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HARDY SPACES, BMO, AND BOUNDARY VALUE PROBLEMS
FOR THE LAPLACIAN ON A SMOOTH DOMAIN IN RN

DER-CHEN CHANG, GALIA DAFNI, AND ELIAS M. STEIN

Abstract. We study two different local Hp spaces, 0 < p ≤ 1, on a smooth
domain in Rn, by means of maximal functions and atomic decomposition. We
prove the regularity in these spaces, as well as in the corresponding dual BMO
spaces, of the Dirichlet and Neumann problems for the Laplacian.

0. Introduction

Let Ω be a bounded domain in Rn, with smooth boundary. The Lp regularity
of elliptic boundary value problems on Ω, for 1 < p < ∞, is a classical result in
the theory of partial differential equations (see e.g. [ADN]). In the situation of the
whole space without boundary, i.e. where Ω is replaced by Rn, the results for Lp,
1 < p < ∞, extend to the Hardy spaces Hp when 0 < p ≤ 1 and to BMO. Thus
it is a natural question to ask whether the Lp regularity of elliptic boundary value
problems on a domain Ω has an Hp and BMO analogue, and what are the Hp and
BMO spaces for which it holds.

This question was previously studied in [CKS], where partial results were ob-
tained and were framed in terms of a pair of spaces, hpr(Ω) and hpz(Ω). These spaces,
variants of those defined in [M] and [JSW], are, roughly speaking, the “largest” and
“smallest” hp spaces that can be associated to a domain Ω.

Our purpose here is to substantially extend the previous results by determining
those hp spaces on Ω which are particularly applicable to boundary value problems.
These spaces allow one to prove sharp results (preservation of the appropriate hp

spaces) for all values of p, 0 < p ≤ 1, as well as the preservation of corresponding
spaces of BMO functions.

0.1. Motivation and statement of results. There are two approaches to defin-
ing the appropriate Hardy spaces on Ω. Recall that the spaces Hp(Rn), for p < 1,
are spaces of distributions. Thus one approach is to look at the problem from the
point of view of distributions on Ω. If we denote by D(Ω) the space of smooth
functions with compact support in Ω, and by D′(Ω) its dual, we can consider the
space of distributions in D′(Ω) which are the restriction to Ω of distributions in
Hp(Rn) (or in hp(Rn), the local Hardy spaces defined in [G].) These spaces were
studied in [M] (for arbitrary open sets) and in [CKS] (for Lipschitz domains), where
they were denoted hpr(Ω) (the r stands for “restriction”.)

While one is able to prove regularity results for the Dirichlet problem for these
spaces when p is near 1 (see [CKS]), these spaces are no longer appropriate when p
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is small, nor for the Neumann problem. This is illustrated for the Dirichlet problem
by the following example. Let x be a point on ∂Ω, and denote by f the distribution
which is the normal derivative of the delta function at x. Such a distribution is in
the local Hardy space hp(Rn) when p < n

n+1 . Furthermore, it is possible to take a
sequence of L2 functions aj (if fact hpr atoms) such that aj → f as distributions.
Since f vanishes on Ω, this means aj → 0 in D′(Ω). Now consider the Dirichlet
problem for the Laplacian on Ω, defined for smooth functions ϕ by

∆u = ϕ on Ω,

u = 0 on ∂Ω.
Let G be Green’s operator for the Dirichlet problem, i.e. u = G(ϕ). By the L2

theory, we can solve this problem for each aj , and since G is self-adjoint, we have,
for every ϕ ∈ D(Ω),

〈G(aj), ϕ〉 = 〈aj ,G(ϕ)〉 → ∂

∂~n
G(ϕ)|x

as j →∞. Note that for the Dirichlet problem, the normal derivative of the solution
need not vanish on the boundary. Thus as distributions in D′(Ω), G(aj) 6→ 0. This
shows that the problem is not well-defined in D′(Ω). In essence, this is because
the space of test functions, D(Ω), is not preserved by the solution of the Dirichlet
problem.

To remedy this situation, and define a space of distributions appropriate to the
Dirichlet problem, we change our space of test functions from D(Ω) to C∞d (Ω),
consisting of functions ϕ ∈ C∞(Ω) with ϕ|∂Ω = 0 (the d stands for Dirichlet). Note
that this space is preserved under the solution to the Dirichlet problem. Thus if we
let C∞d ′(Ω) be the dual space, we can define the solution to the Dirichlet problem
for an element f of C∞d ′(Ω) in the sense of distributions. Moreover, if f happens to
be a function which is smooth up to the boundary, or a function in Lp, this solution
agrees with G(f).

We then define the Hardy spaces hpd(Ω) to consist of those elements of C∞d ′(Ω)
satisfying the expected maximal function conditions; here the maximal functions
are fashioned out of test functions taken from C∞d (Ω). For these spaces we get the
following regularity result:

Result 0.1. The operators ∂2G
∂xj∂xl

, defined in the sense of distributions, are bounded
from hpd(Ω) to hpd(Ω), for all p, 0 < p ≤ 1.

This is proved by means of an atomic decomposition for elements of hpd(Ω),
where atoms supported near the boundary are required to satisfy fewer cancella-
tion conditions than those supported away from the boundary. From this atomic
decomposition it can be seen that hpd(Ω) is the same as hpr(Ω) when n

n+1 < p ≤ 1;
hence the regularity result is an extension to small p of the hpr(Ω) regularity result
in [CKS].

A second approach to defining Hardy spaces on Ω is to consider the closure of
Ω, Ω, and the distributions in hp(Rn) which are supported on Ω. We shall call the
spaces formed by these distributions hpz(Ω), where the z denotes the fact that these
distributions are zero outside Ω. These spaces are the same as those defined in
[JSW] (for certain closed sets). A variant of these spaces, hpz(Ω), formed by taking
a quotient of hpz(Ω) in order to make it a subspace of D′(Ω), was defined in [CKS]
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(for Lipschitz domains). By the same reasoning used in the example above, one
sees that this quotient space is not appropriate for small p because it eliminates all
distributions supported on the boundary.

The spaces hpz(Ω) are useful because elements of hpz(Ω) have an atomic decom-
position into hp atoms supported in Ω. Moreover, they are applicable to both the
Dirichlet and Neumann problems. Using the atomic decomposition, we can define
the operators ∂2G

∂xj∂xl
and ∂2G̃

∂xj∂xl
(where G̃ is the solution operator of the Neumann

problem for the Laplacian) on hpz(Ω), and prove the following regularity result:

Result 0.2. The operators ∂2G
∂xj∂xl

and ∂2G̃
∂xj∂xl

extend to bounded operators from

hpz(Ω) to hpz(Ω), for all 0 < p ≤ 1.

A weaker version of this result, namely the boundedness from hpz(Ω) to hpr(Ω),
is in [CKS]. Note, however, that while the proof given there is valid for atoms, it
does not hold for the quotient space hpz(Ω), since the quotient space norm may be
much smaller than the one given by the atomic decomposition.

Once we have the appropriate definitions and regularity results for the Hp spaces,
when p = 1, we can consider the corresponding dual BMO spaces. In this case, the
dual spaces to h1

d(Ω) and h1
z(Ω) are the spaces bmoz(Ω) and bmor(Ω), defined in

[M], [JSW] and [C]. Using some additional arguments, one can convert the h1
d and

h1
z regularity results to the following:

Result 0.3. The operators ∂2G
∂xj∂xl

are bounded on bmoz(Ω) and on bmor(Ω). Fur-

thermore, the operators ∂2G̃
∂xj∂xl

are bounded on bmor(Ω).

We should remark that while the results in this paper are stated only for the
Laplacian, one can generalize the proofs to any second order elliptic operator, given
that the same kind of estimates hold for the various Green’s operators.

0.2. Organization of the paper. In Section 1, we define the spaces hpd(Ω) and
hpz(Ω). The atomic decompositions for these spaces are given in Section 2. The
proof of the atomic decomposition for hpd(Ω) uses the maximal function definition
and follows the lines of the proof given in [S2] of the atomic decomposition for
Hp(Rn).

In Section 3 we prove the hpd regularity of the Dirichlet problem, and in Section 4
we prove the hpz regularity of the Dirichlet and Neumann problems. Besides the
atomic decompositions, the proofs of both results make use of the Sobolev estimates
for G and G̃, and some Calderón-Zygmund type estimates on the kernels of these
operators and their derivatives.

Section 5 contains a different proof of the regularity results when p = 1, which
gives the atomic decomposition directly from a cancellation property inside the
domain, without using the maximal function. We then use the h1 regularity to prove
the bmo regularity. This requires an additional argument involving commutations
of vector fields with the Green’s operators G and G̃.

In the last section we turn from regularity problems to some more analysis of the
Hardy spaces themselves. The results in Section 6 illustrate the various relations
among the spaces hpd(Ω), hpz(Ω), and the spaces hpr(Ω) and hpz(Ω) defined in [CKS].
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1. Definition of spaces

Let Ω be a bounded domain in Rn with smooth boundary. In this section we
will define two Hardy spaces on Ω.

We first recall the definition of the local Hardy spaces hp(Rn), introduced by
Goldberg (see [G]). One can define these spaces by means of a “grand” maximal
function. We call a smooth function φ on Rn a normalized bump function if it is
supported in a ball B of radius R, and

|∂αφ| ≤ R−n−|α|

for all |α| ≤ Np + 1. Here Np = [n(1/p− 1)], the greatest non-negative integer in
n(1/p− 1).

Definition 1.1. For f ∈ S′(Rn), define the local grand maximal function m(f) at
a point x ∈ Rn by

m(f)(x) = sup |〈f, ϕ〉|,
where the supremum is taken over all normalized bump functions supported in balls
of radii R ≤ 1 containing x.

For 0 < p < ∞, the space hp(Rn) is defined as the space of tempered distribu-
tions f ∈ S ′(Rn) for which m(f) ∈ Lp(Rn), with

‖f‖hp(Rn)
def= ‖m(f)‖Lp(Rn).

We now restrict ourselves to p ≤ 1, and consider a subspace of hp(Rn) specific
to Ω.

Definition 1.2. For 0 < p ≤ 1, the space hpz(Ω) is defined to be the subspace of
hp(Rn) consisting of those elements which are supported on Ω, i.e.

hpz(Ω) = {f ∈ hp(Rn) : f = 0 on Rn \ Ω},
with

‖f‖hp
z(Ω)

def= ‖f‖hp(Rn).

Remarks. 1. This is a special case of the space hp(F ) considered in [JSW] for a
closed “d-set” F satisfying the Markov property (here F = Ω, d = n and µ is
just the restriction of Lebesgue measure to Ω).

2. For p < 1, this is not the same as the space hpz(Ω) introduced in [CKS], since
that space is the quotient space

hpz(Ω) = hpz(Ω)/{f ∈ hpz(Ω) : f = 0 on Ω},
consisting of those distributions on Ω which have extensions to elements of
hpz(Ω). See Section 6 for more discussion of this space.

3. Following the maximal function definition of hp(Rn), one can also define
hpz(Ω) by means of a grand maximal function (see [JSW], for example). In
that case, the space of test functions is C∞(Ω), i.e. smooth functions up to the
boundary, and the elements of hpz(Ω) can be considered as linear functionals
on that space.

For the second space, hpd(Ω), we want to restrict our space of test functions to
those smooth functions on Ω which vanish on ∂Ω. Denoting this space by C∞d (Ω),
we have

C∞d (Ω) = {ϕ ∈ C∞(Ω) : ϕ|∂Ω = 0}.
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We take the topology of C∞d (Ω) to be that inherited from C∞(Ω), and let C∞d ′(Ω)
denote the dual space.

We call a function ϕ ∈ C∞d a normalized C∞d bump function if it is the restriction
to Ω of a normalized bump function φ on Rn, with φ|∂Ω = 0.

Definition 1.3. For f ∈ C∞d ′(Ω), define the maximal function md(f) at a point x
in Ω by

md(f)(x) = sup |〈f, ϕ〉|,
where the supremum is taken over all normalized C∞d bump functions supported in
balls of radii R ≤ 1 containing x.

For 0 < p ≤ 1, set

hpd(Ω) = {f ∈ C∞d ′(Ω) : md(f) ∈ Lp(Ω)},
and for f ∈ hpd(Ω),

‖f‖hp
d(Ω)

def= ‖md(f)‖Lp(Ω).

Remarks. 1. In the definition of the maximal function md, we could have taken
the supremum over all normalized C∞d bump functions supported in balls
of radii R ≤ δ, for some fixed δ > 0. This new maximal function, mδ

d , is
equivalent to md in the sense that they define the same space hpd, although
the norms differ by a constant depending on δ.

2. Convergence in the “hpd(Ω)-norm” implies convergence in C∞d ′(Ω). To see this,
it suffices to show that for f ∈ hpd(Ω) and ϕ ∈ C∞d (Ω),

|〈f, ϕ〉| ≤ Cϕ‖f‖hp
d(Ω),

where the constant may depend on ϕ but not on f .

2. Atomic decomposition

We want to have a characterization of our spaces by means of atomic decompo-
sition. We begin by giving a variant of the definition of atoms for the local Hardy
spaces hp(Rn).

Notation. In what follows, the word “cube” shall mean a cube with sides parallel
to the axes, and if A is a constant, AQ shall denote the dilated cube, meaning the
cube with the same center as Q with sidelength multiplied by A.

Definition 2.1. Let 0 < p ≤ 1, Np = [n(1/p− 1)], and νp = (Np + 1)/n+ 1− 1/p.
A function a will be called an hp(Rn) atom if it is supported in a cube Q ⊂ Rn

and satisfies the size condition

‖a‖∞ ≤ |Q|−1/p,(2.1)

and, when |Q| < 1, the approximate moment conditions∣∣∣∣∫ a(x)(x − xQ)αdx
∣∣∣∣ ≤ |Q|νp(2.2)

for all multi-indices α with |α| ≤ Np. Here xQ is the center of the cube Q.

Remarks. 1. Atoms supported in cubes Q with |Q| < 1 and satisfying zero mo-
ment conditions up to order Np (i.e. hp atoms as defined in [G]) satisfy
conditions 2.2 trivially for |α| ≤ Np. Conversely, as shown in [D], an atom a
which satisfies conditions 2.2 for any ν > 0 (not necessarily νp) is in hp(Rn)
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with ‖a‖hp ≤ Cν . Thus a distribution f ∈ S′(Rn) is in hp(Rn) if for some
ν > 0 it can be decomposed as

∑
λjaj , where

∑ |λj |p < ∞ and the aj are
atoms satisfying conditions 2.2 for that ν. This shows that the atomic spaces
corresponding to different choices of ν in conditions 2.2 are in fact all equiva-
lent to hp(Rn), except for the dependence of the norm on ν. As will be seen
below, it is most convenient to take ν = νp = (Np + 1)/n− 1/p+ 1.

2. Due to the choice of νp, the size condition for an hp(Rn) atom a automatically
gives conditions 2.2 for moments of order |α| = Np + 1, since∣∣∣∣∫ a(x)(x − xQ)αdx

∣∣∣∣ ≤ (diam(Q))Np+1|Q|−1/p+1 = Cn,p|Q|νp .

By expanding any ψ ∈ C∞ in a Taylor expansion of order Np around xQ, we
can use conditions 2.2 to get∣∣∣∣∫ a(x)ψ(x)dx

∣∣∣∣ ≤ Cn,p‖ψ‖CNp+1(Q)|Q|νp ,

where

‖ψ‖CN(Q) =
∑
|α|≤N

sup
x∈Q

1
|α|!

∣∣∣ψ(α)(x)
∣∣∣ .

Requiring this for all ψ ∈ C∞ is in fact equivalent to the moment condi-
tions 2.2.

3. Remark 2 show that the conditions imposed on an atom a are invariant under
a smooth change of coordinates, in the following sense: if we make a smooth
change of variables y = Φ(x), set ã(y) = a(Φ−1(y)), and let Q̃ be the smallest
cube containing Φ(Q), we have

‖ã‖∞ ≤ CΦ|Q̃|−1/p

and ∣∣∣∣∫ ã(y)(y − yQ̃)αdy
∣∣∣∣ ≤ CΦ|Q̃|νp ,

where the constant CΦ depends on Φ and its derivatives up to order Np + 1.
This follows from Remark 2 by letting ψ(x) = (Φ(x)− yQ̃)α|JΦ(x)|.

We now define some atoms specific to the domain Ω. First:

Definition 2.2. An hpz atom is an hp(Rn) atom supported in a cube Q ⊂ Ω.

Next, we turn to hpd atoms and define two types of atoms, depending on the
position of their supporting cubes with respect to the domain. This definition uses
some constants arising from the geometry of the domain.

Definition 2.3. Let AΩ, BΩ, and CΩ be constants, with AΩ > 1, BΩ > 0, and
CΩ > 0.

A cube will be called a type (a) cube if the dilated cube AΩQ is contained in Ω.
A function a will be called a type (a) hpd atom if it is an hp(Rn) atom supported

in a type (a) cube, with the modification that it need only satisfy the approximate
moment conditions 2.2 when |Q| < CΩ.

A cube will be called a type (b) cube if

AΩQ ∩ ∂Ω 6= ∅,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARDY SPACES, BMO, AND BOUNDARY VALUE PROBLEMS 1611

but
|Q ∩ Ω| > BΩ|Q|.

A function a will be called a type (b) hpd atom if it is supported in a type (b)
cube, satisfies the size condition 2.1, and, when |Q| < CΩ, the approximate moment
conditions ∣∣∣∣∫ a(x)ψ(x)dx

∣∣∣∣ ≤ ‖ψ‖CNp+1(Q)|Q|νp ,(2.3)

for all ψ ∈ C∞d (Ω).

Remarks. 1. The conditions on a type (a) cube guarantee that the cube is “far
away” from the boundary, relative to its size. Thus type (a) hpd atoms will
be invariant under diffeomorphisms of Ω, in the sense of the remarks above,
with the possible change of the constants AΩ and CΩ.

If in addition the diffeomorphism can be extended to a neighborhood of
Ω, then type (b) hpd atoms will also be invariant, again up to a change of
constants.

2. The conditions on a type (b) cube guarantee that the cube is “near” the
boundary relative to its size, and that a significant portion of the cube is
inside the domain. We do not require that the cube be completely included
in the domain because we want to allow type (b) hpd atoms to be supported up
to the boundary; hence their supporting cubes cannot be inside the domain
unless the boundary is flat and parallel to the axes. We will see, however,
that we can assume this locally under an appropriate change of variables.

3. Using the constants BΩ and CΩ, one may define a modified version of hpz
atoms. We will call a function a a modified hpz atom if it is supported in a
cube Q with |Q∩Ω| > BΩ|Q|, satisfies the size condition 2.1, and satisfies the
approximate moment conditions 2.2 when |Q| < CΩ. In fact, this is exactly
a type (a) or a type (b) hpd atom with full moment conditions. Unlike the
standard hpz atoms, these atoms are invariant under a diffeomorphism of Ω,
up to a change of constants.

