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ABSTRACT

The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra
associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on
a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG].

We also present a new approach to reflection functors and shift functors for generalized preprojective algebras
and symplectic reflection algebras associated with wreath-products.
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1. Introduction

The main result of the paper is the proof of [EG, Conjecture 11.22] that pro-
vides a natural construction of the spherical subalgebra in a symplectic reflection al-
gebra associated with a wreath-product in terms of quantum hamiltonian reduction of
an algebra of differential operators.

To state the main result we briefly recall a few basic definitions.

1.1. Quantum Hamiltonian reduction

We work with associative unital C-algebras and write Hom = HomC, ⊗ = ⊗C,

etc.
Let A be an associative algebra, that may also be viewed as a Lie algebra

with respect to the commutator Lie bracket. Given a Lie algebra g and a Lie
algebra homomorphism ρ : g → A, one has an adjoint g-action on A given by
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adx : a �→ ρ(x) · a − a · ρ(x), x ∈ g, a ∈ A. The left ideal A · ρ(g) is stable under
the adjoint action. Furthermore, one shows that multiplication in A induces a well
defined associative algebra structure on

A(A, g, ρ) := (A/A · ρ(g))adg,

the space of adg-invariants in A/A · ρ(g). The resulting algebra A(A, g, ρ) is called
the quantum Hamiltonian reduction of A at ρ.

Observe that, if a ∈ A is such that the element a mod A · ρ(g) ∈ A/A · ρ(g) is
adg-invariant, then the operator of right multiplication by a descends to a well-defined
map Ra : A/A · ρ(g) → A/A · ρ(g). Moreover, the assignment a �→ Ra induces an
algebra isomorphism A(A, g, ρ) = (A/A · ρ(g))adg

∼→ (EndA(A/A · ρ(g)))op.

If A, viewed as an adg-module, is semisimple, i.e., splits into a (possibly infinite)
direct sum of irreducible finite dimensional g-representations, then the operations of
taking g-invariants and taking the quotient commute, and we may write

A(A, g, ρ) = (A/A · ρ(g))adg = Aadg/(A · ρ(g))adg.(1.1.1)

Observe that, in this formula, (A · ρ(g))adg is a two-sided ideal of the algebra Aadg.
Any A-module M may be viewed also as a g-module, via the homomorphism ρ,

and we write Mg := {m ∈ M | ρ(x)m = 0, ∀x ∈ g} for the corresponding space
of g-invariants. Let (A, g)-mod be the full subcategory of the abelian category of left
A-modules whose objects are semisimple as g-modules. Let A(A, g, ρ)-mod be the
abelian category of left A(A, g, ρ)-modules.

One defines an exact functor, called Hamiltonian reduction functor, as follows

H : (A, g)-mod → A(A, g, ρ)-mod,

M �→ H(M) := HomA(A/A · ρ(g), M) = Mg,
(1.1.2)

where the action of A(A, g, ρ) on H(M) comes from the tautological right action of
EndA(A/A · ρ(g)) on A/A · ρ(g) and the above mentioned isomorphism A(A, g, ρ) =
(EndA(A/A · ρ(g)))op.

1.2. Symplectic reflection algebras for wreath-products

Let n be a positive integer. Let Sn be the permutation group of [1, n] := {1, ..., n},
and write s�m ∈ Sn for the transposition � ↔ m. Let L be a 2-dimensional complex
vector space, and ω a symplectic form on L.

Let Γ be a finite subgroup of Sp(L), and let Γn := Sn�Γn be a wreath product
group acting naturally in Ln. Given � ∈ [1, n] and γ ∈ Γ, resp. v ∈ L, we will write
γ(�) ∈ Γn for γ placed in the �-th factor Γ, resp. v(�) ∈ Ln for v placed in the �-th
factor L.
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According to [EG], there is a family of associative algebras, called symplectic re-
flection algebras, attached to the pair (Ln,Γn) as above. To define these algebras, write
ZΓ for the center of the group algebra C[Γ] and let ZoΓ ⊂ ZΓ be a codimension 1
subspace formed by the elements

c =
∑

γ∈Γ�{1}
cγ · γ ∈ ZΓ, ∀cγ ∈ C.(1.2.1)

Given t, k ∈ C and c ∈ ZoΓ, the corresponding symplectic reflection algebra Ht,k,c(Γn),
with parameters t, k, c, may be defined, cf. [GG, Lemma 3.1.1], as a quotient of the
smash product algebra T(Ln)� C[Γn] by the following relations:

[x(�), y(�)] = t · 1 + k
2

∑

m	=�

∑

γ∈Γ

s�mγ(�)γ
−1
(m) +

∑

γ∈Γ�{1}
cγ γ(�), ∀� ∈ [1, n];(1.2.2)

[u(�), v(m)] = − k
2

∑

γ∈Γ

ω(γ u, v)s�mγ(�)γ
−1
(m) , ∀u, v ∈ L, �, m ∈ [1, n], � 	= m,(1.2.3)

where {x, y} is a fixed basis for L with ω(x, y) = 1.

1.3. Quivers

Let Q be an extended Dynkin quiver with vertex set I, and let o ∈ I be an
extending vertex of Q .

Definition 1.3.1. — The quiver Q CM obtained from Q by adjoining an additional vertex s
and an arrow b : s → o is called the Calogero–Moser quiver for Q . Thus, ICM = I 
 {s} is

the vertex set for Q CM, and the vertex s is called the special vertex.

Given α = {αi}i∈ICM
∈ ZICM , a dimension vector for Q CM, write

Repα(Q CM) :=
⊕

{a:i→j | a∈Q CM}
Hom(Cαi , Cαj )(1.3.2)

=
⊕

{a:i→j | a∈Q CM}
Mat(αj × αi, C)

for the space of representations of Q CM of dimension α. Let D(Q CM, α) be the algebra
of polynomial differential operators on the vector space Repα(Q CM).

The group GL(α) := ∏
i∈ICM

GL(Cαi) acts naturally on Repα(Q CM), by conjuga-
tion. Hence, each element h of the Lie algebra gl(α) := Lie GL(α) gives rise to a vec-
tor field ξ h on Repα(Q CM). This yields a Lie algebra map ξ : gl(α) → D(Q CM, α).

The center of the reductive Lie algebra gl(α) = ⊕i∈Igl(αi) is clearly isomorphic
to CI. Therefore, associated with any χ = {χi}i∈I ∈ CI, one has a Lie algebra homo-
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morphism χ : gl(α) → C, x = ⊕i∈Ixi �→ ∑
i∈I χi · Tr xi. We will use additive notation

for such homomorphisms and write ξ−χ : gl(α) → D(Q CM, α) (rather than ξ⊗(−χ))
for the Lie algebra map h �→ ξ h − χ(h) · 1D . Let Im(ξ − χ) denote the image of the
latter map.

We may apply Hamiltonian reduction (1.1.1) to the algebra D(Q CM, α) and to
the Lie algebra map ξ − χ. This way, we get the algebra

A(D(Q CM, α), gl(α), ξ − χ) = D(Q CM, α)GL(α)/ Jχ,(1.3.3)

where

Jχ := (D(Q CM, α) · Im(ξ − χ))GL(α).

Let T∗Repα(Q CM) be the cotangent bundle on Repα(Q CM). The total space of
the cotangent bundle comes equipped with the canonical symplectic structure and
with a moment map

µ : T∗Repα(Q CM) → gl(α)∗ ∼= gl(α).(1.3.4)

We may apply the classical Hamiltonian reduction to C[T∗Repα(Q CM)], the Poisson
algebra of polynomial functions on T∗Repα(Q CM). This way, we get the Poisson alge-
bra C[µ−1(0)]GL(α) of GL(α)-invariant polynomial functions on the zero fiber of the
moment map. The algebra in (1.3.3) may be viewed as a quantization of the Poisson
algebra C[µ−1(0)]GL(α).

1.4. Main result

From now on, we fix n ∈ N, a 2-dimensional symplectic vector space L and
Γ ⊂ Sp(L), a finite subgroup as in Section 1.2. To (n, L,Γ), we will associate
a quiver Q , a dimension vector α, and a character χ as follows.

We let Q be an affine Dynkin quiver associated to Γ via the McKay corres-
pondence. Thus, the set I of vertices of Q is identified with the set of isomorphism
classes of irreducible representations of Γ. Let Ni be the irreducible representation of
Γ corresponding to the vertex i ∈ I, and let δi = dim Ni. The extending vertex o ∈ I
corresponds to the trivial representation of Γ, so δo = 1. The vector δ = {δi}i∈I ∈ ZI

is the minimal positive imaginary root of the affine root system associated to Q . Mo-
tivated by M. Holland [Ho], we put

∂ = {∂i}i∈I ∈ ZI, ∂i := n(−δi +
∑

{a∈Q CM | t(a)=i}
δh(a)), ∀i ∈ I.(1.4.1)

Given a central element c ∈ ZΓ, write Tr(c; Ni) for the trace of c in the simple
Γ-module Ni, i ∈ I. Thus, for any c ∈ ZoΓ, see (1.2.1), we have

∑
i∈I δi · Tr(c; Ni) = 0.

Associated with any data n ∈ N, k ∈ C, and c ∈ ZoΓ, we introduce three vectors

χ = {χi}i∈ICM
, χ ′ = {χ ′

i }i∈ICM
∈ CICM,
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and

λ(c) = {λ(c)i}i∈I ∈ CI, such that δ · λ(c) = 1,

where we have used standard notation δ · λ = ∑
i δi · λi. These vectors are defined as

follows

λ(c)i := Tr(c; Ni) + δi/|Γ|, ∀i ∈ I;(1.4.2)

χs := n(k · |Γ|/2 − 1) + 1,

χo := λ(c)o − ∂o − k · |Γ|/2,

χi := λ(c)i − ∂i, ∀i ∈ I�{o};
χ ′

s := χs − 1 = n(k · |Γ|/2 − 1),

χ ′
i = χi, ∀i ∈ I.

We are going to consider representations of the quiver Q CM with dimention vec-
tor

α = {αi}i∈ICM
∈ ZICM

≥0 , where αs := 1, and αi := n · δi, ∀i ∈ I.(1.4.3)

Let χ ′ ∈ CICM be as in (1.4.2), and let Jχ′ = (D(Q CM, α) · Im(ξ − χ ′))GL(α) be
the corresponding two-sided ideal in D(Q CM, α), cf. (1.3.3). Write e := 1

|Γn|
∑

g∈Γn
g

for the ‘symmetrizer’ idempotent viewed as an element of the symplectic reflection
algebra Ht,k,c(Γn).

We are now in a position to state our main result about deformed Harish–
Chandra homomorphisms for symplectic reflection algebras associated with a wreath-
product. According to [EG], the importance of the deformed Harish–Chandra homo-
morphism is due to the fact that this homomorphism provides a description of the
spherical subalgebra eHt,k,c(Γn)e ⊂ Ht,k,c(Γn) in terms of quantum Hamiltonian reduction
of the ring of polynomial differential operators on the vector space Repα(Q CM). In the
special case of a cyclic group Γ ⊂ SL2(C), that is, for quivers Q of type Ãm (equipped
with the cyclic orientation), the deformed Harish–Chandra homomorphism has been
already constructed in [Ob], see also [Go]. In all other cases, a construction of the
deformed Harish–Chandra homomorphism Φk,c will be given in the present paper.

Our main result reads

Theorem 1.4.4. — Assume that Γ ⊂ SL2(C) is not a cyclic group of odd order (i.e. Q
is not of type Ã2m), and put t := 1/|Γ|. Then, for any n ∈ N, k ∈ C, c ∈ ZoΓ, there is an

algebra isomorphism

Φk,c : A(D(Q CM, α), gl(α), ξ − χ ′)

= D(Q CM, α)GL(α)/ Jχ′ ∼→ eHt,k,c(Γn)e.
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Furthermore, the map Φk,c is compatible with natural increasing filtrations on the algebras

involved and the corresponding associated graded map gives rise to a graded Poisson algebra iso-

morphism, cf. (1.3.4):

gr Φk,c : C[µ−1(0)]GL(α) ∼→ gr(eHt,k,c(Γn)e).

This theorem is a slightly modified and corrected version of [EG, Conjecture
11.22] (in [EG], as well as in the main body of the present paper, everything is stated
in terms of the quiver Q rather than in terms of the Calogero–Moser quiver Q CM,
see Definition 5.2.1 and Theorem 5.2.4 in Section 5.2 below; however, the two ap-
proaches are easily seen to be equivalent). Theorem 1.4.4 is a common generalization
of two earlier results. The first one is [GG2, Theorem 6.2.3], cf. also [EG, Corollary
7.4]; it corresponds to the (somewhat degenerate) case of Γ = {1}. The second result,
due to M. Holland [Ho], is a special case of Theorem 1.4.4 for n = 1, where the
symplectic reflection algebra is Morita equivalent to a deformed preprojective algebra
of [CBH]. Also, in the special case of a cyclic group Γ = Z/mZ the isomorphism of
Theorem 1.4.4 has been recently constructed in [Go] using the results from [Ob].

A ‘classical’ counterpart of Theorem 1.4.4 involving classical Hamiltonian re-
duction (at generic values of the moment map (1.3.4)) has been proved in [EG, The-
orem 11.16].

Combining Theorem 1.4.4 with (1.1.2), and using the same argument as in the
proof of [GG2, Proposition 6.8.1], we deduce

Corollary 1.4.5. — There exists an exact functor of Hamiltonian reduction

H : (D(Q CM, α), gl(α))-mod → eHt,k,c(Γn)e-mod.

This functor induces an equivalence

(D(Q CM, α), gl(α))-mod/ Ker H ∼→ eHt,k,c(Γn)e-mod. �

We expect that the Hamiltonian reduction functor induces an equivalence be-

tween the subcategory of (D(Q CM, α), gl(α))-mod formed by D-modules whose char-
acteristic variety is contained in the Nilpotent Lagrangian, see [Lu1, §12], and the cate-
gory of finite dimensional eHt,k,c(Γn)e-modules.

1.5. Four homomorphisms

Our construction of the isomorphism Φk,c in Theorem 1.4.4 is rather indirect.
It involves four additional algebras and four homomorphisms between those algebras,
which are important in their own right.
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The first algebra, to be denoted Π′(Q CM), is a slightly renormalized version of
the deformed preprojective algebra, with appropriate parameters, cf. [CBH], associ-
ated to the Calogero–Moser quiver Q CM. The second algebra, to be denoted B, con-
tains the spherical algebra eHt,k,c(Γn)e as a subalgebra. The algebra B is a ‘Calogero–
Moser cousin’ of generalized preprojective algebras introduced by two of us in [GG, (1.2.3)],
see also Definition 6.1.3 below.

The third algebra, Tχ, is a ‘matrix-valued’ counterpart of the algebra introduced
in (1.3.3). To define this algebra, we introduce the following vector spaces

N = ⊕i∈ICM
Ni, where Ns := N∗

o
∼= C, and Ni := N∗

i ⊗ Cn, ∀i ∈ I.(1.5.1)

Thus, we have Ni
∼= Cαi, so the group GL(α) acts on N in an obvious way, and this

gives the tautological representation τ : gl(α) → End N. Following M. Holland [Ho],
we apply the quantum Hamiltonian reduction to the algebra D(Q CM, α)⊗End N and
to the Lie algebra homomorphism

ξ − (χ − τ) : gl(α) → D(Q CM, α) ⊗ End N,

h �→ ξ h ⊗ IdN − 1D ⊗ (χ(h)IdN − τ(h)),

where χ : gl(α) → C is as in (1.4.2). This way, we get an algebra

Tχ := (D(Q CM, α) ⊗ End N)GL(α)

((D(Q CM, α) ⊗ End N) · Im(ξ − (χ − τ)))GL(α)
.(1.5.2)

Now, let P1 = (L�{0})/C× be the projective line. We will consider an appropri-
ate Γn-equivariant vector bundle of rank dim N on X, where X ⊂ (P1)n is a Γn-stable
Zariski open dense subset in the cartesian product of n copies of P1. Further, we will
define a certain algebra D(X, p, �) of twisted differential operators acting in that vector
bundle, see Section 3.1 for the notation and also (3.6.1).

One has the following diagram of four algebra homomorphisms, all denoted by
various Θ’s, involving the four algebras introduced above

Π′(Q CM)

vv

ΘHolland

ll
ll
ll
ll
ll
ll
ll
l

��

ΘQuiver

QQ
QQ

QQ
QQ

QQ
QQ

QQ
Q

Tχ

��
ΘRadial

RR
RR

RR
RR

RR
RR

RR
R B

vv
ΘDunkl

mm
mm
mm
mm
mm
mm
mm
m

D(X, p, �)Γn

(1.5.3)

In this diagram, the map ΘHolland is (a slightly renormalized version of ) an
algebra homomorphism introduced by M. Holland in [Ho]. The map ΘDunkl is
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a Γ-analog of the Dunkl representation for rational Cherednik algebras, cf. [EG]. The
map ΘRadial is obtained by a ‘radial part’ type construction with respect to an appro-
priate transverse slice to generic GL(α)-orbits in Repα(Q CM). We produce such a slice
using a map L⊕n → Repα(Q CM), which is generically injective and is such that its
image is generically transverse to GL(α)-orbits in Repα(Q CM). Our radial part con-
struction associates to a polynomial GL(α)-invariant differential operator
u ∈ (D(Q CM, α) ⊗ End N)GL(α) a Γn-invariant twisted differential operator ΘRadial(u) ∈
D(X, p, �)Γn .

The fourth map, ΘQuiver, is new. The main idea behind the construction of this
map, as well as the definition of the algebra B, will be outlined in Section 1.7 below
and a more rigorous treatment will be given later, in Section 2.2.

Remark 1.5.4. — In the special case of a cyclic group Γ = Z/mZ, the Dunkl op-
erators that we consider are not the same as those introduced earlier by Dunkl-Opdam
in [DO].

1.6. Strategy of the proof of Theorem 1.4.4

The proof of the main theorem is based on the following key result

Theorem 1.6.1. — Diagram (1.5.3) commutes, i.e., we have:

ΘRadial ◦ ΘHolland = ΘDunkl ◦ ΘQuiver.

The proof of this theorem is long and messy; it occupies about one half of
the paper. In the proof, we explicitly compute both sides of the equation
ΘRadial ◦ ΘHolland(x) = ΘDunkl ◦ ΘQuiver(x), for an appropriate set {x, x ∈ Π′(Q CM)}
of generators of the algebra Π′(Q CM).

To deduce Theorem 1.4.4 from Theorem 1.6.1, one has to be able to replace
in diagram 1.5.3 the algebra Tχ , of ‘matrix valued’ twisted differential operators, by
a ‘smaller’ algebra of scalar-valued twisted differential operators of the form
A(D(Q CM, α), gl(α), ξ − χ), that appears in Theorem 1.4.4.

To this end, let ps ∈ End N denote the idempotent corresponding to the projec-
tion N = ⊕

j∈ICM
Nj � Ns. For χ, χ ′ as in (1.4.2), one proves

psTχps
∼= D(Q CM, α)GL(α)/ Jχ′ = A(D(Q CM, α), gl(α), ξ − χ ′) =: Aχ′ .(1.6.2)

Write ei for the idempotent in the algebra Π′(Q CM) corresponding to the triv-
ial path at i. It is easy to see that the map ΘQuiver sends the subalgebra esΠ

′(Q CM)es

⊂ Π′(Q CM), spanned by paths beginning and ending at the special vertex s, into
eHt,k,c(Γn)e, a subalgebra in B. Furthermore, restricting diagram (1.5.3) to the sub-
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algebra esΠ
′(Q CM)es, one obtains four algebra homomorphisms along the perimeter

of the following diagram

esΠ
′(Q CM)es

tttt

ΘHolland

hh
hh
hh
hh
hh
hh
hh
hh
h

��

ΘQuiver

SS
SS

SS
SS

SS
SS

SS
S

D(Q CM, α)GL(α)/ Jχ′ ��
Φk,c

��ΘRadial
UU

UU
UU

UU
UU

UU
UU

UU
U

eHt,k,ce
h

H

uu ΘDunkl
kk
kk
kk
kk
kk
kk
kk
k

D(X, p, �s)
Γn

(1.6.3)

Here, D(X, p, �s)
Γn stands for an appropriate ring of scalar-valued Γn-invariant twisted

differential operators on X.
The perimeter of diagram (1.6.3) commutes by Theorem 1.6.1. In addition, one

proves

Lemma 1.6.4. — In diagram (1.6.3), the map ΘHolland is surjective and the map ΘDunkl

is injective.

