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ABSTRACT

The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra
associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on
a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG].

We also present a new approach to reflection functors and shift functors for generalized preprojective algebras
and symplectic reflection algebras associated with wreath-products.
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1. Introduction

The main result of the paper is the proof of [EG, Conjecture 11.22] that pro-
vides a natural construction of the spherical subalgebra in a symplectic reflection al-
gebra associated with a wreath-product in terms of quantum hamiltonian reduction of
an algebra of differential operators.

To state the main result we briefly recall a few basic definitions.

1.1. Quantum Hamiltonian reduction

We work with associative unital CG-algebras and write Hom = Homg, ® = ®c,
etc.

Let A be an associative algebra, that may also be viewed as a Lie algebra
with respect to the commutator Lie bracket. Given a Lie algebra g and a Lie
algebra homomorphism p : g — A, one has an adjoint g-action on A given by
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adx:ar> p(x)-a—a-px), x € g, a € A. The left ideal A - p(g) is stable under
the adjoint action. Furthermore, one shows that multiplication in A induces a well
defined associative algebra structure on

AA, g, p) 1= (A/A - p(@))**,

the space of adg-invariants in A/A - p(g). The resulting algebra 2A(A, g, p) is called
the quantum Hamultonian reduction of A at p.

Observe that, if @ € A is such that the element amod A - p(g) € A/A - p(g) 1is
adg-invariant, then the operator of right multiplication by a descends to a well-defined
map R, : A/A- p(g) — A/A - p(g). Moreover, the assignment ¢ — R, induces an
algebra isomorphism A(A, g, p) = (A/A - p(9))?%® = (End(A/A - p(g)))*.

If A, viewed as an adg-module, is semisimple, i.e., splits into a (possibly infinite)
direct sum of irreducible finite dimensional g-representations, then the operations of
taking g-invariants and taking the quotient commute, and we may write

(1.1.1) AA, g, p) = (A/A - p(@)*F = A*/(A - p(g))**°.

Observe that, in this formula, (A - p(g))2% is a two-sided ideal of the algebra A3,
Any A-module M may be viewed also as a g-module, via the homomorphism p,
and we write M? := {m € M | p(x)m = 0, Vx € g} for the corresponding space
of g-invariants. Let (A, g)-mod be the full subcategory of the abelian category of left
A-modules whose objects are semisimple as g-modules. Let 20(A, g, p)-mod be the
abelian category of left 2l(A, g, p)-modules.
One defines an exact functor, called Hamiltonian reduction functor, as follows

H: (A, g)-mod — (A, g, p)-mod,

(1.1.2)
M > H(M) := Hom, (A/A - p(g), M) = M®,

where the action of 2A(A, g, p) on H(M) comes from the tautological right action of
Endy(A/A - p(g)) on A/A - p(g) and the above mentioned isomorphism 2A(A, g, p) =

(EndA(A/A - p(g)).

1.2. Symplectic reflection algebras for wreath-products

Let n be a positive integer. Let S, be the permutation group of [1, n] := {1, ..., n},
and write s, € S, for the transposition £ <> m. Let L be a 2-dimensional complex
vector space, and @ a symplectic form on L.

Let I' be a finite subgroup of Sp(L), and let I, := S, x I'" be a wreath product
group acting naturally in L". Given £ € [1,n] and y € T, resp. v € L, we will write
Yo € I, for y placed in the £-th factor I', resp. v,y € L" for v placed in the £¢-th
factor L.



HARISH-CHANDRA HOMOMORPHISMS AND SYMPLECTIC REFLECTION ALGEBRAS 93

According to [EG], there is a family of associative algebras, called symplectic re-
flection algebras, attached to the pair (1", I',) as above. To define these algebras, write
ZT' for the center of the group algebra C[I'] and let Z,I' C ZI" be a codimension 1
subspace formed by the elements

(1.2.1) c= Y ¢-y€Zl, Vg eC,

yel'\ {1}

Given ¢, k € C and ¢ € Z,I", the corresponding symplectic reflection algebra H, ;. (I,),
with parameters ¢, £, ¢, may be defined, cf. [GG, Lemma 3.1.1], as a quotient of the
smash product algebra T(L") x G[T',] by the following relations:

k _
(1.2.2> [X(g),_))(g)] =1¢-1 + § ZZSEmV(Z)V(m; + Z CyV(Z)a Vi € [19 n]a
m#EL yel’ yel\{1}
k -1
(1.2.3) [ey, 2] = =5 > o(yu sV, YuveL, tme [l nl, £#m,
yell

where {x, y} 1s a fixed basis for L with w(x, y) = 1.

1.3. Quavers

Let Q be an extended Dynkin quiver with vertex set I, and let 0 € I be an
extending vertex of Q).

Defiition 1.3.1. — The quiver Q o obtained from Q) by adjoining an additional vertex s
and an arrow b : s — o s called the Calogero-Moser quiver for Q. Thus, Iy = U {s} s
the vertex set_for QQ om, and the vertex s is called the special vertex.

Given a = {t;}ic1,, € Z™, a dimension vector for Q gy, write

(1.3.2) Rep,(Qew) = EP  Hom(C*,C%)

{a:i—j | aeQcm}

= @ Mat(a; x a;, C)

{azi—j | acQcm}

for the space of representations of Q gy of dimension «. Let Z(Q cu, &) be the algebra
of polynomial differential operators on the vector space Rep,(Q cm).

The group GL(a) := [],;,, GL(C*) acts naturally on Rep,(Q cu), by conjuga-
tion. Hence, each element / of the Lie algebra gl(«) := Lie GL(«) gives rise to a vec-
tor field &, on Rep,(Q cu). This yields a Lie algebra map & : gl(e) = 2(Q cm, ).

The center of the reductive Lie algebra gl(ar) = @,c1g9l(;) 1s clearly isomorphic
to Cl. Therefore, associated with any y = {x;}ict € C!, one has a Lie algebra homo-
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morphism x : gl(a) = C, x = @jeix; = Y, Xi - Trx;. We will use additive notation
for such homomorphisms and write £ —x : gl(e) = Z(Q cu, «) (rather than §®R(—y))
for the Lie algebra map % +— &, — x(h) - 14. Let Im(§ — x) denote the image of the
latter map.

We may apply Hamiltonian reduction (1.1.1) to the algebra Z(Q cv, @) and to
the Lie algebra map & — x. This way, we get the algebra

(1.3.3) W2 Qem: @), gl@), & — ) = 2(Qemr ) /],

where

Ji = (Z2(Qom, @) - Im(E — x))*H.

Let T*Rep,(Q cm) be the cotangent bundle on Rep,(Q cw). The total space of
the cotangent bundle comes equipped with the canonical symplectic structure and
with a moment map

(1.3.4) 1 T'Rep,(Qew) — gli@)" = gl(w).

We may apply the classical Hamiltonian reduction to G[T*Rep,(Q cw)], the Poisson
algebra of polynomial functions on T*Rep,(Q cu). This way, we get the Poisson alge-
bra C[r~"(0)]°*® of GL(@)-invariant polynomial functions on the zero fiber of the
moment map. The algebra in (1.3.3) may be viewed as a quantization of the Poisson
algebra C[p™'(0)]°-®),

1.4. Main result

From now on, we fix n € N, a 2-dimensional symplectic vector space L and
I' € Sp(L), a finite subgroup as in Section 1.2. To (n, L, I'), we will associate
a quiver ), a dimension vector «, and a character x as follows.

We let Q be an affine Dynkin quiver associated to I' via the McKay corres-
pondence. Thus, the set I of vertices of Q) is identified with the set of isomorphism
classes of irreducible representations of I'. Let N; be the irreducible representation of
I corresponding to the vertex z € I, and let §; = dimN,. The extending vertex o € I
corresponds to the trivial representation of T, so §, = 1. The vector § = {§;};c; € Z'
is the minimal positive imaginary root of the affine root system associated to Q. Mo-
tivated by M. Holland [Ho], we put

41 d=()acZ, di=a(-5+ Y S Viel
{aeQ.cm | Ha)=i}

Given a central element ¢ € ZI', write Tr(¢; N;) for the trace of ¢ in the simple
I'module N;, 7 € I. Thus, for any ¢ € Z,T, see (1.2.1), we have ) . ;- Tr(¢; N;) = 0.
Associated with any data n € N, £ € G, and ¢ € Z,I', we introduce three vectors

X = {Xi}ieICM, X/ = {Xi/}ieICM € CICM,
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and
A(0) = {A(0)i}ia € C, such that §-A(0) =1,

where we have used standard notation § - A = ). 8; - A;. These vectors are defined as
follows

(1.4.2) M) :=Tr(e; N) + 6;/IT|, Viel;
xs =nlk- /2 —-1)+1,
Xo = Ale), — 9, — k- |I'/2,
Xi =A(0); —9;, Viel\{o}
X=X —l=nk-|T|/2 = 1),
Xi=x, Viel

We are going to consider representations of the quiver Q ¢y with dimention vec-
tor

(1.4.3) @ = {@}icioy € Z,  where @, :=1, and @, :=n-8,, Viel

Let x' € C'™ be as in (1.4.2), and let J,» = (Z2(Q cm, @) - Im(§ — x/)) ) be
the corresponding two-sided ideal in Z(Q gy, @), cf. (1.3.3). Write e := IF_lzI derﬂg
for the ‘symmetrizer’ idempotent viewed as an element of the symplectic reflection
algebra H,; (T",).

We are now in a position to state our main result about deformed Harish—
Chandra homomorphisms for symplectic reflection algebras associated with a wreath-
product. According to [EG], the importance of the deformed Harish—-Chandra homo-
morphism is due to the fact that this homomorphism provides a description of the
spherical subalgebra eH, ;. (I',)e C H;;.(I',) in terms of quantum Hamiltonian reduction
of the ring of polynomial differential operators on the vector space Rep,(Q cu). In the
special case of a ¢yclic group T’ C SLy(C), that is, for quivers Q of type A,, (equipped
with the cyclic orientation), the deformed Harish-Chandra homomorphism has been
already constructed in [Ob], see also [Go]. In all other cases, a construction of the
deformed Harish—Chandra homomorphism ®; . will be given in the present paper.

Our main result reads

Theorem 1.4.4. — Assume that I' C SLy(C) s not a cyclic group of odd order (1.e. Q
i not of type Ay,), and put t == 1/|I'|. Then, for any n € N,k € G, ¢ € Z,I', there 1s an
algebra isomorphism
q>k,€ ; 22((@((/Q,CM’ (X), 9[(05), E - X/)
== Q(QCM, a)GL(Q)/JX’ - eHz,k,c(Frz)e-
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Furthermore, the map . is compatible with natural increasing filtrations on the algebras
mvolved and the corresponding associated graded map gives rise to a graded Poisson algebra iso-
morphism, ¢f- (1.3.4):

gr @, 0 Gl (0% = gr(eH, . (T))e).

This theorem is a slightly modified and corrected version of [EG, Conjecture
11.22] (in [EG], as well as in the main body of the present paper, everything is stated
in terms of the quiver Q) rather than in terms of the Calogero-Moser quiver Q) cu,
see Definition 5.2.1 and Theorem 5.2.4 in Section 5.2 below; however, the two ap-
proaches are easily seen to be equivalent). Theorem 1.4.4 is a common generalization
of two earlier results. The first one is [GG2, Theorem 6.2.3], cf. also [EG, Corollary
7.4]; it corresponds to the (somewhat degenerate) case of I' = {1}. The second result,
due to M. Holland [Ho], is a special case of Theorem 1.4.4 for n = 1, where the
symplectic reflection algebra is Morita equivalent to a deformed preprojective algebra
of [CBH]. Also, in the special case of a cyclic group I' = Z/mZ the isomorphism of
Theorem 1.4.4 has been recently constructed in [Go] using the results from [Ob].

A “classical’ counterpart of Theorem 1.4.4 involving classical Hamiltonian re-
duction (at generic values of the moment map (1.3.4)) has been proved in [EG, The-
orem 11.16].

Combining Theorem 1.4.4 with (1.1.2), and using the same argument as in the
proof of [GG2, Proposition 6.8.1], we deduce

Corollary 1.4.5. — There exists an exact functor of Hamaltonian reduction
H: (2(Qcwm, @), gl(a))-mod — eH,; (I',)e-mod.
This _functor induces an equivalence

(-@(QCMs O()s g[(O())-mOd/ KerH = th,k,c(Fn)e'mOd' O

We expect that the Hamiltonian reduction functor induces an equivalence be-
tween the subcategory of (Z(Q cu, @), gl(ar))-mod formed by Z-modules whose char-
acteristic variety is contained in the Nilpotent Lagrangian, see [Lul, §12], and the cate-
gory of finite dimensional eH,; (I',)e-modules.

1.5. Four homomorphisms

Our construction of the isomorphism @, in Theorem 1.4.4 is rather indirect.
It involves four additional algebras and four homomorphisms between those algebras,
which are important in their own right.
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The first algebra, to be denoted IT'(Q cy), is a slightly renormalized version of
the deformed preprojective algebra, with appropriate parameters, cf. [CBH], associ-
ated to the Calogero—Moser quiver Q) cy. The second algebra, to be denoted B, con-
tains the spherical algebra eH,, (I',)e as a subalgebra. The algebra B is a ‘Calogero—
Moser cousin’ of generalized preprojective algebras introduced by two of us in [GG, (1.2.3)],
see also Definition 6.1.3 below.

The third algebra, T, is a ‘matrix-valued’ counterpart of the algebra introduced
in (1.3.3). To define this algebra, we introduce the following vector spaces

(1.5.1) N = @icio,Ni, where N, :=N*=C, and N;:=N'®C", Viel

Thus, we have N; = C%, so the group GL(«) acts on N in an obvious way, and this
gives the tautological representation 7 : gl(e) — EndN. Following M. Holland [Ho],
we apply the quantum Hamiltonian reduction to the algebra Z(Q cy, @) ® EndN and
to the Lie algebra homomorphism

§—(x—71:gll@) > Z(Qom @) @ EndN,
hi— &, ®Idy— lg @ (x(W)Idy — t(h)),

where x : gl(e) — C is as in (1.4.2). This way, we get an algebra

— (2(Q o, @) ® End N)S-®)
(1.5.2) Ty = (2(Q oms &) @ EndN) - Im(§ — (x — 1))@’

Now, let P! = (L~{0})/C* be the projective line. We will consider an appropri-
ate T',-equivariant vector bundle of rank dimN on X, where X C (P')" is a T',-stable
Zariski open dense subset in the cartesian product of n copies of P'. Further, we will
define a certain algebra Z(X, p, 0) of twisted differential operators acting in that vector
bundle, see Section 3.1 for the notation and also (3.6.1).

One has the following diagram of four algebra homomorphisms, all denoted by
various ®’s, involving the four algebras introduced above

' (Qom)
(1.5.3) T, B
7(Z.p. 0"

In this diagram, the map @"!nd js (a slightly renormalized version of) an

algebra homomorphism introduced by M. Holland in [Ho]. The map @P"! is
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a ['-analog of the Dunkl representation for rational Cherednik algebras, cf. [EG]. The
map @Rl is ohtained by a ‘radial part’ type construction with respect to an appro-
priate transverse slice to generic GL(o)-orbits in Rep, (Q cu). We produce such a slice
using a map L®" — Rep,(Q cw), which is generically injective and is such that its
image 1s generically transverse to GL(o)-orbits in Rep,(Q cy). Our radial part con-
struction associates to a polynomial GL(«)-invariant differential operator
u € (2(Qcm, @) ® EndN)SH®) a T, -invariant twisted differential operator @Radial(y) €
DX p.0)".

The fourth map, @2 is new. The main idea behind the construction of this
map, as well as the definition of the algebra B, will be outlined in Section 1.7 below
and a more rigorous treatment will be given later, in Section 2.2.

Remark 1.5.4. — In the special case of a cyclic group I' = Z/mZ, the Dunkl op-
erators that we consider are nof the same as those introduced earlier by Dunkl-Opdam

in [DO].

1.6. Strategy of the proof of Theorem 1.4.4

The proof of the main theorem is based on the following key result

Theorem 1.6.1. — Diagram (1.5.3) commutes, t.e., we have:

@Radlal o @Holland — @Dunkl o @Quwer.

The proof of this theorem is long and messy; it occupies about one half of
the paper. In the proof, we explicitly compute both sides of the equation
ERadial o @Holland(y — @Dunkl 5 @Quiver(y) - for an appropriate set {x, x € TT'(Qcu)}
of generators of the algebra IT'(Q cw).

To deduce Theorem 1.4.4 from Theorem 1.6.1, one has to be able to replace
in diagram 1.5.3 the algebra T, of ‘matrix valued’ twisted differential operators, by
a ‘smaller’ algebra of scalar-valued twisted differential operators of the form
A(Z(Qom, @), gl(a), & — x), that appears in Theorem 1.4.4.