Note that the atoms we have defined indeed belong to the appropriate spaces,
with uniformly bounded norms. This is obviously true for hpz atoms (including the
modified version), since they are in hp(Rn) with bounded norm, and vanish outside
Ω.

For hpd atoms, we have the following

Lemma 2.4. If a is an hpd atom (of either type), then a ∈ hpd(Ω) and

‖a‖hp
d(Ω) = ‖md(a)‖Lp(Ω) ≤ Cp,

where Cp is independent of a.

The proof follows the standard arguments and so is omitted.
We now recall the atomic decomposition in hpz(Ω).

Theorem 2.5 ([JSW], [CKS]). Let Ω be a bounded domain in Rn, with C∞ bound-
ary, and 0 < p ≤ 1. A distribution f ∈ S ′(Rn) is in hpz(Ω) if and only if it has a
decomposition

f =
∑

λlal
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in S′(Rn), where the al are hpz atoms and the λl are complex numbers satisfying∑
|λl|p <∞.

Furthermore,
‖f‖p

hp
z
≈ inf

(∑
|λl|p

)
,

where the infimum is taken over all such decompositions, and the constants of pro-
portionality are independent of f .

Remarks. 1. Jonsson, Sjögren, and Wallin (see [JSW], Theorems 3.1 and 3.2)
prove this decomposition in the case of a closed “d-set” F in Rn satisfying
the Markov property (see Remark 1 following Definition 1.2). In their proof,
the hpz atoms are actually the modified hpz atoms (see Remark 3 above), i.e.
they are supported in F , and their supports are contained in balls with centers
in F , but the balls need not be contained in F .

2. In ([CKS], Theorem 3.2), this decomposition is stated for a bounded Lipschitz
domain Ω, not for the space hpz(Ω), but for the quotient space hpz(Ω), without
the bounds on the norms. However, the proof (via the square function) only
assumes that f ∈ hp(Rn) and f is supported in Ω, so it in fact holds for
f ∈ hpz(Ω), and in that case one gets the bounds on the norms by noting
that the hpz(Ω) norm of f is the same as its hp(Rn) norm, which bounds
the Lp norm of the square function, and which in turn bounds (

∑ |λl|p)1/p.
Moreover, by a slight modification of their argument it can be shown that all
the atoms may be taken to be of type (a), i.e. with support Q such that AΩQ
is still in Ω. It should be added that at the time the paper [CKS] was written,
the authors were unfortunately unaware of the earlier work of [JSW].

We are now ready to state the main result of this section.

Theorem 2.6. Let Ω be a bounded domain in Rn, with C∞ boundary. Then there
are constants AΩ, BΩ, and CΩ (as in Definition 2.3) such that the following holds:

A distribution f ∈ C∞d ′(Ω) is in hpd(Ω) if and only if it has a decomposition

f =
∑

λlal +
∑

µmam

in C∞d ′, where the first sum is taken over type (a) hpd atoms, the second sum is taken
over type (b) hpd atoms, and λl, µm are complex numbers satisfying∑

|λl|p +
∑

|µm|p <∞.

Furthermore,
‖f‖p

hp
d
≈ inf

(∑
|λl|p +

∑
|µm|p

)
,

where the infimum is taken over all such decompositions, and the constants of pro-
portionality are independent of f .

Proof. The easy part of the proof is the “if” part, that is, assuming f has such a
decomposition in C∞d ′(Ω). For then, if the sum is finite,

〈f, ϕ〉 =
∑

λl〈al, ϕ〉+
∑

µm〈am, ϕ〉
for all normalized C∞d bump functions ϕ, and so

md(f)(x) ≤
∑

|λl|md(al)(x) +
∑

|µm|md(am)(x);
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hence

‖md(f)‖pLp(Ω) ≤
∑

|λl|p‖md(al)‖pLp(Ω) +
∑

|µm|p‖md(am)‖pLp(Ω)

≤ Cpν

(∑
|λl|p +

∑
|µm|p

)
by the lemma. This gives the convergence of the sum in the hpd norm, and so
f ∈ hpd(Ω).

As for the “only if” part, let us first state the result for a special case. We will
then use this to prove the general case.

Lemma 2.7. Let D be a smoothly bounded domain contained in the upper half-
space Rn

+ and containing the open upper half-ball B+(0, 10) = B(0, 10)∩Rn
+. Sup-

pose f ∈ hpd(D) and f is supported in B(0, 1). Then f has a decomposition

f =
∑

λiai

in C∞d ′(D). Here the λi are complex numbers satisfying

C1‖f‖php
d(D)

≤
∑

|λi|p ≤ C2‖f‖php
d(D)

for some constants C1 and C2 depending only on p, and the ai are as follows.
Each ai is a function supported in a cube Qi which is contained in the half-open

upper half-ball B(0, 3) ∩Rn
+, and

‖ai‖∞ ≤ ‖Qi‖−1/p.

Furthermore, there exists a constant Cn (depending only on the dimension) such
that when |Qi| < Cn, ai satisfies the following cancellation conditions. If 2Qi ⊂
Rn

+, then ∫
Qi

ai(x)xαdx = 0

for all monomials xα of degree |α| ≤ Np. If 2Qi ∩ ∂Rn
+ 6= ∅, then∫

Qi

ai(x)xαdx = 0

for all monomials xα of degree |α| ≤ Np with αn ≥ 1.

Assuming the lemma, we continue with the proof of Theorem 2.6.
We take a partition of unity for Ω as follows. Let ηj , j = 0, . . . , k, be C∞

functions,
∑
ηj = 1 on Ω. For j = 0, η0 has compact support in Ω. For 1 ≤ j ≤ k,

ηj has compact support inside an open set Uj with Uj ∩∂Ω 6= ∅. Furthermore, each
Uj is contained in a larger open set Vj such that there is a C∞ diffeomorphism Φj
between Vj and the ball B(0, 10) which maps Vj∩Ω onto B+(0, 10) = B(0, 10)∩Rn

+,
Vj ∩ ∂Ω into ∂Rn

+, and Uj into B(0, 1).
Write f =

∑
(ηjf). Consider first j = 0. Set

δ =
1
2

dist(supp(η0), ∂Ω),

and let mδ be the local grand maximal function defined as in Definition 1.1 but
with bump functions supported in balls of diameter bounded by δ. Notice that
η0f ∈ S ′, and

mδ(η0f)(x) = 0
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for x 6∈ Ω. For x ∈ Ω,
mδ(η0f)(x) ≤ C0md(f)(x),

where the constant C0 only depends on the derivatives of η0 up to order Np + 1.
Thus

‖mδ(η0f)‖Lp(Rn) ≤ C0‖md(f)‖Lp(Ω) <∞,

so η0f ∈ hp(Rn).
Since the support of mδ(η0f) lies inside Ω, and at least distance δ from the

boundary, we can get an atomic decomposition

η0f =
∑

λiai,

where ai are hp(Rn) atoms supported in cubes Qi ⊂ Ω with dist(Qi, ∂Ω) ≥ δ for
all i. If 2Qi ⊂ Ω, then ai is a type (a) hpd atom. If 2Qi ∩ ∂Ω 6= ∅, then ai is a
type (b) hpd atom because ai satisfies the size condition and, when |Q| < 1, the full
moment conditions ai satisfies as an hp(Rn) atom imply∣∣∣∣∫ ai(x)ϕ(x)dx

∣∣∣∣ ≤ ‖ϕ‖CNp+1(Q)|Qj|νp

for all ϕ ∈ C∞ (see Remark 2 following Definition 2.1,) hence for all ϕ ∈ C∞d (Ω).
Now fix j, 1 ≤ j ≤ k, and write η for ηj , U for Uj, V = Vj , and Φ = Φj . Let

τ = η ◦ Φ−1. Then τ is a C∞ function supported in B(0, 1). Note that if ϕ is a
C∞ function supported in B+(0, 10) and ϕ|∂Rn

+
= 0, then ϕ ◦Φ ∈ C∞d (Ω). Define g

acting on such ϕ by

〈g, ϕ〉 = 〈ηf, ϕ ◦ Φ〉 = 〈f, (τϕ) ◦ Φ〉.
If ϕ is supported outside B(0, 1), this gives 0. Thus we can extend g to act on any
ϕ ∈ C∞d (D) by setting it to be zero on D \B(0, 1). The continuity of f implies that
of g, so g ∈ C∞d ′(D) and g is supported in B(0, 1).

In order to use the lemma, we want to show g ∈ hpd(D). So suppose x ∈ B(0, 10)
and ϕxt is the restriction to Rn

+ of a normalized C∞ bump function, supported in a
ball radius t ≤ 1 containing x, and vanishing on ∂Rn

+. Then ψ = (τϕxt )◦Φ ∈ C∞d (Ω)
and is supported in a ball of radius δ containing Φ−1(x), where δ depends only on
Φ. We can write ψ as a constant multiple of a normalized C∞d bump function
supported in a ball of radius δ, the constant depending only on η and Φ. Thus

|〈g, ϕxt 〉| = |〈f, ψ〉| ≤ Cmδ
d(f)(Φ−1(x)),

so by Remark 1 following Definition 1.3,

‖md(g)‖Lp(D) ≤ C‖md(f)‖Lp(Ω),

and g ∈ hpd(D).
Thus g satisfies the hypotheses of Lemma 2.7, and we get a decomposition

g =
∑

λiai.

Let ãi = ai ◦ Φ, and let Q̃i be the smallest cube containing Φ−1(Qi), where Qi is
the cube in which ai is supported. We want to show that the ãi are multiples of
either type (a) or type (b) atoms.

Since the ai satisfy the size condition, we get that

‖ãi‖∞ = ‖ai‖∞ ≤ |Qi|−1/p ≤ CΦ,Ω|Q̃i|−1/p.
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Since the Qi are all contained in B+(0, 3), the constant CΦ,Ω only depends on the
bounds on the derivatives of Φ in a compact set, as well as on the geometry of Ω
(and of course p and n). Thus we can divide all the ãi by this constant, and they
will satisfy the size condition.

To check the cancellation conditions, we must specify the constants used in
Definition 2.3. We will do this first just for the map Φ = Φj . There exists a
constant AΦ > 1 (depending only on the maximum and minimum of the derivatives
of Φ on a compact set) such that for any cube Q ⊂ B+(0, 3), if Q̃ is the smallest
cube containing Φ−1(Q), and if AΦQ̃ ⊂ Ω, then 2Q ⊂ Rn

+. Furthermore, there
exists a constant BΦ > 0, again depending only on Φ and the geometry of Ω,
such that if Q is a cube in B+(0, 3), and 2Q ∩ Rn

+ 6= 0, then the smallest cube
Q̃ containing Φ−1(Q) satisfies |Q̃ ∩ Ω| ≥ BΦ|Q̃|. Finally, there exists a constant
CΦ > 0 (in fact a constant multiple of the minimum for the Jacobian determinant
|JΦ| on Φ−1(B+(0, 3)) ) such that if Q and Q̃ are as above, and |Q̃| < CΦ, then
|Q| < Cn (with Cn as in Lemma 2.7).

Now note that since there are only finitely many Φj , we can choose these con-
stants uniformly. (Here we also take into account the implicit choices made for
j = 0, namely AΦ = 2, BΦ = 1 and CΦ = 1.) Thus we will replace AΦ, BΦ and
CΦ by AΩ, BΩ and CΩ, respectively. We are now ready to prove the cancellation
conditions.

First suppose AΩQ̃i ⊂ Ω. Since all the cubes Qi ⊂ B+(0, 3), we have, by the
choice of AΩ, that 2Qi ⊂ Rn

+. In that case ai in an hp(Rn) atom, so if in addition
|Q̃i| < CΩ, then |Qi| < Cn, and ∫

Qi

ai(y)yαdy = 0

whenever |α| ≤ Np. From Remarks 1 and 3 following Definition 2.1, we get∣∣∣∣∫
Q̃i

ãi(x)(x − x
Q̃i

)αdx
∣∣∣∣ ≤ C|Q̃i|νp ,

where x
Q̃i

is the center of Q̃i and the constant C depends on Φ and the geometry
of Ω, but is independent of ãi. Dividing ãi by C, we get that ãi is a type (a) atom.

Next, suppose AΩQ̃i ∩ ∂Ω 6= ∅. Then we have by the choice of BΩ that

|Q̃i ∩ Ω| ≥ BΩ|Q̃i|.
So we want to show that ãi satisfies the cancellation conditions for a type (b) hpd
atom. Let ψ ∈ C∞d (Ω). By using a cut-off function, we may assume supp(ψ) ⊂ V .
Define a function ϕ on B(0, 10) ∩Rn

+ by

ϕ(y) = ψ
(
Φ−1(y)

) |J−1
Φ (y)|.

Then by a change of variables y = Φ(x), we have∫
Q̃i

ãi(x)ψ(x)dx =
∫
Qi

ai(y)ϕ(y)dy.

Let y∗ be the projection of the center of Qi onto ∂Rn
+. Since ψ = 0 on ∂Ω, we have

that ϕ = 0 on ∂Rn
+, so all the tangential derivatives of ϕ at y∗ vanish. Thus the
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Taylor expansion of ϕ around y∗ is

ϕ(y) =
∑

|α|≤Np,αn≥1

(∂αϕ) (y∗)(y − y∗)α +RNp+1(ϕ, y, y∗).

Plugging this into the integral, we can use the moment conditions on ai (noting
that (y − y∗)α contains a factor of yn of order αn ≥ 1) to get∣∣∣∣∫
Qi

ai(y)ϕ(y)dy
∣∣∣∣ =

∣∣∣∣∫
Qi

ai(y)RNp+1(ϕ, y, y∗)dy
∣∣∣∣

≤
∑

|α|=Np+1

1
(Np + 1)!

sup
y∈Qi

|∂α(ϕ(y))|
∫
|ai(y)||y − y∗|(Np+1)dy

≤ ‖ϕ‖CNp+1(Qi)
|Qi|1−1/p diam(Qi)(Np+1)

≤ C‖ψ‖CNp+1(Q̃i)
|Q̃i|νp ,

where the constant C depends on Φ, the cutoff function, and the geometry of Ω,
but is independent of ãi. Again, we can divide ãi by the constant to get a type (b)
hpd atom.

We have thus shown that in C∞d ′(Ω),

ηf = g ◦ Φ =
∑

λiai ◦ Φ =
∑

λiãi =
∑

(Cλi)(ãi/C),

where ãi/C are either type (a) hpd atoms or type (b) hpd atoms. Furthermore,∑
|Cλi|p ≤ C′‖g‖p

hp
d(D)

≤ C′′‖f‖p
hp

d(Ω)
.

Getting back to the global picture, we have, in C∞d ′(Ω),

f =
k∑
j=0

ηjf =
k∑
j=0

∑
i

λjia
j
i ,

which is an atomic decomposition that satisfies the conditions of the theorem.

In order to prove Lemma 2.7, we will follow the proof in [S2], Chapter III, Section
2, (which is itself adapted from several earlier arguments going back to the work of
Latter and others). We begin with the following proposition.

Proposition 2.8. Let D be as in Lemma 2.7. Suppose that f ∈ C∞d ′(D), md(f) ∈
Lp(D), and f is supported in B(0, 1). Then for γ ≥ 0, there is a decomposition
f = g + b, b =

∑
bk, and a collection of cubes {Q∗k}, so that

1. the {Q∗k} are contained in B(0, 3) ∩Rn
+, have the bounded intersection prop-

erty, and

interior

(⋃
k

Q∗k

)
= {x ∈ D : md(f)(x) > γ};

2. each bk ∈ C∞d ′(D) is supported in Q∗k and satisfies∫
D

md(bk)pdx ≤ c

∫
Q∗k

md(f)pdx;
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3. if Q∗k is such that 2Q∗k ⊂ Rn
+, and |Q∗k| < Cn (with Cn as in Lemma 2.7),

then bk satisfies
〈bk, q〉 = 0

for all polynomials q of degree up to Np; otherwise, if 2Q∗k ∩ ∂Rn
+ 6= ∅, and

|Q∗k| < Cn, then bk satisfies

〈bk, q〉 = 0

for all polynomials of degree up to Np which are divisible by xn;
4. g ∈ C∞d ′(D) and

md(g) ≤ Cmd(f)(x)χF + Cγ
∑
k

l
n+Np+1
k

(lk + |x− xk|)n+Np+1
,

where F is the closure of the set {x ∈ D : md(f)(x) ≤ γ}, and lk and xk are
the side-length and center of Q∗k.

Proof. Let us outline the modifications needed for the proof in [S2], Chapter III,
Section 2.2, to apply in this situation.

Let F be the closure of the set {x ∈ D : md(f)(x) ≤ γ} in Rn. Note that
since f is supported in B(0, 1), and the maximal function md is defined using bump
functions supported in balls of radii not greater than 1, we must have that md(f)
is supported in B(0, 3), and hence (D \ F ) ⊂ B(0, 3) ∩Rn

+.
Consider the dyadic Whitney decomposition for Rn\F (see [S1], Ch. VI, Section

1.1). From this decomposition, we take only those cubes lying in D. This is possible
since any cube in the dyadic decomposition lies on one side or the other of ∂Rn

+, and
furthermore ∂D ⊂ F ∪ ∂Rn

+, so any cube in the decomposition lies either entirely
in D or entirely outside of it.

Thus we can get closed cubes Qk ⊂ B(0, 3) ∩Rn
+ whose interiors are mutually

disjoint, with
diam(Qk) ≤ dist(Qk, F ) ≤ 4 diam(Qk)

and ⋃
k

Qk = D \ F ⊂ B(0, 3) ∩Rn
+.

Let Q̃k = 3
2Qk ∩Rn

+ and Q∗k = 2Qk ∩Rn
+. While Q∗k may no longer be a cube

(in case dist(Q, ∂Rn
+) is smaller than half the sidelength of Q), we can enlarge it

in the xn direction (by no more than half the sidelength of Q) to make it a cube.
Even if that is the case, we still have that, for all y ∈ Q∗k,

dist(y,Qk) ≤
√
n+ 3
2
√
n

diam(Qk) < diam(Qk)

(since n > 1), so as we assumed that dist(Qk, F ) ≥ diam(Qk), we have

dist(Q∗k, F ) > 0.

Combined with the fact that Q∗k ⊂ Rn
+, and recalling that ∂D ⊂ F ∪ ∂Rn

+, this
implies

Q∗k ⊂ D \ F ⊂ B(0, 3) ∩Rn
+.

As we already have
⋃
Qk = D \ F , we get that⋃

k

Q∗k = D \ F
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and hence

interior

(⋃
k

Q∗k

)
= {x ∈ D : md(f)(x) > γ}.

In constructing the partition of unity {ηk} for D\F , we first follow the construc-
tion in [S2], namely we take a partition of unity subordinate to the cubes 3

2Qk, but
then we restrict the functions to Rn

+. Thus ηk will be smooth when Q̃k ⊂ Rn
+, and

otherwise ηk will be the restriction of a smooth function to Rn
+.

We set
bk = (f − ck)ηk,

where the polynomial ck is picked as follows.
Let Cn = (3

√
n)−n. If |Q∗k| ≥ Cn, we let ck = 0.