It is clear that the lemma yields

Ker ΘHolland ⊂ Ker(ΘRadial ◦ ΘHolland) = Ker(ΘDunkl ◦ ΘQuiver)

= Ker ΘQuiver.

The resulting inclusion Ker ΘHolland ⊂ Ker ΘQuiver implies that we may (and will) define
the dashed arrow Φk,c in diagram (1.6.3) to be the composite

D(Q CM, α)GL(α)

Jχ′

(ΘHolland)−1 esΠ
′(Q CM)es

Ker ΘHolland
�� ��

proj esΠ
′(Q CM)es

Ker ΘQuiver

� �
��ΘQuiver
eHt,k,ce.

To complete the proof of Theorem 1.4.4, one observes that all the objects ap-
pearing in diagram (1.6.3) come equipped with natural filtrations, and all the maps
in the diagram are filtration preserving. Therefore, to prove that the map Φk,c is bi-
jective, it suffices to show a similar statement for gr Φk,c, the associated graded map.
The latter statement follows readily from the results of [CB] and [GG2] concerning
the geometry of moment maps arising from representations of affine Dynkin quivers.

1.7. The algebra B and the map ΘQuiver

To define the algebra B that appears in diagram (1.5.2), we will first introduce
in (2.2.1) certain idempotents ei,n−1 ∈ C[Γn], i ∈ I. Then, we let

M := Ht,k,c(Γn)e
⊕

(⊕i∈IHt,k,c(Γn)ei,n−1).(1.7.1)
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Thus, M is a left Ht,k,c(Γn)-module, and we put B := (EndHt,k,c(Γn) M)op. This endomor-
phism algebra is built out of Hom-spaces between various Ht,k,c(Γn)-modules which
appear as direct summands in (1.7.1). The Hom-spaces are easily computed, and we
find

B =
⊕

i, j∈ICM

Bi, j, where Bs,s = eHe, and(1.7.2)

Bs, j = eHej,n−1, Bi,s = ei,n−1He, Bi, j = ei,n−1Hej,n−1, ∀i, j ∈ I.

Each direct summand Bi, j here is a subspace of the algebra Ht,k,c(Γn), and mul-
tiplication in the algebra B is given by ‘matrix multiplication’ Bi, j × Bj,k → Bi,k where,
for each i, j, k ∈ ICM, the corresponding pairing is induced by the multiplication in
Ht,k,c(Γn).

Our construction of the map ΘQuiver is based on an exact functor

Ht,k,c(Γn)-mod → Π(Q CM)-mod, M �→ M̃.(1.7.3)

To define this functor, let L(1), resp. Γ(1), be a copy (inside the algebra Ht,k,c(Γn))
of our 2-dimensional vector space L, resp. copy of the group Γ, corresponding to the
first direct summand in L⊕n. Further, let Sn−1 be the subgroup of Sn which permutes
[2, n], and let Γn−1 = Sn−1�Γn−1 ⊂ Γn be the wreath-product subgroup corresponding
to the last n − 1 factors in Γn. It is clear from the commutation relations in T(L⊕n)�

C[Γn] that any element of the subalgebra H(1) ⊂ Ht,k,c(Γn), generated by L(1) and Γ(1),
commutes with Γn−1.

Now, let M be an arbitrary left Ht,k,c(Γn)-module. We deduce that the space
MΓn−1 ⊂ M, of Γn−1-invariants, is stable under the action of the subalgebra H(1). Thus,
to each vertex i ∈ Q we may attach the vector space Mi := HomΓ(1)

(Ni, MΓn−1), the
corresponding Γ(1)-isotypic component. Further, following the strategy of [CBH] and
using the McKay correspondence, we see that the action map L(1) ⊗ MΓn−1 → MΓn−1

induces linear maps between various isotypic components Mi. This way, the collection
{Mi}i∈I acquires the structure of a representation of the quiver Q . In addition, the sub-
space Ms := MΓn ⊂ M is clearly contained in Mo = HomΓ(1)

(No, MΓn−1) = MΓn−1 as
a canonical direct summand. Therefore the imbedding b : Ms → Mo and the projection
b∗ : Mo → Ms provide additional maps, making the collection {Mi}i∈ICM

a represen-
tation of the quiver Q CM. One can check that this representation descends to a rep-
resentation of the algebra Π(Q CM), which is a quotient of the path algebra of Q CM.
Thus, to any Ht,k,c(Γn)-module M we have assigned a Π(Q CM)-module M̃ = ⊕i∈ICM

Mi.
This gives the desired functor (1.7.3), cf. Section 1.8 below for a generalization.

Finally, we apply the functor M �→M̃ to M := M, the Ht,k,c(Γn)-module in (1.7.1).
It is immediate from (1.7.2) that one has a natural bijection B ∼= M̃. The bijec-
tion gives B the structure of a left Π(Q CM)-module, moreover, the action of Π(Q CM)
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on B commutes with right multiplication (with respect to the algebra structure) by
the elements of B. It follows that the Π(Q CM)-module structure on B comes, via left
multiplication, from an algebra homomorphism Π(Q CM) → B. The latter homo-
morphism clearly restricts to a homomorphism esΠ(Q CM)es → Bs,s = eHt,k,c(Γn)e,
denoted ΘRadial.

There is a modification of the above construction, to be explained in Section 2.2,
in which the algebra Π(Q CM) is replaced by the renormalized algebra Π′(Q CM). This
way, one obtains similar algebra homomorphisms

ΘQuiver : Π′(Q CM) → B, and(1.7.4)

ΘQuiver : esΠ
′(Q CM)es → Bs,s = eHt,k,c(Γn)e.

1.8. Applications to reflection functors and shift functors

In Section 6, we study reflection functors and shift functors for generalized pre-
projective algebras and symplectic reflection algebras associated with wreath-products,
cf. [GG].

More generally, let Q be an arbitrary (not necessarily extended Dynkin) quiver,
with vertex set I. Write C = (Cij) for the generalized Cartan matrix of Q and W
for the Weyl group W, defined as the group generated by the simple reflections ri for
i ∈ I. The group W acts on CI as ri : λ = ∑

j∈I λj ej �→ λ − ∑
j∈I Cijλi ej .

For any λ ∈ CI, one has an algebra Π′
λ(Q ), a renormalized version of the cor-

responding deformed preprojective algebra studied in [CBH]. Further, for any integer n ≥ 1,
and complex parameters ν ∈ C and λ ∈ CI, we have associated in [GG, (1.2.3)], see
also Definition 6.1.3 below, a generalized preprojective algebra An,λ,ν(Q ).

For each i ∈ I, there are reflection functors F′
i for the corresponding deformed

preprojective algebras Π′
λ(Q ), introduced in [CBH], and also their analogues for gen-

eralized preprojective algebras, introduced in [Ga]:

Fi : An,λ,ν(Q )-mod → An,ri(λ),ν(Q )-mod.(1.8.1)

We will show in Section 6.6 that these functors satisfy standard Coxeter rela-
tions:

Proposition 1.8.2. — For the reflection functors Fi for generalized preprojective algebras, one

has:

(i) If λi ± pν 	= 0 for p = 0, 1, ..., n − 1, then F2
i = Id.

(ii) Suppose Cij = 0. If λi ± pν 	= 0 and λj ± pν 	= 0 for p = 0, 1, ..., n − 1, then

FiFj = FjFi.

(iii) Suppose Cij = −1. If λi ± pν 	= 0, λj ± pν 	= 0 and λi + λj ± pν 	= 0 for

p = 0, 1, ..., n − 1, then FiFjFi = FjFiFj .



102 PAVEL ETINGOF, WEE LIANG GAN, VICTOR GINZBURG, ALEXEI OBLOMKOV

Part (i) of the proposition has been already proved in [Ga, Theorem 5.1];
Parts (ii) and (iii) are new. In the special case n = 1, the proposition is due to [CBH],
[Na], [Lu2], and [Maf]. However, we believe that, even in that special case, our proof
appears to be simpler.

Next, given c as in (1.2.1), we put

c ′ :=
∑

γ∈Γ�{1}
(2t − cγ ) · γ−1 and e− := 1

n!
∑

σ∈Sn

(−1)σσ(eo ⊗ · · · ⊗ eo).

Using our main Theorem 1.4.4 and reflection functors, we will deduce

Corollary 1.8.3. — For t = 1/|Γ| and any c as in (1.2.1), there are algebra isomorphisms

eHt,k,ce � e−Ht,k−2t,c ′e− � e−Ht,k−2t,ce−.

We will prove the first isomorphism above in Section 5.3 and the second in Sec-
tion 6.7. Using the composite isomorphism in Corollary 1.8.3, we define the shift functor

to be the functor

S : Ht,k,c-mod → Ht,k−2t,c-mod, V �→ Ht,k−2t,ce− ⊗eHt,k,ce eV.(1.8.4)

Finally, we can extend the construction exploited in the definition of the map
ΘQuiver to an appropriate, more general, context as follows.

Let T be any nonempty subset of I. Generalizing the definition of Calogero–
Moser quiver, let Q T be a quiver obtained from Q by adjoining a vertex s, called the
special vertex, and arrows bi : s → i, one for each i ∈ T. Recall that ei denotes the
idempotent in the path algebra corresponding to a vertex i. Thus, given λ ∈ CI, we
write λ = ∑

λi ei, and we also put eT := ∑
i∈T ei.

In Section 6.2, for any n ≥ 1, λ ∈ CI, ν ∈ C, we introduce an exact functor

G′ : An,λ,ν(Q )-mod → Π′
λ−νeT+nνes(Q T)-mod.(1.8.5)

The construction of reflection functors for generalized preprojective algebras,
see (1.8.1), implies readily that, for any i ∈ I, one has the following commutative dia-
gram

An,λ,ν(Q )-mod ��
Fi

��
G′

An,ri(λ),ν(Q )-mod

��
G′

Π′
λ−νeT+nνes(Q T)-mod ��

F′
i Π′

ri(λ)−νeT+nνes(Q T)-mod.

(1.8.6)

The functor (1.8.5) is a generalization of the functor M �→ M̃ considered in
Section 1.7 in the following sense. Let Q be the extended Dynkin quiver associated
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to a finite subgroup Γ ⊂ SL2(C). Given a data (n, k, c), as in (1.4.1), put t = 1/|Γ|
and ν = k · |Γ|/2. The generalized preprojective algebra An,λ,ν(Q ) is Morita equivalent,
according to [GG], to the symplectic reflection algebra Ht,k,c(Γn), so one has a cat-
egory equivalence Ht,k,c(Γn)-mod ∼→ An,λ,ν(Q )-mod. Therefore, composing this equiva-
lence with (1.8.5), yields a functor

Ht,k,c(Γn)-mod → Π′
λ−νeT+nνes(Q T)-mod.

The latter functor reduces, in the special case of the one point set T = {o}, to the
functor M �→ M̃ considered in Section 1.7.

1.9. Quantization of the Hilbert scheme of points on the resolution of Kleinian singularity

The shift functor (1.8.4) is the Γ-analogue of the shift functor introduced in
[BEG] in the case of the trivial group Γ. The latter functor has been used by Gordon-
Stafford [GS] to construct quantization of the Hilbert scheme of n points of the
plane C2.

Now, let X → L/Γ be the minimal resolution of the Kleinian singularity L/Γ

and let Hilbn X be the Hilbert scheme of n points in X. It should be possible to use
the shift functor (1.8.4) and Theorem 1.4.4 to construct quantizations of Hilbn X. This
would provide a common generalization to the case of wreath-products Γn = Sn � Γn

of the results of Gordon-Stafford [GS] in the special case Γ = 1 and n ≥ 1, and also
of the results of Boyarchenko [Bo] in the special case of arbitrary Γ ⊂ SL2(C) and
n = 1, cf. also [Mu] for the case of cyclic group Γ (and n = 1).

In a different direction, the construction of the algebra eHt,k,c(Γn)e in terms of
Hamiltonian reduction provided by Theorem 1.4.4 gives way to applying the machin-
ery of [BFG] to symplectic reflection algebras over k, an algebraic closure of the finite
field Fp.

In more detail, fix a finite group Γ ⊂ SL2(C) and a positive integer n. Then,
a routine argument shows that, for all large enough primes p > n, each of the schemes
X, Hilbn X, and µ−1(0), cf. (1.3.4), has a well defined reduction to a reduced scheme
over k. Further, let Mn be the irreducible component of µ−1(0), cf. (1.3.4), as de-
fined in [GG2, Theorem 3.3.3(ii)]. Then, the action of the group GL(α)/Gm on Mn

is generically free. Moreover, according to H. Nakajima, there exists a GL(α)-stable
Zariski open dense subset M ⊂ Mn of stable points, such that one has a smooth uni-
versal geometric quotient morphism M → Hilbn X. Furthermore, in this case all the
Basic assumptions of [BFG, 4.1.1] hold.

Next, let Q [Γ] be the group algebra of Γ with rational coefficients. Write
Z(Γ, Q) for the center of Q [Γ], and Zo(Γ, Q) for the corresponding codimension 1
subspace, cf. (1.2.1). Fix k ∈ Q and c ∈ Zo(Γ, Q) and let eHt,k,c(Γn, Q)e be the
Q -rational version of the C-algebra eHt,k,c(Γn)e. Then, there exists a large enough
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constant N(k, c) > max(n, |Γ|) such that for all primes p > N(k, c) the Q -algebra
eHt,k,c(Γn, Q)e has a well defined reduction to a k-algebra eHt,k,c(Γn,k)e.

On the other hand, one can apply a characteristic p version of quantum Hamil-
tonian reduction, as explained in [BFG, §3], in our present situation. This way, for all
large enough primes p, Theorem 4.1.4 from [BFG] provides a construction of a sheaf
of Azumaya algebras Ak,c on (Hilbn X)(1), the Frobenius twist of the scheme Hilbn X.

Mimicing the proof of [BFG, Theorem 7.2.4(i)–(ii)], and using our The-
orem 1.4.4, one obtains the following result

Theorem 1.9.1. — Fix k ∈ Q and c ∈ Zo(Γ, Q). Then, there exists a constant d(k, c) >
max(n, |Γ|), such that for all primes p > d(k, c) and t = 1/|Γ| ∈ k, we have

H0
(
(Hilbn X)(1), Ak,c

) ∼= eHt,k,c(Γn,k)e;
moreover,

Hi
(
(Hilbn X)(1), Ak,c

) = 0, ∀i > 0.

1.10. Directions of further research

The map ΘQuiver introduced in this paper turns out to be useful in the theory of
deformed double current algebras developed by N. Guay [Gu1,Gu2,Gu3]. Namely, it
is possible to view the integer n in the definition of the algebra eHt,k,ce as a parameter
and to make an “analytic continuation” of the construction of the map ΘQuiver with
respect to that parameter. This way, one obtains a new construction of Γ-deformed
double current algebras (for gl(1)) as appropriate quotients of the algebras esΠ

′(Q CM)es.
This will be discussed in a forthcoming paper [EGR].

We expect that the map ΘDunkl will be helpful in developing a Borel–Weil–Bott
style theory for representations of symplectic reflection algebras for wreath products.
Such a theory would provide a geometric realization of finite dimensional represen-
tations of these algebras (including those studied in [Mo,Ga]) in the spaces of global
sections of appropriate coherent sheaves on (P1)n satisfying appropriate vanishing con-
ditions. First steps in this direction are taken in [E], and forthcoming work of S. Mon-
tarani.
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2. Calogero–Moser quiver

2.1. Intertwiners

Let Q be the double quiver of Q , obtained from Q by adding a reverse edge
a∗ : j → i for each edge a : i → j in Q . For any edge a : i → j in Q , we write its tail
t(a) := i and its head h(a) := j.

We have an identification L ∼→ L∗ : u �→ ω(u, ·). Let a ∈ Q be an edge, then
for each intertwiner φa : L ⊗ N∗

t(a) → N∗
h(a), we have a corresponding intertwiner

φ′
a : N∗

t(a) → L ⊗ N∗
h(a).

Suppose Q is not of type Ã1. Following [CBH] (cf. also [Me]), we normalize
the intertwiners such that for each edge a ∈ Q , we have φa∗φ′

a = δh(a)IdN∗
t(a)

, and so
φaφ

′
a∗ = −δt(a)IdN∗

h(a)
. Thus, φ′

aφa∗ is δh(a) times the projection of L ⊗ N∗
h(a) to N∗

t(a), and
φ′

a∗φa is −δt(a) times the projection of L ⊗ N∗
t(a) to N∗

h(a). Hence, for any vertex i,

∑

a∈Q ;h(a)=i

φ′
aφa∗ −

∑

a∈Q ;t(a)=i

φ′
a∗φa = δiIdL⊗N∗

i
.(2.1.1)

Suppose now that Q is of type Ã1. Then Γ is the group with 2 elements 1, ζ .
Moreover, ζx = −x and ζy = −y. Write the vertices of Q as o and i, where No

is the trivial representation of Γ and Ni is the sign representation of Γ. We have
a decomposition L = Nx

i ⊕ Ny
i where Nx

i is spanned by x and Ny
i is spanned by y.

Let pr x
i : L⊗No → Ni be the projection map to Nx

i ⊗No = Ni, and pr y
i : L⊗No → Ni

be the projection map to Ny
i ⊗No = Ni. Let prx

o : L⊗Ni → No be the projection map
to Nx

i ⊗ Ni = No, and pr y
o : L ⊗ Ni → No be the projection map to Ny

i ⊗ Ni = No.
Denote the edges of Q by a1 and a2. If a1 : o → i, then let φa1 = pr y

i and φa∗
1
= prx

o .
If a1 : i → o, then let φa1 = prx

o and φa∗
1
= −pr y

i . If a2 : o → i, then let φa2 = prx
i and

φa∗
2
= −pr y

o . If a2 : i → o, then let φa2 = pr y
o and φa∗

2
= prx

i . It is easy to see that with
these choices, we again have (2.1.1).

2.2. Quiver map

For convenience, we shall fix an isomorphism Ni = Cδi , where δi = dim Ni. We
have CΓ = ⊕

i∈I End Ni = ⊕
i∈I Matδi(C). Let ei

p,q (1 ≤ p, q ≤ δi) be the element of CΓ

with 1 in the (p, q)-entry of the matrix for the i-th summand and zero elsewhere. Let ei

be the idempotent ei
1,1. In particular, eo = ∑

γ∈Γ γ/|Γ|, where o is the extending vertex
of the affine Dynkin quiver Q . Note that Ni = C[Γ]ei and φa ∈ eh(a)(L ⊗ C[Γ]et(a)).
Here, the left action of Γ on L⊗C[Γ] is the diagonal one. When Q is not of type Ã1,
φa spans eh(a)(L⊗C[Γ]et(a)). When Q is of type Ã1 with vertices o and i, eo(L⊗C[Γ]ei)

and ei(L ⊗ C[Γ]eo) are both 2 dimensional and spanned by the intertwiners φa which
they contain.
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We put en := 1
n!

∑
σ∈Sn

σ ∈ C[Sn]. For any i ∈ I, let

ei,n−1 := en−1(ei ⊗ eo ⊗ · · · ⊗ eo) ∈ C[Γn], and(2.2.1)
e := en(eo ⊗ · · · ⊗ eo) ∈ C[Γn].

The idempotent e is same as the one that appears in Theorem 1.4.4 of the Introduc-
tion.

For each vertex i of the Calogero–Moser quiver Q CM, cf. Definition 1.3.1, the
idempotent ei is the trivial path at the vertex i. Let λi be the trace of t · 1 + c on Ni,
let λ = ∑

i∈I λiei, and let

ν := k|Γ|/2.

Let Π = Πλ−νeo+nνes(Q CM), the deformed preprojective algebra of Q CM with parameter
λ − νeo + nνes as defined in [CBH]. So Π is the quotient of the path algebra CQ CM

of Q CM by the following relations:
∑

a∈Q

[a, a∗] + bb∗ = λ − νeo, b∗b = −nνes.

We shall define a functor from H-modules to Π-modules. Let M be a H-module.
We want to define a Π-module M̃. For each i ∈ I, let M̃i := ei,n−1M. Also, let M̃s :=
eM. If a is an edge in Q , then define a : M̃t(a) → M̃h(a) to be the map given by the
element φa ⊗ eo ⊗ · · · ⊗ eo ∈ H. Define b : M̃s → M̃o to be the inclusion map, and
define b∗ : M̃o → M̃s to be −ν · (1 + s12 + · · · + s1n).