To this end, let p, € EndN denote the idempotent corresponding to the projec-
tion N = ®jelcm N; = N,. For x, x’ as in (1.4.2), one proves

(1‘6'2> ps‘z)(ps ; 9(QCM’ a)GL(a)/JX/ == m(g(QCM’ (X), g[(a)’ E - X/) = 22[X/'

Write ¢; for the idempotent in the algebra IT'(Q cu) corresponding to the triv-
ial path at 7. It is easy to see that the map @™ sends the subalgebra ¢,IT'(Q cy)e
C IT'(Qcwm), spanned by paths beginning and ending at the special vertex s, into
eH, . . (I')e, a subalgebra in B. Furthermore, restricting diagram (1.5.3) to the sub-
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algebra ¢I1'(Q cu)e,, one obtains four algebra homomorphisms along the perimeter
of the following diagram

esn/(Q,CM)es

(b/f,b

(1.6.3) @(QCM, a)GL(Ot)/JX, ....................................................................................... >~ eH,; e

D(X, p, 0)""

Here, 2(X, p, 0)'" stands for an appropriate ring of scalar-valued T',-invariant twisted
differential operators on X.

The perimeter of diagram (1.6.3) commutes by Theorem 1.6.1. In addition, one
proves

Lemma 1.6.4. — In diagram (1.6.3), the map O is surjective and the map P
is injective.
It 1s clear that the lemma yields
Ker @Holland C Ker(@Radial o @Holland) — Ker(@Dunkl o @Quivcr)
— Ker @Quivcr.
The resulting inclusion Ker @"°land © Ker @ implies that we may (and will) define
the dashed arrow ®;, in diagram (1.6.3) to be the composite

'@(QCNU a)GL(a) (@Hullzmd)*l QH/(QCM)Q proj 33H/(QCM)63
JX , Ker ®Holland Ker ®Quiver

C& eHz,;we.

To complete the proof of Theorem 1.4.4, one observes that all the objects ap-
pearing in diagram (1.6.3) come equipped with natural filtrations, and all the maps
in the diagram are filtration preserving. Therefore, to prove that the map ®;, is bi-
jective, it suffices to show a similar statement for gr ®, ,, the associated graded map.
The latter statement follows readily from the results of [CB] and [GG2] concerning
the geometry of moment maps arising from representations of affine Dynkin quivers.

1.7. The algebra B and the map O Quiver

To define the algebra B that appears in diagram (1.5.2), we will first introduce
in (2.2.1) certain idempotents ¢;,_, € G[I',], ¢ € I. Then, we let

(1'7°1> M = Ht,k,c(Fn)e @(GBiEIHt,k,c(Fn)ei,n—l)~
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Thus, M is a left H, ;. .(I',)-module, and we put B := (Endy,, r,) M)®. This endomor-
phism algebra is built out of Hom-spaces between various H, (I',)-modules which
appear as direct summands in (1.7.1). The Hom-spaces are easily computed, and we

find

(1.7.2) B= @ B,;, where B,, = eHe, and
i,jEICM
Bs,j == eHej,n—l’ Bi,s == ei,n—lHe’ Bi,j == ei,n—lHej,n—l’ Vl,] S I

Each direct summand B;; here is a subspace of the algebra H,; . (I',), and mul-
tiplication in the algebra B is given by ‘matrix multiplication’ B; ; x B;;, — B;; where,
for each 7,7,k € Icyu, the corresponding pairing is induced by the multiplication in
Ht,/f,c(]-_‘n)'

Our construction of the map @2V is based on an exact functor
(1.7.3) Hoo(I',)-mod — T1(Q cy)-mod, M — M.

To define this functor, let L;), resp. I'(1), be a copy (inside the algebra H,; .(I',))
of our 2-dimensional vector space L, resp. copy of the group I', corresponding to the
first direct summand in L®". Further, let S,_; be the subgroup of S, which permutes
[2,7n], and let T',_; = S,_; X! C T, be the wreath-product subgroup corresponding
to the last n — 1 factors in I'". It is clear from the commutation relations in T(L®") x
CI[T',] that any element of the subalgebra H;) C H, ;. (I',), generated by L, and T,
commutes with I',_;.

Now, let M be an arbitrary left H;; (I',)-module. We deduce that the space
MU=t M, of T',_-invariants, is stable under the action of the subalgebra Hy. Thus,
to each vertex ¢ € Q) we may attach the vector space M; := Homr, (N, MPE=1), the
corresponding I'(j)-isotypic component. Further, following the strategy of [CBH] and
using the McKay correspondence, we see that the action map L, ® M=t — MF-1
induces linear maps between various isotypic components M;. This way, the collection
{M;},c1 acquires the structure of a representation of the quiver Q In addition, the sub-
space M, := M M is clearly contained in M, = Homr, (N,, ME=1)y = MP-1 as
a canonical direct summand. Therefore the imbedding 4 : M; — M, and the projection
b* + M, — M, provide additional maps, making the collection {M,}c,, a represen-
tation of the quiver Q cy. One can check that this representation descends to a rep-
resentation of the algebra T1(Q ¢y), which is a quotient of the path algebra of Q cy.
Thus, to any H, ;. (I',)-module M we have assigned a IT(Q cy)-module M = Picigy M.
This gives the desired functor (1.7.3), cf. Section 1.8 below for a generalization.

Finally, we apply the functor M+ M to M := M, the H, ;. (I',)-module in (1.7.1).
It is immediate from (1.7.2) that one has a natural bijection B = M. The bijec-
tion gives B the structure of a left TT(Q cy)-module, moreover, the action of TT(Q cv)
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on B commutes with right multiplication (with respect to the algebra structure) by
the elements of B. It follows that the IT(Q ¢u)-module structure on B comes, via left
multiplication, from an algebra homomorphism IT(Qcv) — B. The latter homo-
morphism clearly restricts to a homomorphism ¢IT(Q cw)e, — B,, = eH, . (I')e,
denoted @Radil,

There is a modification of the above construction, to be explained in Section 2.2,
in which the algebra IT(Q cy) is replaced by the renormalized algebra IT'(Q gv). This
way, one obtains similar algebra homomorphisms

1.7.4) O™ : I'(Qew) > B, and
O : o TT'(Qowm)e, — By, = eHyy (T)e.

1.8. Applications to reflection functors and shift functors

In Section 6, we study reflection functors and shift functors for generalized pre-
projective algebras and symplectic reflection algebras associated with wreath-products,
cf. [GG].

More generally, let ) be an arbitrary (not necessarily extended Dynkin) quiver,
with vertex set I. Write € = () for the generalized Cartan matrix of Q and W
for the Weyl group W, defined as the group generated by the simple reflections 7; for
i € L The group W acts on C'as 7,1 A = 3. Ajg > A — > Cidge.

For any A € C!, one has an algebra IT,(Q), a renormalized version of the cor-
responding deformed preprojective algebra studied in [CBH]. Further, for any integer n > 1,
and complex parameters v € C and A € C!, we have associated in [GG, (1.2.3)], see
also Definition 6.1.3 below, a generalized preprojective algebra A, ; ,(Q).

For each ¢ € I, there are reflection functors I, for the corresponding deformed
preprojective algebras IT, (Q) ), introduced in [CBH], and also their analogues for gen-
eralized preprojective algebras, introduced in [Ga]:

(1.8.1) Fi: A (Q)-mod — A, ,4).,(Q)-mod.

We will show in Section 6.6 that these functors satisfy standard Coxeter rela-
tions:

Proposition 1.8.2. — For the reflection functors ¥; _for generalized preprojective algebras, one
has:

I riEpp #£0for p=0,1,....,n— 1, then F} = Id.
(i) Suppose € = 0. If Ai £ pv # 0 and A £ pv # 0 for p = 0,1, ...,n— 1, then
(1i1) Suppose €z = —1. If ;£ pv # 0, Aj £ pv # 0 and X; + X; £ pv # 0 for
p=0,1,...,n—1, then F;F;F; = F;F;F;.
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Part (1) of the proposition has been already proved in [Ga, Theorem 5.1];
Parts (i1) and (ii1) are new. In the special case n = 1, the proposition is due to [CBH],
[Na], [Lu2], and [Maf]. However, we believe that, even in that special case, our proof
appears to be simpler.

Next, given ¢ as in (1.2.1), we put

1
¢ = Z (2t—c¢,)-y"" and e := " Z(—I)UU(% R - Re).

yel~{1} " oeS,
Using our main Theorem 1.4.4 and reflection functors, we will deduce
Corollary 1.8.3. — For t = 1/|T"| and any ¢ as n (1.2.1), there are algebra isomorphisms
eH; ;e ~e_H,; o e >~ e_H o e_.

We will prove the first isomorphism above in Section 5.3 and the second in Sec-
tion 6.7. Using the composite isomorphism in Corollary 1.8.3, we define the shifi functor
to be the functor

(1.8.4) S:H,-mod — H,;_9 ,mod, Vi>H; o .e_ Qe,.eeV.

Finally, we can extend the construction exploited in the definition of the map
O to an appropriate, more general, context as follows.

Let T be any nonempty subset of I. Generalizing the definition of Calogero—
Moser quiver, let Q) 1 be a quiver obtained from Q) by adjoining a vertex s, called the
special vertex, and arrows b; : s — ¢, one for each ¢ € T. Recall that ¢ denotes the
idempotent in the path algebra corresponding to a vertex i. Thus, given A € C!, we
write A = ) A;¢;, and we also put er 1= ) 1 ¢.

In Section 6.2, for any n > 1, A € C!, v € C, we introduce an exact functor
(1.8.5) G : A.(Q)-mod — IT; (Q 1)-mod.

A—veT+nves

The construction of reflection functors for generalized preprojective algebras,
see (1.8.1), implies readily that, for any ¢ € I, one has the following commutative dia-

gram
Fi
AH,A,U(Q)'mOd A,,’,i()h)’,,(Q)-mod
(1.8.6) G,i lG,
¥
H;‘_”e'l""‘””@s (Q'T)_mOd : /rz’()»)—vm'ﬁ-nwf (Q,T)'mOd-

The functor (1.8.5) is a generalization of the functor M M considered in
Section 1.7 in the following sense. Let Q) be the extended Dynkin quiver associated
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to a finite subgroup I' C SLy(C). Given a data (n, £, ¢), as in (1.4.1), put ¢t = 1/|T|
and v = k- |I'|/2. The generalized preprojective algebra A, ; ,(Q) is Morita equivalent,
according to [GG], to the symplectic reflection algebra H,; (I',), so one has a cat-
egory equivalence H,; (IT',)-mod = A, ,(Q)-mod. Therefore, composing this equiva-
lence with (1.8.5), yields a functor
H s (L,)-mod — IT)_, ... (Qr)-mod.

The latter fungor reduces, in the special case of the one point set T = {0}, to the
functor M = M considered in Section 1.7.

1.9. Quantization of the Hilbert scheme of points on the resolution of Kleimian singularity

The shift functor (1.8.4) is the I'-analogue of the shift functor introduced in
[BEG] in the case of the trivial group I'. The latter functor has been used by Gordon-
Stafford [GS] to construct quantization of the Hilbert scheme of n points of the
plane C?.

Now, let X — L/I" be the minimal resolution of the Kleinian singularity L/T"
and let Hilb" X be the Hilbert scheme of 7 points in X. It should be possible to use
the shift functor (1.8.4) and Theorem 1.4.4 to construct quantizations of Hilb" X. This
would provide a common generalization to the case of wreath-products I', = S, x '™
of the results of Gordon-Stafford [GS] in the special case I' = 1 and n > 1, and also
of the results of Boyarchenko [Bo] in the special case of arbitrary I' C SLy(C) and
n=1, cf. also [Mu] for the case of cyclic group I' (and n = 1).

In a different direction, the construction of the algebra eH,;  (I',)e in terms of
Hamiltonian reduction provided by Theorem 1.4.4 gives way to applying the machin-
ery of [BFG] to symplectic reflection algebras over k, an algebraic closure of the finite
field F,.

In more detail, fix a finite group I' C SL,(C) and a positive integer n. Then,
a routine argument shows that, for all large enough primes p > n, each of the schemes
X, Hilb" X, and u~'(0), cf. (1.3.4), has a well defined reduction to a reduced scheme
over k. Further, let .#, be the irreducible component of w='(0), cf. (1.3.4), as de-
fined in [GG2, Theorem 3.3.3(ii)]. Then, the action of the group GL(«)/G,, on .,
is generically free. Moreover, according to H. Nakajima, there exists a GL(«)-stable
Zariski open dense subset M C ., of stable points, such that one has a smooth uni-
versal geometric quotient morphism M — Hilb" X. Furthermore, in this case all the
Basic assumptions of [BFG, 4.1.1] hold.

Next, let Q[I'] be the group algebra of I' with rational coeflicients. Write
Z(I', Q) for the center of Q[I'], and Z,(I", Q) for the corresponding codimension 1
subspace, cf. (1.2.1). Fix £ € Q and ¢ € Z,(I',Q) and let eH,; (I',, Q)e be the

Q -rational version of the C-algebra eH,; (I',)e. Then, there exists a large enough
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constant N(%, ¢) > max(n, |I'|) such that for all primes p > N(%, ¢) the Q-algebra
eH, ;. ('), Q)e has a well defined reduction to a k-algebra eH,; (I',, k)e.

On the other hand, one can apply a characteristic p version of quantum Hamil-
tonian reduction, as explained in [BFG, §3], in our present situation. This way, for all
large enough primes p, Theorem 4.1.4 from [BFG] provides a construction of a sheaf
of Azumaya algebras 7, on (Hilb" X)" the Frobenius twist of the scheme Hilb" X.

Mimicing the proof of [BFG, Theorem 7.2.4(1)—(ii)], and using our The-
orem 1.4.4, one obtains the following result

Theorem 1.9.1. — Fix k € Q and ¢ € Z,(I', Q). Then, there exists a constant d(k, ¢) >
max(n, |I'|), such that for all primes p > d(k, c) and t = 1/|T'| € k, we have

H((Hilb" X)), o7,,) = eH, (T, K)e;
moreover,

H'(Hib"'X)", &) =0, Vi>0.

1.10. Drirections of further research

The map ©®R"" introduced in this paper turns out to be useful in the theory of
deformed double current algebras developed by N. Guay [Gul,Gu2,Gu3]. Namely, it
is possible to view the integer 7 in the definition of the algebra eH,; e as a parameter
and to make an “analytic continuation” of the construction of the map @@ with
respect to that parameter. This way, one obtains a new construction of I'-deformed
double current algebras (for gl(1)) as appropriate quotients of the algebras ¢,I1(Q cy)e;.
This will be discussed in a forthcoming paper [EGR].

We expect that the map ©P"¥ will be helpful in developing a Borel-Weil-Bott
style theory for representations of symplectic reflection algebras for wreath products.
Such a theory would provide a geometric realization of finite dimensional represen-
tations of these algebras (including those studied in [Mo,Gal]) in the spaces of global
sections of appropriate coherent sheaves on (P')" satisfying appropriate vanishing con-
ditions. First steps in this direction are taken in [E], and forthcoming work of S. Mon-
tarani.
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2. Calogero-Moser quiver

2.1. Intertwiners

Let Q be the double quiver of Q, obtained from Q by adding a reverse edge
a* :j — i for each edge a:i—j in Q. For any edge a:i— j in Q, we write its tail
{(a) :=1 and its head i(a) :=.

We have an identification L. = L* : u > (x4, -). Let a € Q be an edge, then
for each intertwiner ¢, : L ® Ny, — Nj,, we have a corresponding intertwiner
¢, : Niy > L@ N ~

Suppose Q is not of type A;. Following [CBH] (cf. also [Me]), we normalize
the intertwiners such that for each edge a € Q, we have ¢,¢, = 8h(a)Ide‘(U)> and so
o = —3:(a)1d1\77(”)~ Thus, ¢/ ¢, 1s 8y, times the projection of L®Nj, to N}, and
@ Pq is —6y times the projection of L. ® Ny to Nj . Hence, for any vertex 1,

2.1.1) Y b — D Ged.=8Tdiex:

acQ ;h(a)=1 acQ s t(a)=1

Suppose now that Q) is of type A,. Then T is the group with 2 elements 1, ¢.
Moreover, {x = —x and ¢y = —y. Write the vertices of () as o and 7, where N,
is the trivial representation of I' and N; is the sign representation of I'. We have
a decomposition L. = N* @ N where N? is spanned by x and N/ is spanned by ».
Let pr! : LN, — N; be the projection map to Nf® N, = N;, and priy :LON, - N;
be the projection map to N ® N, = N,. Let pr’ : LQN; — N, be the projection map
to NN®N; =N,, and pr; : L®N,; — N, be the projection map to N/ ® N; = N,.
Denote the edges of Q by a; and ay. If a; : 0 — 4, then let ¢, = pr; and ¢, = pr;.
If @y : i — o, then let ¢, = pr} and ¢ = —pr;. If ay : 0 — ¢, then let ¢,, = pr} and
¢y = —pr,. If ay : 1 — o, then let ¢,, = pr; and ¢, = pr}’. It is easy to see that with
these choices, we again have (2.1.1).