If |Q∗k| < Cn and Q∗k is a type (a) cube, namely 2Q∗k ⊂ Rn
+, then ck is the unique

polynomial for which

〈f, qηk〉 =
∫
ckqηkdx

for all polynomials q of degree ≤ Np. Note that we can write

ck(x) = 〈f, P (x, ·)ηk〉,
where P (x, y) is the kernel of the projection operator from the L2 space with weight
function ηk onto its subspace Hk,Np consisting of polynomials of degree ≤ Np.

If |Q∗k| < Cn and Q∗k is a type (b) cube, i.e. 2Q∗k ∩Rn
+ 6= ∅, pick ck to be the

unique polynomial for which

〈f, xαηk〉 =
∫
ckx

αηkdx

for all monomials of degree |α| ≤ Np with αn ≥ 1.
We claim that

|ckηk| ≤ cγ

and
|ckηk| ≤ cmd(f)(x)

for any x in Q∗k. This is obvious when |Q∗k| ≥ Cn, so assume below that |Q∗k| < Cn.
For a type (a) cube, this follows from the proof as in [S2].
For type (b) cubes, we can modify the proof by considering instead of P (x, y)

the kernel P̃ (x, y) of the projection onto the subspace of Hk,Np consisting of all
polynomials divisible by xn. This kernel must vanish for y ∈ ∂Rn

+, so P̃ (x, y)ηk(y)
will also be a normalized C∞d bump function in y, and the same argument as above
shows that it lies in a ball of radius ≤ 1 containing a point of F .

Since f belongs to C∞d ′(D), so does bk, and it is supported in Q∗k. It remains to
show that ∫

D

md(bk)pdx ≤ c

∫
Q∗k

md(f)pdx.

We restrict ourselves to “small” cubes, where the main difficulty lies. One notes
first that

md(fηk)(x) = sup
ϕx

t ,t≤1
| 〈f, ηkϕxt 〉 | ≤ Cηk

md(f)(x),

and since we already have |ckηk| ≤ Cmd(f)(x), we get

md(bk)(x) ≤ Cmd(f)(x)
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for any x in Q∗k. Integrating, we get∫
Q∗k

md(bk)pdx ≤ C

∫
Q∗k

md(f)pdx.

Looking at D \Q∗k and the case when |Q∗k| < Cn, we can write

〈bk, ϕxt 〉 = 〈bk, ϕxt − q〉 = 〈f, ηk(ϕxt − q)〉.
Here

q(y) =
∑

|α|≤Np

∂αϕ(xk)(y − xk)α,

where xk is the center of Q∗k if Q∗k is a type (a) cube, and the projection of the
center of Q∗k onto ∂Rn

+ if Q∗k is a type (b) cube. Note that in the latter case,
∂αϕxt (xk) = 0 if αn = 0, since ϕxt vanishes identically on ∂Rn

+. Thus the only
non-zero terms in the sum above involve positive powers of yn, against which the
integral of bk vanishes.

In both cases, we still have |x− y| ' |x− xk| when x 6∈ Q∗k and y ∈ Q̃k, and the
radius t of the support of ϕxt still satisfies t ≥ c|x − xk|. Furthermore, ηk(ϕxt − q)
is supported in Q̃k, which (since |Q∗k| < Cn) is contained in a ball of radius ≤ 1
containing a point of F (see above). Thus the rest of the estimates in [S2] go
through unchanged, and we get

md(bk)(x) ≤ cγ
diam(Qk)n+Np+1

|x− xk|n+Np+1
,(2.4)

if x 6∈ Q∗k. Integrating, and using the definition of Np, we have that∫
D\Q∗k

md(bk)pdx ≤ cγp|Q∗k| ≤ c

∫
Q∗k

md(f)pdx.

This proves part 2 of the proposition. We now let b =
∑
bk, g = f − b. Then

g ∈ C∞d ′(Rn
+), so it remains to prove the estimate in part 4 of the proposition. But

this is just a straightforward adaptation of the argument on pp. 111-112 of [S2],
using the maximal function md instead of M0, and incorporating the modifications
on pp. 104-105 for small values of p. Note that in this argument we can ignore the
cubes Qk with |Q∗k| ≥ Cn, because for those we have that g = 0 in Qk.

This completes the proof of the proposition.

Proof of Lemma 2.7. Again we will follow the proof in [S2], pp. 107-112. There are
a few changes that need to be noted.

First we want to assume that f is locally integrable. This is justified by the fact
that hpd(D)∩L1(D) is dense in hpd(D). To see this it suffices to know that for every
γ > 0, the distribution g in the proposition is in fact in L1(D), since letting γ →∞
we have that ‖f − g‖hp

d
= ‖b‖hp

d
→ 0. Using part 4 of the proposition, we can show

(see p. 112 of [S2]) that md(g) ∈ L1(Rn
+). Now for every x ∈ Rn

+,

md(g)(x) ≥ sup〈g, ϕ〉
where this time the supremum is taken over all smooth normalized bump functions
ϕ with compact support inside D. But then g ∈ L1.

Second, convergence is now in the “hpd(D)-norm”, i.e. controlled by ‖md(·)‖pLp(D).
As discussed in the remarks following Definition 1.3, this implies convergence in
C∞d ′(D).
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Third, when defining the polynomials ck,l, one needs to distinguish between the
different kinds of cubes. If any of the cubes involved have volume ≥ Cn, we set the
corresponding projection to be zero. Otherwise, if Qj+1∗

l is a type (a) cube and
|Qj+1∗

l | < Cn, the projection P j+1
l remains as it is in the proof in [S2], i.e. the

projection onto the whole space of polynomials Hl,Np . However, if Qj+1∗
l is a type

(b) cube (with |Qj+1∗
l | < Cn), we need to replace P j+1

l by P̃ j+1
l , the projection

onto the subspace of Hl,Np consisting of polynomials divisible by xn.
This guarantees that if Qj∗k and all of the cubes Qj+1∗

l intersecting Qjk are type
(a) cubes of volume < Cn, the atom Ajk will have the full moment conditions. On
the other hand, if all the cubes are of volume < Cn but either Qjk or any of the Qj+1

l

intersecting it are type (b) cubes, the atom Ajk will only have the partial moment
conditions corresponding to monomials xα with αn ≥ 1. It remains to show that
in this case Ajk will be supported in a type (b) cube.

As in the proof in [S2], we know that Ajk is supported in a fixed dilate cQjk of
the cube Qj∗k . (Actually, the proof in [S2] uses a ball Bjk, but a cube will do just
as well.) Certainly if Qj∗k is a type (b) cube, so is cQjk (here c ≥ 1, of course).
Similarly, if one of the Qj+1∗

l is a type (b) cube, i.e. 2Qj+1∗
l ∩ ∂Rn

+ 6= ∅, then since
Qj+1∗
l ⊂ cQjk implies 2Qj+1∗

l ⊂ 2cQjk, so is cQjk.
Finally, if Qj∗k or one of the cubes Qj+1

l intersecting it have volume ≥ Cn, then
certainly |cQjk| ≥ Cn, and so Ajk need not have any moment conditions.

The rest of the details are the same as in [S2], and this concludes the proof of
the lemma.

3. The hpd regularity of the Dirichlet problem

We now want to study regularity for the Dirichlet problem in the context of the
spaces hpd(Ω). We begin by looking at the problem in the sense of distributions in
C∞d ′(Ω).

Let Ω ⊂ Rn be a bounded domain with smooth boundary, as above, and let
G be the Green’s operator for the Dirichlet problem on Ω, i.e. when ϕ ∈ C∞(Ω),
u = G(ϕ) is the solution of the Dirichlet problem

∆u = ϕ on Ω,

u = 0 on ∂Ω.
By the classical theory, we know that for ϕ ∈ C∞(Ω) we have G(ϕ) ∈ C∞(Ω),

hence G(ϕ) ∈ C∞d (Ω). Moreover, we can consider, for 1 ≤ j, l ≤ n, the func-

tions ∂2ϕ
∂xj∂xl

. These are also in C∞(Ω), and hence G
(

∂2ϕ
∂xj∂xl

)
will be in C∞d (Ω).

Furthermore, by the Sobolev estimates on G, we know that this map

G ◦ ∂2

∂xj∂xl
: C∞d (Ω) → C∞d (Ω)

is continuous.
This allows us to define a continuous operator on C∞d ′(Ω), as follows:

Definition 3.1. For 1 ≤ j, l ≤ n, define Tj,l : C∞d ′(Ω) → C∞d ′(Ω) by

〈Tj,l(f), ϕ〉 =
〈
f,G

(
∂2ϕ

∂xj∂xl

)〉
for all f ∈ C∞d ′(Ω), ϕ ∈ C∞d (Ω).
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When f is a smooth function, Tj,l(f) takes on a familiar form:

Lemma 3.2. For f ∈ C∞(Ω),

Tj,l(f) =
∂2G(f)
∂xj∂xl

in C∞d (Ω).

Proof. Let f ∈ C∞(Ω). Then ∂2G(f)
∂xj∂xl

∈ C∞(Ω) and for ϕ ∈ C∞d (Ω),〈
∂2G(f)
∂xj∂xl

, ϕ

〉
=
∫

Ω

∂2G(f)
∂xj∂xl

ϕ dV.

Since ϕ|∂Ω = 0, we can integrate by parts without boundary terms to get

−
∫

Ω

∂G(f)
∂xl

∂ϕ

∂xj
dV.

But now since G(f)|∂Ω = 0, we can integrate by parts again, and we have∫
Ω

G(f)
∂2ϕ

∂xj∂xl
dV.

The Green’s operator for the Dirichlet problem is symmetric, so this is the same as∫
Ω

fG
(

∂2ϕ

∂xj∂xl

)
dV,

which is by definition
〈Tj,l(f), ϕ〉.

Thus we can consider Tj,l as an extension to C∞d ′(Ω) of the operator ∂2G
∂xj∂xl

,
initially defined on C∞(Ω). In particular, since L2(Ω) ⊂ C∞d ′(Ω), this operator is
defined on L2, and we have the following:

Lemma 3.3. For 1 ≤ j, l ≤ n, Tj,l is a bounded operator from L2(Ω) to L2(Ω).

This follows by the argument above since the mapping ψ → ∂j∂`G(ψ) extends
to a bounded operator on L2(Ω).

We now come to the main result of this section.

Theorem 3.4. With Ω as above, and 1 ≤ j, l ≤ n, the extension Tj,l of ∂2G
∂xj∂xl

to
C∞d ′(Ω) is a bounded operator from hpd(Ω) to hpd(Ω).

Proof. Let f ∈ hpd(Ω). By the atomic decomposition, we can write

f =
∑

λkak

in C∞d ′(Ω), where the ak are either type (a) hpd atoms or type (b) hpd atoms (with
respect to some constants AΩ, BΩ and CΩ as in Definition 2.3 and Theorem 2.6 of
Section 2.) By the continuity of Tj,l,

Tj,l(f) =
∑

λkTj,l(ak)
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in C∞d ′(Ω). If we can show that, for every k, Tj,l(ak) ∈ hpd(Ω) and ‖Tj,l(ak)‖hp
d
≤ C

independently of k, then we will have that
∑
λkTj,l(ak) converges in hpd(Ω) and

‖Tj,l(f)‖hp
d
≤ C

(∑
|λk|p

)1/p

.

Since this would be true for any atomic decomposition, we will have

‖Tj,l(f)‖hp
d
≤ C‖f‖hp

d
.

Therefore, it suffices to prove the following:

Lemma 3.5. If a is an hpd atom (of either type), then Tj,l(a) ∈ hpd(Ω) and

‖Tj,l(a)‖hp
d
≤ C,

with C independent of a.

Proof of Lemma. Let g = Tj,l(a). We want to show md(g) ∈ Lp(Ω). For x ∈ Ω,
write

md(g)(x) = sup〈g, ϕxt 〉,
where the supremum is taken over all C∞d bump functions ϕxt supported in balls of
radii t ≤ 1 containing x. Let Q be the supporting cube of a.
Case I: x ∈ Ω ∩ 2Q or |Q| ≥ CΩ. Here we will use the L2 estimate from Lemma 3.3,
namely g ∈ L2 and ‖g‖L2 ≤ C‖a‖L2 . By extending each C∞d bump function to a
bump function in Rn, we see that

md(g)(x) = sup
ϕx

t ∈C∞d
〈g, ϕxt 〉 ≤ sup

ψx
t ∈D(Rn)

〈g, ψxt 〉 = m(g)(x),

where m is the local grand maximal function in Rn. Since m is bounded on L2, we
have

‖md(g)‖L2 ≤ ‖m(g)‖L2 ≤ C‖g‖L2 ≤ C′‖a‖L2 ≤ C′|Q|1/2−1/p,

so ∫
2Q∩Ω

md(g)p(x)dx ≤ ‖md(g)‖pL2|2Q|1−p/2

≤ Cp

(
|Q|1/2−1/p

)p
|2Q|1−p/2

= C′p.

When |Q| ≥ CΩ, we can use the estimate above to bound the integral of md(g)p

over all of Ω, which proves the lemma for the case where |Q| ≥ CΩ.
Case II: |Q| < CΩ and x ∈ Ω \ 2Q. Fix a C∞d bump function ϕxt with t ≤ 1. By
definition of Tj,l, we have

〈g, ϕxt 〉 = 〈a,G(∂j∂lϕxt )〉
=

∫
Ω

a(y)G(∂j∂lϕxt )(y)dy.

Let
Kϕx

t
(y) = G(∂j∂lϕxt )(y).
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Claim 3.6. The function Kϕx
t

is smooth on Ω, vanishes identically on the boundary
(i.e. Kϕx

t
(y) = 0 for y ∈ ∂Ω), and satisfies the estimates∣∣∣∣∂|α|∂yα

Kϕx
t
(y)
∣∣∣∣ ≤ C|α|

|x− y|n+|α|

for all multi-indices α, |α| ≤ Np + 1. Here the constants C|α| are independent of
the choice of bump function ϕxt .

Assuming the conclusions of the claim, let us proceed with the proof of the
lemma. Again there are two cases
Case II(a): a is a type (a) atom with |Q| < CΩ. In this case Q ⊂ Ω and we may
assume 0 is the center of Q, Q = [−δ, δ]n for some δ < CΩ

1/n.
By Remark 2 following Definition 2.1, and the bounds on the derivatives of Kϕx

t

(given by the claim), we have∣∣∣∣∫
Q

a(y)Kϕx
t
(y)dy

∣∣∣∣ ≤ Cn,p‖Kϕx
t
‖CNp+1(Q)|Q|νp

= Cn,p
∑

|α|≤Np+1

1
|α|! sup

y∈Q

∣∣∂αyKϕx
t
(y)
∣∣ |Q|νp

≤
∑

|α|≤Np+1

sup
y∈Q

C′|α|
|x− y|n+|α| |Q|νp

≤
∑

|α|≤Np+1

C′′|α|
|x|n+|α| |Q|νp

≤ C
|Q|νp

|x|n+Np+1
.

For the next-to-last inequality we used the fact that when x 6∈ 2Q, |x − y| ≥ C|x|
for all y ∈ Q, while for the last inequality we used the fact that |x| is bounded.

Since this bound does not depend on the choice of bump function ϕxt , we get,
for x ∈ Ω \ 2Q,

md(g)(x) = sup
ϕx

t

∣∣∣∣∫
Q

a(y)Kϕx
t
(y)dy

∣∣∣∣ ≤ C
|Q|νp

|x|n+Np+1
.

Taking p-th powers and integrating over Ω \ 2Q, we see that

|Q|pνp

∫
x∈Ω\2Q

|x|−(n+Np+1)pdx ≤ Cδ(Np+1)p−n+np

∫
2δ≤|x|≤A

|x|−(n+Np+1)pdx

≤ C

since (Np + 1)p − n + np = (n + Np + 1)p − n > [n + n(1/p− 1)]p − n = 0. This
shows ∫

x∈Ω\2Q
md(g)(x)pdx ≤ C,

which proves the lemma for the case of a type (a) atom with |Q| < CΩ.
Case II(b): a is a type (b) atom with |Q| < CΩ. Note that by the claim, Kϕx

t
∈

C∞d (Ω), so by the moment conditions on a (see Definition 2.3),∣∣∣∣∫
Q

a(y)Kϕx
t
(y)dy

∣∣∣∣ ≤ ‖Kϕx
t
‖CNp+1(Q)|Q|νp
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and we can proceed exactly as in case II(a) above to show that∫
x∈Ω\2Q

md(g)(x)pdx ≤ C.

This proves the lemma for a type (b) atom with |Q| < CΩ.

Now that we have completed the proof of the lemma, we can get back to the

Proof of Claim 3.6. The smoothness ofKϕx
t

on Ω and its vanishing on the boundary
follow from the fact that it is the solution to the Dirichlet problem with smooth
data ∂j∂lϕxt .

To prove the estimates on the derivatives of Kϕx
t
(y), we will first consider the

situation when |x− y| < 4t. Let

u(y) = Kϕx
t
(y) = G(∂j∂lϕxt )(y).

Then it suffices to show
|∂αu| ≤ Ct−n−|α|

for all multi-indices α. We will do this by using the Sobolev embedding theorem.
First note that

‖∂αu‖L2(Ω) ≤ Ct−n/2−|α|.

For α = 0, this follows from:

‖u‖L2(Ω) = ‖G(∂j∂lϕxt )‖L2(Ω) ≤ C‖ϕxt ‖L2(Ω) ≤ Ct−n/2,

since ϕxt is a bump function. For |α| ≥ 2, this follows from the regularity of G:

‖∂αu‖L2(Ω) ≤ ‖u‖|α| ≤ C‖∂j∂lϕxt ‖|α|−2 ≤ Ct−n/2−|α|.

Here ‖·‖s denotes the Sobolev s norm. Finally, for |α| = 1, we have, since u satisfies
the Dirichlet boundary conditions,

‖∇u‖2
L2(Ω) =

∫
Ω

∇u · ∇udV

= −
∫

Ω

(∆u)udV

= −
∫

Ω

∂j∂lϕ
x
t udV

≤ ‖∂j∂lϕxt ‖L2‖u‖L2

≤ Ct−n/2−2t−n/2

= Ct−n−2.

Now fix a multi-index α with |α| ≤ Np + 1. We want to use the Sobolev embed-
ding theorem to bound the L∞ norm of ∂αu by the L2 norms of u and its derivatives
in balls of radius t. Near the boundary, however, such balls may not be contained
in Ω. Therefore we must first cover a tubular neighborhood of ∂Ω, of radius 1, by
a collection of open sets Ui, such that each Ui is contained in a larger open set Vi,
and in each Vi there is a diffeomorphism Φi which takes Vi ∩Ω onto the upper half
unit ball B+(0, 2) and Ui ∩ Ω onto B+(0, 1). For each i, we can extend u ◦ Φ−1

i to
a smooth function on the whole ball B(0, 2) while maintaining its Sobolev norms
(see [S1], Chapter VI, Section 3). These are essentially the Sobolev norms of u, up
to a constant depending on Φi.
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Fixing y ∈ Ω, since t ≤ 1, we have either B(y, t) ⊂ Ω, or y ∈ Ui for some i.
In the latter case, by making a change of variables, we may assume y ∈ B+(0, 1),
hence B(y, t) ⊂ B(0, 2). Replacing u by u ◦Φ−1

i , and extending to B(0, 2), we may
assume that u is defined in B(y, t) and its Sobolev norms are bounded as above.