Lemma 2.2.2. — With the above action, M̃ is a Π-module.

Proof. — It is clear that (1+ s12 +· · ·+ s1n)en−1 = nen. On M̃, we have b∗b = −nν,
and bb∗ = −nνen = −ν · (1 + s12 + · · · + s1n).

By [GG, (3.5.2)], we have an isomorphism f ⊗nH f ⊗n = An,λ,ν(Q ) where
f = ∑

i∈I ei, cf. Definition 6.1.3 below. Now f ⊗nM is a An,λ,ν(Q )-module, and
ei,n−1M = ei,n−1 f ⊗nM, eM = e f ⊗nM. The action of the edge a : M̃t(a) → M̃h(a) is
the action given by the element a ⊗ e⊗(n−1)

o ∈ An,λ,ν(Q ).
Now on M̃, at a vertex i 	= o, s, we have

∑

a∈Q ;h(a)=i

aa∗ −
∑

a∈Q ;t(a)=i

a∗a = λi

by the relation (i) in Definition 6.1.3. At the vertex o, we have
∑

a∈Q ;h(a)=o

aa∗ −
∑

a∈Q ;t(a)=o

a∗a = λo + ν · (s12 + · · · + s1n) = λo − ν − bb∗,

using again the relation (i) in Definition 6.1.3. �
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It is clear that the assignment G : M �→ M̃ is functorial. We will give a more
general construction in Section 6.2.

Applying the functor M �→ M̃ to the H-module M introduced in (1.7.1) we
construct, as has been explained in Section 1.7, the algebra homomorphism θQuiver :
Π → B.

Observe that θQuiver(b∗) is 0 when ν = 0. For this reason, we shall need a slight
modification of the above constructions.

Define Π′ to be the quotient of the path algebra CQ CM by the following rela-
tions:

∑

a∈Q

[a, a∗] + νbb∗ = λ − νeo, b∗b = −nes.

We have a morphism of algebras Π → Π′ defined on the edges by

a �→ a for a 	= b∗, b∗ �→ νb∗.

This is an isomorphism only when ν 	= 0.
Given a H-module M, we define a Π′-module structure on M̃ as above, except

that now, we let b∗ : M̃o → M̃s be −(1 + s12 + · · · + s1n). Hence, as above, we obtain
a morphism ΘQuiver : Π′ → B, cf. (1.7.4).

2.3. Holland’s map

In this subsection, we recall a construction of Holland from [Ho].
Let εi ∈ ZI denote the coordinate vector corresponding to the vertex i ∈ I. Let

δ = ∑
i∈I δiεi, the minimal positive imaginary root of Q . Let α := nδ+εs, a dimension

vector for Q CM. Thus, αi = nδi for i ∈ I, and αs = 1. We shall assume that λ · δ = 1, that

is, t = 1/|Γ|.
Let ea

p,q and t a
p,q (a ∈ Q CM, 1 ≤ p ≤ αh(a), 1 ≤ q ≤ αt(a)) be, respectively, the

coordinate vectors and the coordinate functions on Repα(Q CM). We write ea
q,p for the

transpose of ea
p,q. Now define a representation of Q CM on O(Repα(Q CM))⊗N, the space

of N-valued regular functions on Repα(Q CM), as follows. For any a ∈ Q CM, we define
the following End N-valued differential operators of order 0 and 1, respectively

â := −
∑

p,q

ea
p,q ⊗ t a

p,q, resp., â∗ :=
∑

p,q

ea
q,p ⊗ ∂

∂t a
p,q

.

The assignment a �→ â, a∗ �→ â∗ extends by multiplicativity to an algebra homo-
morphism

θ̃Holland : CQ CM → (D(Q CM, α) ⊗ End N)GL(α),(2.3.1)
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where CQ CM denotes the path algebra of the double quiver Q CM. By [Ho, The-
orem 3.14] and [Ho, Lemma 3.16], θ̃Holland descends to homomorphisms, cf. notation
in (1.4.2):

θHolland : Π → Tχ and θHolland : esΠes → Aχ′ .

We remind that Aχ′ is the algebra in (1.6.2).
Later, we will define a homomorphism ΘHolland : esΠ

′es → Aχ′ .

3. Radial part map

From now on, we assume that Q is not of type Ãn where n is even. Equivalently,
that means that Γ has the (necessarily unique) central element of order 2, to be denoted
ζ ∈ Γ.

3.1. Twisted differential operators

Let T ∼= (C×)m be a torus with Lie algebra t := Lie T, and p : X → X a prin-
cipal T-bundle. For any h ∈ Lie T, the infinitesimal h-action yields a vector field ξ h

on X. Let DX be the sheaf of algebraic differential operators of X. The action of T
on X makes DX a T-equivariant sheaf of algebras, and we write Γ(X,DX)T for the al-
gebra of T-invariant global differential operators on X. The assignment h �→ ξ h gives
a Lie algebra homomorphism t→ Γ(X,DX)T.

Let ρ : t → End F be a finite dimensional representation. We form DX,F :=
DX ⊗ End F, a sheaf of associative algebras on X. Let ξ − ρ : t → DX,F =
DX ⊗ End F, h �→ ξ h ⊗ IdF − ρ(h) be the diagonal Lie algebra homomorphism.
We write Im(ξ − ρ) for the image of this homomorphism, and (p∗DX,F)

adt for the
subsheaf of those sections of the push-forward sheaf p∗DX,F, on X, which commute
with Im(ξ − ρ). Thus, Im(ξ − ρ) is a central subspace of (p∗DX,F)

adt, a sheaf of asso-
ciative algebras on X. We write (p∗DX,F)

adt · Im(ξ−ρ) for the (automatically two-sided)
ideal in (p∗DX,F)

adt generated by the image of ξ − ρ. Thus, the quotient
(p∗DX,F)

adt/(p∗DX,F)
adt · Im(ξ−ρ) is a well-defined sheaf of associative algebras on X.

Let

D(X, p, ρ) := Γ
(
X, (p∗DX,F)

adt/(p∗DX,F)
adt · Im(ξ − ρ)

)
(3.1.1)

be the algebra of its global sections, to be referred to as the algebra of twisted differential

operators on X associated with the principal T-bundle p : X → X and representation ρ.
For any open set U (in the ordinary, Hausdorff topology), we write Hol(U, F)

for the vector space of all holomorphic maps U → F. Given such an open subset
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U ⊂ X, put

Holρ(U) := { f ∈ Hol(U, F) | ξ h f = ρ(h) f , ∀h ∈ t}.(3.1.2)

There is a natural action of the algebra D(X, p, ρ) on the vector space Holρ(U)

given, in local coordinates, by differential operators with End F-valued coefficients.
Given a decomposition F = F1⊕· · ·⊕Fr into a direct sum of t-subrepresentations,

we have End F = ⊕
1≤m,l≤n Hom(Fm, Fl ). This gives the induced direct sum decompo-

sion

D(X, p, ρ) =
⊕

1≤m,l≤n

D(X, p, ρ, Fm → Fl ).

Thus, for each (m, l), the direct summand D(X, p, ρ, Fm → Fl ) has a natural structure
of left D(X, p, ρ|Fl )-module and of right D(X, p, ρ|Fm)-module.

3.2. The radial part construction

Let G be a linear algebraic group and Y a smooth G-variety. Assume in addition
that we have a smooth subvariety X ⊂ Y which is stable under the action of a torus
T ⊂ G, and we also have a smooth morphism p : X → X, which is a principal
T-bundle with respect to the induced T-action on X. Thus, we have the following
diagram

X Xoooo
p

� �
��

x �→1×x
j

G ×T X ��
g×x �→g(x)

act Y.(3.2.1)

Let g := Lie G and let ρ : g → End F be a finite dimensional representation.
For any open subset UY ⊂ Y, we may consider the vector space Holρ(UY) defined
similarly to (3.1.2) but with respect to the g-representation ρ. Write ρt = ρ|t for the
restriction of ρ to the Lie algebra t = Lie T. Restriction of functions gives the map

Res : Holρ(UY) → Holρt(X ∩ UY), f �→ Res f := j∗f .

Let D(Y, F) = Γ(Y,DY,F) = Γ(Y,DY) ⊗ End F be the algebra of End F-valued
differential operators on Y. As above, we have the Lie algebra map ξ − ρ : g →
D(Y, F) and the subalgebra D(Y, F)adg, of the operators commuting with the image
of that map.

Let K ⊂ G be a finite subgroup that preserves X and normalizes the torus T.
The action of K on X, resp. on DY, induces a natural K-action on X, resp. on the
algebra D(X, p, ρt), of twisted differential operators on X. We write D(X, p, ρt)K for
the subalgebra of K-invariants.
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One has the following standard result.

Proposition 3.2.2 (Radial part map). — Assume that G is connected and the differ-

ential of the map act, in (3.2.1), is an isomorphism at every point j(x), x ∈ X. Then,

(i) There is a natural radial part homomorphism θRadial : D(Y, F)adg → D(X, p, ρt)K

such that, for any open (in the Hausdorff topology) subset UY ⊂ Y, we have

θRadial(D) · (Res f ) = Res(Df ), ∀D ∈ D(Y, F)adg, f ∈ Holρ(UY).

(ii) The two-sided ideal (D(Y, F) Im(ξ − ρ))adg is contained in the kernel of the radial

part map θRadial.

(iii) Assume, in addition, that X is affine and the restriction of ρ to t is diagonalizable. Then,

there are canonical algebra isomorphisms, cf. (1.1.1),

A(D(X, F), t, ξ − ρ)

∼= D(X, F)adt/(D(X, F) Im(ξ − ρ))adt
∼→ D(X, p, ρt). �


3.3. A slice in Repα(Q CM)

We choose the following orientation on Q : the vertex o is a sink, and any other
vertex is a source or a sink. Thus, the second order element ζ acts by 1 at sinks and
by −1 at sources. Note also that, see (1.4.2)

∂i = −n Tr |Ni(ζ), i ∈ I.

The collection of intertwiners φ = (φa)a∈Q introduced in Section 2.1 gives rise
to a linear map

φ : L → Repδ(Q ), where φa : L → Hom(N∗
t(a), N∗

h(a)), u �→ φa(u).

We also define a linear map j : Ln → Repα(Q CM) by

j(u1, ..., un)b = (1, 1, ..., 1), and
j(u1, ..., un)a = (φa(u1), ..., φa(un)), ∀a ∈ Q .

Lemma 3.3.1. — Let u, w ∈ L. Suppose there are βi ∈ End(N∗
i ) for i ∈ I such that

φa(u)βt(a) = βh(a)φa(w) for all edges a ∈ Q . If the βi are not all zero, then u is proportional to

γw for some γ ∈ Γ.

The lemma will be proved later, at the end of Section 8.2. From this lemma, we
deduce
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Corollary 3.3.2. — There exists a Γn-stable Zariski-open dense subset Ln
reg ⊂ Ln such that

j(Ln
reg) is contained in the set of generic representations of Q and, moreover, j(Ln

reg) meets generic

GL(α)-orbits in Repα(Q CM) transversely.

Proof. — First, we claim that the affine space j(Ln) meets generic GL(α)-orbits
in Repα(Q CM).

Recall that generic representations of Q with dimension vector nδ are direct
sums of n representations with dimension vector δ, it suffices to show that the subspace
consisting of the representations {φa(u)}a∈Q for all u ∈ L intersects generic GL(δ)-orbits
in Repδ(Q ). By the preceding lemma, the (rational) map Repδ(Q ) → P1 defined
in [Ri, Theorem 6.2] (which parametrizes generic orbits) is nonconstant on L.

The corollary now follows from the standard Bertini–Sard theorem, cf. e.g. [Ve].
�


3.4. Discriminant function

Put L× := L�{0}. The multiplicative group C× is imbedded in GL(L) as scalar
matrices, and we have the standard C×-bundle L× → PL := L×/C× ∼= P1 ( projective
line). The group S := C× ∩Γ consists of two elements, S = {1, ζ}, where ζ ∈ Γ is our
second order element.

Given � ∈ PL, write Γ� ⊂ Γ for the isotropy group of the line � ⊂ L. Clearly,
one has S ⊂ Γ�. Therefore, |Γ�|/2 = |Γ�/S| is a positive integer, and we put κ� :=
|Γ�/S| − 1. Thus, we have κ� > 0 if and only if the group Γ� ⊂ Γ, is strictly larger

than S. The lines � with this property form a finite set Psing
L ⊂ PL. For each � ∈ Psing

L ,
we choose and fix a vector representative v� ∈ ��{0} ⊂ L.

We introduce the following function

∆ :=
∏

�∈Psing
L

ω(v�,−)κ� ∈ C[L],

which is uniquely defined up to a nonzero constant factor depending on the choice
of representatives v�, � ∈ Psing

L . Further, we introduce a discriminant function on Ln
reg,

defined by

∆n(u1, ..., un) :=
n∏

k=1

1
∆(uk)

∏

m	=l

∏

γ∈Γ

1
ω(um, γ ul )

, for u1, ..., un ∈ L.(3.4.1)

Let Ln
reg be a Zariski open set as in Corollary 3.3.2. Shrinking this set if neces-

sary, from now on we assume in addition that Ln
reg is an affine T-stable subset con-

tained in (L×)n and, moreover, that the denominator of the function ∆n does not van-
ish on Ln

reg. Thus, the set Ln
reg is Γn � T-stable, and we have ∆n ∈ C[Ln

reg].
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The natural action of the torus T on Ln
reg induces an action of the Lie algebra

t = Lie T on the coordinate ring C[Ln
reg]. Given h = (h1, ..., hn) ∈ t = Cn, we write

the action map as h : C[Ln
reg] → C[Ln

reg], f �→ ξ h f , and also put Tr(h) = h1 + ... + hn.

Lemma 3.4.2. — The discriminant ∆n ∈ C[Ln
reg] is a weight vector for the t-action,

specifically, we have

ξ h∆n = (n|Γ| − 2) Tr(h) · ∆n, ∀h ∈ t.
Proof. — Note that

∑
�∈Psing

L
κ� = |Γ|−2. Hence, ∆ is a homogeneous polynomial

of degree |Γ| − 2. We see that any vector um appears on the RHS of (3.4.1) with
degree −(|Γ|−2), in the factor

∏
∆(uk)

−1, and with degree −(n−1)|Γ|, in the factor
1/

∏∏
ω(um, γ ul ). �


3.5. Compatibility with group actions

Let T := (C×)n be the torus, and form the wreath product Γn � T =
Sn � (Γ × C×)n. We are going to define a group imbedding

jLie : Γn � T → GL(α).(3.5.1)

To this end, we recall the direct sum decomposition (1.5.1), so dim Ni = αi and
one may identify the group GL(αi) with GL(Ni), for any i ∈ ICM. Now, by the structure
of group algebras, we have the canonical algebra isomorphism C[Γ] ∼→ ⊕i∈I End(N∗

i ).
Thus, we have a group imbedding Γ ↪→ GL(δ) and, therefore, an imbedding Γn ↪→
GL(δ) × · · · × GL(δ) ↪→ ∏

i∈I GL(αi). Further, we define a homomorphism Sn →
GL(Ni) by σ �→ IdN∗

i
⊗ σCn, where σCn ∈ GL(Cn) stands for the permutation matrix

corresponding to σ ∈ Sn. This way, combining together the above defined imbeddings
of Γn and Sn, we obtain a group imbedding jLie : Γn → GL(α), such that its compon-
ent Γn → GL(αs), at the special vertex s, sends every element of Γn to 1.

It remains to define the torus imbedding jLie : T → GL(α), t �→ g(t) = { gi(t) ∈
GL(αi)}i∈ICM

. The latter is given as follows. We put gs(t) = 1, ∀t ∈ T, and, for any
i ∈ I, let

gi(t) := t−1 ⊗ IdN∗
i

if i is a source in Q ,

gi(t) := IdNi if i is a sink in Q ,

where, for t = (t1, ..., tn) we let t−1 ∈ GL(Cn) denote the diagonal matrix with diag-
onal entries t−1

1 , ..., t−1
n . We note that the image of T under the above imbedding is

not contained in the center of the group GL(α).
The torus T := (C×)n acts naturally on Ln; the element t = (t1, ..., tn) ∈ T

sends (u1, ..., un) ∈ Ln to (t1u1, ..., tnun). This action of T commutes with that of the
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group Γn. Thus, we get an action of the group Γn � T on Ln. It is easy to show
that the group imbedding jLie : Γn � T ↪→ GL(α) agrees with the slice imbedding
j : Ln ↪→ Repα(Q CM). Specifically, one has

j(g(u)) = jLie(g)(j(u)), ∀u ∈ Ln, g ∈ Γn � T.(3.5.2)

3.6. The homomorphisms θRadial and ΘRadial

The element χ ∈ CICM , in (1.4.2), gives a Lie algebra homomorphism χ : gl(α)

→ C. We also have the tautological representation τ : gl(α) → End N, see (1.5.1),
and we let χ − τ : gl(α) → End N, h �→ χ(h) · IdN − τ(h), ∀h ∈ gl(α).

The group imbedding (3.5.1) induces the corresponding Lie algebra imbedding
jLie : t = Lie T ↪→ gl(α). We let ρ := (χ − τ) ◦ jLie be the pull-back of the represen-
tation χ − τ to the Lie algebra t via the imbedding t ↪→ gl(α).

We are now in a position to apply the general radial part construction of Sec-
tion 3.2 in our special case. Specifically, the n-th cartesian power of the C×-bundle
L× → PL gives a principal T-bundle (L×)n → (PL)

n. We set X := Ln
reg ⊂ (L×)n,

and let X ⊂ (PL)
n be the image of X. Write p : X → X for the restriction of the

bundle projection to X. Thus, X is a Γn-stable Zariski open dense subset of (PL)
n,

and p : X → X is a principal T-bundle.
We apply Proposition 3.2.2 to

G = GL(α), T = (C×)n, K = Γn, Y = Repα(Q CM),

p : X = Ln
reg → X = Ln

reg/T.

Thus, we obtain an algebra homomorphism, cf. (1.5.2):

θRadial : Tχ = (D(Q CM, α) ⊗ End N)GL(α)

((D(Q CM, α) ⊗ End N) Im(ξ − (χ − τ)))GL(α)
→ D(X, p, ρ)Γn .(3.6.1)

Further, we introduce another representation � : t → End N, h �→ �(h) by the
formula �(h) := ρ(h) + 1

2(n|Γ| − 2) Tr(h)IdN.
It is easy to see that each of the direct summands in the decomposition N =

⊕i∈Q CM
Ni, cf. (1.5.1), is stable under the t-action via either representation ρ or �. Thus

we can write ρ = ⊕i∈ICM
ρi, and � = ⊕i∈ICM

ρi. To describe these representations more
explicitly, let cζ be the coefficient in (1.2.1) corresponding to our second order element
ζ ∈ Γ, and put

µ := −
(

cζ · |Γ|
2

+ 1
)
, and ψ :=

∑

{i∈I | i is a source in Q }
δi · χi ∈ C.(3.6.2)
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One finds that the representations ρi and �i are given by the following explicit
formulas:

ρi(h) = ψ · Tr(h) · IdNi , �i(h) = (
µ + 1

2

) · Tr(h) · IdNi

if i = s or i is a sink in Q ; and

ρi(h) = ψ · Tr(h) · IdNi − h ⊗ IdN∗
i
,

�i(h) = (
µ + 1

2

) · Tr(h) · IdNi − h ⊗ IdN∗
i

if i is a source in Q , where, for any h = (h1, ..., hn) ∈ t = Cn, we write Tr(h) :=
h1 + ... + hn, and where the tensor factor h, in h ⊗IdN∗

i
, stands for the map Cn → Cn

given by the diagonal matrix with diagonal entries h1, ..., hn.
Next, according to Lemma 3.7.6 below, we have

2(µ − ψ) = −2
(

cζ · |Γ|
2

+ 1
)

+ 1 − 2ψ(3.6.3)

= (|Γ| − 2) + (n − 1)|Γ| = n|Γ| − 2.

Hence, Lemma 3.4.2 shows that �−ρ = 1
2(n|Γ|−2) ·Tr(−) is nothing but the weight

of
√

∆n, the square root of the discriminant function. Thus, given D ∈ D(X, p, ρ),
we may conjugate D by the operator of multiplication by the function

√
∆n to obtain

a twisted differential operator 1√
∆n

◦ D ◦ √
∆n ∈ D(X, p, �), such that for any open set

U ⊂ Ln
reg the induced action on functions is given by the map

Γ(U, �) → Γ(U, �), f �→ (1/
√

∆n) · θRadial(D)(
√

∆n · f ).