2.2. Quiver map

For convenience, we shall fix an isomorphism N; = C%, where §; = dimN,. We
have CI' = @@, End N, = @, Mat; (C). Let ejiq (1 <p, g <86,) be the element of CI'
with 1 in the (p, ¢)-entry of the matrix for the i-th summand and zero elsewhere. Let ¢
be the idempotent 61,1- In particular, ¢, = Zy <r ¥/IT|, where o0 is the extending vertex
of the affine Dynkin quiver Q. Note that N; = C[I']l¢; and ¢, € ¢, (L ® C[I'eyy))-
Here, the left action of I' on L@ C[I'] is the diagonal one. When Q) is not of type Al
@, spans ¢, (L& C[I'e,). When Q is of type Kl with vertices 0 and ¢, ¢,(L® C[I']¢)
and ¢(L ® C[I']¢,) are both 2 dimensional and spanned by the intertwiners ¢, which
they contain.
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We put ¢, := = > s 0 € C[S,]. For any 7 € I, let

(2.2.1> € n—1 = 6,1_1(32‘ ® € ® e ® 3(;) € C[I‘n]7 and
e .= 6,,(60 X ® 60) € C[Frz]

The idempotent e is same as the one that appears in Theorem 1.4.4 of the Introduc-
tion.

For each vertex ¢ of the Calogero-Moser quiver Q) gy, cf. Definition 1.3.1, the
idempotent ¢; is the trivial path at the vertex z. Let A; be the trace of -1 + ¢ on N,
let A = ). Ai¢, and let

v .= k|["|/2.

Let IT = IT; _y +.10e, (Q cm), the deformed preprojective algebra of Q) ¢y with parameter
A — ve, 4+ nve; as defined in [CBH]. So IT is the quotient of the path algebra CQ ¢y
of Qcm by the following relations:

Z[a, @]+ bb* = A — ve,, b b = —nve,.
acQ)

We shall define a functor frorn H-modules to IT- modules. Let M be a H-module.
We want to define a IT-module M. For each 1 el let M = ¢,,—1 M. Also, let M
eM. If ¢ is an edge in Q, then define a : M,(a) — Mh(a) to be the map given by the
element ¢, Re6®:-- B¢ € H. Define b : M — M to be the inclusion map, and
define b*'M —>M tobe —v- (14519044 s510).

Lemma 2.2.2. — With the above action, M s a T-module.

Proof: — It 1s clear that (1 459+ -+51,)6,-1 = n¢,. On M, we have b*b = —
and bb* = —nve, = —v - (1 4+ 519 4+ - - - + 51,).

By [GG, (3.5.2)], we have an isomorphism f®'Hf®" = A,;,(Q) where
S = Y.t cf. Definition 6.1.3 below. Now f®'M is a A,; ,(Q)-module, and
Gt M = e, 1 [*"M, eM = e/f®M. The action of the edge a : M,(a) — Mh(a) 1s
the action given by the element a ® €2~V € A, ; ,(Q).

Now on M, at a vertex ¢ 7% o0, s, we have

Z aad* — Z a'a=\;
acQ s h(a)=1t acQ; i(a)=1t
by the relation (i) in Definition 6.1.3. At the vertex o, we have
Z ad" — Z a*a:)“0+v'(512+"'+51n):A'o_v_bb*’
acQ ;h(a)=0 acQ s H(a)y=0

using again the relation (i) in Definition 6.1.3. m]
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It is clear that the assignment G : M M is functorial. We will give a more
general construction in Section 6.2.

Applying the functor M +— M to the H-module M introduced in (1.7.1) we
construct, as has been explained in Section 1.7, the algebra homomorphism §<ver
IT — B.

Observe that 82 (5*) is 0 when v = 0. For this reason, we shall need a slight
modification of the above constructions.

Define IT' to be the quotient of the path algebra CQ oy by the following rela-
tions:

Z[a, @]+ vbb* = A — ve,, b*b = —ne,.
acQ)

We have a morphism of algebras IT — II’ defined on the edges by
at> a for a # 0", b* > vb*.

This is an isomorphism only when v # 0.

Given a H-module M, we define a IT-module structure on M as above, except
that now, we let b* : M,, — 1,\7[5 be —(1 4 519+ - - - 4+ s51,). Hence, as above, we obtain
a morphism @2V : T1" — B, cf. (1.7.4).

2.3. Holland’s map

In this subsection, we recall a construction of Holland from [Ho].

Let €; € Z' denote the coordinate vector corresponding to the vertex i € I. Let
§ =Y. 8€;, the minimal positive imaginary root of Q. Let & := né+¢,, a dimension
vector for Q cu. Thus, a; = nd; for i € I, and o, = 1. We shall assume that A -6 =1, that
s, t = 1/

Let ¢, and b, (@€ Qe 1 <p < oy, I < ¢ < ayy) be, respectively, the
coordinate vectors and the coordinate functions on Rep,(Q cy). We write € for the
transpose of &, Now define a representation of @ on O(Rep,(Q cw))®N, the space
of N-valued regular functions on Rep,(Q cu), as follows. For any a € Q) ¢y, we define
the following End N-valued differential operators of order 0 and 1, respectively

0
e a a Ak a _
a.= E ¢, ® tp’q, resp., a = E o ® Y
1 1 iy

The assignment a > @, a* > @ extends by multiplicativity to an algebra homo-
morphism

(2.3.1) gHetand - ¢y oy — (2(Q ow, @) @ End N)OH@)|
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where GQ ey denotes the path algebra of the double quiver Qcu. By [Ho, The-
orem 3.14] and [Ho, Lemma 3.16], 8124 descends to homomorphisms, cf. notation
in (1.4.2):

eHolland g N (ZX and eHolland : 631_[35 — Ql)("

We remind that 2,/ is the algebra in (1.6.2).
Later, we will define a homomorphism @Meland - ¢ 77— 2.

3. Radial part map

From now on, we assume that Q) is not of type A, where 7 is even. Equivalently,
that means that I' has the (necessarily unique) central element of order 2, to be denoted
cel.

3.1. Twisted differential operators

Let T = (C*)" be a torus with Lie algebra t := LieT, and p : X — X a prin-
cipal T-bundle. For any /4 € Lie T, the infinitesimal 4-action yields a vector field &,
on X. Let % be the sheaf of algebraic differential operators of X. The action of T
on X makes Zx a T-equivariant sheaf of algebras, and we write I'(X, Zx)T for the al-
gebra of T-invariant global differential operators on X. The assignment £+ &, gives
a Lie algebra homomorphism t — I'(X, 2x)T.

Let p : t > EndF be a finite dimensional representation. We form Zxy :=
Px ® EndF, a sheaf of associative algebras on X. Let § — p : t — Yy =
Px ® EndF, h — &, ® Idy — p(h) be the diagonal Lie algebra homomorphism.
We write Im(§ — p) for the image of this homomorphism, and (p,%x r)®* for the
subsheaf of those sections of the push-forward sheaf p,%x r, on X, which commute
with Im(& — p). Thus, Im(§ — p) is a central subspace of (p,Zx r)®", a sheaf of asso-
ciative algebras on X. We write (p,%x )% - Im(§—p) for the (automatically two-sided)
ideal in (pPxr)®*" generated by the image of & — p. Thus, the quotient
(P« Px.1)%% ) (pDx r)?* - Im(E — p) is a well-defined sheaf of associative algebras on X.
Let

(3.1.1) DX, p, p) = T(X, (0 Px)*") (psPx. )" - Im(§ — p))

be the algebra of its global sections, to be referred to as the algebra of twisted differential
operators on X associated with the principal T-bundle p : X — X and representation p.

For any open set U (in the ordinary, Hausdorff' topology), we write .70/(U, F)
for the vector space of all holomorphic maps U — F. Given such an open subset
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U C X, put
(3.1.2) Hol,(U) :={f € (U, ¥) | &,/ =ph)f, Yhet]

There is a natural action of the algebra Z(X, p, p) on the vector space 70l,(U)
given, in local coordinates, by differential operators with End F-valued coefficients.

Given a decomposition I = F1@- - -@F, into a direct sum of t-subrepresentations,
we have EndF = @, _, .., Hom(F,, I;). This gives the induced direct sum decompo-

sion

9(%’1)’ /O) = @ @(%’l)’ P, Fm - F/)

1<m,l<n

Thus, for each (m, [), the direct summand Z(X, p, p, F,, = F)) has a natural structure
of left Z(X, p, plr,)-module and of right Z(X, p, p|y,)-module.

3.2. The radial part construction

Let G be a linear algebraic group and Y a smooth G-variety. Assume in addition
that we have a smooth subvariety X C Y which is stable under the action of a torus
T C G, and we also have a smooth morphism p : X — X, which is a principal
T-bundle with respect to the induced T-action on X. Thus, we have the following
diagram

gxxt>g(x)

(3.2.1) x X2 L GxpX 8y

b4 J act

Let g := LieG and let p : ¢ — EndF be a finite dimensional representation.
For any open subset Uy C Y, we may consider the vector space #0/,(Uy) defined
similarly to (3.1.2) but with respect to the g-representation p. Write py = p|¢ for the
restriction of p to the Lie algebra t = Lie T. Restriction of functions gives the map

Res : J0l,(Uy) — 50, (XN Uy), [+ Resf :=j*f.

Let Z2(Y,F) = T(Y, Zvr) = I'(Y, Zy) ® EndF be the algebra of End F-valued
differential operators on Y. As above, we have the Lie algebra map § —p : g —
2(Y, F) and the subalgebra 2(Y, F)®%, of the operators commuting with the image
of that map.

Let K C G be a finite subgroup that preserves X and normalizes the torus T.
The action of K on X, resp. on %y, induces a natural K-action on X, resp. on the
algebra 2(X, p, py), of twisted differential operators on X. We write Z(X, p, p)¥ for
the subalgebra of K-invariants.
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One has the following standard result.

Proposition 3.2.2 (Radial part map). — Assume that G s connected and the differ-
ential of the map act, i (3.2.1), is an isomorphism at every pomnt j(x), x € X. Then,

(i) There is a natwral radial part homomorphism OR : P(Y, ¥)2%® — P(X, p, p)*
such that, for any open (in the Hausdorff topology) subset Uy C 'Y, we have

o% (D) - (Resf) = Res(Df), VD € Z(Y,F)*%, f € H#ol,(Uy).

(i) The two-sided ideal (2(Y, F)Im(§ — p))2¢ is contained in the kernel of the radial
part map ORI,

(i11) Assume, in addition, that X s affine and the restriction of p to t is diagonalizable. Then,
there are canonical algebra isomorphisms, ¢f. (1.1.1),

AZX, ), t.§ - p)
= 92X )/ (22X, D) ImE - p)** > DX, p, po.

3.3. A slice in Rep,(Q cm)

We choose the following orientation on Q) : the vertex o is a sink, and any other
vertex 13 a source or a sink. Thus, the second order element ¢ acts by I at sinks and
by —1 at sources. Note also that, see (1.4.2)

9 =—nTrix(Q), i€l

The collection of intertwiners ¢ = (¢,).eq Introduced in Section 2.1 gives rise
to a linear map

¢ : L — Reps(Q), where ¢,: L — Hom(Nj‘(a), NZ(Q)), ur> ¢ (u).

We also define a linear map j : L' — Rep,(Q cw) by

](ul, veny u,,)b = (1, 1, ceny 1), and
](ula LEES) un)a = (¢a(u1)s LS ) ¢a(un))a Va € Q

Lemma 3.3.1. — Let u, w € L. Suppose there are B; € End(NY) for 1 € 1 such that

@, (W) By = BuwPa(w) Jor all edges a € Q). If the B; are not all zero, then u is proportional to
yw for some y € I.

The lemma will be proved later, at the end of Section 8.2. From this lemma, we
deduce
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Corollary 3.3.2. — There exists a I',~stable ariski-open dense subset L;,, C L" such that
J(L,) i contained n the sel of generic representations of Q. and, moreover, ](L’,@g) meets generic
GL(o0)-orbuts in Repy(Q cm) transversely.

Proof. — First, we claim that the affine space j(L") meets generic GL(«)-orbits
in Rep, (Qow)-

Recall that generic representations of () with dimension vector nd are direct
sums of n representations with dimension vector 4, it suffices to show that the subspace
consisting of the representations {¢,(u)},cq for all u € L intersects generic GL(8)-orbits
in Reps(Q). By the preceding lemma, the (rational) map Reps(Q) — P! defined
in [Ri, Theorem 6.2] (which parametrizes generic orbits) is nonconstant on L.

The corollary now follows from the standard Bertini-Sard theorem, cf. e.g. [Ve].

O

3.4. Duscriminant function

Put L* := L~ {0}. The multiplicative group C* is imbedded in GL(L) as scalar
matrices, and we have the standard C*-bundle L* — Py := L*/C* = P' (projective
line). The group S := C* NI consists of two elements, S = {1, ¢}, where ¢ € T" is our
second order element.

Given £ € Py, write I'* C T for the isotropy group of the line £ C L. Clearly,
one has S C T'“. Therefore, |T|/2 = |T*/S| is a positive integer, and we put k; :=
IT¢/S| — 1. Thus, we have k;, > 0 if and only if the group 'Y C T, is strictly larger
than S. The lines ¢ with this property form a finite set P;* C Py. For each £ € PSlng
we choose and fix a vector representative v, € £\{0} C L.

We introduce the following function

= | o@. - ec,

sing
LePy,

which is uniquely defined up to a nonzero constant factor depending on the choice

of representatives 7, £ € P}, Further, we introduce a discriminant function on Lo
defined by

(3.4.1) Ay, ey 1) = ]_[ k) ]_[]_[ o for u, ..., u, € L.

m#l yel 0 Vul)

Let L, be a Zariski open set as in Corollary 3.3.2. Shrinking this set 1f neces-

sary, from now on we assume in addition that L, 1s an gffine T-stable subset con-

tained in (L*)" and, moreover, that the denominator of the function A, does not van-
ish on Lfeg. Thus, the set L;’ is I, x T-stable, and we have A, € G[L”_].

reg
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The natural action of the torus T on L, induces an action of the Lie algebra
t = Lie T on the coordinate ring C[Lfeg]. Given i = (b, ..., h,) € t = C", we write
the action map as 4 : C[L" ] — C[L"_ ], f + &,f, and also put Tr(k) = & + ... + h,.

reg reg

Lemma 3.4.2. — The discriminant A, € G[L”

el 15 @ weght vector for the t-action,
specifically, we have

£,A, =l —2)Trh) - A,, Vhet.

Proof. — Note that ZZEPEng Kk, = |I'| —2. Hence, A is a homogeneous polynomial
of degree |I'| — 2. We see that any vector u, appears on the RHS of (3.4.1) with
degree —(|I’| —2), in the factor [ A(x)~", and with degree —(n— 1)|T|, in the factor
1/ TTT G, yu). O

3.5. Compatibility with group actions

Let T := (C*)" be the torus, and form the wreath product I'y x T =
S, X (I' x G*)". We are going to define a group imbedding

(3.5.1) Jue: T, x T — GL(a).

To this end, we recall the direct sum decomposition (1.5.1), so dimN; = «; and
one may identify the group GL(¢;) with GL(N;), for any i € Igy. Now, by the structure
of group algebras, we have the canonical algebra isomorphism G[I'] = @, End(N?).
Thus, we have a group imbedding I' < GL(J) and, therefore, an imbedding I'" —
GL(@) x --- x GL(§) — ]_[iEI GL(w;). Further, we define a homomorphism S, —
GL(N;) by 0 > Idx: ® o, where o¢: € GL(C") stands for the permutation matrix
corresponding to o € S,. This way, combining together the above defined imbeddings
of I and S,, we obtain a group imbedding j;. : I', = GL(«), such that its compon-
ent I'y = GL(«,), at the special vertex s, sends every element of I', to 1.

It remains to define the torus imbedding jp;. : T — GL(«), t i g(t) = {g(¢t) €
GL(o))}icry,- The latter is given as follows. We put g(t) = 1, Vt € T, and, for any
1€l let

g(t) == t'® Idn: if ¢ 1s a source in Q,
g(t) :=Idy, if:is asink in Q,
where, for t = (¢, ..., t,) we let t7' € GL(C") denote the diagonal matrix with diag-
onal entries # ', ..., £”'. We note that the image of T under the above imbedding is
not contained in the center of the group GL(x).