For simplicity, make a translation so that y = 0. Thus we have

‖∂βu‖L2(B(0,t)) ≤ Ct−n/2−|β|.

Now define v in B(0, 1) by v(z) = u(tz). Then it is easy to see that

‖∂βv‖L2(B(0,1)) = ‖∂βu‖L2(B(0,t))t
|β|−n/2 ≤ Ct−n.

Let k be an integer greater than n/2. By the Sobolev embedding theorem,
applied to the function ∂αv, we can write

sup
B(0,1/2)

‖∂αv‖ ≤ C
∑
|γ|≤k

‖∂γ(∂αv)‖L2(B(0,1)) ≤ Ct−n

(see [S1], pp. 124-130). But ∂αv(z) = t|α|(∂αu)(tz) so

|∂αu(0)| ≤ t−|α| sup
B(0,1/2)

‖∂αv‖ ≤ Ct−n−|α|.

Recalling that ∂αu(0) = ∂|α|
∂yαKϕx

t
(y), we see that we are done with the case |x−y| ≤

4t.
When |x− y| > 4t, we write

Kϕx
t
(y) =

∫
Ω

G(y, z)
∂2ϕxt
∂zj∂zl

(z)dz.

Here y is outside the support of ϕxt , so the integral is taken only over the region
where G(y, z) is smooth in z. In addition, both ϕxt and G vanish on the boundary,
so we can integrate by parts to get

Kϕx
t
(y) =

∫
Ω

∂zj∂zl
G(y, z)ϕxt (z)dz.

Differentiating in y, this gives

∂|α|

∂yα
Kϕx

t
(y) =

∫
Ω

∂αy ∂zj∂zl
G(y, z)ϕxt (z).

Furthermore, for z in the support of ϕxt we have

|x− y| ≤ |x− z|+ |z − y| ≤ 2t+ |z − y| < |x− y|/2 + |z − y|;
hence |x− y|/2 < |y − z|. Thus if we can show

|∂αy ∂zj∂zl
G(y, z)| ≤ C|y − z|−n−|α|(3.1)

for all z ∈ Ω \ {y}, we would get∣∣∣∣∂|α|∂yα
Kϕx

t
(y)
∣∣∣∣ ≤

∣∣∣∣∫
Ω

∂αy ∂zj∂zl
G(y, z)ϕxt (z)dz

∣∣∣∣
≤

∫
Ω

C

|y − z|n+|α| |ϕxt (z)|dz

≤ C|x− y|−n−|α|,
which is the desired estimate.
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Proof of estimate (3.1). We will follow the general outline of the proofs in [CKS],
Section 5, but without using the reflection mapping. We start by writing the Green’s
operator G, acting on some f ∈ C∞(Ω), as

G(f) = E(f) + H(f).

Here E(f) = E ∗ f is convolution with the Newtonian potential E, while −H(f) =
P(E ∗f |∂Ω) is the Poisson integral of the restriction of E(f) to the boundary. Thus
we can write the Green’s function as

G(y, z) = E(y, z) +H(y, z),

where
E(y, z) = cn|y − z|−(n−2)

and H(y, z) is the kernel of the operator H. Now E is symmetric in y and z and its
second derivatives form a Calderón-Zygmund kernel, so the inequality (3.1) holds
with E instead of G. Thus we need only concentrate on H .

In order to estimate the derivatives of H(y, z), we write, for z ∈ Ω \ {y},
∂2

∂zj∂zl
H(y, z) =

∂2

∂zj∂zl

∫
∂Ω

P (y, ζ)E(ζ, z)dσ(ζ)

=
∫
∂Ω

P (y, ζ)
∂2

∂zj∂zl
E(ζ, z)dσ(ζ),

where P (y, ζ) is the Poisson kernel in Ω, and dσ is surface measure on ∂Ω. We
differentiate the integral with respect to y and separate into local and global parts
by means of a cut-off function φ : (0,∞) → R such that φ(t) = 1 for t < 1/4 and
φ(t) = 0 for t > 1/2:

∂|α|

∂yα

∫
∂Ω

P (y, ζ)
∂2

∂zj∂zl
E(ζ, z)dσ(ζ)

=
∫
∂Ω

∂αy P (y, ζ)φ
( |ζ − z|
|y − z|

)
∂zj∂zl

E(ζ, z)dσ(ζ)

+
∫
∂Ω

∂αy P (y, ζ)
[
1− φ

( |ζ − z|
|y − z|

)]
∂zj∂zl

E(ζ, z)dσ(ζ)

= I1 + I2.

We want to estimate the local part, I1 (where |ζ − z| ≤ |y − z|/2), by means of
integration by parts. In order to do this, we first have to convert the z derivatives
of E into ζ derivatives. Note that because of the symmetric form of E, we have

∂zj∂zl
E(ζ, z) = ∂ζj∂ζl

E(ζ, z).

Next, for z, y fixed and ζ in a neighborhood of ∂Ω, with |ζ−z| ≤ |y−z|/2, we choose
tangential and normal coordinates (ζ ′, ρ) in ζ. Converting the old derivatives to
the new ones, we get

∂

∂ζj
=

n−1∑
k=1

aj,k
∂

∂ζ′k
+ bj

∂

∂ρ

for some smooth functions aj,k, bj , and therefore

∂2

∂ζj∂ζl
E(ζ, z) =

∑
|β|+k≤2

cβ,k
∂|β|+k

∂(ζ ′)β∂ρk
E(ζ, z).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARDY SPACES, BMO, AND BOUNDARY VALUE PROBLEMS 1627

By choosing ρ to be the signed geodesic distance to ∂Ω, we can rewrite the equation
∆ζE(ζ, z) = 0 in the new coordinates as

∂2

∂ρ2
E(ζ, z) =

∑
1≤i,m≤n−1

di,m
∂2

∂ζ′i∂ζ′m
E(ζ, z) + first order terms.

This reduces the number of ρ derivatives by one, and we remain with an expression
of the form ∑

|β|+k≤2,k=0,1

gβ,k(ζ)
∂|β|+k

∂(ζ ′)β∂ρk
E(ζ, z)

for the second derivatives ∂j∂l of E(ζ, z). Inserting this into I1, we get∑
|β|+k≤2,k=0,1

∫
∂Ω

∂αy P (y, ζ)φ
( |ζ − z|
|y − z|

)
gβ,k(ζ)

∂|β|+k

∂(ζ ′)β∂ρk
E(ζ, z)dσ(ζ).

We are now ready to integrate by parts in the tangential variables ζ ′. The
derivatives can fall either on ∂αy P (η, ζ), on φ( |ζ−z||y−z|), or on gβ,k(ζ), and we use the
following estimates:

|∂γζ′∂αy P (y, ζ)| ≤ C|ζ − y|−(n−1+|γ|+|α|)

≤ C|y − z|−(n−1+|γ|+|α|)

since |ζ − y| ≥ |y − z| − |ζ − z| ≥ |y − z|/2,∣∣∣∣∂γζ′φ( |ζ − z|
|y − z|

)∣∣∣∣ ≤ C|y − z|−|γ|,

and
|∂γζ′gβ,k(ζ)| ≤ C.

Combining, and using the fact that we can always choose the largest negative
exponent of |y − z|, since it is bounded above, we have

|I1| ≤ C1

|y − z|n+1+|α|

∫
|ζ−z|≤|y−z|/2

|E(ζ, z)|dσ(ζ)

+
C2

|y − z|n+|α|

∫
|ζ−z|≤|y−z|/2

∣∣∣∣ ∂∂ρE(ζ, z)
∣∣∣∣ dσ(ζ)

≤ C

|y − z|n+1+|α|

∫
|ζ−z|≤|y−z|/2

|ζ − z|−(n−2)dσ(ζ)

+
C

|y − z|n+|α|

∫
∂Ω

|∂νζ
E(ζ, z)|dσ(ζ)

≤ C|y − z|−(n+|α|).

The last estimate (bounding the integral of the normal derivative of the Newtonian
potential by a constant) can be found in [F] (Lemma 3.20, p. 165).

The global part of the integral, I2, can be estimated in the same way as was
done in [CKS], in the proof of Lemma 5.3 (pp. 327-331), i.e. by using integration
by parts to transfer derivatives from the Poisson kernel to the Newtonian potential.
Here we must use the estimate

|∂γζ′E(ζ, z)| ≤ C|ζ − z|−(n−2+|γ|)

≤ C|y − z|−(n−2+|γ|)
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for |ζ − z| ≥ |y − z|/4. Since the largest |γ| possible is |α|+ 2, we have

|I2| ≤ C|y − z|−(n+|α|),

and so all in all∣∣∣∣∂|α|∂yα
H(y, z)

∣∣∣∣ = ∣∣∣∣∂|α|∂yα

∫
∂Ω

P (y, ζ)
∂2

∂zj∂zl
E(ζ, z)dσ(ζ)

∣∣∣∣ ≤ C|y − z|−(n+|α|).

Combined with the equivalent estimates on E(y, z), we get estimate (3.1).

Now the proof of Claim 3.6 is complete.

This also concludes the proof of Theorem 3.4, the hpd regularity of the Dirichlet
problem.

4. The hpz regularity of the Dirichlet and Neumann problems

In this section we will study the regularity of the Dirichlet and Neumann prob-
lems in the context of the spaces hpz(Ω). We shall concentrate on the Neumann
problem, since it involves the more difficult analysis.

Let Ω ⊂ Rn be a bounded domain with smooth boundary, and let G̃ be a
solution operator for the Neumann problem, defined on f ∈ C∞(Ω) with

∫
Ω
f = 0

by G̃(f) = u, where
∆u = f on Ω,

∂u

∂~n
= 0 on ∂Ω,

and
∫
Ω u = 0. Here ~n is the outward unit normal vector field on ∂Ω.

If f ∈ C∞(Ω) with
∫
Ω f = 0, then G̃(f) ∈ C∞(Ω), so we can apply the operators

∂2G̃
∂xj∂xl

, j, l = 1, . . . , n, to f . We want to extend these operators to hpz(Ω). To do
this, we will proceed through the L2 theory.

As is well known, G̃ extends to a bounded operator from L2(Ω) to the Sobolev
space H2(Ω), so for j, l = 1, . . . , n, the operators ∂2G̃

∂xj∂xl
, extend to bounded opera-

tors on L2(Ω). Thus we can define ∂2G̃
∂xj∂xl

(a) for an hpz atom a. We shall prove the
following

Theorem 4.1. With Ω as above, and 1 ≤ j, l ≤ n, there is an extension T̃j,l of
∂2G̃
∂xj∂xl

to a bounded operator from hpz(Ω) to hpz(Ω).

Before proceeding with the proof of this theorem, we shall state the corresponding
result for the Dirichlet problem. As above, one can also define the operator ∂2G

∂xj∂xl

on hpz atoms, where G is the solution operator of the Dirichlet problem for the
Laplacian, as in Section 3. Thus we have

Theorem 4.2. With Ω as above, and 1 ≤ j, l ≤ n, there is an extension of ∂2G
∂xj∂xl

to a bounded operator from hpz(Ω) to hpz(Ω).

The proof of this result is just a minor modification of the proof of Theorem 4.1,
so we will omit it. In Section 5, we will give a different proof for the case p = 1.

The essence of the proof of Theorem 4.1 is contained in the following
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Lemma 4.3. If a is an hpz atom, then ∂2G̃
∂xj∂xl

(a) ∈ hpz(Ω) and∥∥∥∥∥ ∂2G̃
∂xj∂xl

(a)

∥∥∥∥∥
hp

z

≤ C,

with C independent of a.

Proof of lemma. Let g = ∂2G̃
∂xj∂xl

(a). Note that by definition, we are taking g = 0

on Rn \ Ω. Thus to show g ∈ hpz(Ω), we only have to show g ∈ hp(Rn). Let m
be the local grand maximal function, as in Definition 1.1. Then we want to show
m(g) ∈ Lp(Rn). In fact, we only need to show m(g) ∈ Lp(Ω̃), where Ω̃ is some
bounded set containing all points of distance at most 2 from Ω.

Let Q be the supporting cube of a.

Case I: x ∈ 2Q or |Q| > 1. Here we will use an L2 estimate. Since both ∂2G̃
∂xj∂xl

and
m are bounded on L2, we have

‖m(g)‖L2 ≤ C‖g‖L2 ≤ C‖a‖L2 ≤ C|Q|1/2−1/p.

Thus ∫
2Q

m(g)p(x)dx ≤ ‖m(g)‖pL2|2Q|1−p/2

≤ C
(
|Q|1/2−1/p

)p
|2Q|1−p/2

= C.

When |Q| > 1, we can use the estimate above to bound the integral of m(g)p over
all of Ω̃, thus proving the lemma for that case.
Case II: |Q| < 1 and x 6∈ 2Q. Fix a C∞ bump function ϕxt with t ≤ 1. Then we
have

〈g, ϕxt 〉 =
∫

Ω

∂2G̃
∂xj∂xl

(a)(x)ϕxt (x)dx

=
∫

Ω

{∫
Ω

∂2

∂xj∂xl
G̃(x, y)a(y)dy

}
ϕxt (x)dx

=
∫

Ω

{∫
Ω

∂2

∂xj∂xl
G̃(x, y)ϕxt (x)dx

}
a(y)dy

=
∫

Ω

K̃ϕx
t
(y)a(y)dy,

where

K̃ϕx
t
(y) =

∫
Ω

∂2

∂zj∂zl
G̃(z, y)ϕxt (z)dz,

i.e. the dual operator (∂j∂lG̃)∗ applied to ϕxt .

Claim 4.4. The function K̃ϕx
t

is smooth on Ω and satisfies the estimates∣∣∣∣∂|α|∂yα
K̃ϕx

t
(y)
∣∣∣∣ ≤ C|α|

|x− y|n+|α|

for all multi-indices α, |α| ≤ Np + 1. Here the constants C|α| are independent of
the choice of bump function ϕxt .
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Assuming the conclusions of the claim, let us continue with the proof of Case
II of the lemma. Recall that Q ⊂ Ω. We may assume 0 is the center of Q, and
Q = [−δ, δ]n for some δ < 1. Using the moment conditions on a and the bounds on
the derivatives of K̃ϕx

t
given by the claim, we can proceed exactly as in Case II(a)

of the proof of Lemma 3.5 to get that

m(g)(x) = sup
ϕx

t

∣∣∣∣∫
Q

a(y)K̃ϕx
t
(y)dy

∣∣∣∣
≤ C|Q|νp

|x|n+Np+1
.

and ∫
x∈Ω̃\2Q

m(g)(x)pdx ≤ Cδpnνp

∫
2δ≤|x|≤Ã

|x|−(n+Np+1)pdx

≤ C.

This proves Case II of the lemma, and the proof of the lemma is complete.

Proof of Claim 4.4. We will first prove that the operator (∂j∂lG̃)∗ is bounded from
the Sobolev space Hk(Ω) to itself, k = 0, 1, 2, . . . . Specifically, we want to show
that if ϕ ∈ C∞(Ω), then (∂j∂lG̃)∗(ϕ) ∈ Hk(Ω) for all k, with

‖(∂j∂lG̃)∗(ϕ)‖k ≤ C‖ϕ‖k,(4.1)

where ‖ · ‖k denotes the Sobolev k norm on Ω. Since ϕxt ∈ C∞(Ω), this will show
that K̃ϕx

t
= (∂j∂lG̃)∗(ϕxt ) is smooth up to the boundary.

To prove 4.1, we first take a smooth partition of unity {ηµ}, µ = 0, . . . ,M , where
as usual η0 has compact support in Ω, and for µ ≥ 1, ηµ has compact support in
an open set Uµ which comes equipped with a system of tangential and normal
coordinates (ζ ′, ρ), ρ being the geodesic distance to ∂Ω. Write

(∂j∂lG̃)∗(ϕ) =
M∑
µ=0

(∂j∂lG̃)∗(ηµϕ).

We want to prove 4.1 for each ηµϕ.
When µ = 0, since η0ϕ has compact support in Ω, we can integrate by parts,

and since G̃ is self-dual, we have that

(∂j∂lG̃)∗(η0ϕ) = G̃(∂j∂l(η0ϕ)).

Thus we can use the classical Sobolev estimates for the Neumann problem to get
(4.1) for η0ϕxt . See Section 3, proof of Claim 3.6 for the analogous argument in the
case of the Dirichlet problem.

Now fix µ ≥ 1, and let U = Uµ, η = ηµ. Making the change of variables
Φ(z) = (ζ ′, ρ) = ζ, and letting τ = [(ηϕ) ◦ Φ−1]J−1

Φ , we have

(∂j∂lG̃)∗(ηϕ)(y) =
∫
U∩Ω

∂2

∂zj∂zl
G̃(z, y)η(z)ϕ(z)dz(4.2)

=
∑

1≤i,m≤n

∫
Rn

+

aj,li,m(ζ)
∂2

∂ζi∂ζm
G̃(Φ−1(ζ), y)τ(ζ)dζ(4.3)

+
∑

1≤m≤n

∫
Rn

+

bj,lm (ζ)
∂

∂ζm
G̃(Φ−1(ζ), y)τ(ζ)dζ.(4.4)
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We will deal with each term in the sums individually, and distinguish between
tangential and normal derivatives.

Case I: Tangential derivatives. In this case, we want to integrate by parts to trans-
fer the derivatives from G̃ to ϕ, and use the Sobolev estimates for G̃. Because of
the change of coordinates, there are certain details to keep track of.

Consider the function f ∈ L2(Ω) defined by

f(y) =
∫
Rn

+

a(ζ)
∂2

∂ζi∂ζm
G̃(Φ−1(ζ), y)τ(ζ)dζ,

with i,m ≤ n − 1, where a = aj,li,m is smooth. Testing f against some ψ ∈ C∞(Ω),
we can integrate by parts to get∫

Ω

f(y)ψ(y)dy =
∫

Ω

{∫
Rn

+

a(ζ)
∂2

∂ζi∂ζm
G̃(y,Φ−1(ζ))τ(ζ)dζ

}
ψ(y)dy

=
∫
Rn

+

{∫
Ω

∂2

∂ζi∂ζm
G̃(Φ−1(ζ), y)ψ(y)dy

}
a(ζ)τ(ζ)dζ

=
∫
Rn

+

∂2

∂ζi∂ζm
G̃(ψ)(Φ−1(ζ))a(ζ)τ(ζ)dζ

=
∫
Rn

+

G̃(ψ)(Φ−1(ζ))
∂2

∂ζi∂ζm
[a(ζ)τ(ζ)] dζ

=
∫

Ω

G̃(ψ)(z)φ(z)JΦ(z)dz

=
∫

Ω

ψG̃(φJΦ),

where

φ =
∂2

∂ζi∂ζm
(aτ) ◦ Φ.