We note that although the square root of the discriminant function ∆n is ill de-
fined as a function, conjugation by the operator of multiplication by such a function
is an unambiguously defined operation on twisted differential operators. Furthermore,
the result of conjugation by

√
∆n is clearly independent of the choice of nonzero con-

stant factor involved in the definition of ∆n, cf. Section 3.4. Thus, we have a canoni-
cally defined algebra homomorphism

ΘRadial : Tχ → D(X, p, �)Γn,

u �→ ΘRadial(u) := 1√
∆n

◦ θRadial(u) ◦ √
∆n.

3.7. Formulas for the map θRadial ◦ θHolland

We introduce some notation. Given a map f : L → U and any 1 ≤ l ≤ n, we
write fl for the map Ln → U, (u1, ..., un) �→ f (ul ). Thus, given γ ∈ Γ, we have the

composite L
γ→ L

f→ U, and the corresponding map ( f ◦ γ)l : Ln → U.
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Let ω denote the symplectic form on L. For any vector v ∈ L, we have the
linear function v∨ : u �→ ω(v, u). Thus, for any v ∈ L and γ ∈ Γ, we may consider the
following functions

(γ v)∨
l := (v∨ ◦ γ−1)l : Ln → C,(3.7.1)

(u1, ..., un) �→ ω(γ v, ul ) = ω
(
v, γ−1ul

)
and

ω(γ ; m, l) : Ln → C, (u1, ..., un) �→ ω(um, γ ul ), ∀1 ≤ m 	= l ≤ n.

The definition of the open subset Ln
reg ⊂ Ln insures, see Section 3.4, that none of the

functions ω(γ ; m, l) vanishes on Ln
reg. Hence, we have 1/ω(γ ; m, l) ∈ C[Ln

reg].
In Section 2.1, for each edge a ∈ Q , we have introduced intertwiners

φa : L ⊗ N∗
t(a) → N∗

h(a) and φ′
a : N∗

t(a) → L ⊗ N∗
h(a). Below, we shall view φa as a

Hom(N∗
t(a), N∗

h(a))-valued linear function on L, written as u �→ φa(u). The n-th carte-
sian power of this function gives a Γn-equivariant linear map

φn
a : Ln → Hom(Nt(a), Nh(a)) = Hom(N∗

t(a), N∗
h(a)) ⊗ End Cn,

(u1, ..., un) �→
∑

1≤l≤n

φa(ul ) ⊗ Ell,

where Ell stands for the n × n-matrix unit with the only nonzero entry at the place
(l, l).

Similarly, we shall view φ′
a as a Hom(N∗

t(a), N∗
h(a))-valued constant vector field on

L whose value at each point u ∈ L is equal to φ′
a. Thus, given m ∈ [1, n], we shall

write ∂

(∂φa∗ )m
for the Hom(N∗

h(a), N∗
t(a))-valued first order differential operator on Ln cor-

responding to the constant vector field φ′
a∗ ∈ Hom(N∗

h(a), N∗
t(a)) ⊗ L along the m-th

direct factor L in Ln.
Next, recall the map θHolland, introduced in Section 2.3. The composite θRadial ◦

θHolland associates to every edge a ∈ Q a twisted differential operator from the algebra
D(X, p, ρ). By definition, such an operator is a coset modulo the ideal D(Ln

reg, N)adt ·
Im(ξ − ρ), see Proposition 3.2.2(iii), of an element

θRadial ◦ θHolland(a) ∈ D
(
Ln

reg

) ⊗ Hom(Nt(a), Nh(a)) ⊂ D
(
Ln

reg, N
)
.

We will write such an element D as an n × n-matrix with entries in Hom(N∗
t(a), N∗

h(a)),
and write Dml for (m, l)-th entry of that matrix.

Proposition 3.7.2. — Let a ∈ Q . Then

(i) θRadial ◦ θHolland(a) is a zero-order differential operator on Ln
reg given by multiplication

by the function φn
a .
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(ii) For l 	= m, the (m, l)-entry of θRadial◦θHolland(a∗) is is a zero-order differential operator

on Ln
reg given by multiplication by the function

−k/2
∑

γ

(φa∗ ◦ γ)l

ω(γ ; m, l)
γ,(3.7.3)

and the (m, m)-entry of θRadial ◦ θHolland(a∗) is a first order differential operator

1
|Γ|

(
∂

∂(φa∗)m
+

∑

γ 	=1,ζ

(φa∗ ◦ (γ−1 + Id))mm

ω(γ ; m, m)

( − 1 + |Γ|cγ γ−1
)

(3.7.4)

+ 1
|Γ|

∑

� 	=m

∑

γ

(φa∗ ◦ γ)�

ω(γ ; m, �)

)
.

(iii) For the edge b : s → o we have

θRadial ◦ θHolland(b) = −
∑

p

eb
p,1,(3.7.5)

θRadial ◦ θHolland(b∗) = (1 −
∑

j∈I

δjχ j)
∑

p

eb
1,p = ν

∑

p

eb
1,p.

The proof of Proposition 3.7.2 will be given later, in Section 8. We will use

Lemma 3.7.6. — We have cζ + n = (1 − 2ψ)/|Γ|, and k = 2(1 − ∑
j δjχ j)/|Γ|.

Furthermore,

cγ = (
1 −

∑

j

χ j(δj − Tr |N∗
j
(γ))

)
/|Γ| for γ 	= ζ.

Proof. — Since λi = Tr |Ni(t · 1 + c), we obtain by orthogonality relations that
cγ = 1/|Γ|

∑

j∈I

λj Tr |N∗
j
(γ). Hence, for ∂ as in (1.4.2), we compute

∑

j

χ j(δj − Tr |N∗
j
(γ))

= λ · δ − ν − ∂ · δ −
∑

j

λj Tr |N∗
j
(γ) + ν − n

∑

j

Tr |Nj (ζ) Tr |N∗
j
(γ)

= 1 − |Γ|cγ − n
∑

j

Tr |Nj (ζ) Tr |N∗
j
(γ).

If γ 	= ζ , then this is equal to 1 − |Γ|cγ . If γ = ζ , then it is equal to 1 − |Γ|cζ − n|Γ|.
Moreover, ∑

j

χ j(δj − Tr |N∗
j
(ζ)) = 2

∑

{j∈Q | j is a source}
χ jδj = 2ψ.

We also have
∑

j χ jδj = 1 − ν = 1 − k|Γ|/2. �
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4. Dunkl representation

4.1. Dunkl operators

Recall the principal T-bundle p : X = Ln
reg → X = Ln

reg/T, and other notation
introduced in Section 3.6. We are going to define a certain representation η of the Lie
algebra t = Lie T which is normalized by the natural Γn-action on t. Thus, there is
an action of Γn on D(X, p, η), the corresponding algebra of twisted differential oper-
ators.

Our goal is to define certain elements in D(X, p, η)�Γn which may be thought
of as Γ-analogues of Dunkl operators. The construction of these operators will be given
in five steps.

Step 1. — Write Lreg for the preimage of PL�Psing
L under the projection

L× � PL. Thus Lreg ⊂ L is an open dense subset formed by the points v ∈ L such
that, for any γ ∈ Γ�{1, ζ}, we have γ(v) 	∈ Cv.

For any γ ∈ Γ, we have a quadratic function ωγ : L → C, u �→ ω(u, γ u). This
function does not vanish on Lreg, thus, we have 1/ωγ ∈ C[Lreg]. Given v ∈ L, we also
have the linear function v∨ : u �→ ω(v, u), on L.

Recall the coefficients cγ ∈ C given by (1.2.1). To each v ∈ L we assign the
following element

Dv := 2|Γ|−1 ∂

∂v
+

∑

γ 	=1,ζ

cγ
(γ v + v)∨

ωγ
γ ∈ D(Lreg)� Γ.(4.1.1)

Step 2. — Let F = C2 be a 2-dimensional vector space with fixed basis
( f +, f −), and identify End F with the algebra of 2 × 2-matrices. We set D(Lreg, F) =
D(Lreg)⊗End F, and form the smash product D(Lreg, F)�Γ = (D(Lreg)⊗End F)�Γ,

where Γ acts trivially on F and on End F.
For each v ∈ L, we introduce the following element written as a matrix with

entries in D(Lreg)� Γ:

Dv
F :=

(
0 −v∨

Dv 0

)
= Dv ·

(
0 0
1 0

)
− v∨ ·

(
0 1
0 0

)
∈ D(Lreg, F)� Γ.(4.1.2)

Step 3. — For any affine variety Y and n ≥ 1, one has the standard alge-
bra isomorphism D(Y n) ∼= D(Y )⊗n. Since End(F⊗n) ∼= (End F)⊗n, we deduce an
algebra isomorphism D(Y n, F⊗n) ∼= D(Y , F)⊗n. The symmetric group Sn acts nat-
urally on Y n and on (End F)⊗n, hence, also on the tensor product D(Y n, F⊗n) ∼=
D(Y , F)⊗n.

We take Y = Lreg and put X := Ln
reg, cf. Section 3.4. Thus, X is a Γn-stable

affine open dense subset of (Lreg)
n, and we have a chain of natural algebra imbed-
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dings

(D(Lreg, F)� Γ)⊗n = D
(
(Lreg)

n, F⊗n
)
� Γn ↪→ D(X, F⊗n)� Γn

↪→ D(X, F⊗n)� Γn,

where the middle imbedding is given by restriction from (Lreg)
n to X.

For any v ∈ L and l = 1, ..., n, let Dv,n
F,l ∈ D(Ln

reg, F⊗n)�Γn denote the image of
the element 1⊗(l−1) ⊗ Dv

F ⊗ 1⊗(n−l ), cf. (4.1.2), under this imbedding.

Step 4. — For any l = 1, ..., n, and γ ∈ Γ, let γl ∈ Γn denote a copy of the
element γ placed in the l-th factor of Γn. In particular, given any 1 ≤ m 	= l ≤ n, and
γ ∈ Γ, we have the corresponding transposition sml = {m ↔ l} ∈ Sn and the element
smlγmγ−1

l ∈ Γn. Given γ ∈ Γ, v ∈ L and any 1 ≤ m 	= l ≤ n, we also have regular
functions v∨

l and 1/ω(γ ; m, l) on Ln
reg, see (3.7.1).

With this notation, for any v ∈ L and 1 ≤ m 	= l ≤ n, we will now define an
element

Rv
ml ∈ (C[X] ⊗ End F⊗n)� Γn = Hom(F⊗n, (C[X] ⊗ F⊗n)� Γn).(4.1.3)

To this end, write
{ �f = f1 ⊗ ... ⊗ fn | fi = f ±, i = 1, ..., n

}
(4.1.4)

for the standard basis of the vector space F⊗n. Given such a basis element �f = f1 ⊗
... ⊗ fn and 1 ≤ m ≤ n, let �f −

m := f1 ⊗ ... ⊗ fm−1 ⊗ f − ⊗ fm+1 ⊗ ... ⊗ fn. Now, view each
Rv

ml in (4.1.3) as a linear map F⊗n → (C[X] ⊗ F⊗n)� Γn, which we define as follows

Rv
ml(

�f ) = 1
2

∑

γ∈Γ

(
(γ vl )

∨

ω(γ ; m, l)
⊗ �f −

m

)
· smlγmγ

−1
l , if fm = f +, fl = f +,(4.1.5)

Rv
ml(

�f ) = 1
2

∑

γ∈Γ

(
v∨

m

ω(γ ; m, l)
⊗ �f −

m

)
· smlγmγ

−1
l , if fm = f +, fl = f −,

Rv
ml(

�f ) = 0, if fm = f −.

We identify the algebra C[X] ⊗ End F⊗n with the subalgebra of D(X, F⊗n)

formed by zero order differential operators. Therefore, we may view the elements Rv
ml ,

in (4.1.5), as being elements of D(X, F⊗n)� Γn, which have zero order as differential
operators. Given k ∈ C and v ∈ L, we define first order differential operators

Dunklv
l := Dv,n

F,l + k
∑

l 	=m

Rv
lm ∈ D(X, F⊗n)� Γn, ∀1 ≤ l ≤ n.(4.1.6)

Step 5. — Let µ ∈ C be the constant defined in (3.6.2). We introduce a rep-
resentation of the 1-dimensional Lie algebra C on the vector space F. Specifically, we
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let the generator 1 ∈ C act, in the basis { f +, f −}, via the diagonal matrix
diag(µ + 1

2, µ − 1
2). The n-th cartesian power of this 2-dimensional representation

gives a Lie algebra representation η : t = Cn → End F⊗n.
We consider the Lie algebra homomorphism

ξ − η : t→ D(X, F⊗n), h �→ ξ h ⊗ IdF⊗n − IdD ⊗ η(h).

The group Γn acts naturally both on the Lie algebra t and on D(X, F⊗n), and it is
clear that the map ξ − η is Γn-equivariant. It follows in particular that D(X, F⊗n)adt,
the centralizer of the image of the map ξ −η in D(X, F⊗n), is a Γn-stable subalgebra.

Now, we apply the general construction of algebras of twisted differential opera-
tors given in Section 3.1 to the torus T = (C×)n acting on X = Ln

reg and to the repre-
sentation η defined above. This way, with the notation of Section 3.6, we get an alge-
bra D(X, p, η). By construction, the algebra D(X, p, η) is a quotient of D(X, F⊗n)adt,
and this quotient inherits a natural Γn-action. Thus, we may form the corresponding
algebra D(X, p, η)� Γn.

It is straightforward to verify, counting homogeneity degrees of the coefficients,
that for any v ∈ L the operator in (4.1.6) is adt-invariant. That is, for each l = 1, ..., n,
we have Dunklv

l ∈ D(X, F⊗n)adt�Γn. Therefore, the element Dunklv
l has a well defined

image in D(X, p, η)�Γn, to be denoted by the same symbol Dunklvl and to be called
the l-th Dunkl operator associated with v ∈ L.

4.2. Equalizer construction

Recall from Section 3.4, the group S = {1, ζ} ∼= Z/2. Thus, S = C× ∩ Γ

⊂ GL(L) may be (and will be) viewed either as a subgroup of C× or as a subgroup
of Γ. We put S := Sn. This group comes equipped with a natural group imbedding
εΓ : S ↪→ Γn ⊂ Γn, such that the image of S is a normal subgroup in Γn, and also
with a natural imbedding S ↪→ T.

In general, let A be an associative algebra equipped with a Γn-action
Γn � g : a �→ ag, by algebra automorphisms, and also with a homomorphism
a : S → A, that is, with a map such that a(1) = 1, and such that a(ss′) =
a(s) ·a(s′), ∀s, s′ ∈ S. Assume in addition that the following identities hold (the one on
the left says that a is a Γn-equivariant map):

a(s)g = a(gsg−1), and a(s) · a · a(s−1) = aεΓ(s), ∀s ∈ S, g ∈ Γn, a ∈ A.(4.2.1)

We form the smash product A�Γn and introduce the following two homomor-
phisms

Υ1,Υ2 : S → A� Γn, where Υ1 : s �→ a(s)� 1, Υ2 : s �→ 1� εΓ(s).
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It is straightforward to verify that equations (4.2.1) imply that the left ideal in
the algebra A�Γn generated by the set {Υ1(s) −Υ2(s), s ∈ S} is in effect a two-sided
ideal. We let A �S Γn be the quotient of A � Γn by that two-sided ideal, to be
called equalizer smash product algebra.

4.3. The homomorphism θDunkl

Let

I = {(ε1, ..., εn) | εm = 0 or 1 for all m} ⊂ Zn.

Let ε = (ε1, ..., εn) ∈ I, and write Fε for the one dimensional subspace of F⊗n spanned
by f1 ⊗ · · · ⊗ fn, where fm = f + if εm = 0, and fm = f − if εm = 1 (m = 1, ..., n).
The representation η of t on the vector space F⊗n induces an adjoint action of t on
End(F⊗n). We have a decomposition

End(F⊗n) =
⊕

ε,ε′∈I

Fε′ ⊗ (Fε)
∗,

where each component in the direct sum is stable under the action of t. Moreover,
t acts on Fε′ ⊗ (Fε)

∗ by the character ε′ − ε. Therefore, the t-action on Fε′ ⊗ (Fε)
∗

exponentiates to a T-action. Taking the direct sum over various pairs (ε, ε′), we obtain
a well defined adjoint T-action on End F⊗n = F⊗n ⊗ (F⊗n)∗. Thus, for any t ∈ T, the
adjoint action of t gives an algebra automorphism AdF(t) : End F⊗n → End F⊗n.

The torus T also acts naturally on X = Ln
reg. The tensor product of the in-

duced T-action on D(X) with the adjoint T-action on End F⊗n gives a T action on
D(X, F⊗n) = D(X) ⊗ End F⊗n, to be called the adjoint action AdD⊗F : T →
Aut(D(X, F⊗n)). The map AdD⊗F is clearly Γn-equivariant. It is also clear from the
construction that the differential of the AdD⊗F-action of T is nothing but the adjoint
action of the Lie algebra t. In particular, we have D(X, F⊗n)adt = D(X, F⊗n)AdD⊗FT.

Next, we are going to apply the general construction of Section 4.2 in the fol-
lowing special case. Let S → D(Lreg, F) = D(Lreg)⊗End F be a homomorphism given
by the assignment

1 �→ 1D ⊗ IdF, ζ �→ 1D ⊗
(

1 0
0 −1

)
.

We define a homomorphism aF : S → D(X, F⊗n) to be the composite of the n-th
cartesian power of the above homomorphism S → D(Lreg, F), followed by the nat-
ural imbedding D((Lreg)

n, F⊗n) ↪→ D(X, F⊗n). This homomorphism is clearly Γn-
equivariant and the image of aF is contained in D(X, F⊗n)adt.

Write a �→ ag for the action of an element g ∈ Γn on a ∈ D(X, F⊗n). One
checks by direct computation that the map aF is related to the two natural imbeddings
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εT : S ↪→ T and εΓ : S ↪→ Γn via the following identity

(AdD⊗F ◦ εT(s))(a) = aF(s−1) · aεΓ(s) · aF(s), ∀s ∈ S, a ∈ D(X, F⊗n).(4.3.1)

It follows from (4.3.1) that, for any a ∈ D(X, F⊗n)adt = D(X, F⊗n)AdD⊗FT and s ∈ S,
one has aεΓ(s) = aF(s) · a · aF(s−1). We conclude that both conditions in (4.2.1) hold for
the thus obtained homomorphism a : S → A := D(X, F⊗n)adt.

Further, we have the algebra projection pr : D(X, F⊗n)adt � D(X, p, η), and
we let pr ◦ a : S → D(X, p, η) be the composite homomorphism. The AdD⊗F-action
of T on D(X, F⊗n) clearly descends to an AdD⊗F-action on D(X, p, η). It follows that
conditions (4.2.1) hold for the map pr ◦ a as well. Thus, we are in a position to form
D(X, p, η) �S Γn, the corresponding equalizer smash product. We let Dunkl(v, l) de-
note the image in D(X, p, η)�S Γn of the element Dunklvl ∈ D(X, p, η)� Γn.

The main result of this section reads

Theorem 4.3.2. — Put t = 1/|Γ|. The assignment, given on the generators g ∈ Γ, vl ∈ Ll ,

l = 1, ..., n (where Ll stands for the l-th direct summand in Ln), of the algebra Ht,k,c(Γn) by the

formulas below extends uniquely to a well defined and injective algebra homomorphism

θDunkl : Ht,k,c(Γn) → D(X, p, η)�S Γn, g �→ g, vl �→ Dunkl(v, l).

The injectivity statement in the theorem is not difficult; it follows easily from the
PBW theorem for the algebra Ht,k,c(Γn), by considering principal symbols of differen-
tial operators. The difficult part is to verify that the assignment of the theorem does
define an algebra homomorphism. The proof of this is quite long and involves a lot of
explicit computations. That proof will be given later, in Section 9. In the special case
n = 1, the proof is less technical and is presented below.

4.4. Proof of Theorem 4.3.2 in the special case: n = 1

Let u1, u2 denote the coordinates in the symplectic vector space (L, ω).
For n = 1, the assignment of Theorem 4.3.2 reduces to the map L →

D(Lreg, F)�S Γ that reads

θDunkl : v �→
(

0 −v∨

Dv 0

)
, where Dv = 2

|Γ|
∂

∂v
+

∑

γ 	=1,ζ

cγ
(γ v + v)∨

ωγ
γ.