The torus T := (C*)" acts naturally on L"; the element t = (4,...,¢) € T
sends (u, ..., u,) € L" to ({juy, ..., t,u,). This action of T commutes with that of the
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group I'. Thus, we get an action of the group I', X T on L". It is easy to show
that the group imbedding j; : Iy X T — GL(«) agrees with the slice imbedding
J : L — Rep,(Qcm). Specifically, one has

(3.5.2) 1) = (@), VYuel’ gel', xT.

3.6. The homomorphisms O gnd @Radil

The element x € G in (1.4.2), gives a Lie algebra homomorphism x : gl(c)
— CG. We also have the tautological representation 7 : gl(a) — EndN, see (1.5.1),
and we let x — 7 : gl(e) = EndN, 2+ x(h) - Idy — t(h), Vi € gl(a).

The group imbedding (3.5.1) induces the corresponding Lie algebra imbedding
Jue - t=Lie T — gl(a). We let p := (x — 1) o jii be the pull-back of the represen-
tation x — T to the Lie algebra t via the imbedding t — gl(x).

We are now in a position to apply the general radial part construction of Sec-
tion 3.2 in our special case. Specifically, the n-th cartesian power of the CG*-bundle
L* — Py, gives a principal T-bundle (L*)" — (Pr)". We set X := Lfcg c L,
and let X C (Pp)" be the image of X. Write p : X — X for the restriction of the
bundle projection to X. Thus, X is a I',-stable Zariski open dense subset of (Pyr)",
and p: X — X is a principal T-bundle.

We apply Proposition 3.2.2 to

G = GL((X), T = (CX)H’ K = ]-_‘na Y = Repa(QCM),
p:X=L_ —->X=L/T.

reg reg

Thus, we obtain an algebra homomorphism, cf. (1.5.2):

Radial . . (2(Q cm» @) ® End N)SH@ -
0 e = (P Qom @) @ EndN I — ( — o Z & h o

Further, we introduce another representation ¢ : t — EndN, % +— o(%) by the
formula o(%) := p(h) 4+ 5@|T| — 2) Tr(h)Idy.

It is easy to see that each of the direct summands in the decomposition N =
@icq uNi, cf. (1.5.1), is stable under the t-action via either representation p or g. Thus
we can write p = @Pjery, 01, and 0 = Pjcr,, pi- 1o describe these representations more
explicitly, let ¢, be the coefficient in (1.2.1) corresponding to our second order element
¢ €I, and put

|
(3.6.2) ni=— (QTH + 1>, and ¢ = Z 8- xi € G

{iel | iisasourcein Q}
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One finds that the representations p; and g, are given by the following explicit
formulas:

pi(h) =¥ - Te(h) - Tdn,,  0i(h) = (e +3) - Tr(h) - Tdy,
if =15 or:is asink in QQ; and

pih) = - Te(h) - Tdy, — h ® Tdy;,

0i/(h) = (w+3) - Tr(h) - Idy, — A ® Idx

if 7 1s a source in Q), where, for any 4 = (4, ..., h,) € t = C", we write Tr(h) :=
hi + ...+ h,, and where the tensor factor 4, in 4® Idxy:, stands for the map G" — C”
given by the diagonal matrix with diagonal entries £y, ..., .

Next, according to Lemma 3.7.6 below, we have

(3.6.3) 2 — P) = —2 (Q 'QIFI + 1) F1-2y

=T =2)+ @— DT =nl-2.

Hence, Lemma 3.4.2 shows that o — p = %(nlf’l —2) - Tr(—) 1s nothing but the weight
of 4/A,, the square root of the discriminant function. Thus, given D € 2(X, p, p),
we may conjugate D by the operator of multiplication by the function +/A, to obtain
a twisted differential operator == oD o /A, € Z(X, p, 0), such that for any open set

VA,
U c L, the induced action on functions is given by the map

reg
[(U,0) = I['(U,0), [ (1/y/A,)-0%ED)/A, /).

We note that although the square root of the discriminant function A, is il de-
fined as a function, conjugation by the operator of multiplication by such a function
is an unambiguously defined operation on twisted differential operators. Furthermore,
the result of conjugation by /A, is clearly independent of the choice of nonzero con-
stant factor involved in the definition of A,, cf. Section 3.4. Thus, we have a canoni-
cally defined algebra homomorphism

@Radial . rIX N .@(%,ﬁ, Q)F”,
i 1 .
u— @Radlal(u) = _An o eRadlal(u) o \/Kn
3.7. Formulas for the map gRadial , gHolland

We introduce some notation. Given a map f/ : L - U and any 1 <[/ < n, we
write f; for the map L' — U, (u, ..., u,) = f(u;). Thus, given y € I', we have the

composite L R JER U, and the corresponding map (f oy),: L" — U.
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Let @ denote the symplectic form on L. For any vector v € L, we have the
linear function v : u > (v, u). Thus, for any v € L and y € T', we may consider the
following functions

3.7.1) (yv), =@ oy "), : L' > C,
Uy oeey ) > (Y0, ) = a)(v, )/_lu;) and

w(ly;ml): L'—> G, (u,...,u,) = ou,, yw), VI <m#l<n

The definition of the open subset L C L" insures, see Section 3.4, that none of the
functions w(y; m, [) vanishes on Lg ‘Hence, we have 1/w(y;m,[) € C[Lfeg]

In Section 2.1, for each edge a€Q, we have introduced intertwiners
¢, : L&Ny, — NZ@ and ¢, : Ny, — L ®& Nj . Below, we shall view ¢, as a
Hom(N* @) N ,l(a))—valued linear function on L, written as « — ¢,(u). The n-th carte-

sian power of this function gives a I',-equivariant linear ma
p g q p
¢ L"— Hom(Nt(a), N/L(a)) = HOITI(N

W, s ) > Y i) @ Ey,

1<i<n

i Ni) ® End C",

where E; stands for the n x n-matrix unit with the only nonzero entry at the place
(£, D).

Similarly, we shall view ¢, as a Hom(Nj,, Nj ,)-valued constant vector field on
L whose value at each point « € L is equal to ¢. Thus, given m € [1, n], we shall
write ——— o ¢ » for the Hom(INj, ), N}, )-valued first order differential operator on L" cor-
responding to the constant vector field ¢,. € Hom(Nj , Ny ) ® L along the m-th
direct factor L in L".

Next, recall the map
eHolland

0 Holland a] Radial o

, introduced in Section 2.3. The composite
associates to every edge a € Q a twisted differential operator from the algebra
PD(X, p, p). By definition, such an operator is a coset modulo the ideal @(Lftg, N)2dt.
Im(§ — p), see Proposition 3.2.2(ii1), of an element

eRadlal eHolland( ) c '@(L:,eq) ® HOl’l’l(Nt(a), Nh(a)) C .@(L;leg, )
We will write such an element D as an n X n-matrix with entries in Hom(Nj,, Ny ),
and write D, for (m, [)-th entry of that matrix.

Proposition 3.7.2. — Let a € Q. Then

(i) QRadial o gHolland () 45 4 2ero-order differential operator on L, gwen by multiphcation
by the function ¢).
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(il) For [ # m, the (m, [)-entry of QR o @O (4% s 45 a zero-order differential operator
on L, given by multiplicazfion by the function

* 0 V)z
3.7.3 —k/2
3.7.3) / Z e
and the (m, m)-entry of OR% o GHONaNd () 45 4 first order differential operator

] < 9 N Z (G 0 (¥ ' + 1)

3.7.4
( ) ITI\ 0@ ) w(y; m, m)

(= 1+1Tle,y™")
y#FLE

v 0 V)
+_Zzw<y,ma>

(i11) For the edge b : s — o we have

(3.7.5) grto gty = =3 La,
Vs
gRadial eHolland(b*) =(1— Z Xj) Z by = VZ L
Jel ’

The proof of Proposition 3.7.2 will be given later, in Section 8. We will use

Lemma 3.7.6. — We have ¢, +n = (1 — 2y) /||, and k = 2(1 — Zj(ijj)/lrl‘

Furthermore,

= (1= X =TelxM)/ITl fory #¢.
J

Proof. — Since A; = Tr|x;(¢ - 1 + ¢), we obtain by orthogonality relations that
¢, = 1/IT Z A Tr |1\7(y). Hence, for 9 as in (1.4.2), we compute

Jel

D X = Trlx: (1)
J

=A-8—v—0-8— Z)\jTrleef(y)+v—nZTr|Nj(§)Tr|1\7(y)
J J

=1—Tle, —n Y Trlx(0) Trlx: ().

If y # ¢, then this is equal to 1 — [I'|¢,. If y = ¢, then it is equal to 1 — [I'¢; — n|I].
Moreover,
ij(aj —Triv @) =2 Y x8 =2y
j {/€Q |is asource}

We also have Z X8, =1—v=1—FKT|/2. |
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4. Dunkl representation

4.1. Dunkl operators
Recall the principal T-bundle p : X =L — X = L /T, and other notation

introduced in Section 3.6. We are going to deﬁni a certain ref)resentation n of the Lie
algebra t = Lie T which is normalized by the natural I',-action on t. Thus, there is
an action of I', on Z(X, p, n), the corresponding algebra of twisted differential oper-
ators.

Our goal is to define certain elements in Z(X, p, n) X I', which may be thought
of as I'-analogues of Dunkl operators. The construction of these operators will be given

in five steps.

Step 1. — Write L, for the preimage of Py NP ® under the projection
L* — Pp. Thus L., C L is an open dense subset formed by the points » € L such
that, for any y € I'\\{1, ¢}, we have y(v) ¢ Cu.

For any y € I', we have a quadratic function o’ : L — G, u — w(u, yu). This
function does not vanish on L, thus, we have 1/w” € C[L.,]. Given v € L, we also
have the linear function v" : u +— (v, u), on L.

Recall the coefficients ¢, € G given by (1.2.1). To each v € L we assign the
following element

10 (yv+0)"
v . 1=
(4.1.1) D’ := 2| o+ Z GV € D(Lieg) ¥ T
y#L.¢
Step 2. — Let F = C? be a 2-dimensional vector space with fixed basis

(f*./7), and identify EndF with the algebra of 2 x 2-matrices. We set Z(L,., F) =
P(Liey) End F, and form the smash product (L, F) XI' = (Z(L,,) ®End F) x T,
where I' acts trivially on F and on EndF.

For each v € L, we introduce the following element written as a matrix with
entries in Z(L,,) % I':

Y
(4.1.2) Dy = (]g’v 6) ) D ((1’ 8) — - (8 (1)) € D(Lyeg, F) ¥ T,

Step 3. — For any affine variety % and n > 1, one has the standard alge-
bra isomorphism 2(#") = 2(#)®". Since End(F®") = (EndF)®", we deduce an
algebra isomorphism 2(#", F®") = (% ,F)®". The symmetric group S, acts nat-
urally on %" and on (EndF)®", hence, also on the tensor product Z(#", F®") =
DY, F)®".

We take # = L, and put X := L. cf Section 3.4. Thus, X is a I, -stable
affine open dense subset of (L,,)", and we have a chain of natural algebra imbed-
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dings

(Z(Lieg, F) X D' = D((Liep)", F¥') X I > 2(X, F®") x I
—> @(X, F®”) X Frz’

where the middle imbedding is given by restriction from (L,)" to X.
For any v € L and [ =1, ..., n, let D, € Z(L,,, F®") x T, denote the image of

reg’

the element 1%~ @ DL ® 197~ cf. (4.1.2), under this imbedding.

Step 4. — Yor any [ = 1,...,n, and y € I', let y, € I'" denote a copy of the
element y placed in the /-th factor of I'". In particular, given any 1 <m # [ < n, and
y € I', we have the corresponding transposition s,;, = {m <> [} € S, and the element
sm;ymyfl el,. Given y e I', v € Land any | < m # [ < n, we also have regular
functions " and 1/w(y;m, () on L, see (3.7.1).

With this notation, for any v € L and 1 < m # [ < n, we will now define an
element

(4.1.3) " € (C[X] ® End F®") x T', = Hom(F®", (C[X] ® F®") x T',).

m

To this end, write

(4.1.4) [f=f®.®f| =/t i=1, .1

for the standard basis of the vector space F®". Given such a basis element /' = f; ®

®fyand 1 <m <mn, letﬁ_ =N @St ®F @ fut1 @ ... ® f,. Now, view each
le in (4.1.3) as a linear map F®" — (C[X] ® F®") x T',, which we define as follows

(yo)” o
(4°1'5> ’”l(f) 2 Z ( (;//’vlm l) ®\]€n > *SmlYmY 1’ if ﬁz :f+’ﬁ :f+’

0, 2 : _
Ru() = 22(m® ) s ==

m/(f) - O if ﬁn :f_'

We identify the algebra C[X] ® EndF®" with the subalgebra of Z(X, F®")
formed by zero order differential operators. Therefore, we may view the elements R? ,

in (4.1.5), as being elements of Z(X, F®") x I',, which have zero order as differential
operators. Given k£ € G and v € L, we define first order differential operators

(4.1.6) Dunkl} := Dy} +£) R € 2(X,F") T, VI<i<n
l#m

Step 5. — Let n € G be the constant defined in (3.6.2). We introduce a rep-
resentation of the 1-dimensional Lie algebra G on the vector space F. Specifically, we
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let the generator 1 € C act, in the basis {/T,/ "}, via the diagonal matrix
diag(pu + %, w— %) The n-th cartesian power of this 2-dimensional representation
gives a Lie algebra representation 7 : t = CG" — End F®".

We consider the Lie algebra homomorphism

E—n:t— 92X, F®), hr> &, Q® Idpe — Idy ® n(h).

The group I', acts naturally both on the Lie algebra t and on Z(X, F®"), and it is
clear that the map & — n is I',-equivariant. It follows in particular that 2(X, F&")2dt,
the centralizer of the image of the map & —n in Z(X, F®"), is a I',-stable subalgebra.

Now, we apply the general construction of algebras of twisted differential opera-
tors given in Section 3.1 to the torus T = (G*)" acting on X = L, and to the repre-
sentation 1 defined above. This way, with the notation of Section 3.6, we get an alge-
bra 2(X, p, ). By construction, the algebra Z(X, p, ) is a quotient of Z2(X, F®")2dt,
and this quotient inherits a natural I',-action. Thus, we may form the corresponding
algebra Z(X, p,n) x I,.

It is straightforward to verify, counting homogeneity degrees of the coefficients,
that for any v € L the operator in (4.1.6) is adt-invariant. That is, for each [ =1, ..., n,
we have Dunkl) € 2(X, F®")2% xT',. Therefore, the element Dunkl] has a well defined
image in Z(X, p,n) x I',, to be denoted by the same symbol Dunkl; and to be called
the [-th Dunkl operator associated with v € L.

4.2. Equalizer construction

Recall from Section 3.4, the group S = {1,¢} = Z/2. Thus, S = C* N T
C GL(L) may be (and will be) viewed either as a subgroup of C* or as a subgroup
of I' We put S := S". This group comes equipped with a natural group imbedding
er : S — I C I',, such that the image of S is a normal subgroup in I',, and also
with a natural imbedding § — T.

In general, let A be an associative algebra equipped with a I',-action
I''>g:ar a* by algebra automorphisms, and also with a homomorphism
a: S — A, that is, with a map such that a(l) = 1, and such that a(ss') =
a(s)-a(s’), Vs, s’ € S. Assume in addition that the following identities hold (the one on
the left says that a is a I -equivariant map):

4.2.1 a(s)* =a(gsg™"), and a(s)-a-a(s™") =aTY, VseS,gel,, acA.
858

We form the smash product A x I', and introduce the following two homomor-
phisms

YT, Yo:S—>AxT, where Y, :s—a(s) X1, Yy:s> 1 X ep(s).
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It is straightforward to verify that equations (4.2.1) imply that the left ideal in
the algebra A X I', generated by the set {Y(s) — Yy(s), s € 8} is in effect a two-sided
ideal. We let A xg I', be the quotient of A x I', by that two-sided ideal, to be
called equalizer smash product algebra.

4.3. The homomorphism P
Let
I={(e,....,€,) | €, =0 or 1 for all m} C Z".

Let € = (€4, ..., €,) € I, and write F, for the one dimensional subspace of F®" spanned
by i ® --+ ® fp, where f,, = ftife, =0,and f,, =/ ife, =1 (m=1,..,n.
The representation 1 of t on the vector space F®" induces an adjoint action of t on
End(F®"). We have a decomposition

End(F®") = € Fe ® (¥,

€,e'el

where each component in the direct sum is stable under the action of t. Moreover,
t acts on Fe ® (F)* by the character € — €. Therefore, the t-action on F¢ ®@ (F¢)*
exponentiates to a T-action. Taking the direct sum over various pairs (€, €'), we obtain
a well defined adjoint T-action on End F®" = F®" @ (F®")*. Thus, for any t € T, the
adjoint action of t gives an algebra automorphism Adg(t) : End F®” — End F®".