This shows f = G̃(φJΦ) in L2(Ω), so the Sobolev estimates for G̃, combined
with the fact that

‖φ‖k ≤ CΦ‖ϕ‖k+2

for all k ≥ 0, give the desired estimate 4.1 for the terms in the sum 4.3 with
i,m ≤ n− 1. A similar argument gives an even better estimate for the terms in the
sum 4.4 with m ≤ n− 1.

Case II: One normal derivative. This is the case of a term in the sum 4.3 or 4.4
with m = n. If in addition we have a tangential derivative, we may integrate by
parts as above. Thus what remains is to show that the operator G̃∗

ρ, defined on
ϕ ∈ C∞(Ω) by

G̃∗
ρ(ϕ)(y) =

∫
Ω

∂

∂ρz
G̃(y, z)ϕ(z)dz,

is bounded from Hk(Ω) to Hk+1(Ω). Recall (see [CKS], Section 7) that we can
write the solution operator G̃ to the Neumann problem as

G̃ = E + H̃ + S,
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where E is convolution with the Newtonian potential E (followed by restriction to
Ω),

H̃ = −P
(
QR

∂

∂ρ
E
)
,(4.5)

and S is a smoothing error. Here Q is smoothing of order 1 on the boundary.
Since E maps Hk(Ω) to Hk+2(Ω), its derivatives are bounded from Hk(Ω) to

Hk+1(Ω). Furthermore, denoting the kernel by E(y, z), we have

∂

∂ρz
E(y, z) =

∑
cm(z)

∂

∂zm
E(y, z) = −

∑
cm(z)

∂

∂ym
E(y, z),(4.6)

for some smooth functions cm. Thus the operator E∗
ρ defined by

E∗
ρ(ϕ)(y) =

∫
Ω

∂

∂ρz
E(y, z)ϕ(z)dz

also maps Hk(Ω) to Hk+1(Ω).
Now let us look at H̃∗

ρ, again defined by

H̃∗
ρ(ϕ)(y) =

∫
Ω

∂

∂ρz
H̃(y, z)ϕ(z)dz,

where H̃ is the kernel of H̃. Looking at 4.5, we see that since we are differentiating
with respect to the variable of integration, the derivative falls on the innermost
operator, namely E, so that

H̃∗
ρ = −P

(
QR

∂

∂ρ
E∗
ρ

)
.

Using 4.6, we see that

∂

∂ρz
E(y, z) +

∂

∂ρy
E(y, z) =

∑
[cm(y)− cm(z)]

∂

∂ym
E(y, z),

which shows that the operator

E∗
ρ −

∂

∂ρ
E

is smoothing of order 2 on Ω. Thus

H̃∗
ρ = P

(
QR

∂2

∂ρ2
E
)

+ H̃′,

where H̃′ has the same regularity properties as H̃, namely it maps Hk(Ω) to
Hk+2(Ω).

But now note that since E is harmonic, we can write ∂2

∂ρ2 E in terms of purely
tangential derivatives, and at most one normal derivative. The tangential deriva-
tives commute with the operators R, Q and P up to lower order terms, so that
in the end we remain with operators of the form ∂j∂lH̃, which we know have the
desired regularity (see [CKS]), plus operators which are smoothing to at least order
1. As for the remaining normal derivative, it gives an operator which is essentially
H̃, up to multiplication by a smooth function. Thus we see that we can write H̃∗

ρ

as a sum of operators, all of which map Hk(Ω) to Hk+1(Ω).
Finally, looking at the smoothing operator S, since its kernel can be taken to

be as smooth as we like, applying ∂
∂ρz

to it still gives a kernel which is smoothing.
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Thus we have shown that G̃∗
ρ maps Hk(Ω) to Hk+1(Ω), which proves the Sobolev

estimates 4.1 for any term containing one normal derivative.
Case III: Two normal derivatives. Here we look at the operator with kernel
∂2

∂ρ2z
G̃(y, z). We use the fact that the Neumann function G̃(y, z) is harmonic in

both y and z, so again we can write this in terms of purely tangential derivatives
and at most one normal derivative, which cases were dealt with above.

Putting everything together, we see that the estimates (4.1) are satisfied for each
of the terms in the sums 4.3 and 4.4; hence they are satisfied for ηµϕ for each µ,
and we have shown that the operator (∂j∂lG̃)∗ is bounded from Hk(Ω) to Hk(Ω),
and in particular K̃ϕx

t
is smooth up to the boundary.

To prove the estimates on the derivatives of K̃ϕx
t
(y), we will first consider the

situation when |x− y| < 4t. Then it suffices to show

|∂αK̃ϕx
t
| ≤ Ct−n−|α|

for all multi-indices α. This can be done by using the Sobolev embedding theorem,
as in the case of the Dirichlet problem (see Section 3, proof of Claim 3.6). We only
need the estimates

‖∂αK̃ϕx
t
‖L2(Ω) ≤ Ct−n/2−|α|,

which follow from the regularity of
(

∂2G̃
∂xj∂xl

)∗
discussed above:

‖∂αK̃ϕx
t
‖L2(Ω) ≤ ‖K̃ϕx

t
‖|α| ≤ C‖ϕxt ‖|α| ≤ Ct−n/2−|α|.

When |x− y| > 4t, we write

K̃ϕx
t
(y) =

∫
Ω

∂2

∂zj∂zl
G̃(y, z)ϕxt (z)dz.

Here y is outside the support of ϕxt , so the integral is taken only over the region
where G̃(y, z) is smooth in z. Differentiating in y, this gives

∂|α|

∂yα
K̃ϕx

t
(y) =

∫
Ω

∂αy ∂zj∂zl
G̃(y, z)ϕxt (z)dz.

Furthermore, for z in the support of ϕxt we have

|x− y| ≤ |x− z|+ |z − y| ≤ 2t+ |z − y| < |x− y|/2 + |z − y|;
hence |x− y|/2 < |y − z|. Thus if we can show

|∂αy ∂zj∂zl
G̃(y, z)| ≤ C|y − z|−n−|α|(4.7)

for all z ∈ Ω \ {y}, we would get∣∣∣∣∂|α|∂yα
K̃ϕx

t
(y)
∣∣∣∣ ≤

∣∣∣∣∫
Ω

∂αy ∂zj∂zl
G̃(y, z)ϕxt (z)dz

∣∣∣∣
≤

∫
Ω

C

|y − z|n+|α| |ϕxt (z)|dz

≤ C|x− y|−n−|α|,
which is the desired estimate.

So it remains to prove the estimate (4.7) for the Neumann function G̃. Again
we write

G̃ = E + H̃ + S.
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The Newtonian potential E(y, z) is symmetric in y and z and its second derivatives
form a Calderón-Zygmund kernel, so the inequality (4.7) holds with E instead of
G̃. Furthermore, the kernel for S can be taken to be as smooth as desired. Thus
we need only concentrate on the kernel H̃(y, z) of H̃.

In order to estimate the derivatives of H̃(y, z), again write

H̃ = −P
(
QR

∂

∂ρ
E
)
.

Let T = QR ∂
∂ρE. Since Q is smoothing of order 1 on ∂Ω, T is a reverse Poisson

operator of the same order as RE. When we consider ∂αy ∂zj∂zl
H̃(y, z), the y

derivatives fall on the Poisson kernel P , while the z derivatives fall on the kernel of
T . If K(ζ, z) is this kernel (ζ ∈ ∂Ω, z ∈ Ω), then

∂αy ∂zj∂zl
H̃(y, z) =

∫
∂Ω

∂αy P (y, ζ)∂zj∂zl
K(ζ, z).

We can now proceed as in the proof of Claim 3.6 (for the Dirichlet problem), with
K(ζ, z) instead of the kernel E(ζ, z) of RE. Namely, we use integration by parts
to transfer derivatives between K and P . In the “local” case (denoted by I1 in the
proof of Claim 3.6), we can use the harmonicity of E and integration by parts to
express ∂zj∂zl

K(ζ, z) as ∑
|β|≤2

∂
|β|
ζ Kβ(ζ, z),

where the derivatives in ζ are tangential, and the operators associated to the kernels
Kβ are of the same (or lower) order as T . Thus we can integrate by parts to move
the derivatives onto P . For the “global” case (I2), we transfer the derivatives from
P onto K.

Alternatively, one can proceed to prove the estimates on the derivatives of the
kernel H̃(y, z) via the symbolic calculus, as in [CKS] (see pp. 342-346, although in
this case one needs to reverse the variables when taking derivatives).

This gives the estimate (4.7) on the derivatives of G̃, which in turn proves
Claim 4.4.

Now we can finally give the

Proof of Theorem 4.1. Let f ∈ hpz(Ω). By the atomic decomposition, we can write

f =
∑

λkak

in S′(Rn), where the ak are hpz atoms. By Lemma 4.3, for every k, ∂2G̃
∂xj∂xl

(ak) ∈
hpz(Ω), and

∥∥∥ ∂2G̃
∂xj∂xl

(ak)
∥∥∥
hp

z

≤ C independently of ak, so that
∑
λk

∂2G̃
∂xj∂xl

(ak) con-

verges in the hpz(Ω) norm. Since hpz(Ω) is a closed subspace of hpz(R
n), hence

complete, this sum is an element of hpz(Ω), and we can define T̃j,l on f by

T̃j,l(f) def=
∑

λk
∂2G̃
∂xj∂xl

(ak).

To see that this is independent of the choice of atomic decomposition, it suffices
to show that T̃j,l is continuous on L2(Ω) in the distribution topology, i.e. if {fk} is
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a sequence in L2(Ω) with fk → 0 in C∞′(Ω), then〈
∂2G̃
∂xj∂xl

(fk), ϕ

〉
→ 0

for every ϕ ∈ C∞(Ω). But as in Case II of the proof of Lemma 4.3,〈
∂2G̃
∂xj∂xl

(fk), ϕ

〉
= 〈fk, (∂j∂lG̃)∗(ϕ)〉.

The right-hand-side converges to zero since fk → 0 in C∞′(Ω) and the operator
(∂j∂lG̃)∗ is continuous on C∞(Ω), as demonstrated in the proof of Claim 4.4.

Thus the extension T̃j,l of ∂2G̃
∂xj∂xl

to hpz(Ω) is well defined. Furthermore, we have
that

‖T̃j,l(f)‖hp
z
≤ C

(∑
|λk|p

)1/p

,

with C independent of the atomic decomposition. Since

‖f‖hp
z(Ω) ≈ inf

(∑
|λk|p

)1/p

,

where the infimum is taken over all such decompositions, we get

‖T̃j,l(f)‖hp
z
≤ C′‖f‖hp

z
,

i.e. T̃j,l is bounded on hpz(Ω).
We have now proved the hpz regularity of the Neumann problem.

5. H1
and BMO regularity

In this section we will give a different proof of the h1
z regularity of the Dirichlet

and Neumann problems for the Laplacian. Then we will then state and prove the
corresponding results for the appropriate dual space, bmor, and for the dual space
of h1

d(Ω), bmoz.
Let us state again the case p = 1 of Theorems 4.1 and 4.2.

Theorem 5.1. If Ω is as above, and G, G̃ are the solution operators for the Dirich-
let and Neumann problems, respectively, then for 1 ≤ j, l ≤ n, the operators ∂2G

∂xj∂xl

and ∂2G̃
∂xj∂xl

extend to bounded operators from h1
z(Ω) to h1

z(Ω).

Instead of using the maximal function, we will prove this by using a cancellation
property to obtain the atomic decomposition directly. To illustrate this method,
we will first prove an analogue in the upper half-space. Just as for the local spaces
hpz(Ω), we define the space Hp

z (Rn
+) to be the subspace of Hp(Rn) consisting of

those distributions supported in Rn
+.

Proposition 5.2. If G (resp. G̃) is the solution operator for the Dirichlet problem
(resp. Neumann problem) on the upper half-space Rn

+, then for 1 ≤ j, l ≤ n, ∂2G
∂xj∂xl

(resp. ∂2G̃
∂xj∂xl

) extends to a bounded operator from H1
z (Rn

+) to H1
z (Rn

+).

Proof. Let f ∈ H1
z (Rn

+). Then by an analogue of Theorem 2.5 (see [JSW], Theo-
rem 5.3, and [CKS], Theorem 3.3), f has an atomic decomposition

∑
λjaj , where∑ |λj | <∞ and the aj are now H1 atoms supported in cubes Qj contained entirely
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in Rn
+. Recall that an H1 atom must satisfy a size condition, which in this case we

take in the L2 sense:
‖a‖L2 ≤ |Q|−1/2,

and an exact moment condition: ∫
a(x)dx = 0.

As in the proofs of Theorem 3.4 and Theorem 4.1, it suffices to show that the
operators are bounded in the H1

z norm when acting on atoms.
Consider such an atom a. Then a ∈ L2, so we can define the solutions to the

Dirichlet and Neumann problems for a by u = G(a) = Eo∗a and u = G̃(a) = Ee∗a,
respectively. Here E is the Newtonian potential, and Eo, Ee are its odd and even
parts. Let

Fj,l =
∂2u

∂xj∂xl
.

We want to show that for any 1 ≤ j, l ≤ n, Fj,l|Rn
+
∈ H1

z (Rn
+) with norm bounded

by a constant.
We begin by proving a cancellation property for Fj,l, namely that∫

Rn
+

Fj,l = 0.(5.1)

A priori, we know Fj,l exists locally in the L2 sense, and is therefore locally inte-
grable. We will show that it is actually integrable at infinity, so Fj,l ∈ L1(Rn

+).
Note that

Fj,l =
∂2Eo
∂xj∂xl

∗ a
for the Dirichlet problem, or

Fj,l =
∂2Ee
∂xj∂xl

∗ a

for the Neumann problem. Let Q be the supporting cube of a, with center yQ. Then
by the moment condition on a, and the size of the derivatives of the Newtonian
potential, we have, for x ∈ Rn \ 2Q:

|Fj,l(x)| ≤
∣∣∣∣∫
Q

∂2Eo
∂xj∂xl

(x− y)a(y)dy
∣∣∣∣

=
∣∣∣∣∫
Q

{
∂2Eo
∂xj∂xl

(x− y)− ∂2Eo
∂xj∂xl

(x− yQ)
}
a(y)dy

∣∣∣∣
≤ C

|x− yQ|n+1

∫
Q

|y − yQ||a(y)|dy

≤ C|Q|1/n
|x− yQ|n+1

.

Exactly the same estimate holds for the case of the Neumann problem.
Now that we have the decay and integrability at infinity, we immediately get

that ∫
Rn

+

∂2u

∂xj∂xl
dx = 0
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whenever either j < n or l < n. Furthermore, since ∆u = a on Rn
+, and a has

vanishing integral, we have∫
Rn

+

∂2u

∂x2
n

dx =
∫
Rn

+

{
a−

n−1∑
i=1

∂2u

∂x2
i

}
dx = 0.

Thus
∫
Rn

+
Fj,l = 0 for all j, l.

Now fix j and l and let F = Fj,l. We will show F |Rn
+

has an atomic decomposition
with atoms supported entirely in Rn

+.
Again looking at the supporting cube Q of a, we define Qk, k ≥ 1, to be the

smallest cube such that
(2kQ) ∩Rn

+ ⊂ Qk ⊂ Rn
+.

Set

FQk
=

1
|Qk|

∫
Qk

F (x)dx

for k ≥ 1,
g1 = FχQ1 − FQ1χQ1 ,

and
gk = FχQk\Qk−1 + FQk−1χQk−1 − FQk

χQk

for k ≥ 2. Then
∫
g1 = 0 and for k ≥ 2,∫

gk =
∫
Qk\Qk−1

F +

{
1

|Qk−1|
∫
Qk−1

F

}
|Qk−1| −

{
1
|Qk|

∫
Qk

F

}
|Qk| = 0.

We claim
k∑
i=1

gi = FχQk
− FQk

χQk
.

This is true for k = 1, and if we assume it is true for k − 1, we get
k∑
i=1

gi =
k−1∑
i=1

gi + gk

= FχQk−1 − FQk−1χQk−1

+FχQk\Qk−1 + FQk−1χQk−1 − FQk
χQk

= FχQk
− FQk

χQk
.

This, combined with the fact that
∫
Rn

+
F = 0, gives∫

Rn
+

|F −
k∑
i=1

gi| ≤
∫
Rn

+

|F − FχQk
|+ |FQk

||Qk|

=
∫
Rn

+\Qk

|F |+
∣∣∣∣∫
Qk

F

∣∣∣∣
=

∫
Rn

+\Qk

|F |+
∣∣∣∣∣
∫
Rn

+\Qk

F

∣∣∣∣∣
≤ 2

∫
Rn

+\Qk

|F |

→ 0
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as k→∞. Thus

F |Rn
+

=
∞∑
i=1

gi

in L1.
Now we want to estimate the L2 norms of the gk. Note that for k = 1, we have,

by the L2 boundedness,

‖g1‖L2 ≤
{∫

Q1

|F |2
}1/2

+ |FQ1 ||Q1|1/2

≤ 2
{∫

Q1

|F |2
}1/2

≤ 2
∥∥∥∥ ∂2u

∂xj∂xl

∥∥∥∥
L2

≤ C‖a‖L2

≤ C1|Q1|−1/2.

For k ≥ 2 we can again write

‖gk‖L2 ≤
{∫

Qk\Qk−1

|F |2
}1/2

+ |FQk−1 ||Qk−1|1/2 + |FQk
||Qk|1/2.

To estimate the first term, recall that, for x ∈ Rn
+ \Q1,

|F (x)| ≤ C|Q|1/n
|x− yQ|n+1

.

Therefore, with δ being one-half the sidelength of Q, we have{∫
Qk\Qk−1

|F |2
}1/2

≤ Cδ

(2k−1δ)n+1
|Qk|1/2

= C2−k(n/2+1)δ−n/2

= C2−k|Qk|−1/2.

As for the second and third terms, we can use the fact that
∫
Rn

+
F = 0, and the

estimate for F (x) in Rn
+ \Q1, to get:

|FQk
| =

1
|Qk|

∣∣∣∣∫
Qk

F (x)dx
∣∣∣∣

=
1
|Qk|

∣∣∣∣∣
∫
Rn

+\Qk

F (x)dx

∣∣∣∣∣
≤ C|Q|1/n

|Qk|
∫
|x−yQ|≥2kδ

1
|x− yQ|n+1

dx

≤ C
δ

(2kδ)n+1
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARDY SPACES, BMO, AND BOUNDARY VALUE PROBLEMS 1639

so

|FQk
||Qk|1/2 ≤ C

δ

(2kδ)n+1
|Qk|1/2

= C2−k|Qk|−1/2.

The estimate for k − 1 is the same up to a constant. Thus we see that

‖gk‖L2 ≤ C2−k|Qk|−1/2.