For any v, w ∈ L we are going to compute all 4 entries of the 2 × 2-matrix
representing the operator [θDunkl(v), θDunkl(w)] ∈ D(Lreg, F)� Γ. First of all, it is easy
to see that [θDunkl(v), θDunkl(w)]12 = [θDunkl(v), θDunkl(w)]21 = 0.
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Next, write eu = u1
∂

∂u1
+ u2

∂

∂u2
for the Euler operator. We compute

[θDunkl(v), θDunkl(w)]11 = w∨Dv − v∨Dw

= 2
|Γ|

(
w∨ ∂

∂v
− v∨ ∂

∂w

)
+

∑

γ 	=1,ζ

cγ
ωγ

(w∨(γ v + v)∨ − v∨(γw + w)∨)γ

= −2ω(v, w)

|Γ| eu +
∑

γ 	=1,ζ

cγ
ωγ

(w∨(γ v)∨ − (γw)∨v∨))γ

= tω(v, w)

(
− 2

|Γ|eu +
∑

γ 	=1,ζ

cγ γ
)

.

One proves similarly that [θDunkl(v), θDunkl(w)]22 = ω(v, w)( 2
|Γ|(eu + 2) +∑

γ 	=1,ζ cγ γ). Thus, we find

[θDunkl(v), θDunkl(w)]
= 2ω(v, w)

|Γ|
((−1 0

0 1

)
eu +

(
0 0
0 2

))
+ ω(v, w)

∑

γ 	=1,ζ

cγ γ.

Now, in the 1-dimensional Lie algebra t = C, we have the generator 1 which
acts in F via the matrix diag(µ + 1

2, µ − 1
2). By definition of twisted differential oper-

ators, in the algebra D(X, p, η), we have eu = 1 = diag(µ + 1
2 , µ − 1

2). Therefore, in
the algebra D(X, p, η), we get

[θDunkl(v), θDunkl(w)]
= 2ω(v, w)

|Γ|
((−µ − 1

2 0
0 µ − 1

2

)
+

(
0 0
0 2

))
+ ω(v, w)

∑

γ 	=1,ζ

cγ γ.

We have

2
|Γ|

((−µ − 1
2 0

0 µ − 1
2

)
+

(
0 0
0 2

))

= 2
|Γ|

((1
2 0
0 1

2

)
− (µ + 1)

(
1 0
0 −1

))

= 1
|Γ|

(
1 0
0 1

)
+ cζ

(
1 0
0 −1

)

where in the last equality we have used the definition of µ from (3.6.2). We find

[θDunkl(v), θDunkl(w)] = ω(v, w)

(
|Γ|−1 + cζ

(
1 0
0 −1

)
+

∑

γ 	=1,ζ

cγ γ
)

.(4.4.1)
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In these formulas, the matrix diag(1,−1) ∈ End F is viewed as an element of
D(Lreg, F). The image of this element in D(X, p, η)�S Γ, the equalizer smash prod-
uct algebra, equals 1� εΓ(ζ), by definition. Hence, from (4.4.1) we deduce

[θDunkl(v), θDunkl(w)] = ω(v, w)(1/|Γ| +
∑

γ 	=1

cγ γ).

This completes the proof of Theorem 4.3.2 in the special case n = 1. �


4.5. The map ΘDunkl

In Section 4.3, for any ε and ε′ and t ∈ T, we have defined the adjoint action
AdF(t) : Hom(Fε, Fε′) → Hom(Fε, Fε′). This AdF-action of T descends to an action on
D(X, p, η, Fε → Fε′), the corresponding quotient space. The reader should be alerted
that the resulting AdF-action on D(X, p, η, Fε → Fε′) that we are considering at the
moment is different from the AdD⊗F-action of T considered in Section 4.3: the latter
action, comes from the action of T on both factors of the tensor product D(X, F⊗n) =
D(X) ⊗ End F⊗n, while the former comes from the action of T on the second tensor
factor, End F⊗n, only.

Lemma 4.5.1. — Let i, j ∈ I. For the algebra D(X, p, η)�SΓn, as defined in Section 4.3,

one has:

ei,n−1(D(X, p, η)�S Γn)ej,n−1 = D(X, p, �, Nj → Ni)
Γn,

ei,n−1(D(X, p, η)�S Γn)e = D(X, p, �, Ns → Ni)
Γn,

e(D(X, p, η)�S Γn)ej,n−1 = D(X, p, �, Nj → Ns)
Γn,

e(D(X, p, η)�S Γn)e = D(X, p, �, Ns → Ns)
Γn .

Proof. — We prove the first equality; the rest are similar.
Note that CΓnej,n−1 = ⊕n

l=1 N⊗(l−1)
o ⊗ Nj ⊗ N⊗(n−l )

o = N∗
j , so

(D(X, p, η)�S Γn)ej,n−1 =
⊕

1≤l≤n

D(X, p, η) ⊗S

(
N⊗(l−1)

o ⊗ Nj ⊗ N⊗(n−l )
o

)
,

where on the right hand side, s ∈ S acts on D(X, p, η) by right multiplication by a(s).
For any ε = (ε1, ..., εn) ∈ I, we write sε for the character of S whose value at

ζ(l ) is (−1)εl .
Suppose S acts on N⊗(l−1)

o ⊗ Nj ⊗ N⊗(n−l )
o by the character sε(l ), where

ε(l) ∈ I. If j is a sink in Q , then ε(l) = (0, ..., 0), while if j is a source in Q ,
then ε(l) = (0, ..., 1, ..., 0) (where the 1 is in the l-th position). Under the above
right action of S on D(X, p, η) via a, the sε(l )-isotypic component of D(X, p, η) is



124 PAVEL ETINGOF, WEE LIANG GAN, VICTOR GINZBURG, ALEXEI OBLOMKOV

⊕ε∈ID(X, p, η, Fε(l ) → Fε), so

D(X,p, η) ⊗S

(
N⊗(l−1)

o ⊗ Nj ⊗ N⊗(n−l )
o

)

=
⊕

ε∈I

D(X, p, η, Fε(l ) → Fε) ⊗ Nj .

Now, the space ei,n−1(D(X, p, η)�S Γn)ej,n−1 can be written as
( ⊕

1≤m,l≤n

(
N⊗(m−1)

o ⊗ N∗
i ⊗ N⊗(n−m)

o

)

⊗
(⊕ε∈ID(X, p, η, Fε(l ) → Fε) ⊗ Nj)

)Γn

.

The subgroup S ⊂ Γn acts on N⊗(m−1)
o ⊗ N∗

i ⊗ N⊗(n−m)
o by the character sε

′(m), where
ε′(m) is (0, ..., 0) if i is a sink, or (0, ..., 1, ..., 0) (where the 1 is in m-th position)
if i is a source.

Recall the AdF-action of T on D(X, p, η, Fε(l ) → Fε) described before this
lemma. We have the group imbedding εT : S ↪→ T, see Sections 4.2, 4.3. Equa-
tion (4.3.1) implies that the restriction, via εT, of the AdF-action of T to the subgroup
S coincides with the restriction, via εΓ, of the action of Γn on D(X, p, η, Fε(l ) → Fε)

to its subgroup S. We have
((

N⊗(m−1)
o ⊗ N∗

i ⊗ N⊗(n−m)
o

)⊗( ⊕ε∈I D(X, p, η, Fε(l ) → Fε) ⊗ Nj

))S

= N∗
i ⊗ D(X, p, η, Fε(l ) → Fε′(m)) ⊗ Nj .

We conclude that

ei,n−1(D(X, p, η)�S Γn)ej,n−1

=
( ⊕

1≤m,l≤n

N∗
i ⊗ D(X, p, η, Fε(l ) → Fε′(m)) ⊗ Nj

)Γn

.

The last expression is equal to D(X, p, �, Nj → Ni)
Γn . �


Recall the homomorphism θDunkl of Theorem 4.3.2. For any i, j ∈ ICM, recall
the subspace Bi, j of H defined in (1.7.2). Using Lemma 4.5.1, we obtain by restricting
θDunkl to Bi, j , a homomorphism

ΘDunkl : Bi, j → D(X, p, �, Nj → Ni)
Γn ⊂ D(X, p, �)Γn .

We define the following algebra homomorphism

ΘDunkl : B → D(X, p, �)Γn,
∑

i, j

ui, j �→
∑

i, j

ΘDunkl(ui, j),

∀ui, j ∈ Bi, j, i, j ∈ ICM.
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4.6. Computation of ΘDunkl ◦ θQuiver

Let a be an edge of Q CM, viewed as an element of the algebra Π′. We would
like to compute Da := ΘDunkl ◦ θQuiver(a) ∈ D(X, p, �)Γn , the image of that element
under the composite map ΘDunkl ◦ θQuiver.

We will freely use the notation from Section 3.7.

Proposition 4.6.1. — If a ∈ Q then Da = −φn
a, and Da∗

is an n × n-matrix with the

entries

(Da∗
)mm = 2|Γ|−1 ∂

(∂φa∗)m
+

∑

γ 	=1,ζ

cγ
(φa∗ ◦ (γ−1 + Id))m

ω(γ ; m, m)
γ−1, and

(Da∗
)ml = − k

2

∑

γ∈Γ

(φa∗ ◦ γ)l

ω(γ ; m, l)
γ, for l 	= m.

Proof of Proposition 4.6.1 for n = 1. — In this special case, we have Ni = CΓei and
N∗

i = eiCΓ, with the pairing defined by

(eiγ, γ ′ei) = eiγγ ′ei ∈ C.

Thus, for n = 1 the formulas of Proposition 4.6.1 read

Da = −φa, Da∗ = 2|Γ|−1 ∂

∂φa∗
+

∑

γ 	=1,ζ

cγ
φa∗ ◦ (γ−1 + Id)

ωγ
γ−1, ∀a ∈ Q .

To verify these formulas, we write the Dunkl map in the form ΘDunkl(v) =∑
γ∈Γ dγ (v)γ, where v ∈ L and dγ (v) ∈ D(Lreg, F). We prove the formula for Da∗

because the formula for Da is easier to prove.
We recall the construction of the map θQuiver. Let

φ̃a∗ ∈ HomΓ(Nh(a∗), Nt(a∗) ⊗ L)

be the element corresponding to φa∗ ∈ HomΓ(N∗
t(a∗), N∗

h(a∗) ⊗ L). Then the map

HomΓ(Nh(a∗), Nt(a∗) ⊗ L)

� HomΓ(N∗
t(a∗), N∗

h(a∗) ⊗ L) → eh(a∗)C[Γ] ⊗ Let(a∗)

from the construction of ΘQuiver is defined by φ̃a∗ �→ φ̃a∗(1 · eh(a∗)).
Choose a basis v1, v2 in L. Then φ̃a∗ = ∑2

s=1 φ̃s
a∗ ⊗ vs where φ̃s

a∗ ∈
Hom(Nh(a∗), Nt(a∗)). We consider Da∗

as element of D(Lreg, Nh(a∗) → Nt(a∗))
Γ. From the
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construction of θQuiver we find

Da∗ =
2∑

s=1

ΘDunkl(vs)φ̃s
a∗ =

2∑

s=1

∑

γ∈Γ

dγ (vs)
(
γ ◦ φ̃s

a∗
)

= 2|Γ|−1 ∂

∂φ̃a∗
+

2∑

s=1

∑

γ 	=1,ζ

cγ
(γ vs + vs)

∨

ωγ

(
γ ◦ φ̃s

a∗
)

= 2|Γ|−1 ∂

∂φ̃a∗
+

∑

γ 	=1,ζ

cγ
γ ◦ φ̃a∗ ◦ (γ−1 + Id)

ωγ
.

We have natural isomorphisms

Hom(Nh(a∗), Nt(a∗)) ∼= N∗
h(a∗) ⊗ Nt(a∗) ∼= Hom(N∗

t(a∗), N∗
h(a∗)).

We deduce

D(Lreg, Nh(a∗) → Nt(a∗))
Γ � D(Lreg, N∗

t(a∗) → N∗
h(a∗))

Γ.

Under this isomorphism, the element γ φ̃a∗ ◦ (γ−1 + Id) corresponds to φa∗ ◦
(γ−1 + Id) ◦ γ−1 and ∂

∂φ̃a∗
corresponds to ∂

∂φa∗
. This completes the proof. �


We omit the proof of Proposition 4.6.1 for n > 1; it is similar to the above
computation in the case n = 1.

It is easy to see that for the edge b: s → o, we have

Db := ΘDunkl ◦ θQuiver(b) = −(1, ..., 1)t

and

Db∗ := ΘDunkl ◦ θQuiver(b∗) = ν · (1, ..., 1).

Thus, for all a ∈ Q CM, we have computed the operators Da := ΘDunkl ◦ θQuiver(a)
where Da ∈ D(X, p, �).

Theorem 4.6.2. — For all values of c, k, we have ΘRadial ◦ θHolland = ΘDunkl ◦ θQuiver.

�

In the special case n = 1, for any edge a ∈ Q , we have

θRadialθHolland(a∗) = 2|Γ|−1 ∂

∂φa∗
+

∑

γ 	=1,ζ

cγ
φa∗ ◦ (γ−1 + Id)

ωγ
γ−1

− |Γ|−1
∑

γ 	=1,ζ

φa∗ ◦ γ−1

ωγ
.
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Therefore, replacing here the map θRadial by ΘRadial, we find

ΘRadialθHolland(a∗) = 2|Γ|−1 ∂

∂φa∗
+

∑

γ 	=1,ζ

cγ
φa∗ ◦ (γ−1 + Id)

ωγ
γ−1.

When n > 1, it is completely similar.

5. Harish–Chandra homomorphism

Recall that we assume λ · δ = 1, i.e. t = |Γ|−1. We shall write Hk,c for Ht,k,c(Γn).

5.1. Modified Holland’s map

In this subsection, we define a map ΘHolland : esΠ
′es → Aχ′ , cf. (1.6.2). To this

end, assume for the moment that ν is a formal variable, and the algebras Π, Π′,
Tχ , Aχ′ are all defined over C[ν].

Lemma 5.1.1. — The map gr(θRadial) : grAχ′ → gr(D(X, p, ρs)
Γn ⊗ C[ν]) is injec-

tive.

Proof. — This follows from Proposition 7.2.2, Theorem 7.2.3 and Propos-
ition 7.2.5. �


The preceding lemma implies that grAχ′ and Aχ′ are free C[ν]-modules.
We define a homomorphism

Θ̃Holland : CQ CM ⊗ C[ν] → (D(Q CM, α) ⊗ (End N) ⊗ C[ν, ν−1])GL(α)

by

Θ̃Holland(ej ) = θ̃
Holland

(ej ) for all vertices j,

Θ̃Holland(a) = θ̃
Holland

(a) for any edge a 	= b∗,

Θ̃Holland(b∗) = ν−1θ̃
Holland

(b∗).

It is easy to see that since θ̃
Holland

descends to a homomorphism θHolland : Π → Tχ ,
the homomorphism Θ̃Holland descends to a homomorphism

ΘHolland : Π′ → Tχ[ν−1], such that ΘHolland : esΠ
′es → Aχ′ [ν−1].

Suppose that X ∈ CQ . By (3.7.5), θRadialθHolland(b∗Xb) vanishes if we set ν = 0,
so by Lemma 5.1.1,

θ̃
Holland

(b∗Xb) ∈ (D(Q CM, α)(ξ − (λ − ∂ − nes))(gl(α)))GL(α).
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Since χ ′ = (λ − ∂ − nes) − νeo + nνes, we have that θ̃
Holland

(b∗Xb) belongs to

D(Q CM, α)(ξ − χ ′)(gl(α)) + ν · D(Q CM, α)(eo − nes)(gl(α)).

Since GL(α) is a reductive group, we have a projection map

pr : D(Q CM, α) → D(Q CM, α)GL(α)

such that

pr(D(Q CM, α)(ξ − χ ′)(gl(α))) ⊂ (D(Q CM, α)(ξ − χ ′)(gl(α)))GL(α).

Thus, the element θ̃
Holland

(b∗Xb) = pr(θ̃
Holland

(b∗Xb)) belongs to

(D(Q CM, α)(ξ − χ ′)(gl(α)))GL(α) + ν · D(Q CM, α)GL(α).

Therefore, ΘHolland(esΠ
′es) ⊆ Aχ′ . Thus, for any ν ∈ C, we have a homomorphism

ΘHolland : esΠ
′es → Aχ′ .

Theorem 5.1.2. — The following diagram commutes:

esΠ
′es

��ΘQuiver

��
ΘHolland

eHk,ce

��
ΘDunkl

Aχ′ ��ΘRadial

D(X, p, �s)
Γn .

Proof. — This follows from Theorem 4.6.2. �


Proposition 5.1.3. — The map ΘHolland : esΠ
′es → Aχ′ is surjective.

Proof. — The algebra Π′ has a filtration with deg(a) = 1 for edges a 	= b, b∗,
and deg(b) = deg(b∗) = 0. It suffices to show that the associated graded map

gr(ΘHolland) : es gr(Π′)es → gr(Aχ′)

is surjective.
Now es gr(Π′)es is generated by es and b∗(eoΠ(Q )eo)b where Π(Q ) is the prepro-

jective algebra of Q . By [CB, Theorem 3.4], we have

C[Repnδ(Π(Q ))]GL(nδ) = ((
C[Repδ(Π(Q ))]GL(δ)

)⊗n)Sn
.
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Denote by

ΘCBH : Π(Q ) → C
[
Repδ(Π(Q )) ⊗ End

( ⊕i∈I Cδi
)]GL(δ)

the natural morphism defined in [CBH], which gives a morphism

ΘCBH : eoΠ(Q )eo → C[Repδ(Π(Q ))]GL(δ).

This latter morphism is an isomorphism by [CBH, Theorem 8.10].
Now, given an element X ∈ eoΠ(Q )eo, we claim that

gr(ΘHolland)(b∗Xb) = −
n∑

p=1

1⊗( p−1) ⊗ ΘCBH(X) ⊗ 1⊗(n−p).(5.1.4)

Indeed, we have

gr(θRadial) gr(ΘHolland)(b∗Xb)

= gr(ΘDunkl) gr(ΘQuiver)(b∗Xb) (by Theorem 5.1.2)

= gr(θRadial)
(

−
n∑

p=1

1⊗( p−1) ⊗ ΘCBH(X) ⊗ 1⊗(n−p)
)

(by (6.3.3) below).

Hence, (5.1.4) follows from injectivity of gr(θRadial). It follows from (5.1.4) and
Lemma 6.3.4 below that gr(ΘHolland) is surjective. �


5.2. — It follows from Theorem 5.1.2, Proposition 5.1.3, and the injectivity of
ΘDunkl that we have a homomorphism

(ΘDunkl)−1 ◦ ΘRadial : Aχ′ → eHk,ce.

Since Repα(Q CM) = Repnδ(Q ) ⊕ Cn, we have an obvious embedding

� : D(Q , nδ) → D(Q CM, α).

Definition 5.2.1. — The Harish–Chandra homomorphism Φk,c is defined to be the compo-

sition

D(Q , nδ)GL(nδ) ���
Aχ′ ��

(ΘDunkl)−1 ◦ ΘRadial

eHk,ce.(5.2.2)

Following [EG], we define a 1-parameter space of representations Vd of gln as
follows. As a vector space, Vd is spanned by expressions (x1 · · · xn)

d · P, where P is
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a Laurent polynomial in x1, ..., xn of total degree 0. The Lie algebra gln has an ac-
tion on Vd by formal differentiation, where ep,q acts by xp

∂

∂xq
. We restrict this to an

sln action. The desired gln action on Vd is obtained by pulling back the sln action
via the natural Lie algebra projection gln → sln, so that the center of gln acts triv-
ially.

Let Fun( ) denote the vector space of functions on a formal neighborhood of
a point of the slice Ln

reg. Recall that ∂ = −n
∑

i∈I Tr |Ni(ζ)ei. We have

(Fun(Repα(Q CM)) ⊗ C−χ′)gl(α)(5.2.3)

= (Fun(Repnδ(Q ))⊗̂Vν−1 ⊗ C−λ+eo+∂)
gl(nδ).

The GL(nδ) action on Repnδ(Q ) induces a Lie algebra map ad : gl(nδ) →
D(Q , nδ). Let ad : Ugl(nδ) → D(Q , nδ) be the induced map on the universal en-
veloping algebra of gl(nδ). Define the left ideal

Jk,c := D(Q , nδ) · ad(Ann (Vν−1 ⊗ C−λ+eo+∂)) ⊂ D(Q , nδ).