The torus T also acts naturally on X = L[ . The tensor product of the in-
duced T-action on Z(X) with the adjoint T-action on End F®" gives a T action on
22X, F®) = 2(X) @ EndF®", to be called the adjoint action Adggr : T —
Aut(Z2(X, F®")). The map Adggr is clearly I',-equivariant. It is also clear from the
construction that the differential of the Adggp-action of T is nothing but the adjoint
action of the Lie algebra t. In particular, we have 2(X, F®")2dt = 9(X, F®")adzerT,

Next, we are going to apply the general construction of Section 4.2 in the fol-
lowing special case. Let S — Z(L,, F) = Z(L.;) ® End F be a homomorphism given
by the assignment

1!—)1@®Idp, §|—>1@®(é _01>
We define a homomorphism ap : § — 2(X, F®") to be the composite of the n-th
cartesian power of the above homomorphism S — Z(L,,, I), followed by the nat-
ural imbedding Z((L,,)", F®") — 2(X, F®"). This homomorphism is clearly T,-
equivariant and the image of ay is contained in Z(X, F®7)at,
Write a + af for the action of an element g € T', on a € Z(X,F®"). One
checks by direct computation that the map ay is related to the two natural imbeddings
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er:S — T and er: S — I, via the following identity
(4.3.1) (Adger o e1())(@) = ap(s™") - ¢TY - ap(s), Vse S, a e 2(X, F®).

It follows from (4.3.1) that, for any a € 2(X, F®")2d = (X, F®")2d7erT and 5 € 8,
one has ¢T® = ap(s) - a- ap(s™"). We conclude that both conditions in (4.2.1) hold for
the thus obtained homomorphism a: § — A := 2(X, F®")ad,

Further, we have the algebra projection pr : Z(X, F®")2 — 9(X, p, n), and
we let proa: S — (X, p,n) be the composite homomorphism. The Adggp-action
of T on Z(X, F®") clearly descends to an Adggr-action on Z(X, p, n). It follows that
conditions (4.2.1) hold for the map pr o a as well. Thus, we are in a position to form
DX, p,n) xs I, the corresponding equalizer smash product. We let Dunkl(v, /) de-
note the image in Z(X, p, n) Xg I, of the element Dunkl; € Z(X, p,n) x I,.

The main result of this section reads

Theorem 4.3.2. — Put t = 1/|I"|. The assignment, given on the generators g € I, vy € L,
[ =1,...,n (where L, stands for the -th direct summand in 1."), of the algebra H, ;. .(I',) by the
Jormulas below extends uniquely to a well defined and injective algebra homomorphism

Punkl . H.(T,) — 2(X,p,n) xs T, g+ g, v+ Dunkl(s, ).

The injectivity statement in the theorem is not difficult; it follows easily from the
PBW theorem for the algebra H,; . (I',), by considering principal symbols of differen-
tial operators. The difficult part is to verify that the assignhment of the theorem does
define an algebra homomorphism. The proof of this is quite long and involves a lot of
explicit computations. That proof will be given later, in Section 9. In the special case
n =1, the proof is less technical and is presented below.

4.4. Proof of Theorem 4.3.2 wn the special case: n =1

Let u;, up denote the coordinates in the symplectic vector space (L, ).

For n = 1, the assignment of Theorem 4.3.2 reduces to the map L. —
D (Lieg, F) xs T that reads

0o —pv 2 0 (Yo+ )"
Dunkl . [ _
0 .vl—><Dv 0 >, where D =] |82)+ ;Ccy V-
Y s

For any v, w € L we are going to compute all 4 entries of the 2 X 2-matrix
representing the operator [0P"™ (), 0" (w)] € D(L,eg, F) % T. First of all, it is easy
to see that [eDunkl(U), eDunkl(u))]12 — [eDunkl(Z})’ eDunkl(u))]21 — 0
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Next, write eu = u, ﬁ + ugi for the Euler operator. We compute
[eDunkl(U)’ 9D1,mkl(u))]11 — vav _ Z}va

2 ad 0
= —( V= >+ > %W(yvmv — o' (yw+w)")y

n\" & " Bw
I ¢ @ y#L.¢
2 e 3w ) — )y
T w?
y#1.¢
= lw(o, w)( — meu + Z cy)/)
y#LE

One proves similarly that [P (z), 0P8 (w)]yy =  w(o, w)(%(eu + 2) +

Zy;él,c ¢,y). Thus, we find

[QDunkl(v) , eDunkl (w)]

= 2w|(;)‘,| w) ((—01 ?) eu+ (8 g)) + w(v, w) Z ¢ Y.

y#L.¢

Now, in the 1-dimensional Lie algebra t = G, we have the generator 1 which
acts in F via the matrix diag(u + %, w— %). By definition of twisted differential oper-
ators, in the algebra Z(X, p, n), we have eu = 1 = diag(n + é, w— %). Therefore, in
the algebra Z(X, p, n), we get

[QDunkl(v) , eDunkl (w)]

2w(v, -1
= w|(li|w) (( MO 2 Mgl)-l-(g 8))—1—&)(1},1@)25),%

v#L.¢

We have

where in the last equality we have used the definition of © from (3.6.2). We find

(4.4.1) [6PM (1), P M ()] = w (o, w)<|r|—1 + ¢ (é _01> + Z W).

y#FLE
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In these formulas, the matrix diag(l, —1) € EndF is viewed as an element of
D (Lyeg, F). The image of this element in Z(X, p, n) Xs I', the equalizer smash prod-
uct algebra, equals 1 X er(¢), by definition. Hence, from (4.4.1) we deduce

[eDunkl(U)’ eDunkl(w)] — (1)(0, ZU)(I/lFl + Z ny),
y#l

This completes the proof of Theorem 4.3.2 in the special case n = 1. |

4.5. The map P

In Section 4.3, for any € and € and t € T, we have defined the adjomnt action
Ady(t) : Hom(F,, F) — Hom(F, F¢). This Adgp-action of T descends to an action on
DX, p,n, Fe = Fe), the corresponding quotient space. The reader should be alerted
that the resulting Adgp-action on Z(X, p, n, Fe — F¢) that we are considering at the
moment 18 different from the Adggp-action of T considered in Section 4.3: the latter
action, comes from the action of T on both factors of the tensor product Z(X, F&") =
2(X) ® EndF®", while the former comes from the action of T on the second tensor
factor, End F®", only.

Lemma 4.5.1. — Let 1,5 € 1. For the algebra (X, p, n) XsI',, as defined in Section 4.5,

one has:

i (DX, p,n) XsL'))e 1 = D(X, p, 0,N; — Ny,
a1 (DX, p, 1) xs T e = 2(X, p, 0N, > N,
e(Z(X, p,m) s g = DX, p, 0, N, > N)T,

e(2(%,p.n) xsT)e = D(X, p, 0, N, = N)T".

Proof. — We prove the first equality; the rest are similar.
Note that CT¢;,-; = B, N?"V @ N; @ N®1) = N7, so

(2. p.m) #s T g1 = @ 2(X. p.m) ®s (N @ N; @ NE),

1<i<n

where on the right hand side, s € S acts on Z(X, p, n) by right multiplication by a(s).
For any € = (€|, ...,€,) € I, we write s¢ for the character of § whose value at
Cay 1s (D).
Suppose S acts on N®"V @ N, ® N2 by the character s*, where
€(l) € I If j 1s a sink in Q, then €(/) = (0,...,0), while if j is a source in Q,
then €(/) = (0,...,1,...,0) (where the 1 is in the /-th position). Under the above
right action of § on 2(X, p, n) via a, the s*“-isotypic component of Z(X, p,n) is
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BecaZ(X, p, 1, Fey = Fo), so
2(X.p.m) Qs (N"V @ N; ® N2¢)
= @ .@(%, p, n, Fe(l) — Fe) (034 Nj

ecl

Now, the space ¢;,—1 (Z(X, p, n) X5 I',)¢,—1 can be written as

( @ (N?(m—l) ® N;k ® N;@(Vl—m))

1<m,i<n

T,
R @ca?(X.p.n ey > F)®N)) .

The subgroup 8 C T, acts on N®"~D @ N* @ N8 by the character s¢™ where
€(m) 1s (0,...,0) if ¢ 1s a sink, or (0, ..., 1,...,0) (where the 1 is in m-th position)
if 7 13 a source.

Recall the Adp-action of T on Y(X,p,n, Feqy — Fe) described before this
lemma. We have the group imbedding exr : § — T, see Sections 4.2, 4.3. Equa-
tion (4.3.1) implies that the restriction, via er, of the Ady-action of T to the subgroup
S coincides with the restriction, via er, of the action of I', on Z(X, p, n, Fey = Fe)
to its subgroup S. We have

s
((N;X’(m—l) () 1\]?< X N(‘)X’(”—m)) ® ( Deer @(%,p, n, Fe(l) — Fe) ® Nj))
=N ® Z(X,p,n, Fety = Fey) ® N,
We conclude that

€in—1 (-@(%, pa n) As ]-‘n)ej,n—l
F/l
= ( @ Nzk X @(%,p, n, Fe(l) —> Fe’(m)) X N]) .

1<m,(<n
The last expression is equal to 2(X, p, 0, N; = Np)T. m]
Recall the homomorphism 8P"¥ of Theorem 4.3.2. For any 7,; € Igy, recall

the subspace B, ; of H defined m (1.7.2). Using Lemma 4.5.1, we obtain by restricting
6P to B, ;, a homomorphism

@Dunkl . Bi,j N @(%,p’ 0, Nj — Ni)r” C @(%,p, Q)I‘”-

INE)

We define the following algebra homomorphism
e : B — 9(X,p, o)™, Z Ui > ZG)DHHM(HZ‘,J‘),
by “J
Vui,j (S Bi,j’ l,] € ICM-



HARISH-CHANDRA HOMOMORPHISMS AND SYMPLECTIC REFLECTION ALGEBRAS 125
4.6. Computation of AP o Huver

Let a be an edge of Q ¢y, viewed as an element of the algebra TT'. We would
like to compute D := P o guver(g) € P(X, p, o), the image of that element
under the composite map @Puk o gQuiver,

We will freely use the notation from Section 3.7.

Proposition 4.6.1. — If a € Q then D* = —@", and D is an n X n-matrix with the

entries

* - (¢a* © ()/_1 + Id))m —1
(Da )mm — 2|F| : + C , and
(000), y;z T oimm
* k (¢a* © V)/
D* ml = T3 — [ .
B QZyerww;m,nV frt#m

Proof of Proposition 4.6.1 for n = 1. — In this special case, we have N; = CI'¢; and
N* = ¢,CI", with the pairing defined by

(¢v.v'e) = ¢yy'e € C.

Thus, for n =1 the formulas of Proposition 4.6.1 read

. 9 ~o(y '+ 1Id
D= —¢, D“ = 2|r|—1a + ) cy‘p (wa )y_l, Vae Q.
Tyt

To verify these formulas, we write the Dunkl map in the form @P"¥(y) =
Zyef‘ d,(v)y, where v € L and d,(v) € Z (L, F). We prove the formula for D*
because the formula for D* is easier to prove.

We recall the construction of the map 62", Let

¢, € Homr(Nyr), Nigry ® L)
be the element corresponding to ¢+ € Homr (Nj ), Nj ) ® L). Then the map

Homp (N, Ny+) ® L)
~ Hom[‘(N:ﬁ(a*), NZ(&*) & L) — eh(a*)C[F] ® Let(a*)

from the construction of @™ is defined by @, > @, (1 - eya)).
Choose a basis v, in L. Then ¢, = Zle @5 ® v, where ¢ €
Hom(N+, Ny+). We consider D as element of D (Lieg, Niary = Ny+)'. From the
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construction of 8% we find

2
Z O™ () fr =Y dy () (v o b)

s=1 yel

0 s 1 U

— oy +22N” (o d)
¢a* s=1 y#1,¢ @

—or|"! Z Yooy +Id)

a* wY

y#LE
We have natural isomorphisms
Hom(Nh(a*)’ Nt(a*)) = NZ(Q*) ® Nz(a*) == HOl’l’l(Nt(a*), ;,(a*))
We deduce
I r
9(Lreg’ N/L(a*) - Nt(a*)) — @(Lreg, f(a*) - NZ(,I*))

Under this isomorphism, the element y¢,. o (y~' 4+ Id) corresponds to ¢ o
(y '+ Id) oy ! and & [ is completes the proof. ]

9
Apx

We omit the proof of Proposition 4.6.1 for n > 1; it is similar to the above
computation in the case n = 1.
It is easy to see that for the edge b: s — o, we have

Db - @Dunkl o eQuivcr(b) — _(1’ - 1)l‘
and
Db* — @Dunkl o QQuivcr(b*) — V- (1’ s 1)

Thus, for all 2 € Qcy, we have computed the operators D¢ := @Puk o gQuiver(g)
where D* € (X, p, 0).

Theorem 4.6.2. — For all values of ¢, k, we have @Radial , gHolland _ gDunkl , gQuiver
O

In the special case n =1, for any edge a € Q, we have

eRadlaleHolland(a*) — 2|F|— + Z (V ) —1

Pur T
—1

_ |1_,|_1 Z Gpso0Y
w?

y#L.¢
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Therefore, replacing here the map 6%*4# by @Radial v find

adial o Holl o 0 $oso(y ' +Id)
@RddldleHOHdnd(a*) — 2|F| 1 + Z ¢ @ y 1.
0. y#Lg w’

When n > 1, it is completely similar.

5. Harish-Chandra homomorphism

Recall that we assume A -8 = 1, i.e. = |[|~'. We shall write H;, for H,;.(T,).

3.1. Modified Holland’s map

In this subsection, we define a map @Ml : o T1'e — 2., cf. (1.6.2). To this
end, assume for the moment that v is a formal variable, and the algebras IT, IT',
Ty, A, are all defined over G[v].

Lemma 5.1.1. — The map gr(O%4) : gr2,, — er(2(X, p, )T ® C[v]) is injec-

live.
Proof. — This follows from Proposition 7.2.2, Theorem 7.2.3 and Propos-
ition 7.2.5. o
The preceding lemma implies that gr2l,, and 2L, are free G[v]-modules.
We define a homomorphism
Ok GQ ey ® Clv] = (Z(Qem, @) ® (EndN) ® C[v, v~ ')
by
@Held () = "™ (g)  for all vertices j,
@Holland (g — éHOlland(a) for any edge a # b*,

~Holland

@Holland(b*) — v—le (b*)

, . =Holland ,
It is easy to see that since §  descends to a homomorphism g%l : [T — T
the homomorphism ®H°" descends to a homomorphism

@Holland . 7/ _y S:X[U_l], such that @Holland . eé,l_[/ej. — lez[\)_l].

Suppose that X € CQ. By (3.7.5), gRadialgHolland(5+X by vanishes if we set v = 0,
so by Lemma 5.1.1,

~Holland

0 (b*Xb) € (Z(Qom, ) (E — (A — 3 — ne))(gl())) .
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Since x' = (A — 9 — ne,) — ve, + nve,, we have that éHOIIalld(b*Xb) belongs to
P Qom, )& — x)(gl@) +v - Z(Qcm, &) (e, — ne) (gl(a)).
Since GL(«) is a reductive group, we have a projection map
pr: Z(Qom, @) = 2(Qou, )

such that

pr(Z2(Qcu, ) (€ — x)(gl(@))) C (Z(Qom, ) (€ — x')(gl(a)) .
Thus, the element § " (5*Xb) = pr(@ " " (4*Xb)) belongs to
(2 Qem, @) (€ — x)(@l@)™ + v - D(Q.om, ).
Therefore, ®@lmd(, [T'¢) € 2. Thus, for any v € C, we have a homomorphism
@Holland .+, [/, A
Theorem 3.1.2. — The following diagram commutes:

@Quiver

e.ITe, eH; e
@Holland l l @Dunkl
Radial
91)(/ ° @(%’ P, QS)I‘n'
Proof. — This follows from Theorem 4.6.2. |

Proposition 5.1.3. — The map O 2 ¢ T1'e; — A,/ is surjective.

Proof. — The algebra I1" has a filtration with deg(a) = 1 for edges a # b, b*,
and deg(b) = deg(6*) = 0. It suffices to show that the associated graded map

gr(@™) ¢ gr(I)e, — gr(Ay)
1s surjective.