Now let λk = C2−k for k ≥ 2, λ1 = C1, and ak = λ−1
k gk. Then each ak is supported

in Qk ⊂ Rn
+, and satisfies

∫
ak = 0 and ‖ak‖L2 ≤ |Qk|−1/2, so it is an H1

z (Rn
+)

atom. Also F =
∑
λkak, and

∞∑
k=1

|λk| = C1 + C
∞∑
k=2

2−k = A <∞.

Here A is independent of a.
This completes the proof of Proposition 5.2.

Proof of Theorem 5.1. We are going to give a local version of the proof of Proposi-
tion 5.2. We will give the proof for the case of the Dirichlet problem, and indicate
where changes must be made for the Neumann problem. Again, it suffices to con-
sider an h1

z atom a. Let u = G(a), fix j, l, and set

F =
∂2u

∂xj∂xl
.

We will give an atomic decomposition for F in terms of modified h1
z atoms (see

Remark 3 following Definition 2.3).
We must distinguish between the case where a is supported “away from the

boundary”, and the case where a is supported “near the boundary”. Cover Ω by
open sets U0, . . . , UM , where U0 ⊂ Ω, ∂Ω ⊂ ⋃Mi=1 Ui, and in each Ui, i = 1, . . . ,M ,
we have a system of tangential and normal coordinates (t1, . . . , tn). Let CΩ > 0
be such that if B is a ball with |B| < CΩ, then B ∩ Ω ⊂ Ui for some i. If Q is
the supporting cube of a, and |Q| < CΩ, let K be the largest integer such that
|2KQ| < CΩ, and set

QK = 2KQ ∩Ω.
Then one of the following cases must hold:
Case 0: |Q| ≥ CΩ. In this case, we treat F as a multiple of a large modified h1

z

atom, supported in all of Ω. Since |Ω| ≥ CΩ, we only need to check the size
condition, which follows from the L2 estimates:

‖F‖L2 =
∥∥∥∥ ∂2u

∂xj∂xl

∥∥∥∥
L2

≤ C‖a‖L2 ≤ CCΩ
−1/2.

This shows that the h1
z norm of F is bounded by a constant independent of a.

Case 1: |Q| < CΩ and QK ⊂ U0. By rotating and translating, we can assume Q =
[−δ, δ]n for some δ > 0.

In order to use get the atomic decomposition for F , we need an analogue of the
cancellation property 5.1. We start by getting the size estimates on F and the first
derivatives of u. If G is the Green’s function for the Dirichlet problem, then

F (x) =
∫

Ω

∂2G(x, y)
∂xj∂xl

a(y)dy.
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By interchanging the role of the variables in estimate 3.1 and its proof, we get that

|∂αy ∂xj∂xl
G(x, y)| ≤ C|x− y|−n−|α|

for 0 ≤ |α| ≤ 1. The same holds for the Neumann function G̃, following the proof
of estimate (4.7). Combined with the moment condition on a, this gives

|F (x)| ≤ C

|x|n+1

∫
Q

|y||a(y)|dy +
C

|x|n
∣∣∣∣∫
Q

a(y)dy
∣∣∣∣

≤ C|Q|1/n
|x|n+1

+
C|Q|ν1
|x|n

≤ C′|Q|1/n
|x|n+1

.

Note that we were able to absorb the second term because ν1 = 1/n, and |x| is
bounded above. Applying the same estimates to the first order derivatives, and
combining terms, we also get ∣∣∣∣ ∂u∂xl

∣∣∣∣ ≤ C|Q|1/n
|x|n .

Thus we can integrate F in one variable first and use this estimate to get∣∣∣∣∫
QK

F (x)dx
∣∣∣∣ =

∣∣∣∣∣
∫

[−2Kδ,2Kδ]n−1

{∫ 2Kδ

−2Kδ

∂

∂xj

(
∂u

∂xl

)
dxj

}
dx′
∣∣∣∣∣(5.2)

≤ 2C|Q|1/n
|2Kδ|n Voln−1([−2Kδ, 2Kδ]n−1)(5.3)

≤ C|Q|1/n(5.4)

as 2Kδ ≈ CΩ
1/n. This is the approximate cancellation condition which replaces

equation (5.1).
Now we proceed to define, as in the case of the upper half-space: Qk = 2kQ and

FQk
= 1

|Qk|
∫
Qk
F (x)dx for 1 ≤ k ≤ K,

g1 = FχQ1 − FQ1χQ1 ,

and
gk = FχQk\Qk−1 + FQk−1χQk−1 − FQk

χQk

for 2 ≤ k ≤ K. We also set QK+1 = Ω and

gK+1 = FχΩ\QK
+ FQKχQK .

Then again we have that gk is supported in Qk,
∫
gk = 0 for 1 ≤ k ≤ K, and

K+1∑
k=1

gk = FχQK − FQKχQK + gK+1 = F |Ω.

The estimates for the L2 norms of the gk have to be modified to take into account
the approximate cancellation conditions. While we still have

‖g1‖L2 ≤ C‖a‖L2 ≤ C1|Q1|−1/2,
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and for 2 ≤ k ≤ K, {∫
Qk\Qk−1

|F |2
}1/2

≤ C2−k|Qk|−1/2,

we no longer have
∫
F = 0, but rather | ∫QK

F | ≤ C|Q|1/n. This gives

|FQk
| =

1
|Qk|

∣∣∣∣∫
Qk

F (x)dx
∣∣∣∣

≤ 1
|Qk|

{∣∣∣∣∣
∫
QK\Qk

F (x)dx

∣∣∣∣∣ +
∣∣∣∣∫
QK

F (x)dx
∣∣∣∣
}

≤ C|Q|1/n
|Qk|

{∫
2kδ≤|x|≤c

|x|−(n+1)dx + 1

}

≤ C
δ

(2kδ)(n+1)
.

Note that here we again used the fact that 2Kδ ≈ CΩ
1/n. Hence

|FQk
||Qk|1/2 ≤ C2−k|Qk|−1/2,

as above. Combining these estimates, we once more get, for 2 ≤ k ≤ K,

‖gk‖2
L ≤ 2−k|Qk|−1/2.

For K + 1, we have

‖gK+1‖L2 ≤
{∫

Ω\QK

|F |2
}1/2

+ |FQK ||QK |1/2

≤ CΩ|Q|1/n
≤ CΩ.

This shows gK+1 ∈ h1
z(Ω) with norm bounded by a constant, so we only need to

consider F − gK+1.
Set λ1 = C1 and λk = C2−k for 2 ≤ k ≤ K. Then gk = λkak where each ak is

supported in Qk ⊂ Ω,
∫
Qk
ak = 0 when |Qk| ≤ |QK | < CΩ, and ‖ak‖L2 ≤ |Qk|−1/2.

Thus each ak is a modified h1
z(Ω) atom. Also F − gK+1 =

∑
λkak in Ω, and

K∑
k=1

|λk| ≤ C1 + C

K∑
k=2

2−k ≤ C.

Case 2: |Q| < CΩ and QK ⊂ Ui for some i = 1, . . . , n. From the estimates on the
Green’s function and the moment condition, we again get

|F (x)| ≤ C|Q|1/n
|x− yQ|n+1

,

for x ∈ Ω\2Q, where yQ is the center of Q. For such x, we can also bound any first
derivatives of u by |Q|1/n|x− yQ|−n, and u itself by |Q|1/n|x− yQ|−n+1. However,
this does not immediately give us the estimate 5.4 on the integral of F . In order
to do this, we must switch coordinates.

Let U = Ui. Recall that in U there exists a system of tangential and normal
coordinates (t1, . . . , tn). More specifically, we take (t1, . . . , tn−1) to be coordinates
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on ∂Ω∩U and tn to be the signed geodesic distance to ∂Ω in the Euclidean metric
in U . Since a is supported in Ω, and its supporting cube is “near” the boundary
(QK ⊂ U), we may assume that in the new coordinates it is supported in the cube

Q̃ = [−δ, δ]n−1 × [0, 2δ],

where δ is proportional to the sidelength of the original supporting cube (the con-
stants of proportionality depending only on the change of coordinates.) We can
now set

Q̃k = [−2kδ, 2kδ]n−1 × [0, 2k+1δ] ⊂ Ui

for 1 ≤ k ≤ K, which would allow us to continue as in Case 1, provided we can get
the estimate 5.4.

In U , we can rewrite F as

F =
∑

1≤i,m≤n
ai,m

∂2u

∂ti∂tm
+
∑

1≤i≤n
bi
∂u

∂ti

for some smooth functions ai,m and bi. Thus to bound the integral of F , it suffices
to bound the integrals of all first and second derivatives of u in the coordinates ti.

We do this first for the Dirichlet problem. To bound the integral of the first
derivatives, we can use the fundamental theorem of calculus and the values of u on
the boundary of Q̃K to get∣∣∣∣∫

QK

∂u

∂ti
(t)dt

∣∣∣∣ =
∣∣∣∣∫ {∫ ∂u

∂ti
dti

}
dt′
∣∣∣∣ ≤ C|Q|1/n.

Note that when i = n, this involves the Dirichlet boundary conditions.
For the second derivatives, we again use the bound on the first derivatives of u

on the boundary of Q̃K to get∣∣∣∣∫
QK

∂2u

∂tj∂tl
(t)dt

∣∣∣∣ ≤ C|Q|1/n

as long as either j < n or l < n.
In order to get an estimate for ∂2u

∂t2n
, we need to use the fact that ∆u = a in Ω.

In the new coordinates, since we chose tn to be the signed geodesic distance to ∂Ω
in the Euclidean coordinates, this translates into

∂2u

∂t2n
+

∑
1≤i,m≤n−1

ci,m
∂2u

∂ti∂tm
+
∑

di
∂u

∂ti
= a,

where ci,m and di are smooth functions in U . Combined with the approximate
moment condition on a, this gives the desired estimate on the integral of ∂2u

∂t2n
, and

hence on the integral of F (estimate 5.4).
For the Neumann problem, we are no longer able to estimate the integral of

∂u
∂tn

on QK , as above. However, we can use the Neumann boundary conditions

to estimate the integral of ∂2u
∂t2n

, as long as ∂
∂tn

|∂Ω = −~n, where ~n is the outward
normal vector on the boundary. Then we can proceed to estimate the integral of
∂u
∂tn

on QK by solving for ∂u
∂tn

in the equation ∆u = a. We need to make sure that
the coefficient of ∂

∂tn
in the expression for the Laplacian is non-vanishing. This

coefficient turns out to be the Euclidean Laplacian of tn, ∆tn. But this can always
be taken to be non-vanishing, if necessary by replacing tn with 1 − e−tn . These
modifications give estimate 5.4 for the Neumann problem.
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Now we can proceed exactly as in Case 1 to get an atomic decomposition for F
with atoms supported entirely in Ω. These will be h1

z atoms with respect to the
new coordinates (t1, . . . , tn) in U , and therefore when we pull back to the original
coordinates, they will become modified h1

z atoms.
Thus in all three cases we have exhibited an atomic decomposition for F with

modified h1
z atoms, proving that F ∈ h1

z(Ω) with bounded norm.

5.1. BMO regularity. We now come to the question of BMO regularity. First we
have to consider the appropriate BMO spaces. We begin by recalling the definition
of the local BMO, as defined in [G] (Section 5). We shall call this space bmo(Rn).

Definition 5.3. A locally integrable functions g is said to belong to bmo(Rn) if

‖g‖bmo = sup
|Q|<1

1
|Q|

∫
Q

|g(x)− gQ|dx+ sup
|Q|≥1

1
|Q|

∫
Q

|g(x)|dx <∞,

(5.5)

where the suprema are taken over all cubes Q ⊂ Rn with sides parallel to the axes.
Here gQ denotes the mean value of g over Q. We call bmo(Rn) the space of such
functions, with norm given by ‖ · ‖bmo.

We can now define a subspace of this space which turns out to be the dual of h1
d.

Definition 5.4. Let Ω be a bounded domain with smooth boundary. The space
bmoz(Ω) is defined to be the subspace of bmo(Rn) consisting of those elements
which are supported on Ω, i.e.

bmoz(Ω) = {g ∈ bmo(Rn) : g = 0 on Rn \ Ω},
with

‖g‖bmoz(Ω)
def= ‖g‖bmo(Rn).

Theorem 5.5 ([M], [C]). The space bmoz(Ω) is the dual of h1
d(Ω).

Remarks. 1. A global version of bmoz was defined by Miyachi [M], and the local
version was defined in [C], both using a different definition which involved
distinguishing between type (a) and type (b) cubes. However, the remark
following the proof of Theorem 4 in [M], and part (1) of Proposition 2.2 in
[C], show that this definition is equivalent.

2. The duality theorem follows from Theorem 2 in [M] and Theorem 2.3 in [C],
after observing that the space h1

d(Ω) is in fact the same as the space h1
r(Ω)

defined in [CKS] (see Proposition 6.4 in Section 6.)

Next, we define the BMO space corresponding to h1
z .

Definition 5.6. Let Ω be a bounded domain with smooth boundary. A locally
integrable functions g is said to belong to bmor(Ω) if

‖g‖bmor
= sup

|Q|<1

1
|Q|

∫
Q

|g(x)− gQ|dx+ sup
|Q|≥1

1
|Q|

∫
Q

|g(x)|dx <∞,

(5.6)

where the suprema are taken over all cubes Q ⊂ Ω. Here gQ denotes the mean
value of g over Q.

We call bmor(Ω) the space of such functions, with norm given by ‖ · ‖bmor
.
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Remarks. 1. This definition was introduced in [C] for a bounded Lipschitz do-
main Ω. A similar notion is found in [JSW], where the local bmo space
bmo(F ) associated to a closed “d-set” F is defined by using essentially the
same norm, except the cubes are replaced with balls centered inside the set.

2. This space is a local version of the space BMO(D) defined by Jones ([J]) for
a connected open set D, using the norm

‖g‖∗,D = sup
Q⊂D

1
|Q|

∫
Q

|g(x)− gQ|dx.

3. It should be noted that bmoz(Ω) ⊂ bmor(Ω), and simple examples show that
this inclusion is strict.

We now state the duality result:

Theorem 5.7 ([JSW], [C]). The space bmor(Ω) is the dual of h1
z(Ω).

Remarks. 1. Jonsson, Sjögren and Wallin (see [JSW], Theorem 4.2) prove this
theorem for a closed “d-set” F having the Markov property, namely they show
that bmo(F ) is the dual of the Hardy space h1(F ). As mentioned above (see
Remark 1 following Definition 1.2), this is the same as h1

z(Ω) when Ω is a
smoothly bounded domain.

2. In ([C], Theorems 2.1, 3.3) it is shown that for a bounded Lipschitz domain in
Rn, bmor(Ω) is the dual of the quotient space h1

z(Ω), as defined in [CKS] (see
Remark 2 following Definition 1.2). When p = 1, this quotient space is the
same as h1

z(Ω), since there are no nonzero h1 functions which are supported
in Ω and vanish on Ω.

In view of the duality theorems, we want to use our h1
d and h1

z regularity results
for the Dirichlet and Neumann problems to prove similar regularity results for bmoz
and bmor. We first have to define the operators ∂2G

∂xj∂xl
and ∂2G̃

∂xj∂xl
on these spaces.

Note that the spaces bmoz(Ω) and bmor(Ω) are subsets of L2(Ω). In fact, by
the John-Nirenberg inequality, since bmoz(Ω) ⊂ bmo(Rn) ⊂ BMO(Rn) (see [G],
Corollary 1 in Section 4) and Ω is bounded,

‖g‖bmoz(Ω) ≥ C‖g‖Lq(Ω)

for all q <∞. Similarly, we have

‖g‖bmor(Ω) ≥ C‖g‖Lq(Ω)

(see [C], Lemma 1.6, and the proof of Theorem 4.2 in [JSW]). Thus we can define
the operators ∂2G

∂xj∂xl
and ∂2G̃

∂xj∂xl
on bmoz(Ω) and bmor(Ω), in the L2 sense.

We have the following regularity results:

Theorem 5.8. If Ω is as above, and G is the solution operator for the Dirichlet
problem, then for 1 ≤ j, l ≤ n, ∂2G

∂xj∂xl
is a bounded operator from bmoz(Ω) to

bmoz(Ω) and from bmor(Ω) to bmor(Ω).

Theorem 5.9. If Ω is as above, and G̃ is the solution operator for the Neumann
problem, then for 1 ≤ j, l ≤ n, ∂2G̃

∂xj∂xl
is a bounded operator from bmor(Ω) to

bmor(Ω).

Before proceeding with the proofs, we will state and prove a couple of useful
lemmas.
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Lemma 5.10. If T : L2(Ω) → L2(Ω) and the kernel K(x, y) of T satisfies

|K(x, y)| ≤ C|x− y|−(n−1)

for all x 6= y, then T is bounded from bmoz(Ω) to bmoz(Ω) and from bmor(Ω) to
bmor(Ω).

Proof. For q > n, if 1
q + 1

q′ = 1, then q′ < n
n−1 and∫

Ω

K(x, y)q
′
dy <∞.

Hence T is bounded from Lq(Ω) to L∞. Thus for g ∈ bmoz(Ω),

‖T (g)‖bmoz
≤ ‖T (g)‖∞ ≤ C‖g‖Lq ≤ C‖g‖bmoz

,

where the last inequality follows from the John-Nirenberg inequality (see the remark
preceding Theorem 5.8). Similarly, we get the boundedness on bmor.

Lemma 5.11. The spaces bmoz(Ω) and bmor(Ω) are closed under multiplication
by smooth functions, i.e. if g ∈ bmoz(Ω) and ϕ ∈ C1(Ω), then ϕg ∈ bmoz(Ω) and

‖ϕg‖bmoz
≤ C‖ϕ‖C1‖g‖bmoz

,

and similarly for bmor(Ω).

Proof. To prove this for bmoz, it suffices to prove it for bmo(Rn). We begin by
noting that the bmo norm only changes by a factor of 2 if in equation 5.5, for each
cube Q, we replace the mean value gQ by some constant cQ. Take ϕ ∈ C1 with
compact support. Now for every cube Q with |Q| < 1, letting cQ = ϕ(xQ)gQ, where
xQ is the center of Q, we get

1
|Q|

∫
Q

|ϕ(x)g(x) − ϕ(xQ)gQ|dx ≤ 1
|Q|

∫
Q

|ϕ(x)g(x) − ϕ(x)gQ|dx

+
1
|Q|

∫
Q

|ϕ(x)gQ − ϕ(xQ)gQ|dx

≤ ‖ϕ‖∞‖g‖bmo + C|gQ|‖ϕ‖C1|Q|1/n
≤ ‖ϕ‖∞‖g‖bmo + C‖g‖Ln‖ϕ‖C1

≤ C‖ϕ‖C1‖g‖bmo.

Clearly if |Q| ≥ 1,
1
|Q|

∫
Q

|ϕ(x)g(x)|dx ≤ ‖ϕ‖∞‖g‖bmo.

Thus ϕg ∈ bmo with norm bounded by ‖ϕ‖C1‖g‖bmo.
The proof for bmor is obtained from the proof above by considering only cubes

Q ⊂ Ω.

We are now ready to prove the theorems.