By (5.2.3), the ideal JGL(nδ)
k,c is in the kernel of the map � in (5.2.2).

Theorem 5.2.4. — The Harish–Chandra homomorphism induces an algebra isomorphism

Φk,c : D(Q , nδ)GL(nδ)/JGL(nδ)
k,c

∼→ eHk,ce.

Proof. — By Theorem 7.2.3 and [EG, Theorem 1.3], the associated graded map,
gr Φk,c, is the isomorphism in (7.2.4), hence Φk,c is itself an isomorphism. �


5.3. Proof of Corollary 1.8.3

Given any C = ∑
γ∈Γ Cγ γ ∈ C[Γ], we let C = ∑

γ∈Γ Cγ γ
−1. Correspondingly,

if λ = ∑
i∈I Tr |Ni(C)ei , then let λ = ∑

i∈I Tr |Ni(C)ei. We have an anti-isomorphism

Hk,c
∼→ Hk,c, g �→ g−1, u �→ √−1u, ∀g ∈ Γn, u ∈ Ln.(5.3.1)

We also have an isomorphism

Hk,c
∼→ H−k,c, σ �→ (−1)σσ, g �→ g, u �→ u,(5.3.2)

∀σ ∈ Sn, g ∈ Γn, u ∈ Ln.

The isomorphism in (5.3.2) sends e to e−.
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Now, for any i ∈ I set λ
†
i := Tr |Ni(t · 1 + c†). We put

c† := −c + 2|Γ|−1
∑

γ 	=1

γ, and λ† :=
∑

i∈I

λ
†
i ei = −λ + 2eo.

The group GL(nδ) acts on det(Repnδ(Q )∗) by the character 2∂. We have

(Vν−1 ⊗ C−λ+eo+∂)
∗ ⊗ det(Repnδ(Q )∗) � V−ν ⊗ Cλ−eo−∂ ⊗ C2∂

= V−ν ⊗ C−λ†+eo+∂.

Let i : D(Q , nδ) → D(Q , nδ) be the anti-isomorphism sending a differential
operator to its adjoint. Then for any GL(nδ)-module V,

i(ad(Ann (V))) = ad((Ann (V∗ ⊗ det(Repnδ(Q )∗)))).

The proof of the first isomorphism in Corollary 1.8.3 is now completed by the
following isomorphisms

eHk,ce � (eH2|Γ|−1−k,c†e)op using Theorem 5.2.4
� eH2|Γ|−1−k,c†e using (5.3.1)
� e−Hk−2|Γ|−1,c†e− using (5.3.2).

We will prove the second isomorphism in Corollary 1.8.3 later in Section 6.7.

6. Reflection isomorphisms

Except for Section 6.7, this section is independent of the earlier sections.

6.1. — Let Q be an arbitrary quiver (not necessarily of type Ã, D̃, or Ẽ).
Denote by I the set of vertices of Q . Let R = ⊕

i∈I C, and E the vector space with
basis formed by the set of edges {a ∈ Q }. Thus, E is naturally a R-bimodule. The
path algebra of Q is CQ := TRE = ⊕

n≥0 Tn
RE, where Tn

RE = E ⊗R · · · ⊗R E is the
n-fold tensor product. The trivial path for the vertex i is denoted by ei, an idempotent
in R.

Fix a positive integer n. Let R := R⊗n. For any � ∈ [1, n], define the E-bimodules

E� := R⊗(�−1) ⊗ E ⊗ R⊗(n−�) and E :=
⊕

1≤�≤n

E�.

The natural inclusion E� ↪→ R⊗(�−1)⊗TRE⊗R⊗(n−�) induces a canonical identification
TRE� = R⊗(�−1) ⊗ TRE ⊗ R⊗(n−�). Given two elements ε ∈ E� and ε′ ∈ Em of the form

ε = ei1 ⊗ ei2 ⊗ · · · ⊗ a ⊗ · · · ⊗ h(b) ⊗ · · · ⊗ ein,(6.1.1)
ε′ = ei1 ⊗ ei2 ⊗ · · · ⊗ t(a) ⊗ · · · ⊗ b ⊗ · · · ⊗ ein,(6.1.2)
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where � 	= m, a, b ∈ Q and i1, ..., in ∈ I, we define

�ε, ε′� := (ei1 ⊗ · · · ⊗ a ⊗ · · · ⊗ h(b) ⊗ · · · ⊗ ein)

× (ei1 ⊗ · · · ⊗ t(a) ⊗ · · · ⊗ b ⊗ · · · ⊗ ein)

− (ei1 ⊗ · · · ⊗ h(a) ⊗ · · · ⊗ b ⊗ · · · ⊗ ein)

× (ei1 ⊗ · · · ⊗ a ⊗ · · · ⊗ t(b) ⊗ · · · ⊗ ein).

Note that �ε, ε′� is an element in T2
RE.

Definition 6.1.3 ([GG, Def. 1.2.3]). — For any λ = ∑
i∈I λi ei where λi ∈ C, and

ν ∈ C, define the algebra An,λ,ν(Q ) to be the quotient of TRE�C[Sn] by the following relations.

(i) For any i1, ..., in ∈ I and � ∈ [1, n]:

ei1 ⊗ · · · ⊗
( ∑

{a∈Q | h(a)=i�}
a · a∗ −

∑

{a∈Q | t(a)=i�}
a∗ · a − λi�ei�

)
⊗ · · · ⊗ ein

= ν
∑

{j 	=� | ij=i�}
(ei1 ⊗ · · · ⊗ ei� ⊗ · · · ⊗ ein)sj�.

(ii) For any ε, ε′ of the form (6.1.1)–(6.1.2):

�ε, ε′� =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν · (ei1 ⊗ · · · ⊗ h(a) ⊗ · · · ⊗ t(a) ⊗ · · · ⊗ ein)s�m

if b ∈ Q , a = b∗,

−ν · (ei1 ⊗ · · · ⊗ h(a) ⊗ · · · ⊗ t(a) ⊗ · · · ⊗ ein)s�m

if a ∈ Q , b = a∗,

0 else.

When n = 1, there is no parameter ν, and An,λ,ν(Q ) is the deformed preprojec-
tive algebra Πλ(Q ) defined in [CBH].

6.2. Quiver functors

The goal of this section is to put the construction of the functor M → M̃ ex-
ploited in Section 2.2 into an appropriate, more general, context.

Let T be a nonempty subset of I, and let eT := ∑
i∈T ei. In particular, eI = 1. Let

Q T be a quiver obtained from Q by adjoining a vertex s, and arrows bi : s → i for
i ∈ T. We call s the special vertex. We shall define a functor G from An,λ,ν(Q )-modules
to Πλ−νeT+nνes(Q T)-modules.

Let M be an An,λ,ν(Q )-module. We want to define a Πλ−νeT+nνes(Q T)-module
G(M). For each i ∈ I, let G(M)i := en−1(ei ⊗ e⊗(n−1)

T )M. Also, let G(M)s := ene⊗n
T M.
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If a is an edge in Q , then define a : G(M)t(a) → G(M)h(a) to be the map given
by the element a ⊗ e⊗(n−1)

T ∈ An,λ,ν(Q ). We have an inclusion G(M)s ⊂ en−1e⊗n
T M =⊕

j∈T G(M)j . For i ∈ T, we have a projection map pri : ⊕
j∈T G(M)j → G(M)i. Define

bi : G(M)s → G(M)i to be the restriction of pri to G(M)s. Define b∗
i : G(M)i →

G(M)s to be −ν · (1 + s12 + · · · + s1n).
The following lemma is a generalization of Lemma 2.2.2.

Lemma 6.2.1. — With the above actions, G(M) is a Πλ−νeT+nνes(Q T)-module.

Proof. — It is clear that (1 + s12 + · · · + s1n)en−1 = nen.
On G(M), at the special vertex s, we have

∑
i∈T b∗

i bi = −nν.
At a vertex i ∈ I, i /∈ T, we have

∑

a∈Q ;h(a)=i

aa∗ −
∑

a∈Q ;t(a)=i

a∗a = λi

by the relation (i) in Definition 6.1.3. At a vertex i ∈ T, we have

∑

a∈Q ;h(a)=i

aa∗ −
∑

a∈Q ;t(a)=i

a∗a = λi + ν · pri(s12 + · · · + s1n) = λi − ν − bib∗
i ,

using again the relation (i) in Definition 6.1.3. �


It is clear that the assigment M �→ G(M) is functorial. We have constructed
a functor

G : An,λ,ν(Q )-mod → Πλ−νeT+nνes(Q T)-mod.(6.2.2)

Recall the symmetrizer en := 1
n!

∑
s∈Sn

s.

Definition 6.2.3. — Let Un,λ,ν(Q ) := enAn,λ,ν(Q )en be the spherical subalgebra in

An,λ,ν(Q ).

The idempotents en and en
T := e⊗n

T commute. For M := An,λ,ν(Q )ene
n
T, we get

G(M)s = en
TUn,λ,νen

T.

In this case, G(M)s is an algebra, and the action of esΠλ−νeT+nνes(Q T)es on G(M)s

commutes with right multiplication by the elements of G(M)s. Thus, our construction
yields an algebra homomorphism

Ĝ : esΠλ−νeT+nνes(Q T)es → en
TUn,λ,νen

T.(6.2.4)



134 PAVEL ETINGOF, WEE LIANG GAN, VICTOR GINZBURG, ALEXEI OBLOMKOV

6.3. Modified version

The map Ĝ is 0 on nonconstant paths when ν = 0. For this reason, we shall
need a slight modification of the constructions in the previous subsection.

Define Π′
λ−νeT+nνes(Q T) to be the quotient of the path algebra CQ T by the fol-

lowing relations:
∑

a∈Q

[a, a∗] + ν
∑

i∈T

bib∗
i = λ − νeT,

∑

i∈T

b∗
i bi = −nes.

We have an algebra morphism Πλ−νeT+nνes(Q T) → Π′
λ−νeT+nνes(Q T) defined on the

edges by

a �→ a for a 	= b∗
i , b∗

i �→ νb∗
i .

This is an isomorphism only when ν 	= 0.
Given a An,λ,ν(Q )-module M, we construct a Π′

λ−νeT+nνes(Q T)-module G′(M)

analogous to G(M) in the previous subsection, the only difference is that now, we let
b∗

i : G′(M)i → G′(M)s be −(1 + s12 + · · · + s1n). Hence, as above, we obtain a functor

G′ : An,λ,ν(Q )-mod → Π′
λ−νeT+nνes(Q T)-mod(6.3.1)

as well as a morphism

Ĝ′ : esΠ
′
λ−νeT+nνes(Q T)es → en

TUn,λ,νen
T.(6.3.2)

The algebra Π′
λ−νeT+nνes(Q T) has a filtration with deg(a) = 1 for a 	= bi, b∗

i , and
deg(bi) = deg(b∗

i ) = 0 for i ∈ T. Also, es gr(Π′
λ−νeT+nνes(Q T))es is generated by es and

(
⊕

i, j∈T b∗
j Π0(Q )bi).

We shall assume that Q is a connected quiver without edge-loops, and Q is not a finite

Dynkin quiver. Then, by [GG, Theorem 2.2.1] and [GG, Remark 2.2.6], gr An,λ,ν(Q ) =
Π0(Q )⊗n

�C[Sn]. Thus,

gr
(
en

TUn,λ,νen
T

) = (
(eTΠ0(Q )eT)⊗n

)Sn
.

Now given an element X ∈ ejΠ0(Q )ei where i, j ∈ T, we have

gr(Ĝ′)(b∗
j Xbi) = −

n∑

p=1

e⊗( p−1)

T ⊗ X ⊗ e⊗(n−p)
T .(6.3.3)

Lemma 6.3.4. — Let A be any associative algebra with unit 1 ∈ A. Then (A⊗n)Sn is

generated as an algebra by elements of the form

n∑

p=1

1⊗( p−1) ⊗ X ⊗ 1⊗(n−p), X ∈ A.
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Proof. — Since (A⊗n)Sn is spanned by elements of the form a⊗n where a ∈ A, it
suffices to show that the lemma is true for A = C[a], but this follows from the main
theorem on symmetric functions. �


Proposition 6.3.5. — The map Ĝ′ in (6.3.2) is surjective.

Proof. — It suffices to show that gr(Ĝ′) is surjective. This follows from (6.3.3)
and the preceding lemma. �


6.4. Reflection functors

Recall the setting of reflection functors as in (1.8.1). In particular, we have the
Weyl group W generated by the simple reflections ri for i ∈ I. We also have a non-
empty subset T ⊂ I and we fix a vertex i /∈ T.

Let us apply the reflection functor Fi to the An,λ,ν(Q )-module An,λ,ν(Q )en
T. By

construction, we have

en
TFi

(
An,λ,ν(Q )en

T

) = en
TAn,λ,ν(Q )en

T

and the left action of en
TAn,ri(λ),ν(Q )en

T on en
TFi(An,λ,ν(Q )en

T) commutes with the right
multiplication by en

TAn,λ,ν(Q )en
T. Hence, for i /∈ T, we obtain a homomorphism

F̂i : en
TAn,ri(λ),ν(Q )en

T → en
TAn,λ,ν(Q )en

T.(6.4.1)

Note that F̂i(e
n
TUn,ri(λ),ν(Q )en

T) ⊂ en
TUn,λ,νen

T.
In the special case when n = 1, reflection functors were constructed in [CBH];

let us recall their definition. Since Πλ(Q ) does not depend on the orientation of Q ,
we may assume without loss of generality that i is a sink in Q . Let M be a Πλ(Q )-
module, and Mj = ejM for each j ∈ I. For each edge a ∈ Q such that h(a) = i,
write

πa :
⊕

ξ∈Q ;h(ξ)=i

Mt(ξ) → Mt(a), µa : Mt(a) →
⊕

ξ∈Q ;h(ξ)=i

Mt(ξ)

for the projection map and inclusion map, respectively. Define

π :
⊕

a∈Q ;h(a)=i

Mt(a) → Mi, π :=
∑

a∈Q ;h(a)=i

a ◦ πa,

and

µ : Mi →
⊕

a∈Q ;h(a)=i

Mt(a), µ :=
∑

a∈Q ;h(a)=i

µa ◦ a∗.
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Observe that πµ = λi. Let (Fi(M))j := Mj if j 	= i, and let (Fi(M))i := Ker(π). If
a ∈ Q and h(a), t(a) 	= i, then let a : (Fi(M))t(a) → (Fi(M))h(a) be the same map as
a : Mt(a) → Mh(a). If a ∈ Q and h(a) = i, then let a : (Fi(M))t(a) → (Fi(M))i be the
map (−λi + µπ)µa, and let a∗ : (Fi(M))i → (Fi(M))t(a) be the map πa restricted to
(Fi(M))i . Letting

Fi(M) = ⊕j∈I(Fi(M))j,

we have defined the functor

Fi : Πλ(Q )-mod → Πri(λ)(Q )-mod for any i ∈ I.

In particular, for the quiver Q T, and for i ∈ I but i /∈ T, we have

Fi : Πλ−νeT+nνes(Q T)-mod → Πri(λ)−νeT+nνes(Q T)-mod(6.4.2)

Let i ∈ I but i /∈ T. We define a functor

F′
i : Π′

λ−νeT+nνes(Q T)-mod → Π′
ri(λ)−νeT+nνes(Q T)-mod

in exactly the same way as Fi in (6.4.2). It is easy to see from definitions that the
diagram (1.8.6) commutes.

6.5. Relations in rank 1

In this subsection, the rank n is equal to 1. Let C = (Cij) be the generalized
Cartan matrix of Q .

Proposition 6.5.1. — For all λ ∈ R, we have the following.

(i) The map

F̂i : (1 − ei)Πλ(Q )(1 − ei) → (1 − ei)Πri(λ)(Q )(1 − ei)

is an isomorphism, and F̂2
i = Id.

(ii) If Cij = 0, then

F̂i ◦ F̂j = F̂j ◦ F̂i : (1 − ei − ej )Πλ(Q )(1 − ei − ej )

→ (1 − ei − ej )Πri rj (λ)(Q )(1 − ei − ej ).

(iii) If Cij = −1, then

F̂i ◦ F̂j ◦ F̂i = F̂j ◦ F̂i ◦ F̂j : (1 − ei − ej )Πλ(Q )(1 − ei − ej )

→ (1 − ei − ej )Πri rj ri(λ)(Q )(1 − ei − ej ).
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Proof. — (i) The algebra (1 − ei)Πλ(Q )(1 − ei) is generated by edges a ∈ Q with
h(a), t(a) 	= i, and paths of length two: a2a1 with h(a2), t(a1) 	= i and t(a2) = h(a1) = i.

If a ∈ Q and h(a), t(a) 	= i, then F̂i(a) = a.
Now let a2a1 be a path with h(a2), t(a1) 	= i and t(a2) = h(a1) = i. If a2 	= a∗

1
or a1 	= a∗

2, then F̂i(a2a1) = a2a1. If a2 = a∗
1, then F̂i(a2a1) = −λi et(a1) + a2a1, and so

F̂i (̂Fi(a2a1)) = −λi et(a1) + λiet(a1) + a2a1 = a2a1.
(ii) When Cij = 0, there is no edge joining i and j. In this case, it is clear that

FiFj = FjFi, so F̂îFj = F̂j F̂i.
(iii) When Cij = −1, there is precisely one edge in Q joining i and j, say

a : i → j. The algebra (1 − ei − ej )Πλ(Q )(1 − ei − ej ) is generated by:

– edges a1 ∈ Q with h(a1), t(a1) 	= i, j;
– paths a2a1 with t(a2) = h(a1) = i and h(a2), t(a1) 	= i, j;
– paths a2a1 with t(a2) = h(a1) = j and h(a2), t(a1) 	= i, j;
– paths a3a2a1 with a2 = a, t(a3) = j, h(a1) = i and h(a3), t(a1) 	= i, j;
– paths a3a2a1 with a2 = a∗, t(a3) = i, h(a1) = j and h(a3), t(a1) 	= i, j.

In the first case above, we have

F̂îFjF̂i(a1) = a1 = F̂j F̂îFj(a1).

In the second case above, when a2 	= a∗
1 or a1 	= a∗

2, we have

F̂îFjF̂i(a2a1) = a2a1 = F̂j F̂îFj(a2a1).

When a2 = a∗
1, we have

F̂îFjF̂i(a2a1) = F̂îFj(−λi + a2a1) = F̂i(−λi + a2a1)

= −λi − λj + a2a1,

since rj(ri(λ))ei = λj ; and on the other hand, since rj(λ)ei = λi + λj , we find

F̂j F̂îFj(a2a1) = F̂j F̂i(a2a1) = F̂j(−λi − λj + a2a1) = −λi − λj + a2a1.

The third case above is similar to the second case.
In the fourth and fifth cases above, note that no two of the edges a1, a2, a3 are

reverse of the other, so we have

F̂îFjF̂i(a3a2a1) = a3a2a1 = F̂j F̂îFj(a3a2a1). �

Lemma 6.5.2. — (i) If λi 	= 0, then

Πλ(Q ) = Πλ(Q )(1 − ei)Πλ(Q ).
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(ii) If Cij = −1, and λi 	= 0, λj 	= 0, λi + λj 	= 0, then

Πλ(Q ) = Πλ(Q )(1 − ei − ej )Πλ(Q ).

Proof. — (i) As a Πλ(Q )-module, Πλ(Q )

Πλ(Q )(1−ei)Πλ(Q )
is zero at all vertices not equal

to i, so all edges of Q must act by 0. But then it must also be zero at the vertex i
since λi ei = ∑

a∈Q ;h(a)=i aa∗ − ∑
a∈Q ;t(a)=i a∗a.

(ii) There is only one edge in Q joining i and j, say a : i → j. Let V be the
Πλ(Q )-module Πλ(Q )

Πλ(Q )(1−ei−ej )Πλ(Q )
. Now V is zero at all vertices not equal to i or j, so

V = Vi ⊕Vj. Suppose V 	= 0, say Vj 	= 0. Then aa∗ = λj ej on Vj implies that a, a∗ are
nonzero maps, and a has a right inverse λ−1

j a∗. But then a∗a = −λi ei on Vi implies
that a has a left inverse −λ−1

i a∗. Hence, λj = −λi, a contradiction. �

Using Proposition 6.5.1(i), Πri(λ)(Q )(1 − ei) is a right (1 − ei)Πλ(Q )(1 − ei)-

module, and Πri(λ)(Q )(1 − ei − ej ) is a right (1 − ei − ej )Πλ(Q )(1 − ei − ej )-module.