Now ¢, gr(IT")e, is generated by ¢, and b*(¢,I1(Q )e,)b where T1(Q) is the prepro-
jective algebra of Q). By [CB, Theorem 3.4], we have

ClRep,(TT(Q))]%" = ((C[Rep,(TT(Q))I™?)™")™.
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Denote by

O TH(Q) — C[Rep,(IT(Q)) ® End (@, €")]"
the natural morphism defined in [CBH], which gives a morphism
O 1 ¢, IT(Q)e, — C[Rep,(IT(Q)) ],

This latter morphism is an isomorphism by [CBH, Theorem 8.10].
Now, given an element X € ¢,I1(Q )¢,, we claim that

(5.1.4) (@M (5 Xp) = =Y " 1807 @ @P(X) @ 1907,
p=1

Indeed, we have

gr(eRadial) gr(®Holland) (b*Xb)
= gr(O""™) gr(@Q™")(5*Xb)  (by Theorem 5.1.2)

= gr(QRadial)( —Y 1P X)) ® 1®<"—P)) (by (6.3.3) below).
=1

Hence, (5.1.4) follows from injectivity of gr(o®*¥). It follows from (5.1.4) and
Lemma 6.3.4 below that gr(®@land) s surjective. O

5.2. — It follows from Theorem 5.1.2, Proposition 5.1.3, and the injectivity of
that we have a homomorphism

@Dunkl
(OP) ™ o @R - L, — eHy e.

Since Rep,(Q cm) = Rep,s(Q) & C”, we have an obvious embedding
@ D(Q,n8) - Z(Qcm, ).

Defiition 5.2.1. — The Harish—Chandra homomorphism @y, is defined to be the compo-
sition

(@Dunkl)—l ° @Radial

(5.2.2) D(Q, nd)- T 9, eH, ce.

Following [EG], we define a l-parameter space of representations V, of gl, as
follows. As a vector space, V, is spanned by expressions (x; ---x,)¢ - P, where P is
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a Laurent polynomial in x1, ..., x, of total degree 0. The Lie algebra gl, has an ac-

tion on V, by formal differentiation, where ¢,, acts by x,-—. We restrict this to an

9
o,
sl, action. The desired gl, action on V, is obtained by pullling back the sl, action
via the natural Lie algebra projection gl, — sl,, so that the center of gl, acts triv-
ially.

Let Fun( ) denote the vector space of functions on a formal neighborhood of
a point of the slice L;’eg. Recall that 0 = —n Ziel Tr |, (©)e;. We have

(5.2.3) (Fun(Rep,(Qow)) ® C_ )@
= (Fun(Rep,s(Q)®V,_; ® C_;4,+2)"".

The GL(n8) action on Rep,(Q) induces a Lie algebra map ad : gl(nd) —
2(Q, né). Let ad : Ugl(nd) — Z2(Q, nd) be the induced map on the universal en-
veloping algebra of gl(n8). Define the left ideal

Jie = 2(Q, n8) - ad(Ann (V,_; ® C_iy19) C 2(Q, ).
By (5.2.3), the ideal J7" is in the kernel of the map @ in (5.2.2).

Theorem 5.2.4. — The Harish—Chandra homomorphism induces an algebra isomorphism
ot DQ ) VT S ety e

Proof. — By Theorem 7.2.3 and [EG, Theorem 1.3], the associated graded map,
gr @, ., is the isomorphism in (7.2.4), hence @, is itself an isomorphism. O

3.3. Proof of Corollary 1.8.3

Given any C =} .G,y € G[T'], we let C= > yer Gy~ Correspondingly,

if A =Y Tr|x.(C)e;, then let A = Y, Tr|x,(C)e;. We have an anti-isomorphism

el
5.3.1 Hi. = Hiz, = ol u —lu, Veel, uel
s : g 4 g

We also have an isomorphism

(5.3.2) Hee > Hyew o> (=10, gr—>g, ur>u,
YVoe§, gel”, uel’.

The isomorphism in (5.3.2) sends e to e_.
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Now, for any 2 € I set )‘j :=Tr|x.(¢- 1+ ¢T). We put
= =207 Yy and ATi=) "ol =142,
y#1 €l
The group GL(78) acts on det(Rep,s(Q)*) by the character 20. We have
(Vie1 ® CGjpra)” @ det(Rep,,(Q)") V., ® Gy, 5 ® Cyy
=V_,® C—M—}—ea-i-a'

Leti: 2(Q,n8) — Z(Q,nd) be the anti-isomorphism sending a differential
operator to its adjoint. Then for any GL(nd)-module V,

i(ad(ann (V))) = ad((Ann (V' ® det(Rep,;(Q)")))).

The proof of the first isomorphism in Corollary 1.8.3 is now completed by the
following isomorphisms
eH; e >~ (eHyr-1_; 1e)” using Theorem 5.2.4
or|-1 4T € using (5.3.1)

~ e H _ - 7e-  using (5.3.2).

>~ eH
We will prove the second isomorphism in Corollary 1.8.3 later in Section 6.7.

6. Reflection isomorphisms

Except for Section 6.7, this section is independent of the earlier sections.

6.1. — Let Q be an arbitrary quiver (not necessarily of type A, D, or E)
Denote by I the set of vertices of Q. Let R = @, C, and E the vector space with
basis formed by the set of edges {¢ € Q}. Thus, E is naturally a R-bimodule. The
path algebra of Q is CQ := TRE = @,_, T&E, where TZE = E ®g --- ® E is the
n-fold tensor product. The trivial path for the vertex i is denoted by ¢, an idempotent
in R.

Fix a positive integer n. Let R := R®". For any £ € [1, n], define the E-bimodules

E,:=REEDQEQR®O and E:= EB E,.
1<é<n

The natural inclusion E, = R®¢"DQTREQ®R®" Y induces a canonical identification
TrE, = R®“"D @ TRE ® R®" 9. Given two elements € € E, and ¢’ € E,, of the form

(6.1.1) £=606Q QaQ - Q)R e,
6.1.2) =660 QU BB Re,
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where £ £=m, a, b € Q and 7, ..., 1, € I, we define
I_e,e/J p— (eil ®...®a®...®h(b)®...®gi")
X (eil ®...®t(d)®...®b®...®ei”)

_(eil®”'®h(a)®”'®b®”'®eiﬂ)
X(eil®...®d®...®t(b)®...®ei”).

Note that |g, &'] is an element in TAE.

Definition 6.1.3 (GG, Def. 1.2.3]). — For any A = Y. Aie; where A; € G, and
v € G, define the algebra A, ;. ,(Q) to be the quotient of 'TrE X G[S,] by the following relations.

(1) For any 1y, ..., 1, € L and € € [1, n]:

€i1®...®< Z a-a — Z d*'a_)\‘igeig>®"'®€l},

{a€Q | i(@)=1} {acQ | a)=1¢}
=0 Y (G® ®e® - ®¢)s
{#L =1}

(1) For any €, € of the form (6.1.1)+6.1.2):

Ve, @ - Q)@ @Ua) ® -+ ®¢,)sem
ybeQ,a=10"
e, &l =1V (6,® - Q) ® - ®Ua) ® - ® ¢,)sm
yacQ, b=a",
0 else.

When n = 1, there is no parameter v, and A, ; ,(Q) is the deformed preprojec-
tive algebra IT;(Q) defined in [CBH].

6.2. Quiver functors

The goal of this section is to put the construction of the functor M — M ex-
ploited in Section 2.2 into an appropriate, more general, context.

Let T be a nonempty subset of I, and let ey 1= ) .1 ¢. In particular, ¢; = 1. Let
Q 1 be a quiver obtained from Q) by adjoining a vertex s, and arrows b, : s — ¢ for
t € T. We call s the special vertex. We shall define a functor G from A, ; ,(Q )-modules
to I, _yeptave, (Q 1)-modules.

Let M be an A,; ,(Q)-module. We want to define a IT;_,, 1. (Q r)-module
G(M). For each i € I, let GIM); = ¢,_,(¢; ® 2" ")M. Also, let G(M), = ¢,62"M.
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If @ 1s an edge in Q, then define ¢ : GM)y,y — GM)y, to be the map given
by the element ¢ ® e?("_l) € A,;.,(Q). We have an inclusion G(M); C ¢,_1¢5"M =
@jeT G(M),. For ¢ € T, we have a projection map pr; : @jeT G(M); = G(M),. Define
b + G(IM); — G(M); to be the restriction of pr; to G(M),. Define 67 : G(M); —
GM), to be —v- (1 + 5104+ -+ 51).

The following lemma is a generalization of Lemma 2.2.2.

Lemma 6.2.1. — With the above actions, G(M) s a T1; _,, e, (Q 1)-module.

Proof. — It 1s clear that (1 4 s10 4 -+ 4 s1,)€0-1 = 76,
On G(M), at the special vertex s, we have ) . b%b; = —nv.
Atavertex 1 € I, 1 ¢ T, we have

Z aa* — Z a'a=\;
acQ s h(a)=1t acQ; i(a)=1t

by the relation (i) in Definition 6.1.3. At a vertex ¢ € T, we have

Z ad" — Z aa=x+v-prisg+ - +s,) =A—v—>5bb,
acQ s h(a)=1t acQ; i(a)=1t

using again the relation (i) in Definition 6.1.3. |

It is clear that the assigment M +— G(M) is functorial. We have constructed
a functor

(6.2.2) G : AL (Q)-mod = TT; e, (Q 1)-mod.
Recall the symmetrizer ¢, 1=+ > ¢ s.

Defiition 6.2.3. — Let U,; ,(Q) := ¢,A,5.,(Q)e, be the spherical subalgebra
Ausn(Q).

The idempotents ¢, and e, := e?” commute. For M := A, ; ,(Q )e¢,e], we get

GM), = eV, .€T.

In this case, G(M), is an algebra, and the action of ¢IT;_,, 4w (Q1)e, on G(M),
commutes with right multiplication by the elements of G(M),. Thus, our construction
yields an algebra homomorphism

(6.2.4) a . ejn)\_vm'-}—nwf(Q,T)es - enTUVl,)»,Veli“‘
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6.3. Modified version

The map G is 0 on nonconstant paths when v = 0. For this reason, we shall
need a slight modification of the constructions in the previous subsection.

Define IT;_, ., (Q1) to be the quotient of the path algebra CQ 1 by the fol-
lowing relations:

Yla a1+ v) b =x—ver, Y bb=—n,.
acQ) €T €T

We have an algebra morphism IT; .4, (Q 1) — H/A—m e, (Q1) defined on the
edges by

* * *
ar>a for a #b;, b +— vb;.

This is an isomorphism only when v # 0.

Given a A, ,(Q)-module M, we construct a IT,_, . . (Qr)-module G'(M)
analogous to G(M) in the previous subsection, the only difference is that now, we let
br : G'(M); = G'(M); be —(1 4519+ -+ +355,). Hence, as above, we obtain a functor

(6.3.1) G’ : A,;.0(Q)-mod — IT, (Q 1)-mod

A—ver+nveg

as well as a morphism

-~

(6.3.2) G : eIl (Qr)e, > €U, et

A—ver+nve,

The algebra IT, _,, .., (Q 1) has a filtration with deg(a) =1 for a # b;, b7, and

deg(b;) = deg(b?) = 0 for 2 € T. Also, ¢, gr(l'[;_wTJﬂM(QT))ej is generated by ¢, and

(D jer 6 To(Q)b).
We shall assume that Q) s a connected quiver without edge-loops, and Q) 1is not a finile

Dynkin quiwer. Then, by [GG, Theorem 2.2.1] and [GG, Remark 2.2.6], grA,; ,(Q) =
I1o(Q)®" x C[S,]. Thus,

gr (¢hUnie) = ((erTlo(@en ™)™

Now given an element X € ¢I15(Q )¢; where ¢,j € T, we have
6.3.3) e G EXb) == " @Xeq"
p=1

Lemma 6.3.4. — Let A be any associative algebra with unit 1 € A. Then (A®")> is
generated as an algebra by elements of the form

n

Z 1®(]J—1) X ® 1®(”—]J), X € A.

=1
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Proof. — Since (A®")> is spanned by elements of the form ¢®" where a € A, it
suffices to show that the lemma is true for A = C[a], but this follows from the main
theorem on symmetric functions. ]

Proposition 6.3.5. — The map G in (6.3.2) 15 surjective.

Proof. — It suffices to show that gr(a/) is surjective. This follows from (6.3.3)
and the preceding lemma. ]

6.4. Reflection functors

Recall the setting of reflection functors as in (1.8.1). In particular, we have the
Weyl group W generated by the simple reflections 7; for : € I. We also have a non-
empty subset T C I and we fix a vertex ¢ ¢ T.

Let us apply the reflection functor F; to the A, ; ,(Q)-module A, ; ,(Q)e’. By
construction, we have

i Fi(A(Q)e}) = 1A, ., (Q)e]

and the left action of e}A, ,).,(Q)e} on el (A, ;. ,(Q)e}) commutes with the right
multiplication by e}A, ; ,(Q)e’r. Hence, for : ¢ T, we obtain a homomorphism

(6.4.1) F: elA,,00(Q)el — €A, ;. (Q)el.

Note that F,(e%U,, ;). (Q)el) C elU, ;. ek

In the special case when n = 1, reflection functors were constructed in [CBH];
let us recall their definition. Since IT,(Q)) does not depend on the orientation of Q),
we may assume without loss of generality that 7 is a sink in Q. Let M be a IT; (Q)-
module, and M; = ¢M for each j € 1. For each edge a € Q such that k(a) = 1,

write
Ty - @ Miey = My, Mo Myyy — @ M)
§€Qh(§)=i §€Qih(§)=i
for the projection map and inclusion map, respectively. Define
T @ Myy — M;, m:= Z aom,,
acQ;h(a)=1 acQ;i(a)=1
and

uw: M, —> @ My, wp:= Z g0 da.

acQ s h(a)=1t acQ s h(a)=i
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Observe that mu = A,;. Let (F;(M)); := M; if j # i, and let (F;(M)); := Ker(mr). If
a € Q and k(a), t(a) # 1, then let a : (F;(M)),,y — (F;(M))y, be the same map as
a:Myy = Myy. If a € Q and h(a) = ¢, then let a : (F;,(M))y,, — (F:(M)); be the
map (—A; + um)i,, and let a* : (F;(M)); — (F;(M));, be the map 7, restricted to
(F;(M)),. Letting

F:(M) = @jar(F;(M));,
we have defined the functor
F; : T, (Q)-mod — IT,;)(Q)-mod  for any ¢ € L.
In particular, for the quiver Q 1, and for ¢ € I but : ¢ T, we have
(6.4.2) Fi: Thi_veptme (Q1)-mod = TT, ) —vepnve, (Q 1)-mod
Let : € I but ¢ ¢ T. We define a functor
Foo T e (Qr)-mod — T, 4, (Qur)-mod

in exactly the same way as F; in (6.4.2). It is easy to see from definitions that the
diagram (1.8.6) commutes.

6.5. Relations in rank 1

In this subsection, the rank 7 is equal to 1. Let € = (&;) be the generalized
Cartan matrix of Q).

Proposition 6.5.1. — For all A € R, we have the following.
(1) The map

Foi (1= )L (Q)(1 —e) = (1 — )0 (Q)(1 —¢)

i an isomorphism, and /Ff = Id.
(i) If €; = 0, then

~

FoF =FoF:(1—6—e)L(Q)—e—2¢)

J)Hrirj(k)(Q)(l — ¢ — ej‘).

J J ’
—> (1l —¢—e
(i1) If €5 = —1, then

~ ~

FioFoF, =FoF oF: (1—a—¢)M(Q)1—ea—0¢)
= (I —¢— @)Hr,-rjn(x)(Q)(l —6—¢).

~
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Proof. — (i) The algebra (1 —¢)IT,(Q)(1 —¢) is generated by edges a € Q with
h(a), t(a) # 1, and paths of length two: aya; with A(ay), t(a;) # ¢ and t(ay) = h(a;) = 1.

Ifae Q and A(a), t(a) # ¢, then f(a) =a.

Now let aray be a path with %(ay), t(a)) # 1 and Hay) = May) = @ If ay # af
or a # a3, then T, (@a)) = asay. If ay = aj, then F(del) = —Ai€q) + asa;, and so
Fi(F(ara)) = =i i) T Aitia) + @01 = @a.

(i) When €; = 0, there is no edge joining ¢ and j. In this case, it is clear that
FF;, = FF;, so FF _FF

(i1) When C —1, there is precisely one edge in Q) joining ¢ and j, sa
a:1—J. The algebra (I — ¢ —¢)I,(Q)(1 — ¢ — ¢) is generated by:

— edges a; € Q with A(ay), t(a)) # 1,J;

— paths apa; with t(ay) = h(a)) = ¢ and i(ay), t(ay) # ¢, J;

— paths apa; with t(ay) = h(a)) =7 and A(ay), t(a)) # 1,J;

— paths azaya; with ay = a, t(as) =, h(a)) =1 and h(as), t(ay) # i, J;
— paths asaga, with ay = a*, t(as) =1, h(a)) = and h(as), t(a)) # 1,].