Proof of Theorem 5.8. We will give the proof for bmor, and indicate where changes
need to be made for bmoz.

Set Tj,l = ∂2G
∂xj∂xl

, defined on L2(Ω). Take g ∈ bmor(Ω). We want to show
Tj,l(g) ∈ bmor(Ω) with ‖Tj,l(g)‖bmor

≤ C‖g‖bmor
.

As usual, we introduce a partition of unity {ηµ}, µ = 0, . . . , k, with η0 supported
inside Ω, and ηµ, µ ≥ 1, supported in an open set Uµ, with

⋃
Uµ ⊃ ∂Ω. In each Uµ
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we assume the existence of a coordinate system (t1, . . . , tn), where (t1, . . . , tn−1)
are tangential coordinates, and tn is the normal variable.

We want to show ηµTj,l(g) ∈ bmor(Ω) for every µ. We begin with µ = 0.
Case 0: Interior derivatives. We can write

η0Tj,l = XYG,

where X and Y are vector fields with compact support in Ω (i.e. take X = η0
∂
∂xj

,

Y = η̃ ∂
∂xl

with η̃ = 1 in the support of η0).
Note that the operator GXY is bounded on bmor(Ω), since for g ∈ bmor(Ω)

and a an h1
z atom, we have

|〈GXY g, a〉| = |〈g, Y ∗X∗Ga〉|
≤ ‖g‖bmor

‖Y ∗X∗Ga‖h1
z

≤ C‖g‖bmor

by Theorem 5.1. The same proof applies to bmoz by using Lemma 3.5.
Furthermore, by the local smoothing properties of G, the operatorXYG−GXY

is smoothing of order 1, hence satisfies the hypothesis of Lemma 5.10, and thus is
bounded on bmor(Ω). This shows XYG = η0Tj,l is bounded on bmor(Ω).

We now look at the cases where µ ≥ 1. Let U = Uµ. Then we have that

ηµTj,l = XYG,

where now X and Y are vector fields with supports in U . Recalling the coordinates
(t1, . . . , tn) defined in U , we can rewrite X and Y in terms of the vector fields
∂
∂ti

, with smooth coefficients. By Lemma 5.11, it suffices to consider separately the
following three cases.
Case 1: Tangential derivatives. We assume that X and Y are tangential vector
fields supported in U . Then again we have that the operator GXY is bounded on
bmor(Ω), since we can integrate by parts as in Case 0. Thus it remains to show
that the operator XYG −GXY satisfies the hypothesis of Lemma 5.10. We will
show that it is a smoothing operator of order 1.

As in the proof of estimate 3.1 in Section 3, write

G = E + H,

where the operator E is convolution with the Newtonian potential E, and −H =
PRE, the Poisson integral of the restriction of E to the boundary. Now E is
smoothing of order 2, so its commutator with a differential operator of order 2 is
smoothing of order 1. As for P, since X and Y are tangential, we have that

XYP−PXY = P′X + P′′Y + P′′′,(5.7)

where P′, P′′ and P′′′ are Poisson type operators of order 0 (on ∂Ω)—see [GS], pp.
167-168. Composing this with RE, and noting that R commutes with X and Y ,
while again the commutator with E is smoothing of order 1, we get that

XYH−HXY = −XYPRE + PREXY
= −(XYP−PXY )RE−P(XYRE−REXY )
= −(P′X + P′′Y + P′′′)RE−PR(XYE−EXY ),

which is smoothing of order 1.
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Case 2: One normal derivative. We assume X is a tangential vector field and Y =
∂
∂tn

. Denote YG by Tn and the normal derivative by ∂
∂ρ . Then the kernel of Tn is

∂
∂ρx

G(x, y), so we can define the dual operator T ∗n by

T ∗n(f) =
∫

Ω

∂

∂ρy
G(y, x)f(y)dy.

Consider the operator X∗T ∗n . Using the same techniques as in Case 2 of the
proof of Theorem 5.1, namely the cancellation obtained from the tangential deriv-
ative, and the size estimates on the kernel and its derivatives (which are the same
regardless of whether we differentiate G(x, y) in the x or the y variable), we get that
X∗T ∗n is bounded on h1

z. This shows that the dual operator, (X∗T ∗n)∗ = TnX , is
bounded on bmor. The same techniques apply for the case of bmoz. In fact, when
we have one tangential derivative, as in X∗T ∗n , we can even show boundedness from
h1
d to h1

z, since we gain some cancellation.
Thus it remains to showXTn−TnX is bounded on bmor. In light of Lemma 5.10,

it suffice to prove that XTn − TnX is smoothing of order 1.
Again, this follows from the calculus of pseudo-differential and Poisson-type op-

erators. If we write
G = E−PRE

as above, then

Tn =
∂

∂ρ
E− ∂

∂ρ
PRE.

Again the first term is smoothing of order 1, and therefore so is its commutator
with X .

As for the second term, setting Pn = ∂
∂ρP, we get a Poisson-type operator of

order 1. Thus its commutator with the tangential vector fieldX also gives a Poisson-
type operator of order 1. Composing with RE, and recalling that R commutes with
X , give

XPnRE−PnREX = (XPn −PnX)RE + Pn(XRE−REX)
= (XPn −PnX)RE + PnR(XE−EX),

which is smoothing of order 1.
Case 3: Two normal derivatives. The boundedness of ∂2

∂ρ2 G on bmor(Ω) follows

from the previous two cases by writing ∂2

∂ρ2 in terms of the Laplacian, purely tan-
gential derivatives, mixed tangential and normal derivatives, and first order terms.
The Laplacian composed with G gives the identity, while the first order deriva-
tives of G are smoothing of order 1, and are therefore bounded on bmor(Ω) by
Lemma 5.10. Finally, Lemma 5.11 guarantees that multiplication by smooth coef-
ficients does not affect the boundedness on bmor(Ω).

Having proved these four cases, we have concluded the proof of Theorem 5.8.

Proof of Theorem 5.9. The proof follows the same lines as for the Dirichlet problem.
After localizing, we reduce to the problem of showing that the operator XY G̃ is
bounded on bmor(Ω), where G̃ is the solution operator for the Neumann problem,
and X and Y are vector fields in Ω. Case 0, where X and Y are supported in the
interior of Ω, is exactly the same as for the Dirichlet problem, using the interior
regularity for the Neumann problem. Thus we can proceed to the cases where X
and Y are supported in a coordinate neighborhood of a point on the boundary.
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In the case where both X and Y are tangential, we use the h1
z regularity of the

Neumann problem to show that the operator G̃XY is bounded on bmor(Ω). Thus
it remains to show the boundedness of the operator XY G̃− G̃XY , which we again
do using Lemma 5.10, i.e. by showing it is a smoothing operator of order 1.

As in the proof of Claim 4.4 in Section 4, we write

G̃ = E + H̃ + S,

where H̃ = −P
(
QR ∂

∂~nE
)
, S is a smoothing error, and Q is smoothing of order 1

on the boundary. We want to look at XY G̃−G̃XY , where X and Y are tangential
vector fields. Again, the commutator with E gives us an operator of one degree of
smoothing, and similarly for the smoothing error S. Thus we need only concern
ourselves with H̃.

Write

XY H̃− H̃XY = −XYP
(
QR

∂

∂~n
E
)

+ P
(
QR

∂

∂~n
E
)
XY

= −(XYP−PXY )QR
∂

∂~n
E−P(XYQ−QXY )R

∂

∂~n
E

−PQR
(
XY

∂

∂~n
E− ∂

∂~n
EXY

)
,

where we have again used the fact that R commutes with X and Y . From equa-
tion 5.7 above, we get that the first term on the right-hand side can be written
as

(P′X + P′′Y + P′′′)QR
∂

∂~n
E.

Since ∂
∂~nE is smoothing of order 1, XQ, Y Q and Q are operators of order 0 (or

better) on ∂Ω, and P′, P′′ and P′′′ are Poisson-type operators of order 0, we get
that the first term is smoothing of order 1. Similarly, since XYQ−QXY is of order
0 on ∂Ω, the second term is of the same form, hence smoothing of order 1. In the
third term, the commutator XY ∂

∂~nE− ∂
∂~nEXY is of order 0, but Q is smoothing

of order 1 on ∂Ω, so again we get a term which is smoothing of order 1.
In the case of one tangential derivative (X) and one normal derivative (Y ),

denoting the operator Y G̃ by T̃n, and following the argument of Case 2 in the
proof of Theorem 5.8 above, we have to show that the operator XT̃n − T̃nX is
smoothing of order 1. Again we only need to consider the commutator of X with

∂

∂ρ
H̃ = −Pn

(
QR

∂

∂~n
E
)
,

where Pn is the normal derivative of the Poisson operator P. The argument pro-
ceeds as for the Dirichlet problem.

Finally, the case of the two normal derivatives is also handled the same way as
in the proof of Theorem 5.8, so that we can conclude the proof of Theorem 5.9.

6. Relations between the spaces

In this section we will discuss the relations between the two spaces hpz(Ω) and
hpd(Ω), as well as their relations to the spaces hpz(Ω) and hpr(Ω) considered in [CKS].

We begin by comparing hpz(Ω) and hpd(Ω). To do so, we must consider elements
of hpz(Ω) as distributions in C∞d ′(Ω). That is, for f ∈ hpz(Ω), we can define a linear
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functional f̃ on C∞d (Ω) by
〈f̃ , ϕ〉 = 〈f, ϕ̃〉,

where ϕ ∈ C∞d (Ω), and ϕ̃ ∈ S(Rn) is an extension of ϕ. This is independent of the
extension because f is supported on the compact set Ω, which also shows that f̃
must be continuous on C∞d (Ω). Thus f → f̃ is a mapping from hpz(Ω) to C∞d ′(Ω).
The kernel of this map is

hp0(∂Ω) = {f ∈ hp(Rn) : 〈f, ϕ〉 = 0 ∀ϕ ∈ S with ϕ|∂Ω = 0},
which is the space of hp(Rn) distributions supported on ∂Ω and having order zero
in the normal direction. (This is not to be confused with any hp space that can be
defined on ∂Ω as a manifold.)

We can identify the quotient space hpz(Ω)/hp0(∂Ω) with a subspace of C∞d ′(Ω).
As such, we have the following characterization:

Proposition 6.1. For p < 1,

hpd(Ω) ∼= hpz(Ω)/hp0(∂Ω)

with comparable norms, i.e. there is a linear operator T from hpz(Ω)/hp0(∂Ω) onto
hpd(Ω) such that for every equivalence class [f ] ∈ hpz(Ω)/hp0(∂Ω),

‖T ([f ])‖hp
d(Ω) ≈ inf{‖f‖hp

z(Ω) : f ∈ [f ]}.

Proof. As explained above, since hp0(∂Ω) is the kernel of the map f → f̃ from hpz(Ω)
into C∞d ′(Ω), we can define T from hpz(Ω) by T ([f ]) = f̃ , and this is independent
of the choice of the representative f . Thus to show that the image of this map is
contained hpd(Ω), it suffices to show that for every f ∈ hpz(Ω), f̃ ∈ hpd(Ω) and

‖f̃‖hp
d
≤ ‖f‖hp

z
.

This can be seen in two ways. Using the maximal function definitions (as in
Section 1), we see that by extending every normalized C∞d (Ω) bump function to a
normalized bump function in D(Rn), we have that

md(f̃)(x) ≤ m(f)(x)

for all x ∈ Ω; hence f̃ ∈ hpd(Ω) with

‖f̃‖hp
d

= ‖md(f̃)‖Lp(Ω) ≤ ‖m(f)‖Lp(Rn) = ‖f‖hp
z
.

Alternatively, using the atomic decompositions, it is enough to note that for an
hpz atom a, ã = a is already an hpd(Ω) atom.

Conversely, to show that T is onto and the bounds on the norms can be reversed,
we have to show that if g ∈ hpd(Ω), we can write g = f̃ for some f ∈ hpz(Ω), and

‖g‖hp
d
≥ C inf

f̃=g
‖f‖hp

z
.

As in Theorem 2.6, write g =
∑
λjaj , where aj are hpd atoms. Suppose we can show

that every aj = f̃j for some fj ∈ hpz(Ω) with ‖fj‖hp
z
≤ C. Then setting f =

∑
λjfj

in S′(Rn), we get that f ∈ hpz(Ω) and f̃ =
∑
λj f̃j = g, since the map f → f̃ is

continuous on S ′(Rn). Furthermore,

‖f‖hp
z
≤ C

(∑
|λj |p

)1/p
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and each atomic decomposition of g gives rises to such an f , so

inf
f̃=g

‖f‖hp
z
≤ C inf

(∑
|λj |p

)1/p

= C′‖g‖hp
d
.

Now if aj is a type (a) hpd atom, or an atom supported in a large cube, then it is
also an hpz atom, so we can take fj = aj . Thus it remains to prove the following:

Lemma 6.2. Suppose p < 1. If a is a type (b) hpd atom with a small supporting
cube (i.e. |Q| < CΩ), then there exists f ∈ hpz(Ω) such that f − a ∈ hp0(∂Ω) and

‖f‖hp
z(Ω) ≤ C,

with C independent of a.

In particular, this shows that a = f̃ , since

〈f̃ − a, ϕ〉 = 〈f − a, ϕ̃〉 = 0

for all ϕ ∈ C∞d (Ω).

Proof of lemma. Since a is supported in Q∩Ω, where the cube Q is small and near
the boundary, we can find a neighborhood U of ∂Ω containing Q, in which there is
defined a smooth projection π : U → ∂Ω.

Define a linear functional Λ on φ ∈ S(Rn) by

〈Λ, φ〉 =
∫
a(y)φ(π(y))dy.

Since π is smooth, Λ is continuous, hence a tempered distribution. Furthermore,
〈Λ, ϕ〉 = 0 whenever ϕ|∂Ω = 0.

We claim that Λ ∈ hp(Rn). To see this, we look at the grand maximal function
m(Λ), as in Definition 1.1. Take x ∈ Rn, and let φxt be a normalized bump function
supported in a ball of radius R ≤ 1 containing x. Then

|〈Λ, φxt 〉| =
∣∣∣∣∫
Q

a(y)φxt (π(y))dy
∣∣∣∣

≤ |Q|−1/p‖φxt ‖∞|{y ∈ supp(a) : π(y) ∈ supp(φxt )}|
≤ C|Q|−1/p‖φxt ‖∞ diam(Q)tn−1

≤ C′|Q|−1/p+1/nt−1

≤ C′′|Q|−1/p+1/n(dist(x, ∂Ω))−1

since we must have 2t ≥ dist(x, ∂Ω) in order for φxt (π(y)) 6= 0 for some y.
If we now vary φxt , we see that the maximal function m(Λ) is supported in a

tubular neighborhood of “radius” 2 around ∂Ω. Thus∫
Rn

m(Λ)(x)pdx ≤ C|Q|−1+p/n

∫
{x:dist(x,∂Ω)≤2}

(dist(x, ∂Ω))−pdx

≤ CQ,Ω

since p < 1 and Ω is bounded. Thus Λ ∈ hp(Rn), and since it is supported on ∂Ω
and has order zero, Λ ∈ hp0(∂Ω). Note that the hp norm of Λ depends on a, and
may blow up as the supporting cube of a shrinks.

Now let f = a − Λ in S ′(Rn). Since a ∈ hp(Rn) and Λ ∈ hp(Rn), we have
f ∈ hp(Rn). Also, f = 0 on Rn \ Ω, so f ∈ hpz(Ω). We want to show its norm is
bounded by a constant independent of a.
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Let us compute the local grand maximal function m(f). For x ∈ 2Q, write

m(f)(x) ≤ m(a)(x) + m(Λ)(x).

Now we know from the size condition on a and the L2 boundedness of the maximal
function that ∫

2Q

m(a)p ≤ C

(∫
2Q

|a|2
)p/2

|Q|1−p/2

≤ C.

As for Λ, we have from above that∫
2Q

m(Λ)p(x)dx ≤ C|Q|−1+p/n

∫
2Q

(dist(x, ∂Ω))−pdx

≤ C′|Q|−1+p/n diam(Q)1−p diam(Q)n−1

≤ C′′.

When x 6∈ 2Q, take φxt as above and write

〈f, φxt 〉 =
∫
Q

a(y)φxt (y)dy −
∫
Q

a(y)φxt (π(y))dy

=
∫
Q

a(y)[φxt (y)− φxt (π(y))]dy.

But the function ϕxt (y) = φxt (y) − φxt (π(y)) is in C∞d (Ω) (where we might have to
use a cutoff function supported in U in order to define ϕ for all y). Thus by the
moment conditions on a,

|〈f, φxt 〉| ≤ ‖ϕxt ‖CNp+1(Q)|Q|νp

≤ Cπ‖φxt ‖CNp+1(Q)|Q|νp

≤ Ct−n−(Np+1)|Q|νp

≤ C′(dist(x,Q))−n−(Np+1)|Q|(Np+1)/n+1−1/p.

Note that for 〈f, ϕxt 〉 6= 0 we must have either 2t ≥ dist(x,Q) or 2t ≥ dist(x, π(Q)),
and since x 6∈ 2Q and Q is a type (b) cube, this gives t ≥ C dist(x,Q) for some
constant C.

Thus∫
x 6∈2Q

m(f)(x)pdx ≤ C|Q|p(Np+1)/n+p−1

∫
x 6∈2Q

(dist(x,Q))−np−(Np+1)p

≤ C′|Q|p(Np+1)/n+p−1 diam(Q)n−np−(Np+1)p

≤ C′′

since np+ (Np + 1)p > np+ n(1/p− 1)p = n.
We have now shown that

‖f‖hp
z

= ‖m(f)‖Lp(Rn) ≤ C,

which concludes the proof of Lemma 6.2.

By the atomic decomposition, this also completes the proof of Proposition 6.1.
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Note that Proposition 6.1 applies only to p < 1. For the case p = 1, the situation
is different. Since elements of h1(Rn) are functions, the space h1

0(∂Ω) consists only
of the zero function. Thus the quotient space h1

z(Ω)/h1
0(∂Ω) is just h1

z(Ω), the h1

functions supported on Ω. We claim that this space is different from h1
d(Ω).

By the atomic decomposition (Theorem 2.6), we know that the elements of h1
d(Ω)

are also functions (since the sums converge in L1). We want to characterize these
functions.

In order to do this, we recall the space hpr(Ω), defined in [M] and [CKS]. Let
D(Ω) denote the space of C∞ functions with compact support in Ω, and let D′(Ω)
denote its dual, the space of distributions on Ω.

Definition 6.3. The space hpr(Ω) consists of elements of D′(Ω) which are the re-
strictions to Ω of elements of hp(Rn), i.e.

hpr(Ω) = hp(Rn)/{f ∈ hp(Rn) : f = 0 on Ω},
equipped with the quotient norm

‖[f ]‖hp
r(Ω) = inf{‖f‖hp(Rn) : f ∈ [f ]}.

Again it is clear that when p = 1, this is a space of functions, since elements of
h1
r(Ω) are just restrictions to Ω of functions in h1(Rn). Thus we can state:

Proposition 6.4. For n
n+1 < p ≤ 1,

hpd(Ω) ∼= hpr(Ω).