Corollary 6.5.3. — (i) If λi 	= 0, then

Fi(M) = Πri(λ)(Q )(1 − ei) ⊗(1−ei)Πλ(Q )(1−ei) (1 − ei)M

for any M ∈ Πλ(Q )-mod.

(ii) If Cij = −1, and λi 	= 0, λj 	= 0, λi + λj 	= 0, then

Fi(M) = Πri(λ)(Q )(1 − ei − ej ) ⊗(1−ei−ej )Πλ(Q )(1−ei−ej ) (1 − ei − ej )M

for any M ∈ Πλ(Q )-mod.

Proof. — (i) Let M ∈ Πλ(Q ) − mod. By Lemma 6.5.2(i),

Fi(M) = Πri(λ)(Q )(1 − ei) ⊗(1−ei)Πri(λ)(Q )(1−ei) (1 − ei)Fi(M)

= Πri(λ)(Q )(1 − ei) ⊗(1−ei)Πλ(Q )(1−ei) (1 − ei)M.

The proof of (ii) is similar, using Lemma 6.5.2(ii). �

Corollary 6.5.4. — (i) If λi 	= 0, then F2

i = Id.

(ii) If Cij = 0, then FiFj = FjFi.

(iii) If Cij = −1 and λi 	= 0, λj 	= 0, λi + λj 	= 0, then FiFjFi = FjFiFj .

Proof. — (ii) is trivial, while (i) and (iii) are immediate from Proposition 6.5.1 and
Corollary 6.5.3. �


Our proof of Corollary 6.5.4 appears to be simpler than earlier proofs, see
[CBH, Theorem 5.1] (for (i)), [Na, Remark 3.20], [Na, Theorem 3.4], [Lu2],
and [Maf].
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6.6. Relations in higher rank

In this subsection, n is an integer greater than 1. We shall show that the reflec-
tion functors Fi of (1.8.1) satisfy the Weyl group relations when the parameters are
generic.

We omit the proof of the following proposition since it is completely similar to
the proof of Proposition 6.5.1.

Proposition 6.6.1. — Let i, j ∈ I. The homomorphisms F̂i of (6.4.1) satisfy the following

for any λ ∈ R and ν ∈ C:

(i) Let T = I \ {i}. Then the map

F̂i : en
TAn,ri(λ),ν(Q )en

T → en
TAn,λ,ν(Q )en

T

is an isomorphism, and F̂i ◦ F̂i = Id.

(ii) Let T = I \ {i, j}. If Cij = 0, then

F̂i ◦ F̂j = F̂j ◦ F̂i : en
TAn,ri rj(λ),ν(Q )en

T → en
TAn,λ,ν(Q )en

T.

(iii) Let T = I \ {i, j}. If Cij = −1, then

F̂i ◦ F̂j ◦ F̂i = F̂j ◦ F̂i ◦ F̂j : en
TAn,ri rj ri(λ),ν(Q )en

T → en
TAn,λ,ν(Q )en

T. �

Next, we have the following generalization of Lemma 6.5.2.

Lemma 6.6.2. — (i) Let T = I \ {i}. If λi ± pν 	= 0 for p = 0, 1, ..., n − 1, then
An,λ,ν = An,λ,νen

TAn,λ,ν.

(ii) Let T = I \ {i, j} and suppose Cij = 0. If λi ± pν 	= 0 and λj ± pν 	= 0 for

p = 0, 1, ..., n − 1, then An,λ,ν = An,λ,νen
TAn,λ,ν.

(iii) Let T = I \ {i, j} and suppose Cij = −1. If λi ± pν 	= 0, λj ± pν 	= 0 and

λi + λj ± pν 	= 0 for p = 0, 1, ..., n − 1, then An,λ,ν = An,λ,νen
TAn,λ,ν.

Proof. — The proof is similar to the proof of Lemma 6.5.2.
To prove (i), let V be the An,λ,ν-module An,λ,ν

An,λ,νen
TAn,λ,ν

where T = I \ {i}. For any
n-tuple of vertices i1, ..., in, we let Vi1,...,in := (ei1 ⊗ · · · ⊗ ein)V, so V = ⊕

i1,...,in∈I Vi1,...,in .
Since en

TV = 0, we have Vi1,...,in = 0 when none of i1, ..., in is i. Suppose now that i
appears m times in i1, ..., in. We shall prove by induction on m that Vi1,...,in = 0, so we
assume that the statement is true whenever i appears less than m times. Without loss
of generality, say i1 = · · · = im = i. Then by the relation (i) in Definition 6.1.3 and
the induction hypothesis, we have

(λi + ν

m∑

�=2

s1�)Vi1,...,in = 0.
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By [Ga, Prop. 5.12], the element λi + ν
∑m

�=2 s1� is invertible in the group algebra
C[Sn]. Hence, Vi1,...,in = 0, and (i) follows by induction.

The proofs of (ii) and (iii) are similar, using induction. �


As in the previous subsection, we obtain

Corollary 6.6.3. — (i) Let T = I \ {i}. If λi ± pν 	= 0 for p = 0, 1, ..., n − 1, then

Fi(M) = An,ri(λ),νe
n
T ⊗en

TAn,λ,νen
T

en
TM, ∀M ∈ An,λ,ν-mod.

(ii) Let T = I \ {i, j} and suppose Cij = 0. If λi ± pν 	= 0 and λj ± pν 	= 0 for

p = 0, 1, ..., n − 1, then

Fi(M) = An,ri(λ),νe
n
T ⊗en

TAn,λ,νen
T

en
TM, ∀M ∈ An,λ,ν-mod.

(iii) Let T = I \ {i, j} and suppose Cij = −1. If λi ± pν 	= 0, λj ± pν 	= 0 and

λi + λj ± pν 	= 0 for p = 0, 1, ..., n − 1, then

Fi(M) = An,ri(λ),νe
n
T ⊗en

TAn,λ,νen
T

en
TM, ∀M ∈ An,λ,ν-mod. �


Proposition 1.8.2 is immediate from Proposition 6.6.1 and Corollary 6.6.3.

6.7. Shift functors

In this subsection, we return to the case when Q is the affine Dynkin quiver
associated to Γ.

Let C = (Cij) be the generalized Cartan matrix of Q . The affine Weyl group
W̃ is generated by the simple reflections ri for i ∈ I. It acts on CI by ri : CI → CI,
where ri(λ) = λ − ∑

j∈I Cijλi ej .
Let Q ′ be the finite Dynkin quiver obtained from Q by deleting the vertex o.

The Weyl group W of Q ′ is the subgroup of W̃ generated by the ri for i 	= o. Let
C′ = (C′

ij) be the Cartan matrix of Q ′. Then W acts on ⊕i 	=oCei by ri(λ) =
λ − ∑

j 	=o C
′
ijλiej . Denote by w0 ∈ W the longest element of W.

If i ∈ I, then let i∗ ∈ I be the vertex such that Ni∗ = N∗
i . Recall that if λ =∑

i∈I λi ei, then λ = ∑
i∈I λi∗ei.

Lemma 6.7.1. — For any λ ∈ CI with λ · δ = 1, we have w0(λ) = −λ + 2e0.

Proof. — The projection CI → ⊕i 	=oCei is W-equivariant with kernel Ceo. We
write λ = λoeo + λ′ where λ′ ∈ ⊕i 	=oCei. Now w0(λ) − w0(λ

′) ∈ Ce0 and w0(λ
′) = −λ′.

It follows that w0(λ) = −λ + 2(λ · δ)e0. �
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We will now prove the second isomorphism in Corollary 1.8.3. For each vertex
i 	= o, we have, from (6.4.1), the homomorphism

F̂i : e−An,ri(λ),ν−1(Q )e− → e−An,λ,ν−1(Q )e−

which is an isomorphism by Proposition 6.6.1(i). By writing w0 as a product of simple
reflections, we get an isomorphism

F̂w0 : e−An,w0(λ),ν−1(Q )e−
∼→ e−An,λ,ν−1(Q )e−.(6.7.2)

Proposition 6.6.1 implies that this isomorphism does not depend on the choice of pre-
sentation of w0 as a product of simple reflections.

Write Ht,k,c = Ht,k,c(Γn). By [GG, (3.5.2)], there is an isomorphism f ⊗nHt,k,c f ⊗n =
An,λ,ν(Q ) where f = ∑

i∈I ei. In particular, e−Ht,k−2t,c ′e− = e−An,λ†,ν−1(Q )e−, and

e−Ht,k−2t,ce− = e−An,λ,ν−1e−. By Lemma 6.7.1, λ† = w0(λ), so by (6.7.2) we have
the isomorphism

F̂w0 : e−Ht,k−2t,c ′e−
∼→ e−Ht,k−2t,ce−.

This completes the proof of Corollary 1.8.3.
Using the isomorphism eHt,k,ce � e−Ht,k−2t,ce− of Corollary 1.8.3, we can con-

sider Ht,k−2t,ce− as a (Ht,k−2t,c, eHt,k,ce)-bimodule.

Definition 6.7.3. — The shift functor is defined to be

S : Ht,k,c-mod → Ht,k−2t,c-mod, V �→ Ht,k−2t,ce− ⊗eHt,k,ce eV.

7. Extended Dynkin quiver

7.1. Γ-analogue of commuting variety

In this subsection, we will prove a generalization of [EG, Theorem 12.1].
Let R(Γ, n) be the space of extensions of the representation CΓ ⊗ Cn of Γ to

a representation of T(L)�CΓ, i.e.,

R(Γ, n) := HomΓ

(
L, EndC(CΓ ⊗ Cn)

)
.

Let Z = Z (Γ, n) be the (not necessarily reduced) subscheme of R(Γ, n) consisting of
those representations ρ such that ρ([X, Y]) = 0 for all X, Y ∈ L.

Now CΓ = ⊕i∈I End(Ni). Let pi ∈ CΓ be the idempotent element corresponding
to the identity element of End(Ni). Define Z1 = Z1(Γ, n) to be the (not necessarily
reduced) subscheme of R(Γ, n) consisting of those representations ρ such that, for all
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X, Y ∈ L, we have ρ([X, Y]pi) = 0 for i 	= o, and ∧2ρ([X, Y]po) = 0. We remark that
ρ([X, Y]po) is a n × n-matrix and ∧2ρ([X, Y]po) = 0 means that all 2 × 2 minors of
this matrix vanish (so its rank is at most 1).

We shall denote by J and J1 the defining ideals of Z (Γ, n) and Z1(Γ, n), respec-
tively. Thus,

Z (Γ, n) = Spec C[R(Γ, n)]/J

and

Z1(Γ, n) = Spec C[R(Γ, n)]/J1.

Let G := AutΓ(CΓ ⊗ Cn). Observe that the group G acts on R(Γ, n), Z (Γ, n), and
Z1(Γ, n).

Theorem 7.1.1. — One has: JG = JG
1 .

It is clear that J ⊃ J1, so JG ⊃ JG
1 . To prove Theorem 7.1.1, we have to show

that JG ⊂ JG
1 . We need the following lemmas. First, let us fix a basis X, Y for L.

Lemma 7.1.2. — The ideal JG is generated in C[R(Γ, n)]G by functions of the form

ρ �→ Tr(ρ(Q [X, Y])), where Q ∈ T(L)�CΓ.

Proof. — This follows from Weyl’s fundamental theorem of invariant theory. �

Therefore, it suffices to show that Tr(ρ(Q [X, Y]pi)) = 0 (mod J1) for all ρ ∈

R(Γ, n), Q ∈ T(L) � CΓ, and i ∈ I. This is obvious for i 	= o from the defin-
ition of J1. For i = o, we shall prove it by induction on the degree of Q . The case
deg Q = 0 is clear, so let d > 0 and assume that Tr(ρ(Q [X, Y]po)) = 0 (mod J1)
whenever deg Q < d .

Lemma 7.1.3. — Let deg Q = d . If Q = Q 1[X, Y]Q 2 for some Q 1, Q 2 ∈
T(L)�CΓ, then Tr(ρ(Q [X, Y]po)) = 0 (mod J1).

Proof. — We may replace Q , Q 1, Q 2 by poQ po, poQ 1po, poQ 2po respectively.
Modulo J1, and writing in terms of matrix elements, we have

Tr(ρ(Q [X, Y]po)) = Tr(ρ(Q 1[X, Y]poQ 2[X, Y]po))

=
∑

ρ(Q 1)lmρ([X, Y]po)mqρ(Q 2)qrρ([X, Y]po)rl

=
∑

ρ(Q 1)lmρ([X, Y]po)mlρ(Q 2)qrρ([X, Y]po)rq

(since ∧2ρ([X, Y]po) = 0)
= Tr(ρ(Q 1[X, Y]po)) Tr(ρ(Q 2[X, Y]po)).

This is equal to zero by induction hypothesis. �
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Let ϕ : T(L)�CΓ → S(L)�CΓ be the quotient map, where S(L) denotes the
symmetric algebra on L. The preceding lemma implies the following corollary.

Corollary 7.1.4. — If deg Q ≤ d and Q ∈ Ker ϕ, then Tr(ρ(Q [X, Y]po)) = 0
(mod J1). �


Note that elements of the form (aX+ bY)m (where a, b ∈ C) span a set of repre-
sentatives of S(L) in T(L). Thus, it remains to show that Tr(ρ((aX + bY)m[X, Y]po))

= 0 (mod J1) for any a, b ∈ C and m ≤ d . This is equivalent to showing that
Tr(ρ((aX + bY)m[X, Y])) = 0 (mod J1). But we have

Tr(ρ((aX + bY)m[X, Y])) = 1
a(m + 1)

Tr(ρ([(aX + bY)m+1, Y])) = 0.

This completes the proof of Theorem 7.1.1.

7.2. — Let µCM : Repα(Q CM) → gl(α) be the moment map, and ZCM =
µ−1

CM(0) the scheme theoretic inverse image of the point 0. It was proved in [GG2,
Theorem 1.3.1] that ZCM is a reduced scheme. Now, there are natural algebra mor-
phisms

C[Z ]G f← C[Z1]G g→ C[ZCM]G.(7.2.1)

By Theorem 7.1.1, f is an isomorphism. The following proposition and its proof is
a straightforward generalization of [GG2, Proposition 2.8.2], given our Theorem 7.1.1.

Proposition 7.2.2. — The morphism g in (7.2.1) is an isomorphism. �

From Proposition 7.2.2 and [GG2, Theorem 1.3.1], we have the following gen-

eralization of [GG2, Theorem 1.2.1].

Theorem 7.2.3. — One has: JG = √
JG

. �

Let Z red := Spec C[Repnδ(Q )]/√J, a closed subvariety of Repnδ(Q ). Define an

embedding j : Ln
reg → Repnδ(Q ) by j(u1, ..., un)a = (φa(u1), ..., φa(un)) for any a ∈ Q .

Using formulas (8.2.1) from Section 8.2 below, we deduce that the image of j lies
in Z red . Pullback of functions gives a morphism

j∗ : C[Z red]G → C[Ln
reg]Γn .(7.2.4)

By [CB, Theorem 3.4] and [Kr, Corollary 3.2], we have the following proposition.

Proposition 7.2.5. — The map j∗ in (7.2.4) is an isomorphism. �
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8. Proof of Proposition 3.7.2

8.1. — The formula of Proposition 3.7.2(i) is clear. Next, we have

θHolland(a∗) =
∑

p,q

ea
q,p ⊗ ∂

∂ta
p,q

.

To compute the restriction of ea
q,p ⊗ ∂

∂tap,q
to j(Ln

reg) at a point u = (u1, ..., un)

∈ Ln
reg, let gp,q(ε) = Id+ εBp,q be an element of GL(α) such that

gp,q(ε) · (j(u) + εea
p,q

) = j(u) + εj(w), w ∈ Ln
reg,(8.1.1)

where we omit terms of higher order in ε. Then for a function f ∈ O(χ, N), we have

ea
q,p ⊗ ∂

∂ε
f
(
j(u) + εea

p,q

) = ea
q,p ⊗ ∂

∂ε
f
(

gp,q(ε)
−1 · (j(u) + εj(w))

)
(8.1.2)

= ea
q,p ⊗ ∂

∂ε
χ(gp,q(ε))gp,q(ε)

−1f (j(u) + εj(w))

= ea
q,p ⊗ ∂

∂w
f (j(u)) + ea

q,p ⊗
(∑

j∈I

χ j Tr
(
B( j )

p,q

)
Id− Bp,q

)
f (j(u))

where B( j )
p,q is the component of Bp,q in gl(αj ). We shall write B( j )

p,q for j ∈ I as a n × n
block matrix ⊕1≤�,m≤nB

( j )
p,q (�, m) where B( j )

p,q (�, m) ∈ gl(δj ) is the (�, m)-th block. Simi-
larly, we write ea

p,q as ⊕1≤�,m≤nea
p,q(�, m). By (8.1.1), we need to solve the equations:

B(h(a))
p,q (�, m)φa(um) − φa(u�)B(t(a))

p,q (�, m) + ea
p,q(�, m) =

{
0 if � 	= m
φa(w�) if � = m

n∑

m=1

B(o)
p,q(�, m) − B(s)

p,q = 0.

where 1 ≤ �, m ≤ n. We shall set B(s)
p,q = 0.

Suppose (�−1)δh(a) < p ≤ �δh(a) and (m −1)δt(a) < q ≤ mδt(a) where �, m ∈ [1, n].
If � 	= m, then we set B( j )

p,q (�
′, m′) = 0 whenever �′ 	= m′ and (�′, m′) 	= (�, m). If

� = m, then we set B( j )
p,q (�

′, m′) = 0 whenever �′ 	= m′.

8.2. Proof of (3.7.3)

First of all, it is immediate from (2.1.1) that
∑

a∈Q ;t(a)=i

φa∗(u)φa(w) = δiω(w, u)IdN∗
i
, for each source i in Q ;(8.2.1)

∑

a∈Q ;h(a)=j

φa(w)φa∗(u) = δjω(w, u)IdN∗
j
, for each sink j in Q .
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Next, we find a collection of operators βi ∈ End(N∗
i ) such that

φa(u)βi − βjφa(w) = fa(8.2.2)

where i = t(a), j = h(a), and fa : N∗
i → N∗

j are given operators. We write the collection
βi as an element

∑
βγγ of C[Γ]. Since γφa(w) = φa(γw)γ , we get

∑
βγφa(u − γw)γ = fa,

∑
βγγφa(γ

−1u − w) = fa.

We multiply the first equation above by φa∗(u) on the left and add over all edges going
out from i. Similarly, let us multiply the second equation above by φa∗(w) on the right
and add over all edges going into j.

Using formulas (8.2.1), we obtain:

δi

∑
βγω(u, γw)γ |N∗

i
=

∑

a∈Q ;t(a)=i

φa∗(u)fa, for sources i;

δj

∑
βγω(u, γw)γ |N∗

j
=

∑

a∈Q ;h(a)=j

faφa∗(w), for sinks j.

This implies that

βγ = ω(u, γw)−1|Γ|−1
∑

a∈Q

(
Tr |N∗

h(a)

(
faφa∗(w)γ−1

) + Tr |N∗
t(a)

(
φa∗(u)faγ−1

))
.(8.2.3)

Hence, if � 	= m, for ⊕j∈IB
( j )
p,q (�, m) we get the expression

∑

γ∈Γ

ω(u�, γ um)
−1|Γ|−1

(
Tr |N∗

h(a)

(
ea
p,qφa∗(um)γ−1

)+Tr |N∗
t(a)

(φa∗(u�)ea
p,qγ

−1)
)
γ(8.2.4)

and so, for B(o)
p,q(�, �) = −B(o)

p,q(�, m) we obtain the expression

−
∑

γ∈Γ

ω(u�, γ um)−1|Γ|−1
(

Tr |N∗
h(a)

(
ea
p,qφa∗(um)γ−1

)

+ Tr |N∗
t(a)

(
φa∗(u�)ea

p,qγ
−1

))
.