In the first case above, we have
EE‘E(@) =a = EEE(@)-

In the second case above, when ay # af or a; # a3, we have

A A A A

Fi(aa) = aa) = F,F ¥ (aa).

T T )

J
When ay = af, we have
/15/15/\ Fi(ayay) = /151‘/15]‘(—)\2‘ + aa) = Fi(—; + aa)
= —Ai — A + way,
since 7;(r;(A))e; = A;; and on the other hand, since 7j(1)¢; = A; + A;, we find
Eﬁfj(agal) = Eﬁ(agal) = E(_)”i — A+ aa) = =X — A + aa.

The third case above is similar to the second case.
In the fourth and fifth cases above, note that no two of the edges a, as, a3 are
reverse of the other, so we have

AAA A AAA A

FszFz(QSaQaI) = asara) = FszF](azazdl)

Lemma 6.5.2. — (1) If &; # 0, then

[1,(Q) = IL(Q)(1 — )I(Q).
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(11) Zf@:y = —1, and )\.l‘ # O, )\.J’ # O, )\.l‘—i_)\.j # 0, then
T(Q) = IH(Q)(1 =& — ) I(Q).

Proof. — (1) As a I1,(Q)-module, m is zero at all vertices not equal

to i, so all edges of Q must act by 0. But then it must also be zero at the vertex i
since Ait; = D iequna=i 4"~ Dueqia=i 4 -
(i) There i1s only one edge in Q) joining ¢ and j, say a : ¢ — j. Let V be the

) 1,(Q) . . . .
[T, (Q)-module (= Q) Now V is zero at all vertices not equal to z or j, so

V =V,;®V,. Suppose V # 0, say V; # 0. Then aa* = Aje; on V; implies that a, a* are
nonzero maps, and « has a right inverse )»fla*. But then a*a = —A;; on V; implies

that « has a left inverse —)»i_la*. Hence, A; = —A,;, a contradiction. O

Using Proposition 6.5.1(1), IT,,(Q)(1 — ¢) is a right (1 — ¢)IT,(Q)(1 — ¢)-
module, and IT,;,(Q)(1 — ¢ — ¢) is a right (1 — ¢ — ¢)I1,(Q)(1 — ¢ — ¢)-module.

Corollary 6.5.3. — (1) If A; # 0, then
F;(M) = Hn(x)(Q)(l —¢) ®(1—ei)m(Q)(1—el») (I —ep)M

Jor any M € TT, (Q )-mod.
(11) [fQ:y == —1, and )"i ?é O, )\.] ?é O, )\.l+)\.] ?é 0, then

F,(M) = I1,0)(Q)(1 — & — ¢) ®(—y—)m(Q)(1—c—) (1 — & — )M
Jor any M € TI, (Q )-mod.
Proof. — (1) Let M € IT,(Q) — mod. By Lemma 6.5.2(1),
F:(M) = 1,6, (Q)(1 — ¢) S (1=, Q) (1=e) (1 — ) F;(M)
= Hn(x)(Q)(l —¢) ®(1—ei)m(Q)(1—el») (I —e)M.
The proof of (ii) is similar, using Lemma 6.5.2(1i). m|
Corollary 6.5.4. — (i) If A; # 0, then F? = Id.

(ii) If €; = 0, then F,F; = F}F,.

Proof. — (1i) 1s trivial, while (i) and (ii1) are immediate from Proposition 6.5.1 and
Corollary 6.5.3. ]

Our proof of Corollary 6.5.4 appears to be simpler than earlier proofs, see
[CBH, Theorem 5.1] (for (1)), [Na, Remark 3.20], [Na, Theorem 3.4], [Lu2],

and [Maf].
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6.6. Relations i higher rank

In this subsection, 7z is an integer greater than 1. We shall show that the reflec-
tion functors F; of (1.8.1) satisty the Weyl group relations when the parameters are
generic.

We omit the proof of the following proposition since it is completely similar to
the proof of Proposition 6.5.1.

Proposition 6.6.1. — Let 1,5 € 1. The homomorphisms T, of (6.4.1) satisfy the following
Jor any A € R and v € C:

(1) Let T =1\ {¢}. Then the map
it A, a0 Qe — ehA, ., (Q)el

s an wsomorphism, and E o,l*:i = Id.
(i) Let T =1\ {e,5}. If €; =0, then

~ 0~

Fi o F] = F] o Fi . e’rfAn,rgl](k),v(Q)e’rf - e’r{"An,)L,U(Q)ezi“'

(i) Let T =1\ {i,j}. If €5 = —1, then

)

Fi Fj [¢) Fi = F] 0] Fi [¢) Fj . e”TA,l,m.,i(;\),v(Q)e”T —> e%AWH‘,(Q)e%.

Next, we have the following generalization of Lemma 6.5.2.

Lemma 6.6.2. — (1) Let T =1\ {¢}. If A £pv #0 for p = 0,1, ...,n— 1, then
An,k,v = A;z,k,vezlfAn,k,v-

(i) Let 'T = I\ {z,5} and suppose &; = 0. If Ay = pv # 0 and A; = pv # O for
p=0,1,..,n—=1, then A,; , = A, v€TAL -

(1) Let T = I\ {t,7} and suppose €; = —1. If A; £ pv # 0, A; £ pv # 0 and
At A Epp#E0 for p=0,1,...,n—1, then A,; , = A, 5 ,€7A, 0.

Proof. — The proof is similar to the proof of Lemma 6.5.2.
To prove (i), let V be the A, ; ,-module —2* — where T = I\ {z}. For any

An,)»,veg[‘An,)»,v

n-tuple of vertices iy, ..., i, we let V; ;= (¢, ® -~ ®¢,)V, 50 V=6, Vi i
Since e}V = 0, we have V; ., = 0 when none of ¢, ..., 7, is ¢. Suppose now that ¢
appears m times in ¢, ..., z,. We shall prove by induction on m that V; _; =0, so we

assume that the statement is true whenever ¢ appears less than m times. Without loss
of generality, say 7; = --- = ¢, = ¢. Then by the relation (i) in Definition 6.1.3 and
the induction hypothesis, we have

m

=2
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By [Ga, Prop. 5.12], the element A; + v)_,_, s, is invertible in the group algebra
C[S,]. Hence, V;_, =0, and (1) follows by induction.
The proofs of (i) and (iii) are similar, using induction. O

As in the previous subsection, we obtain
Corollary 6.6.3. — (1) Let T =1\ {¢}. If A, £pv #O0 for p=0,1,...,n— 1, then
FZ(M) = An,r[()u),veq" ®egrAn.Lvegr enTM’ YM € An,k,v'm0d~

(1) Let T = I\ {i,5} and suppose €; = 0. If A; £ pv # 0 and A; £ pv # 0 for
p=0,1,...,n—1, then

FZ(M) = An,ri(k),venT ®e" Anxv€ G%M, VM e A?z,k,v'mOd'
T g

(i) Let T = I\ {¢,7} and suppose €; = —1. If A; £ pv # 0, A; £ pv # 0 and
AitAxpv#0 for p=0,1,...,n— 1, then

FZ(M) = An,ri(k),venT ®e%AM_,,e% G%M, YM € A?z,k,v'mOd'
Proposition 1.8.2 is immediate from Proposition 6.6.1 and Corollary 6.6.3.

6.7. Shift functors

In this subsection, we return to the case when Q) is the affine Dynkin quiver
associated to I'.
_ Let €= () be the generalized Cartan matrix of Q. The affine Weyl group
W is generated by the simple reflections 7; for ¢ € L. It acts on C' by 7 : C' — CI
where (1) = A — ZJGI Cihie.

Let Q' be the finite Dynkin quiver obtained from Q by deleting the vertex o.
The Weyl group W of Q' is the subgroup of W generated by the 7 for ¢ # o. Let
¢ = (Q:;j) be the Cartan matrix of Q'. Then W acts on @®;Ce¢ by r,(A) =
A =2 iz, Cihig. Denote by wy € W the longest element of W.

If : € I, then let ¢* € I be the vertex such that N = N¥. Recall that if A =

ZieI )»iei, then X = Ziel )wei.
Lemma 6.7.1. — For any A € C with A -8 = 1, we have wy(L) = —A + 2¢.
Proof — The projection C' — @2, Ce; 13 W-equivariant with kernel Ce,. We

write A = )\‘oeo + A Where_)\‘/ € @i#ocei. Now wo()») - wo()»’) S C€0 and wo()\,/) = —7
It follows that wo(A) = —A + 2(X - d)e. O
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We will now prove the second isomorphism in Corollary 1.8.3. For each vertex
¢ # o, we have, from (6.4.1), the homomorphism

F;: e—An,r,-(;\),u—l(Q)e— — e_A,;,-1(Q)e_

which is an isomorphism by Proposition 6.6.1(1). By writing w, as a product of simple
reflections, we get an isomorphism

(6-7-2> fwo : e—An,wo(;\),u—l(Q)e— - e—An,;\,u—l(Q)e—-

Proposition 6.6.1 implies that this isomorphism does not depend on the choice of pre-
sentation of w, as a product of simple reflections.

Write H,;, = H;..(T,). By [GG, (3.5.2)], there is an isomorphism f®"H,;  [®" =
Aiv(Q) where f = ). ¢. In particular, e_H, ;o e_ = e_Anﬁ’V_l(Q)e_, and
e H o.e. = e A, , 1e_. By Lemma 6.7.1, AT = wy(A), so by (6.7.2) we have
the isomorphism

Fo, e Hy o e — e H o e_.

This completes the proof of Corollary 1.8.3.
Using the isomorphism eH,; e ~ e_H,; o, e_ of Corollary 1.8.3, we can con-
sider H,;_o,,€_ as a (H,;_o.., €H,; €)-bimodule.

Definition 6.7.3. — The shuft_functor is defined to be

S:H,,-mod — H, ;9 ,-mod, Vi>H o € e, ceV.

7. Extended Dynkin quiver

7.1. T-analogue of commuting variety

In this subsection, we will prove a generalization of [EG, Theorem 12.1].
Let R(I', #) be the space of extensions of the representation CGI' ® C” of T to
a representation of T'(L) % CT', i.e.,

R(T, n) := Homy (L, Endg(CT" ® C")).

Let & = Z(I', n) be the (not necessarily reduced) subscheme of R(I", n) consisting of
those representations p such that p([X,Y]) =0 for all X, Y € L.

Now CI' = @, End(N;). Let p; € CI' be the idempotent element corresponding
to the identity element of End(N;). Define 2 = Z(I", n) to be the (not necessarily
reduced) subscheme of R(I', n) consisting of those representations p such that, for all
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X,Y € L, we have p([X, Y]p;) = 0 for i # o, and A*o([X, Y]p,) = 0. We remark that
o([X, Y1p,) is a n x n-matrix and A%o([X, Y]p,) = 0 means that all 2 x 2 minors of
this matrix vanish (so its rank is at most 1).

We shall denote by J and J; the defining ideals of Z(I", n) and Z(T", n), respec-
tively. Thus,

Z (T, n) = Spec C[R(T", n)]/]
and
Z(I', n) = Spec C[R(T", n)]/];.
Let G := Autp(CI' ® C"). Observe that the group G acts on R(I', n), Z(I", n), and
Z(T, ).
Theorem 7.1.1. — One has: J¢ =]

It is clear that J D Ji, so J¢ D J¢. To prove Theorem 7.1.1, we have to show
that J C J¥. We need the following lemmas. First, let us fix a basis X, Y for L.

Lemma 1.1.2. — The ideal J© is generated in CG[R(T, n)]% by functions of the form
p = Tr(p(Q[X, Y])), where Q € T(L) x CI'.

Proof. — This follows from Weyl’s fundamental theorem of invariant theory. 0O

Therefore, it suffices to show that Tr(p(Q[X, Y]p;)) = 0 (mod J;) for all p €
R, n), Q € T(L) x CI', and ¢ € 1. This is obvious for ¢ # o from the defin-
ition of J;. For ¢ = o, we shall prove it by induction on the degree of Q). The case

degQ =0 1s clear, so let 4 > 0 and assume that Tr(p(Q[X, Y]p,)) = 0 (mod J;)
whenever deg Q) < d.

Lemma 7.1.3. — Let degQ = d. If Q = Q, [X,Y]Q, for some Q,,Q, €
T(L) x CI', then Tr(p(Q[X, Y1p,)) =0 (mod J,).

Proof — We may replace Q,Q 1, Qo by p,Q po, psQ 100 p,Qop, respectively.

Modulo J;, and writing in terms of matrix elements, we have

Tr(p(QIX, Y1p,)) = Tr(p(Q,[X, Y15, Q[X, YIp,)
= > p(Q )X, Y1)y (Q0), (X, Y1p)
= > Q)X Y1p,),uo(Qa) o (1X, Y1p) s,
(since A2p([X, Y]p,) = 0)
= Tr(p(Q[X, YIp) Tr(p(Q.[X, Y1p,)).

This is equal to zero by induction hypothesis. ]
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Let ¢ : T(L) x CGI' — S(L) x CI" be the quotient map, where S(L) denotes the
symmetric algebra on L. The preceding lemma implies the following corollary.

Corollary 7.1.4. — If degQ < d and Q € Kere, then Tr(p(Q[X, Y]p,)) = 0
(mod J)). O

Note that elements of the form (X +56Y)" (where a, b € C) span a set of repre-
sentatives of S(L) in T'(L). Thus, it remains to show that Tr(p((aX 4+ 6Y)"[X, Y1p,))
= 0 (modJ;) for any ¢,b € G and m < d. This is equivalent to showing that
Tr(p((eX 4+ 6bY)"[X, Y])) = 0 (mod J;). But we have

1
Tr(p((@X + bY)"[X, Y])) = D) Tr(p([(aX + 5Y)"*, YD) = 0.

This completes the proof of Theorem 7.1.1.

7.2. — Let pcu : Rep,(Qcw) — gl(o) be the moment map, and Zoy =
tow(0) the scheme theoretic inverse image of the point 0. It was proved in [GG2,
Theorem 1.3.1] that Z¢y is a reduced scheme. Now, there are natural algebra mor-
phisms

(7.2.1) cz¢ <L ez 4 crz,c.

By Theorem 7.1.1, f 1s an isomorphism. The following proposition and its proof is
a straightforward generalization of [GG2, Proposition 2.8.2], given our Theorem 7.1.1.

Proposition 7.2.2. — The morphism g i (7.2.1) is an isomorphism. ]

From Proposition 7.2.2 and [GG2, Theorem 1.3.1], we have the following gen-
eralization of [GG2, Theorem 1.2.1].

Theorem 1.2.3. — One has: J¢ = \/DTG. |

Let 2% := Spec C[Rep,;(Q)1/+/], a closed subvariety of Rep,s(Q). Define an

embedding j : L, — Rep,s(Q) by j(u, ..., )y = (du(w), ..., ¢.(1,)) for any a € Q.
Using formulas (8.2.1) from Section 8.2 below, we deduce that the image of j lies
in 2. Pullback of functions gives a morphism

(7.2.4) PN ol B R o | B A

reg

By [CB, Theorem 3.4] and [Kr, Corollary 3.2], we have the following proposition.

Proposition 7.2.5. — The map j* in (7.2.4) s an isomorphism. |
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8. Proof of Proposition 3.7.2

8.1. — The formula of Proposition 3.7.2(1) is clear. Next, we have

0
eHolland CZ* — ® .
(@) o
bq
a .
To compute the restriction of ¢, ® . to ](L;’Lg) at a point w = (uy, ..., u,)

€ Lreq’

(8.1.1) 90 - (Jm) +e¢) ) = j(w) +e5(w), weL

reg’

let g, ,(¢) = Id +¢B,, be an element of GL(«) such that

where we omit terms of higher order in €. Then for a function / € O(x, N), we have
0 9 ~
8.1.2) 0 ® 5o (1) +ee),) =, ® — [ (g.,()" - (J(w) +25(w))
d
= 6y ® 2 X(2./(€))g. (&) S + £5(w)

a 8 (J)
=e,Q %f(j(u)) +e,® (; x; Tr (B, Id—BAll)f(](u))
J
where B}f; is the component of B, , in gl(a;). We shall write B}f; forjelasanxn
block matrix ®<,<,Bj, (£, m) where By (¢, m) € gl(8;) is the (€, m)-th block. Simi-
larly, we write ¢ as @1<¢,n<ut, (£, m). By (8.1.1), we need to solve the equations:
0 if€#m

(h(@)) _ (@) a —
B/;’q (E’ m)¢a(unz) ¢a(uﬁ)Bp,q (E’ m) + ep’q(ﬁ, m) - {¢a(w€) lfg —m

ZB(")(E m) — B = 0.

m=1

where 1 < £, m < n. We shall set B;le =0.

