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Hardy inequality for 
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・A special case of Pitt’s inequality (Beckner, Proc. AMS, 2008)

・Uncertainty principle lemma (Reed & Simon, Methods of MMPⅡ, 1975)

・Dilational characterization (Sasaki & T. O, Commun. Contemp. Math., 2009)

Hardy inequality for 

where

an equivalent form : 

(Edmunds & Triebel, Math. Nachr., 1999) ：



Hardy inequality on 

Leray, J. Math. Pures Appl., 1933.

Ladyzhenskaya, “The mathematical theory of viscous incompressible flow,” 1969.

By density, the inequality holds for all 
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1.

2.

Boundary behavior of functions

Homogeneous norm control

Question



Theorem 1.   
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holds for all 

holds for all                               and fails for some
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Theorem 2.   
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holds for all 

holds for all                               and fails for some
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Theorem 3.   

fails for some

Then

Theorem 4.   
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Proof of Theorem 1  (1)
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Proof of Theorem 2  (1)
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where the boundary value at                 vanishes since
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Proof of Theorem 3.  Let                         satisfy

Then                                         Let                             satisfy

Then                   on and                    on

Therefore, supp           is  compact in

in By mollyfing we see that

Defineon on



Proof of Theorem 4.  
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Define                                      where

while, with

as


