{equation*}
$$

From (4.14), we have

$$
(\mu(S))^{-1 / q^{\prime}}\left\|b-m_{S}(b)\right\|_{L_{\mu}^{q^{\prime}}}=(\mu(S))^{-1 / q^{\prime}} \sup _{\|h\|_{L_{\mu}^{q} \leq 1} \leq 1}\left|\int_{S} h(x)\left[b(x)-m_{S}(b)\right] d \mu(x)\right| \leq 2\|l\| .
$$

Since the section $S \in \mathcal{F}$ is arbitrary, we may conclude that $b(x) \in B M O_{\mathcal{F}}^{q^{\prime}}\left(\boldsymbol{R}^{n}\right)$. This completes the proof of Theorem 1.2.
5. Proof of theorem 1.3. Applying Theorem 1.1, we only have to show that there exists a constant C such that

$$
\begin{equation*}
\|H(a)\|_{L_{\mu}^{1}} \leq C \quad \text { for all }(1,2) \text {-atom } a . \tag{5.1}
\end{equation*}
$$

By Definition 1.1, there exists a section $S_{0}=S\left(y_{0}, t_{0}\right) \in \mathcal{F}$ such that $\operatorname{supp}(a) \subset S_{0}$. Denote $S_{0}^{*}=S\left(y_{0}, 4 \theta^{2} t_{0}\right)$, where θ is the constant appearing in the property (D) of sections. By the doubling property (1.1) of μ, we have

$$
\begin{equation*}
\mu\left(S_{0}^{*}\right) \leq A^{3+2 \log _{2} \theta} \mu\left(S_{0}\right) \tag{5.2}
\end{equation*}
$$

Thus

$$
\begin{align*}
\int_{\mathbf{R}^{n}}|H(a)(x)| d \mu(x) & =\int_{S_{0}^{*}}|H(a)(x)| d \mu(x)+\int_{\left(S_{0}^{*}\right)^{c}}|H(a)(x)| d \mu(x) \tag{5.3}\\
& :=I_{1}+I_{2} .
\end{align*}
$$

\qquad

By the $\left(L^{2}, L^{2}\right)$-boundedness of the operator H (see [CG3]) and (5.2), we get

$$
\begin{align*}
I_{1} & \leq\left[\mu\left(S_{0}^{*}\right)\right]^{1 / 2}\left(\int_{S_{0}^{*}}|H(a)(x)|^{2} d \mu(x)\right)^{1 / 2} \tag{5.4}\\
& \leq\left(A^{3+2 \log _{2} \theta}\right)^{1 / 2}\left[\mu\left(S_{0}\right)\right]^{1 / 2}\|a\|_{L_{\mu}^{2}} \leq\left(A^{3+2 \log _{2} \theta}\right)^{1 / 2}
\end{align*}
$$

On the other hand, by the cancellation condition of the atom a, we have

$$
\begin{aligned}
I_{2} & =\int_{\left(S_{0}^{*}\right)^{c}}\left|\int_{R^{n}} K(x, y) a(y) d \mu(y)\right| d \mu(x) \\
& =\int_{\left(S_{0}^{*}\right)^{c}}\left|\sum_{i} \int_{\mathbf{R}^{n}} k_{i}(x, y) a(y) d \mu(y)\right| d \mu(x) \\
& =\int_{\left(S_{0}^{*}\right)^{c}}\left|\sum_{i} \int_{\mathbf{R}^{n}}\left[k_{i}(x, y)-k_{i}\left(x, y_{0}\right)\right] a(y) d \mu(y)\right| d \mu(x) \\
& \leq \sum_{i} \int_{\mathbf{R}^{n}}|a(y)| \int_{\left(S_{0}^{*}\right)^{c}}\left|k_{i}(x, y)-k_{i}\left(x, y_{0}\right)\right| d \mu(x) d \mu(y) \\
& =\int_{S_{0}}|a(y)| \sum_{i} \int_{\left(S_{0}^{*}\right)^{c}}\left|k_{i}(x, y)-k_{i}\left(x, y_{0}\right)\right| d \mu(x) d \mu(y) .
\end{aligned}
$$

By the size condition of the atom a, it suffices to prove that there exists a constant C independent of the atom a such that

$$
\begin{equation*}
\sum_{i} \int_{\left(S_{0}^{*}\right)^{c}}\left|k_{i}(x, y)-k_{i}\left(x, y_{0}\right)\right| d \mu(x) \leq C \tag{5.5}
\end{equation*}
$$

Indeed, if (5.5) holds, then

$$
I_{2} \leq C \int_{S_{0}}|a(y)| d \mu(y) \leq C
$$

which combined with (5.4) implies (5.1).
Therefore, in order to prove Theorem 1.3, it remains only to prove (5.5). By the property (G) of sections, we have

$$
\begin{equation*}
\rho\left(y_{0}, y\right)<t_{0} \quad \text { and } \quad \rho\left(y_{0}, x\right) \geq 4 \theta^{2} t_{0} \tag{5.6}
\end{equation*}
$$

if $y \in S_{0}$ and $x \in\left(S_{0}^{*}\right)^{c}$. So, by (5.6), we see that when $y \in S_{0}$ and $x \in\left(S_{0}^{*}\right)^{c}$,

$$
\rho\left(y_{0}, x\right)>4 \theta^{2} \rho\left(y_{0}, y\right) .
$$

Using the conclusion of Lemma 1 in [In], we get (5.5).
Acknowledgment. The authors are grateful to the excellent referee for detailed critical comments and valuable suggestions.

REFERENCES

[AFT] H. Aimar, L. Forzani and R. Toledano, Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge-Ampère equation, J. Fourier Anal. Appl. 4 (1998), 377381.
[C] L. A. CAFFARELLI, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), 189-213.
[CG1] L. A. Caffarelli and C. E. Gutiérrez, Real analysis related to the Monge-Ampère equation, Trans. Amer. Math. Soc. 348 (1996), 1075-1092.
[CG2] L. A. Caffarelli and C. E. Gutiérrezz, Properties of the solutions of the linearized Monge-Ampère equation, Amer. J. Math. 119 (1997), 423-465.
[CG3] L. A. Caffarelli and C. E. Gutiérrez, Singular integrals related to the Monge-Ampère equation, Wavelet Theory and Harmonic Analysis in Applied Sciences (Buenos Aires, 1995), 3-13, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, Mass., 1997.
[CW1] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math. 242, Springer-Verlag, Berlin-New York, 1971.
[CW2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
[In] A. Incognito, Weak-type (1,1) inequality for the Monge-Ampère SIO's, J. Fourier Anal. Appl. 7 (2001), 41-48.

Department of Mathematics
Beijing Normal University
Beijing 100875
P. R. China

E-mail address: dingy@bnu.edu.cn

Department of Mathematics
National Central University
Chung-Li 320
China (TAIWAN)
E-mail address: clin@math.ncu.edu.tw

[^0]: 2000 Mathematics Subject Classification. Primary 42B30; Secondary 35B45.
 Key words and phrases. BMO's, Hardy spaces, Monge-Ampère equation, singular integral operators.
 The first author was supported by NSF of China under Grant \#10271016 and the second author was supported by NSC in Taipei under Grant \#NSC 92-2115-M-008-005.