Suppose (£ —1)8y) < p < €y and (m—1)d,,) < ¢ < mby,) where £, m € [1, n].
If £ # m, then we set B]gf;(ﬁ’, m') = 0 whenever £ # m' and (¢',m') % (£, m). If
£ = m, then we set B[(Jjjq) (0, m') = 0 whenever £ # m'.

8.2. Proof of (3.7.3)
First of all, it is immediate from (2.1.1) that

(8.2.1) > $euw) =8 w(w, Idy:, for each source i in Q;
acQ; i(a)=1t

Z $u(@)¢yr (1) = §0(w, )Ty, for cach sink j in Q.
acQ;h(a)=y
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Next, we find a collection of operators B; € End(N?) such that

(8.2.2) b(W)B; — Bipu(w) = fa

where ¢ = t(a), j = h(a), and f, : NI — Nj’f‘ are given operators. We write the collection
B; as an element ) _ B,y of C[I']. Since y¢,(w) = ¢, (yw)y, we get

Y Bpu—ywy =f, D Bybyu—w) =4

We multiply the first equation above by ¢, () on the left and add over all edges going
out from ¢. Similarly, let us multiply the second equation above by ¢, (w) on the right
and add over all edges going into J.

Using formulas (8.2.1), we obtain:

51‘2,3;/60(% yYw)yIn: = Z ¢ (w)f,,  for sources i;

acQ s t(a)=1

3]2,3;/60(% yw)ylx: = Z JaPur (w),  for sinks ;.

a€Q ;h(a)=j

This implies that

8.2.3) By = w(, yw)  ITI™ Y (Trlx:, (e @)y ™) + Tr e, (e fiv ™))
aeQ

Hence, if £ # m, for EBjeIB/(,:j,/) (£, m) we get the expression

(8.2.4) Zw(uz, yu) T (Tr N (€Z,q¢a* ()y~")+Tr Nz, (@ (ue)e,f,qy_l)))/
yel
and so, for B;,i’zl(ﬁ, £) = —Bl(,'le(ﬁ, m) we obtain the expression

=D ol yu,) T (Trly,

h(a)

(ez,qqsa* (um) y_ 1)

yel

+ Tr|x, (¢a* (W)QZ,([V_I))-

Thus, for all j € I, for B](J]q) (€, £) we obtain the expression

=Y o, yu) T (el (), b )y ™)

yell

+ Tr |x:

t(a)

(¢ (uo)ey ¥ 1)) Tdss,
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It follows from the last formula and from (8.1.2) that for £ # m, the (m, £)-entry
of the radial part of gHland(g*) is

£81(q) mBy(q)

> Yoo (] kT (B € 0) = B, 0)

p:(@— 1)3/,(@-}-1 ([=(m— 1)3,@)-}-1

a*)m * _1+ ! a*

J
Z (¢* o (Id+y 1))m€ —1
w(y; £, m) '

Jel Jel

Note that, since ¢ acts by —1 on L and by 1 on Nj .

((pa*)m —1 - _ (¢a )m _1
wociem T Tariem”

Z ((p.a*)m V_l = 0.

> w(y; £, m)

and so

Hence, the (m, K)—entry of the radial part of §H°*nd(¢*) is equal to

_ Z ((pa* o )/)e

w(y; m, E)

Proof of Lemma 3.3.1. — We set f, = 0 in (8.2.2). Then from (8.2.3), we have

w(u, yw)B, = 0 for all y € I'. Since not all B, are zero, we must have w(u, yw) =0
for some y.

O
8.3. Proof of (3.7.4)

We need to solve ¢,(u)B; — Bip.(1) = f; — ¢.(w).
As above, for y # 1, ¢, we obtain

By = (v 1T Y (T, (fbe @) + Tr b, (60 iy ™).
acQ)

Moreover, multiplying on the right by ¢,(v) and summing over all incoming
edges a € Q) at the vertex j, we get

5 By u—uwoyl= Y fibe ) — o, ).
acQ :h(a)=j
Take the trace of both sides this equation and sum up over all sinks ;. We have
@Sinkj(N;‘)@Sf = C[I'/S], where S = {1, ¢}. It follows that the trace of y in the last
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sum vanishes if y # 1, ¢. Let B, = 0. Then
-1
(8.3.1) w=2\T"" Y " Tr(figw).

aeQ
Hence, for £ = m, we get
8.3.2 ®aB)mm) = 3 @, v 1T (Tr b, (e, @)y ™)

v#L.¢
+ Trxe, (@a)uef, v ™)) (v = 1.

It follows from (8.1.2), (8.3.1), (8.3.2) and (8.2.4) that the (m, m)-entry of the ra-
dial part of GHeland(g*) is

mp(q) mdia)
2 9 “ @)
8.3.3) Moot o > mm (3 kT )
p=(m=1)8)y+1 g=(m—1)8;(5)+1 Jel
£81(q) mdy(a)
TEe) Y Y Y amoXsien
Jel t#m p—(€—1)5h<a)+1 g=(m=1)8,5+1 Jel
92 o )m + a*)m * -
Zy (D) + (o) V(_V+1
N a<¢a*>m Tl &, (y; m, m)
(¢a* o (Id + V_l))mﬁ
- T ) - ’
> (8 = Tl () ZZ o Cm)
] Z;ém Y
2 a 1 o+ O + d mm -
ITI3(¢)n  ITI 5% w(yimm)

(¢a* o )/)e
" ZZ wyim. O
The last term in (8.3.3) comes from (8.2.4).

It is even easier to compute the radial part for the edge 4 : s — 0. We omit this
computation. This completes the proof of Proposition 3.7.2.

9. Proof of Theorem 4.3.2

9.1. — It easy to check that the operators R?, have the following I',-equivari-

ance properties:
(@)
ymRv R ’ VYms yZan[ an[yh

ml — - ml

SmlRm[ - lesml’ Smy Rm[ - Rlsrr]’ Rm[ - R 51 )
where j # m, [. It implies that g@Dunkl(v) @Punkl g(v), forany geI', and v € Lreq
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Next, we prove that

(9.1.1> [@Dunkl( ) @Dunkl( )]
= w(w, v)(t 14+ - ZZsyyZyj + Z cy)/l),
j;éz yell yel~{1}
where 1 <7 <n.
First we prove
9.1.2) [RY, ©P"M )] + [OP"™ (), RY] —a)(w )Y Y vy
J#i yel

1 <i#j)<n

We prove that (9.1.2) holds if we apply both sides to f , a basis vector in F®”
such that f, f =/, cf. (4.1.4). Indeed, in that case we have

(Yw)/

[R;" @?unkl(y)] (f) — (Ru(D ) + @Dunkl( ) Z (1, oy

( @Dunkl( ) Z

yell

yﬂ Af

(V )v

[@?unkl(w) , Rv -
w(y™h

—%@%yﬂ

where

1

1 o (yw)/
A:__ZWJ%VJ , resp., B——Z

w/ (yv)!
~ w(y~';1,)) iy

These formulas yield
(L% @D“““(zo] + [0 ), Ri]).S
V \% \ \
2 Z (V;U();—T- Lji j()yv)j sy S
yel" ’
—a)(w )] Z ;i )/Z)/]

yel

We consider the case f; =/, f =/*. Then we have:

. .1 (yw);
R¥, @Punkd =-R%/[f=-Y ——L /5y, 0,
[Ry, ©P"M ()] f 42, Za)(y—l, ’])v siviyyf =

yel
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because in the sum the terms corresponding y and ¢y mutually cancel. Analogously,

. L1 (yo)/ 2
OPuH () R¥]f = Riw’f = —— — sy Y = 0.
(O™, Ri]/ =Ryl = =3 D ooy m if

yel

17
Yor the same reason we also have »_ . s;v,y; f = 0.
We consider the case f; =/, =/". A similar argument yields

[RZ;’ @?unkl(v)]f: [@?unkl(w)’ RZ‘]f o Z j‘z']‘)/l‘)/]«_l‘]? = 0

yel

The case f;, f; =/ is analogous to the first case and we have

- 1 w’(yv)Y .
RL«{), @Dunkl — _ E ¢ J ,
[R, o7 @l 2 w()’_l;i,])f

yel

- 1 v/ (Yyw)Y -
PGy R f = —= E — vyl
&7y ”]f 2 w()/_l;i,]')sﬂ/yj J

yell

and
([R5 0P 0)] + [0 . R3])
1 Z w/ (yo)! — v/ (yw)/
S e

1 R
= Ea)(w, Z)) Z Sy)/Z)/]_l‘f

yell

-

siviv,

We remark that for any 1 <j # ¢ # k£ < n and w,v € LL we have RZR;,C =

R;R; = 0. Now, (9.1.1) follows from this equation, the n =1 case of Theorem 4.3.2,
and (9.1.2).

9.2. — Next we prove:

k
(9.2.1) [P (w), @™ (v,)] = -3 Za)L(yu, Dsm¥iyy s 1<i#m<n

yell

To this end, we rewrite the RHS of (9.1.1) as follows
[@Dunkl(wi), @Dunkl(z}m)] — k([@?unkl(w)’ R? ] + [Rw @Dunkl(z})])

+ kQ([RZ;z’ R;m] + Z [RZ;N R;y] + [R;" R;y]
JFEm

+[R{.RY,])-
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We first prove that

[ R

m?

R}, |+ [R)L R, ]+ [R). R, ] =0, j#mi.
For that it is enough to show that

9.2.2) RR!. — R’ RY+RYR’, =0, and —R’R% +RIR’, —RIRY = 0.

m ny 7}'[2 ny m

We prove the first equation, the second is proved similarly. Let f be a basis vec-
tor in F®" such that f;, f;, f, =/, cf. (4.1.4). We compute

4(R§fnRZy —R,Ry + R“’Rfm) ( f )
@)Y (y);
- (g;r (B i, mo((vB)
(B} (B~ yw))
2 m pafi)

zm m]ﬁlym(yﬂ) !

Sfrysﬁ(ﬁ_l V)z‘,BmVj_l

v.Bel
(Bw); (Byv)) |
+ V;F w(B~; s L) o((By)~ I SiSmiV; (,3)/)”“3 )f

We change summation indices at the first term as y — yf, B — y and at the
third term as y — 87!, B — yB. We get

2

y,Bel’

( w) (yv)Y B (yo)] (Bw),,
w7, mo(B7l 7)) oy~ m Ho(B G m

(vBw), vy v -
w(ﬁ—l;i,j)ai(yjl;m,J')> s Bvn B~y S

_ Yy | )
- 4( Z o(B~1 1, mo(B 4, oy~ m, ) Ys.pan )f

y,Bel’

where Yg, . ; is given by the following expression

Yoy =(w/ oy~ m, j) — (Bw) (B~ 1,))
+ (V,Bw)] a)(IB_l; i’ m)) : Simsrry'ﬁiym(lg_ly_l)j-
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We consider the case f, f, =/, f=/":

4(RUR?, — RIRY + RURY) (/)

m ny ”Z] ]
- (w)i 'B_lviv o8 -1
- <ﬂzer o(B7; 1, mo((yB)~'; i, )) SinSniBiVn(YB);
- Z ;m, ]’)"wzy 181 Sfry‘v‘z‘;‘(ﬁ_l)/)iﬁmyj_l
Vﬂel" D1,
w; By vy -
+y§r oB T i By T ) i PPy ) f

Performing the same change of summation indices as in the previous paragraph,
we deduce that the following sum vanishes

3 w (B0 oy~ m, j) — 0y 0((YB) '3 4,j) + yoy o(B~'5 i, m))
w71, ma((¥B) ™' i, )w(y =" m, )

Xsimsfryﬁiym(ﬁ_l V_l)jf

y.Bel’

It easy to see thatif f; =/~ or f, =/ then R R} f =R RY f RYR7, f 0.
Thus, we have proved (9.2.2).
Now we prove that

[RY, R

m? mi ]

0.

It is easy to see that [RY, W]f = 0when f; = f" orf, = f. It fi,},, = T then
Ry, R?.] f = 0 is equivalent to:

m?

\/IBVZ) —Z)V,B 1 —lwy
9.2.3 : m =0.
9.2.3) ﬁZF ST ot T BB 7

Fix some y, B € T'. Let a := By, B := yB. It is easy to see that the coeflicient
in front of a,,8;'f in (9.2.3) is equal to

|
9.2.4 oy — 0, w]
( ) (wl av, — v, B w, )(g w(8B; 1, m)w(B~18B; 1, m)

where Zg is the notation for the centaralizer of B € I'. We notice that o is conjugate
to B, hence if B=1or B=1¢ then o = =B and (9.2.4) is zero.
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Thus we can assume that 8 # 1, {. In this case Zg is a cyclic group. We denote
the order of Zg by / and let p be a generator of Zg. Then we can assume that B = p?
for some ¢,0 < ¢ <.

Let a, b € L be the basis in L such that pa = €a, pb = € 'b where € is some
primitive /th root of 1. Let x = ¢* and y = b*. We make change of variables Bu,, — u,
in (9.2.4). Let z,;, = %9,/ (x,9:). Then, (9.2.4) is proportional to

-1 -1
1 Sy 1
w(uis &bum)w((squi? &bum) B (xm_))i)2 =0 (E_p - Epzmi) (E_]H_(] - Ep_qzmi)

p=0
B 1 — L,
B (6(1 - 6_(1)(xmxi)2 =0 Zmi 62(1_2]] Zmi E_Qp o
Finally we show that
[OP"M(w), R;,] + [Ry, O™ ()] = — ZwL<yw O)sinYiVy -

yel"

If £, f,, = /= then the terms in the LHS of the sum below corresponding to y
and y¢ mutually cancel out, and we deduce

(St omarct) 7 =0

yell

In the case f;, f,, =~ we know that
[@Dunkl(w) Rfm]f [R;i/n’ @Bunkl(v)]f —

In the case f; = f, =/ we have

Dunkl v " w
[@ ( ) Rmz (Z (D )ZC()(]/_I ) sz’m%

yel
v

U -1, _ -
+ + (D)/ lw)msmiymyi 1)f )
w(y )

(R O @]/ (Z‘m( D" s,

yel

oy YW, 1) 7
+ (D )mﬁsimyiym 1)f
oyt i, m)
Fix a conjugacy class C C I'. Then the coefficient in front of —%c,g, B e C at
([OP"™M(w), R, ] + [RE,OPM(1)])f is equal to

mi
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(Bw 4+ w))Byv) | N
<ye§ec ARy R !

o (By ~'wy + v w) .
- (_1. - . )Smiym(ﬂy l)i
w(y~' m, Do (B; m, m)
(B, +v))Byw,,
w(B; m, m)aw(y~'B71;1i,m)

w (By~ o +y 7o) ) 7
( .)Simyi(ﬁy l)m)f-

sim(ﬂy)i(y_l)m

oy~ i, mo(B; i, 1)
Fix y € ', B € C. Then the coefficient in front of sm(ﬁy)myi_l is equal to

_ B +w)Byy o (v v B )
w(B i, Do(By;m i) w(By;m, Doy~ By; m, m)
(' Byey o) vy wf Byl + v
oy~ Bysm, mo(y; i,m) oy~ i, mao(B; i, i)

We see that F = F(u;, ,) 1s a homogeneous function in two variables, of bide-
gree (—1,—1), that is F € H*(P x P, 0(—1) K &(—1)). It could have simple poles
along the divisors u; ~ Bu;, w, ~ Y7 BY iy, w; ~ By, u; ~ yu, where ~ stands for
being proportional. But is easy to check that the residues actually vanish. We deduce
that F = 0. _

The coefficient in front of s,,y '/ in the part of ([OP"H(w), R? ]

+ [R;ﬁ;@g“ﬂl‘l(v)]ﬁ that does not contain coefficients ¢,, y € I', equals
0 yo N M d
dw;w(y='im,0)  w(y~'im, 0 d(y~'w),
w;’ 0 0 Yy lw)

oy im ), ey im)
It is easy to show that this expression vanishes since we have
0 d 0 0
w o =y o =y W, 2,
Ayo)/ Jw; Ayo),  "oyTw),

We consider the case f; =/, f,, =/ . Then we have [R¥ ®m(v)]f: 0 and

m?

. o i 2 ) Y
[G)ZD kl(w)’ R? ]f — EZ Smi ¥V l‘f

= w(w, v)eu.

mi 1. )
= oy~ m, 1)
= — Z a)(]/w’ v)‘gmiyiyy}:l\f"
yell

The analysis of the case f; = /T, f,, =/ is similar.
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[BB]
[BEG]
[BFG]
[Bo]
[CB]
[CBH]
[DO]
[E]
[EG]

[EGR]
(Ga]

[GG]
[GG2]
[Go]
[GS]

[Gul]
[Gu2]
[Gu3]
[Hol

[Kr]
[Lul]

[Lu2]
[Maf]

[Me]
[Mo]
[Mu]
[Nal
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