Thus, for all j ∈ I, for B( j )
p,q (�, �) we obtain the expression

−
∑

γ∈Γ

ω(u�, γ um)−1|Γ|−1
(

Tr |N∗
h(a)

(
ea
p,qφa∗(um)γ−1

)

+ Tr |N∗
t(a)

(
φa∗(u�)ea

p,qγ
−1

))
Idδi×δi .
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It follows from the last formula and from (8.1.2) that for � 	= m, the (m, �)-entry
of the radial part of θHolland(a∗) is

�δh(a)∑

p=(�−1)δh(a)+1

mδt(a)∑

q=(m−1)δt(a)+1

ea
q,p(m, �)

( ∑

j∈I

χ j Tr
(
B( j )

p,q (�, �)
) −

∑

j∈I

B( j )
p,q (�, �)

)

= |Γ|−1
∑

γ

(φa∗)m · γ−1 + γ−1(φa∗)�

ω(γ ; �, m)
(1 −

∑

j

χ jδj )

= k
2

∑

γ

(φa∗ ◦ (Id+ γ−1))m,�

ω(γ ; �, m)
γ−1.

Note that, since ζ acts by −1 on L and by 1 on N∗
h(a),

(φa∗)m

ω(γζ; �, m)
(γζ)−1 = − (φa∗)m

ω(γ ; �, m)
γ−1

and so
∑

γ

(φa∗)m

ω(γ ; �, m)
γ−1 = 0.

Hence, the (m, �)-entry of the radial part of θHolland(a∗) is equal to

− k
2

∑

γ

(φa∗ ◦ γ)�

ω(γ ; m, �)
γ.

Proof of Lemma 3.3.1. — We set fa = 0 in (8.2.2). Then from (8.2.3), we have
ω(u, γw)βγ = 0 for all γ ∈ Γ. Since not all βγ are zero, we must have ω(u, γw) = 0
for some γ . �


8.3. Proof of (3.7.4)

We need to solve φa(u)βi − βjφa(u) = fa − φa(w).
As above, for γ 	= 1, ζ , we obtain

βγ = ω(u, γ u)−1|Γ|−1
∑

a∈Q

(
Tr |N∗

h(a)

(
faφa∗(u)γ−1

) + Tr |N∗
t(a)

(
φa∗(u)faγ−1

))
.

Moreover, multiplying on the right by φa∗(v) and summing over all incoming
edges a ∈ Q at the vertex j, we get

δj

∑
βγω(γ−1u − u, v)γ |N∗

j
=

∑

a∈Q :h(a)=j

faφa∗(v) − δjω(w, v).

Take the trace of both sides this equation and sum up over all sinks j. We have
⊕sink j(N∗

j )
⊕δj = C[Γ/S], where S = {1, ζ}. It follows that the trace of γ in the last
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sum vanishes if γ 	= 1, ζ . Let βζ = 0. Then

w = 2|Γ|−1
∑

a∈Q

Tr( faφa∗).(8.3.1)

Hence, for � = m, we get

⊕j∈IB
( j )
p,q (m, m) =

∑

γ 	=1,ζ

ω(um, γ um)
−1|Γ|−1

(
Tr |N∗

h(a)

(
ea
p,q(φa∗)mγ−1

)
(8.3.2)

+ Tr |N∗
t(a)

(
(φa∗)mea

p,qγ
−1

))
(γ − 1).

It follows from (8.1.2), (8.3.1), (8.3.2) and (8.2.4) that the (m, m)-entry of the ra-
dial part of θHolland(a∗) is

2
|Γ|

∂

∂(φa∗)m
+

mδh(a)∑

p=(m−1)δh(a)+1

mδt(a)∑

q=(m−1)δt(a)+1

ea
q,p(m, m)

( ∑

j∈I

χ j Tr(B( j )
p,q (m, m))(8.3.3)

−
∑

j∈I

B( j )
p,q (m, m)

)
−

∑

� 	=m

�δh(a)∑

p=(�−1)δh(a)+1

mδt(a)∑

q=(m−1)δt(a)+1

ea
q,p(m, �)

∑

j∈I

B( j )
p,q (�, m)

= 2
|Γ|

∂

∂(φa∗)m
+ 1

|Γ|
∑

γ 	=1,ζ

γ−1 · (φa∗)m + (φa∗)m · γ−1

ω(γ ; m, m)

(
− γ + 1

−
∑

j

χ j(δj − Tr |N∗
j
(γ))

)
− 1

|Γ|
∑

� 	=m

∑

γ

(φa∗ ◦ (Id+ γ−1))m,�

ω(γ ; �, m)

= 2
|Γ|

∂

∂(φa∗)m
+ 1

|Γ|
∑

γ 	=1,ζ

(φa∗ ◦ (γ−1 + Id))mm

ω(γ ; m, m)

(−1 + |Γ|cγ γ−1
)

+ 1
|Γ|

∑

� 	=m

∑

γ

(φa∗ ◦ γ)�

ω(γ ; m, �)
.

The last term in (8.3.3) comes from (8.2.4).
It is even easier to compute the radial part for the edge b : s → o. We omit this

computation. This completes the proof of Proposition 3.7.2.

9. Proof of Theorem 4.3.2

9.1. — It easy to check that the operators Rv
ml have the following Γn-equivari-

ance properties:

γmRv
ml = Rγ(v)

ml γm, γlRv
ml = Rv

mlγl,

smlRv
ml = Rv

lmsml, smjRv
ml = Rv

jlsmj, sljRv
ml = Rv

mjslj,

where j 	= m, l. It implies that gΘDunkl(v) = ΘDunklg(v), for any g ∈ Γn and v ∈ Ln
reg.
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Next, we prove that
[
ΘDunkl(wi),Θ

Dunkl(vi)
]

(9.1.1)

= ω(w, v)
(

t · 1 + k
2

∑

j 	=i

∑

γ∈Γ

sijγiγ
−1
j +

∑

γ∈Γ�{1}
cγ γi

)
,

where 1 ≤ i ≤ n.
First we prove

[
Rw

ij ,Θ
Dunkl
i (v)

] + [
ΘDunkl

i (w), Rv
ij

] = 1
2
ω(w, v)

∑

j 	=i

∑

γ∈Γ

sijγiγ
−1
j ,(9.1.2)

1 ≤ i 	= j ≤ n.

We prove that (9.1.2) holds if we apply both sides to �f , a basis vector in F⊗n

such that fi, fj = f +, cf. (4.1.4). Indeed, in that case we have

[
Rw

ij ,Θ
Dunkl
i (v)

]
( �f ) =

(
Rw

ij (D
v)i + ΘDunkl

i (v)
1
2

∑

γ∈Γ

(γw)∨
j

ω(1; i, j)

)
( �f ) = A �f

[
ΘDunkl

i (w), Rv
ij

]
( �f ) =

(
− 1

2
ΘDunkl

i (w)
∑

γ∈Γ

(γ v)∨
j

ω(γ−1; i, j)
− Rw

ij (D
w)i

)
( �f )

= B �f ,
where

A = −1
2

∑

γ∈Γ

v∨
i (γw)∨

j

ω(γ−1; i, j)
sijγiγ

−1
j , resp., B = 1

2

∑

γ∈Γ

w∨
i (γ v)∨

j

ω(γ−1; i, j)
sijγiγ

−1
j .

These formulas yield
([

Rw
ij ,Θ

Dunkl
i (v)

] + [
ΘDunkl

i (w), Rv
ij

]) �f
= −1

2

∑

γ∈Γ

v∨
i (γw)∨

j − w∨
i (γ v)∨

j

ω(γ−1; i, j)
sijγiγ

−1
j

�f

= 1
2
ω(w, v)

∑

γ∈Γ

sijγiγ
−1
j

�f .

We consider the case fi = f −, fj = f +. Then we have:

[
Rw

ij ,Θ
Dunkl
i (v)

] �f = −Rw
ij v

∨
i

�f = 1
2

∑

γ∈Γ

(γw)∨
j

ω(γ−1; i, j)
v∨

i sijγiγ
−1
j

�f = 0,
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because in the sum the terms corresponding γ and ζγ mutually cancel. Analogously,

[
ΘDunkl

i (w), Rw
ij

] �f = Rv
ijw

∨
i
�f = −1

2

∑

γ∈Γ

(γ v)∨
j

ω(γ−1; i, j)
sijγiγ

−1
j w∨

i
�f = 0.

For the same reason we also have
∑

γ∈Γ sijγiγ
−1
j

�f = 0.
We consider the case fi = f +, fj = f −. A similar argument yields

[
Rw

ij ,Θ
Dunkl
i (v)

] �f = [
ΘDunkl

i (w), Rw
ij

] �f =
∑

γ∈Γ

sijγiγ
−1
j

�f = 0.

The case fi, fj = f − is analogous to the first case and we have

[
Rw

ij ,Θ
Dunkl
i (v)

] �f = 1
2

∑

γ∈Γ

w∨
i (γ v)∨

j

ω(γ−1; i, j)
�f ,

[
ΘDunkl

i (w), Rv
ij

] �f = −1
2

∑

γ∈Γ

v∨
i (γw)∨

j

ω(γ−1; i, j)
sijγiγ

−1
j

�f ,

and
([

Rw
ij ,Θ

Dunkl
i (v)

] + [
ΘDunkl

i (w), Rv
ij

]) �f
= −1

2

∑

γ∈Γ

w∨
i (γ v)∨

j − v∨
i (γw)∨

j

ω(γ−1; i, j)
sijγiγ

−1
j

�f

= 1
2
ω(w, v)

∑

γ∈Γ

sijγiγ
−1
j

�f .

We remark that for any 1 ≤ j 	= i 	= k ≤ n and w, v ∈ L we have Rw
ij R

v
ik =

Rv
ikR

w
ij = 0. Now, (9.1.1) follows from this equation, the n = 1 case of Theorem 4.3.2,

and (9.1.2).

9.2. — Next we prove:

[
ΘDunkl(wi),Θ

Dunkl(vm)
] = − k

2

∑

γ∈Γ

ωL(γ u, v)simγiγ
−1
m , 1 ≤ i 	= m ≤ n.(9.2.1)

To this end, we rewrite the RHS of (9.1.1) as follows
[
ΘDunkl(wi),Θ

Dunkl(vm)
] = k

([
ΘDunkl

i (w), Rv
mi

] + [
Rw

imΘ
Dunkl
m (v)

])

+ k2
([

Rw
im, Rv

mi

] +
∑

j 	=m,i

[
Rw

im, Rv
mj

] + [
Rw

ij , Rv
mj

]

+ [
Rw

ij , Rv
mi

])
.
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We first prove that

[
Rw

im, Rv
mj

] + [
Rw

ij , Rv
mj

] + [
Rw

ij , Rv
mi

] = 0, j 	= m, i.

For that it is enough to show that

Rw
imRv

mj − Rv
mjR

w
ij + Rw

ij R
v
mi = 0, and − Rv

mjR
w
im + Rw

ij R
v
mj − Rv

miR
w
ij = 0.(9.2.2)

We prove the first equation, the second is proved similarly. Let �f be a basis vec-
tor in F⊗n such that fi, fj, fm = f +, cf. (4.1.4). We compute

4
(
Rw

imRv
mj − Rv

mjR
w
ij + Rw

ij R
v
mi

)
( �f )

=
( ∑

β,γ∈Γ

(w)∨
i (γ v)∨

j

ω(β−1; i, m)ω((γβ)−1; i, j)
simsmjβiγm(γβ)−1

j

−
∑

γ,β∈Γ

(βv)∨
j (β−1γw)∨

m

ω(β−1; m, j)ω(β; i, m)
smjsij(β

−1γ)iβmγ
−1
j

+
∑

γ,β∈Γ

(βw)∨
j (βγ v)∨

j

ω(β−1; i, j)ω((βγ)−1; m, j)
sij smiγ

−1
i (βγ)mβ

−1
j

)
�f .

We change summation indices at the first term as γ → γβ, β → γ and at the
third term as γ → β−1, β → γβ. We get

∑

γ,β∈Γ

( w∨
i (γ v)∨

j

ω(β−1; i, m)ω(β−1; i, j)
− (γ v)∨

j (βw)∨
m

ω(γ−1; m, j)ω(β−1; i, m)

+ (γβw)∨
j γ v∨

j

ω(β−1; i, j)ω(γ−1; m, j)

)
· simsmjβiγm(β

−1γ−1)j �f

= 4
( ∑

γ,β∈Γ

γ v∨
j

ω(β−1; i, m)ω(β−1; i, j)ω(γ−1; m, j)
· Yβ,γ,m, j

)
�f = 0,

where Yβ,γ,m, j is given by the following expression

Yβ,γ,m, j =(
w∨

i ω(γ−1; m, j) − (βw)∨
mω(β−1; i, j)

+ (γβw)∨
j ω(β−1; i, m)

) · simsmjβiγm(β
−1γ−1)j .
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We consider the case fi, fm = f +, fj = f −:

4
(
Rw

imRv
mj − Rv

mjR
w
ij + Rw

ij R
v
mi

)
( �f )

=
( ∑

β,γ∈Γ

(w)∨
i β−1v∨

i

ω(β−1; i, m)ω((γβ)−1; i, j)
simsmjβiγm(γβ)−1

j

−
∑

γ,β∈Γ

v∨
mw∨

i

ω(β−1; m, j)ω(γ−1β; i, m)
smj sij(β

−1γ)iβmγ−1
j

+
∑

γ,β∈Γ

w∨
i βγ v∨

j

ω(β−1; i, j)ω((βγ)−1; m, j)
sij smiγ

−1
i (βγ)mβ

−1
j

)
�f .

Performing the same change of summation indices as in the previous paragraph,
we deduce that the following sum vanishes

∑

γ,β∈Γ

w∨
i (β−1v∨

i ω(γ−1; m, j) − v∨
mω((γβ)−1; i, j) + γ v∨

j ω(β−1; i, m))

ω(β−1; i, m)ω((γβ)−1; i, j)ω(γ−1; m, j)

×simsmjβiγm(β
−1γ−1)j �f .

It easy to see that if fi = f − or fm = f − then Rw
imRv

mj
�f = Rv

mjR
w
ij

�f = Rw
ij R

v
mi

�f = 0.
Thus, we have proved (9.2.2).

Now we prove that

[
Rw

im, Rv
mi

] = 0.

It is easy to see that [Rw
im, Rv

mi] �f = 0 when fi = f − or fm = f −. If fi, fm = f + then
[Rw

im, Rv
mi] �f = 0 is equivalent to:

∑

γ,β∈Γ

w∨
i βγ v∨

m − v∨
mβ−1γ−1w∨

i

ω(β−1; i, m)ω((βγβ)−1; i, m)
(βγ)m(γβ)−1

i
�f = 0.(9.2.3)

Fix some γ, β ∈ Γ. Let α := βγ , β := γβ. It is easy to see that the coefficient
in front of αmβ−1

i
�f in (9.2.3) is equal to

(
w∨

i αv∨
m − v∨

mβ−1w∨
i

) ∑

δ∈Zβ

1
ω(δβ; i, m)ω(β−1δβ; i, m)

(9.2.4)

where Zβ is the notation for the centaralizer of β ∈ Γ. We notice that α is conjugate
to β, hence if β = 1 or β = ζ then α = β = β−1 and (9.2.4) is zero.
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Thus we can assume that β 	= 1, ζ . In this case Zβ is a cyclic group. We denote
the order of Zβ by l and let ρ be a generator of Zβ. Then we can assume that β = ρq

for some q, 0 < q < l.
Let a, b ∈ L be the basis in L such that ρa = εa, ρb = ε−1b where ε is some

primitive lth root of 1. Let x = a∗ and y = b∗. We make change of variables βum → um

in (9.2.4). Let zmi = xi ym/(xm yi). Then, (9.2.4) is proportional to

l−1∑

p=0

1
ω(ui, δpum)ω(δqui, δpum)

= 1
(xm yi)2

l−1∑

p=0

1
(ε−p − εpzmi)(ε−p+q − εp−qzmi)

= 1
(εq − ε−q)(xmxi)2

l−1∑

p=0

1
zmi − ε2q−2p

− 1
zmi − ε−2p

= 0.

Finally we show that

[
ΘDunkl

i (w), Rv
mi

] + [
Rw

imΘ
Dunkl
m (v)

] = −1
2

∑

γ∈Γ

ωL(γw, v)simγiγ
−1
m .

If fi, fm = f ± then the terms in the LHS of the sum below corresponding to γ

and γζ mutually cancel out, and we deduce

−1
2

(∑

γ∈Γ

ωL(γw, v)simγiγ
−1
m

) �f = 0.

In the case fi, fm = f − we know that
[
ΘDunkl

i (w), Rv
mi

] �f = [
Rw

im,Θ
Dunkl
m (v)

] �f = 0.

In the case fi = fm = f + we have

[
ΘDunkl

i (w), Rv
mi

] �f = 1
2

(∑

γ∈Γ

−(Dw)i
γ v∨

i

ω(γ−1; m, i)
smiγmγ

−1
i

+ v∨
m

ω(γ−1; m, i)
(Dγ−1w)msmiγmγ

−1
i

)
�f ,

[
Rw

im,ΘDunkl
m (v)

] �f = 1
2

(∑

γ∈Γ

− w∨
i

ω(γ−1; i, m)
(Dγ−1v)isimγiγ

−1
m

+ (Dv)m
γw∨

m

ω(γ−1; i, m)
simγiγ

−1
m

)
�f .

Fix a conjugacy class C ⊂ Γ. Then the coefficient in front of − 1
2 cβ, β ∈ C at

([ΘDunkl
i (w), Rv

mi] + [Rw
imΘDunkl

m (v)]) �f is equal to
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( ∑

γ∈Γ,β∈C

(βw∨
i + w∨

i )βγ v∨
i

ω(β; i, i)ω(γ−1β−1; m, i)
smi(βγ)m(γ

−1)i

− v∨
m

(
βγ−1w∨

m + γ−1w∨
m

)

ω(γ−1; m, i)ω(β; m, m)
smiγm(βγ−1)i

− (βv∨
m + v∨

m)βγw∨
m

ω(β; m, m)ω(γ−1β−1; i, m)
sim(βγ)i(γ

−1)m

+ w∨
i

(
βγ−1v∨

i + γ−1v∨
i

)

ω(γ−1; i, m)ω(β; i, i)
simγi(βγ−1)m

)
�f .

Fix γ ∈ Γ, β ∈ C. Then the coefficient in front of sim(βγ)mγ
−1
i is equal to

F = (βw∨
i + w∨

i )βγ v∨
i

ω(β; i, i)ω(βγ ; m, i)
− v∨

m

(
γ−1w∨

m + γ−1β−1w∨
m

)

ω(βγ ; m, i)ω(γ−1βγ ; m, m)

−
(
γ−1βγ v∨

m + v∨
m

)
γ−1w∨

m

ω(γ−1βγ ; m, m)ω(γ ; i, m)
+ w∨

i (βγ v∨
i + γ v∨

i )

ω(γ−1; i, m)ω(β; i, i)
.

We see that F = F(ui, um) is a homogeneous function in two variables, of bide-
gree (−1,−1), that is F ∈ H0(P × P,O(−1) � O(−1)). It could have simple poles
along the divisors ui ∼ βui, um ∼ γ−1βγ um, ui ∼ βγ um, ui ∼ γ um where ∼ stands for
being proportional. But is easy to check that the residues actually vanish. We deduce
that F = 0.

The coefficient in front of smiγmγ
−1
i

�f in the part of ([ΘDunkl
i (w), Rv

mi]
+ [Rw

imΘDunkl
m (v)]) �f that does not contain coefficients cγ , γ ∈ Γ, equals

− ∂

∂wi

γ v∨
i

ω(γ−1; m, i)
+ v∨

m

ω(γ−1; m, i)
∂

∂(γ−1w)m

− w∨
i

ω(γ−1; i, m)

∂

∂(γ v)i
+ ∂

∂vm

γ−1w∨
m

ω(γ−1; i, m)
.

It is easy to show that this expression vanishes since we have

w∨
i

∂

∂(γ v)∨
i

− γ v∨
i

∂

∂wi
= γ−1w∨

m

∂

∂(γ v)∨
m

− v∨
m

∂

∂(γ−1w)m
= ω(w, v)eu.

We consider the case fi = f −, fm = f +. Then we have [Rw
im,Θm(v)] �f = 0 and

[
ΘDunkl

i (w), Rv
mi

] �f = 1
2

∑

γ∈Γ

w∨
i v∨

m − (γ v)∨
i (γ−1w)∨

m

ω(γ−1; m, i)
smiγmγ

−1
i

�f

= −
∑

γ∈Γ

ω(γw, v)smiγiγ
−1
m

�f .

The analysis of the case fi = f +, fm = f − is similar.
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