Furthermore, considered as subspaces of L1(Ω), we have

h1
z(Ω) ⊂6= h1

d(Ω) = h1
r(Ω).

Proof. The equivalence of hpd(Ω) and hpr(Ω) follows immediately from the atomic
decompositions. From [M] (Theorem 1) and [CKS] (Theorem 2.7), we know that
every f ∈ hpr(Ω) has a decomposition

f =
∑

λjaj

in D′(Ω), where the aj are either hp(Rn) atoms supported in type (a) cubes, or
atoms supported in type (b) cubes and satisfying a size condition, but no moment
condition. Note that these are essentially type (a) and type (b) hpd atoms, since
when n

n+1 < p ≤ 1, the moment conditions 2.3 in Definition 2.3 are null (they
follow from the size condition by expanding the C∞d test function around a point on
the boundary). The only difference is that in both [M] and [CKS], type (b) cubes
are assumed to be contained in Ω, and in fact their distance from the boundary
is assumed to be proportional to their diameter. However, because of the lack of
moment conditions, it can be shown that a type (b) hpd atom can be decomposed
into type (b) hpr atoms, as in [M] and [CKS]—see [CKS], pp. 295-296, where this
is done for Rn

+.
Note that for this range of p, hpr(Ω) distributions can be applied to test functions

with only one order of vanishing at the boundary, and therefore can be considered
as distributions in C∞d ′(Ω). Also for this range of p, the convergence of the atomic
decompositions in D′(Ω) and in C∞d ′(Ω) is equivalent. Thus we have the same
atomic decomposition for hpr(Ω) and hpd(Ω), considered as subspaces of C∞d ′(Ω),
which means that these two spaces are the same, with equivalent norms.
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The fact that h1
z(Ω) is a subset h1

r(Ω) is obvious, since every function f ∈ h1
z(Ω)

can be extended by 0 to a function in h1(Rn), and the norm is the same. Thus
f ∈ h1

r(Ω) and
‖f‖h1

r
≤ ‖f‖h1

z
,

since the h1
r norm is the infimum of the h1(Rn) norms of all possible extensions of

f .
To see that h1

z(Ω) is a strict subset of h1
r(Ω), we will construct a function f ∈

h1
r(Ω) \ h1

z(Ω). By translating and rescaling, we may assume 0 ∈ ∂Ω and the cone

Γ = {x = (x′, xn) : 2|x′| ≤ xn, |xn| ≤ 1} ⊂ Ω.

For j ≥ 1, set
Qj = [−2−j−1, 2−j−1]n−1 × [2−j , 2−j+1],

and
aj = |Qj|−1χQj .

Then aj are type (b) h1
r atoms. Let

f =
∞∑
j=1

1
j2
aj .

Then f ∈ h1
r(Ω).

It is also easy to see that m(f)(x) ≥ c
|x|n log(1/|x|) , for x ∈ Γ, |x| < 1/2, and

hence, f /∈ h1
z(Ω). This concludes the proof of Proposition 6.4.

We may now ask what are the relations between the spaces hpz(Ω) and hpd(Ω)
and the spaces hpr(Ω) when p is small. Recall that in [CKS], in order to relate hpz
to hpr , the quotient space

hpz(Ω) = hpz(Ω)/{f ∈ hpz(Ω) : f = 0 on Ω}
was introduced (see Remark 2 following Definition 1.2.) Note that in this case, the
null space

hp(∂Ω) = {f ∈ hpz(Ω) : f = 0 on Ω}
is the whole space of hp distributions supported on ∂Ω, which is strictly larger than
hp0(∂Ω) when p < n

n+1 .
We can identify hpz(Ω) with a set of distributions in D′(Ω), and equipped with

the quotient norm, it is clearly a subspace of hpr(Ω).
By analogy, we can define

hpd(Ω) = hpd(Ω)/{f ∈ hpd(Ω) : f = 0 on Ω},
where f = 0 on Ω for f ∈ C∞d ′ means 〈f, ϕ〉 = 0 whenever ϕ ∈ C∞d (Ω) has compact
support in Ω. In other words, the null space is the space of distributions in hpd(Ω)
which are supported on ∂Ω.

Again it is easy to see that elements of hpd(Ω) can be identified with distributions
on Ω, since every f ∈ C∞d ′(Ω) immediately induces a distribution in D′(Ω), which
is zero precisely when 〈f, ϕ〉 = 0 for every smooth ϕ with compact support in Ω.

Proposition 6.5. Considered as subspaces of D′(Ω), when p < 1,

hpz(Ω) = hpd(Ω) ⊂ hpr(Ω).

Moreover, for N = 0, 1, 2, . . . and n
n+N+1 < p < n

n+N ,

hpz(Ω) = hpr(Ω).
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Proof. The fact that hpz(Ω) = hpd(Ω) as spaces of distributions on Ω follows almost
immediately from Proposition 6.1 and its proof. For consider an equivalence class
[f ] ∈ hpz(Ω). Taking a representative f ∈ [f ], f ∈ hpz(Ω), we can map f to f̃ ∈ hpd(Ω),
with

‖f̃‖hp
d(Ω) ≤ ‖f‖hp

z(Ω).

But if we also have g ∈ [f ], then f = g in D′(Ω); hence f̃ = g̃ in D′(Ω). Thus we
can map [f ] to the equivalence class [f̃ ] in hpd(Ω), and

‖[f̃ ]‖hp
d(Ω) = inf

h∈f̃
‖h‖hp

d(Ω) ≤ inf
g∈[f ]

‖g‖hp
z(Ω) = ‖[f ]‖hp

z(Ω).

This shows hpz(Ω) ⊂ hpd(Ω) with a bound on the norms.
Conversely, we show in the proof of Proposition 6.1 that every f ∈ hpd(Ω) can

be decomposed in C∞d ′(Ω) as g + b, where g ∈ hpz(Ω), b ∈ hp0(∂Ω), and the norm
‖f‖hp

d
is equivalent to the infimum of the norms ‖g‖hp

z
over all such decompositions.

Since this decomposition holds a fortiori in D′(Ω), we get that every equivalence
class [f ] ∈ hpd(Ω) is the image of an equivalence class [g] ∈ hpz(Ω), with

‖f‖hp
d(Ω) ≥ C‖[g]‖hp

z(Ω).

Thus we have shown that hpz(Ω) = hpd(Ω) with equivalent norms.
Since we have already pointed out that hpz(Ω) ⊂ hpr(Ω), we now get that hpd(Ω) ⊂

hpr(Ω). This can also be seen from the atomic decomposition, since type (b) hpd
atoms are essentially (or can be decomposed into) type (b) hpr atoms—see the
proof of Proposition 6.4.

For the case n
n+N+1 < p < n

n+N , in light of the atomic decomposition for hpr ,
it suffices to prove that every hpr atom is in hpz(Ω), with bounded norm. This is
obvious for atoms supported in large cubes and for type (a) atoms, since they are
already hpz atoms. Thus it remains to show the following:

Lemma 6.6. Suppose n
n+N+1 < p < n

n+N . Let a be a type (b) hpr atom supported
in a cube Q with |Q| < 1. Then in D′(Ω),

a =
∑

λjaj ,

where aj are hpz atoms, and ∑
|λj |p ≤ C,

where the constant C is independent of a.

Proof of lemma. By choosing appropriate coordinates, we can assume 0 ∈ ∂Ω and
a is supported in

Q = [−δ, δ]n−1 × [(A − 1)δ, (A+ 1)δ]

with δ < 1 and A ≥ 1.
Note that N = Np, so that the aj (when supported in small cubes) need to

satisfy all moment conditions up to order N . We proceed by induction.
Let K ≤ N , and assume a has vanishing moments up to order K−1 (no moment

condition is assumed when K = 0). We will show that we can write a =
∑
λjaj

with aj having vanishing moments up to orderK, and
∑ |λj |p ≤ C. The aj will also

satisfy the size condition, and the supporting cubes Qj will satisfy the conditions:

A′Qj ⊂ Ω
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and
2A′Qj ∩ ∂Ω 6= ∅,

with A′ = (3A + 1)/(A + 3) ≥ 1. Thus the new atoms will satisfy the induction
hypothesis for the next step.

Let b0 = a, and for j = 1, 2, 3, . . . , define bj by

bj(x) = 2j(K+n)a(2jx).

Then bj is supported in

Q̃j = [−2−jδ, 2−jδ]n−1 × [2−j(A− 1)δ, 2−j(A+ 1)δ].

Also, ∫
Q̃j

bj(x)xαdx = 2j(K−|α|)
∫
Q

a(x)xαdx,

so bj satisfies the same moment conditions as a. Finally,

‖bj‖∞ ≤ 2j(K+n)|Q|−1/p.

Now if we set
fj = bj − bj+1,

we have that fj is supported in the smallest cube containing Q̃j and Q̃j+1, namely

Qj = [−2−(j+2)(A+ 3)δ, 2−(j+2)(A+ 3)δ]n−1 × [2−(j+1)(A− 1)δ, 2−j(A+ 1)δ],

fj satisfies all the moment conditions that a satisfies, and in addition∫
Qj

fj(x)xαdx =
∫
Q̃j

bj(x)xαdx−
∫
Q̃j+1

bj+1(x)xαdx

= 2j(K−|α|)
∫
Q

a(x)xαdx− 2(j+1)(K−|α|)
∫
Q

a(x)xαdx

= 0

whenever |α| = K. As for size,

‖fj‖∞ ≤ 2j(K+n)|Q|−1/p

= Cn,p,A2j(K+n−n/p)|Qj |−1/p.

Thus we can let
λj = Cn,p,A2j(K+n−n/p)

and
aj = λ−1

j fj .

The aj satisfy the conditions stated above, and∑
|λj |p = C′n,p,A

∞∑
j=0

2j(K+n−n/p)p ≤ C

since K ≤ N < n/p− n.
It remains to show a =

∑
λjaj in D′(Ω). However, since a−∑J

0 λjaj = bJ+1 is
supported in Q̃J+1, which is contained in smaller and smaller neighborhoods of ∂Ω
as J increases, we have

lim
J→∞

〈a−
J∑
0

λjaj , ψ〉 → 0
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for every ψ with compact support in Ω (actually one can show that the vanishing
of ψ up to order K at the boundary is sufficient). This completes the proof of the
lemma.

As was pointed out, by the atomic decomposition, this also concludes the proof
of Proposition 6.5.

The question arises as to the situation for p = n/(n +N), N = 0, 1, 2, . . . . We
already saw in Proposition 6.4 that when p = 1, h1

z is a strict subspace of h1
d = h1

r

(here the distinction between the spaces and their quotients is irrelevant). Thus we
have the following:

Problem. Let p = n/(n + N), N = 1, 2, . . . . Then considered as subspaces of
D′(Ω), is it true that hpz(Ω) 6= hpr(Ω)?

In other words, the question is whether for the “critical” values of p, there exists
a distribution f on Ω which is the restriction to Ω of an element of hp(Rn), but not
the restriction to Ω of any element of hp(Rn) which is supported on Ω. Intuitively,
the idea is that one cannot “correct” the lack of cancellation of f by a distribution
supported on ∂Ω. To answer the question, one needs to understand the behavior of
the maximal function of distributions supported on ∂Ω, and to be able to determine
when such a distribution is in hp(Rn). While several sufficient conditions are known
in general (see [S2], 5.18), there is one case in which the necessary and sufficient
conditions are well understood, which is the case where ∂Ω consists of a single
point, i.e. when

Ω = R+ = {x ∈ R : x > 0}.
In this case, we denote by S(R+) the space of Schwartz functions with support

in R+, and let S ′(R+) be the dual space. The space hpr(R+) is the subspace of
S ′(R+) consisting of restrictions of elements of hp(R) to R+. As above, hpz(R+) is
the space of elements of hp(R) which are supported on R+.

Lemma 6.7. Let p = 1/(1 +N), N = 0, 1, 2, . . . . Then there exists a distribution
f ∈ hpr(R+) such that for every g ∈ hpz(R+),

g|R+ 6= f

in S ′(R+).

Proof of lemma. We will give two examples, which are essentially two versions of
the same example.

For the first example, we take

f1(x) =
dN+1

dxN+1

[(
log

1
x

)−1/p

η(x)

]
,

defined for x > 0, where η is a smooth function satisfying η(x) = 1 for 0 < x ≤ 1/2
and η(x) = 0 when x ≥ 3/4. Being the derivative of a smooth function on R+ with
bounded support, f1 defines a distribution in S ′(R+). Note that since N+1 = 1/p,

f1(x) ≈
(

log
1
x

)−1/p−1

x−1/pη(x)
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as x→ 0, so f1 is not a distribution in S ′(R). To extend f1 to such a distribution,
we let

h(x) =

{ (
log 1

x

)−1/p
η(x) if x ≥ 0,

0 if x ≤ 0,

and define

F1 =
dN+1

dxN+1
h

in the sense of distributions. Then F1 ∈ S′(R) and F1|R+ = f1.
We build the second example by means of an atomic decomposition, analogous

to the one constructed in the proof of Proposition 6.4. For j ≥ 1, set

Ij = [2−j, 2−j+1],

λj =
1

j1+1/p
,

and
aj = 2j/pχIj .

Let

f2 =
∞∑
j=1

λjaj .

Again f2 defines a distribution in S ′(R+), and for x ≈ 2−j ,

f2(x) ≈ 1
j1+1/p

2j/p ≈
(

log
1
x

)−1/p−1

x−1/p.

To extend f2 to a distribution in S ′(R), we define distributions τj by

〈τj , ϕ〉 = λj

∫
aj(x)

[
ϕ(x)−

N−1∑
k=0

1
k!
dkϕ

dxk
(0)xk

]
dx

for every ϕ ∈ S(R). Since

|〈τj , ϕ〉| = λj2j/p
∣∣∣∣∣
∫
Ij

[
ϕ(x) −

N−1∑
k=0

1
k!

dk

dxk
ϕ(0)xk

]
dx

∣∣∣∣∣
≤ λj2j/p‖ϕ‖CN

∫
Ij

xNdx

≤ C
1

j1+1/p
2j(1/p−N−1)‖ϕ‖CN

= C
1

j1+1/p
‖ϕ‖CN ,

we can define a distribution F2 ∈ S′(R) by

F2 =
∞∑
j=1

τj .

Again we have that

F2|R+ =
∞∑
j=1

τj |R+ =
∞∑
j=1

λjaj = f2.

We shall prove the result for f2; there are parallel arguments for f1.
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Claim 6.8. f2 belongs to hpr(R+).

This is via the atomic decomposition which defines f2.

Claim 6.9. The distribution F2 does not belong to hp(R), since the local grand
maximal function satisfies

m(F2)(x) ≈
(

log
1
x

)−1/p

x−1/p

for 0 < x < 1/2.

To get the lower bound for m(F2), take 0 < x < 1/2. We will use a normalized
bump function φx supported in the interval (−x, 3x), with φx ≥ 0 on (x, 3x) and

φx(y) =
yN

N !(2x)1+N
for y ∈ [0, x].

Note that this is consistent with the condition

|Dα(φx)| ≤ (2x)−1−|α|

for |α| ≤ N + 1. Furthermore,
dkφx
dyk

(0) = 0

for all k ≤ N − 1. Thus 〈F2, φx〉 =
∑
λj
∫
ajφx and we can proceed as in the proof

of Proposition 6.4 to get

〈F2, φx〉 ≥
∑

Ij⊂[0,x]

λj

∫
Ij

aj(y)φx(y)dy

=
1

N !(2x)1+N
∑

Ij⊂[0,x]

λj

∫
Ij

aj(y)yNdy

=
2N+1 − 1

(N + 1)!(2x)1+N
∑

Ij⊂[0,x]

λj2j(1/p−N−1)

≥ CNx
−1−N ∑

j≥− log2 x

j−1/p−1

≈ x−1/p

(
log

1
x

)−1/p

.

This gives the lower bound on the maximal function of F2.
Now we will prove the upper bound on the maximal function of F2. Take 0 < x <

1/2, and let ϕxt be a bump function supported in a ball of radius t ≤ 1 containing
x.

Suppose first that t ≥ x/4. If 2−j > 6t ≥ x + 2t, then supp(ϕxt ) ∩ Ij = ∅, and
we have

|〈τj , ϕxt 〉| =

∣∣∣∣∣∣λj2j/p
∑

k≤N−1

1
k!
dkϕxt (0)

∫
Ij

xkdx

∣∣∣∣∣∣
≤ Cλj

∑
k≤N−1

1
k!
t−1−k2j(1/p−1−k),
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while otherwise we use the estimate

|〈τj , ϕxt 〉| ≤ Cλj‖ϕxt ‖CN ≤ Cλjt
−1−N .

Thus

|〈F2, ϕ
x
t 〉| ≤ C

∑
k≤N−1

1
k!
t−1−k ∑

j<−A log t

2j(N−k)

j1+1/p

+Ct−1−N ∑
j≥−A log t

1
j1+1/p

≤ C
∑

k≤N−1

1
k!
t−1−kt−(N−k)(− log t)−1/p

+Ct−1−N (− log t)−1/p

≤ Ct−1/p

(
log

1
t

)−1/p

≤ Cx−1/p

(
log

1
x

)−1/p

since (x/t)1/p(log x/ log t)1/p remains bounded when x� t.
If t ≤ x/4, we have that ϕxt vanishes in a neighborhood of 0, and

|〈F2, ϕ
x
t 〉| ≤ C

∑
j≤−A log x

λj

∣∣∣∣∫ ajϕ
x
t

∣∣∣∣
≤ C

∑
j≤−A log x

1
j1+1/p

2j/p‖ϕxt ‖L1

≤ Cx−1/p

(
log

1
x

)−1/p

.

Thus we have shown that for 0 < x < 1/2,

m(F2)(x) ≈ x−1/p

(
log

1
x

)−1/p

.

Claim 6.10. Then there is no distribution g ∈ hp(R) with g = 0 on R− and g = f2
on R+.

Recall that F2 is supported on R+ and F2 = f2 on R+. Thus if g is any
distribution in S ′(R) with g = 0 on R− and g = f2 on R+, then g − F2 is
supported on {0}. Since tempered distributions are of finite order, we can write
(see [R], Theorem 6.25)

g − F2 =
K∑
k=0

ckδ
(k)(0),

where δ(k)(0) denotes the k-th derivative of the delta function at 0. We may assume
cK 6= 0. Then if K ≥ N , we have

m(g − F2) ≥ C|x|−N−1
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as x→ 0, and so by the upper bounds on m(F ),

m(g) ≥ C|x|−N−1 = C|x|−1/p

for x small, and m(g) 6∈ Lp(R).
On the other hand, if K < N , then

m(g − F2) ≤ C|x|−N = C|x|1−1/p

as x→ 0, so by the lower bounds on m(F2),

m(g) ≥ C|x|−1/p

(
log

1
x

)−1/p

,

for x small, and again m(g) 6∈ Lp(R).
This completes the proof of the lemma.
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