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Abstract DNA:RNA hybrids constitute a well-known source of recombinogenic DNA damage.

The current literature is in agreement with DNA:RNA hybrids being produced co-transcriptionally

by the invasion of the nascent RNA molecule produced in cis with its DNA template. However, it

has also been suggested that recombinogenic DNA:RNA hybrids could be facilitated by the

invasion of RNA molecules produced in trans in a Rad51-mediated reaction. Here, we tested the

possibility that such DNA:RNA hybrids constitute a source of recombinogenic DNA damage taking

advantage of Rad51-independent single-strand annealing (SSA) assays in the yeast Saccharomyces

cerevisiae. For this, we used new constructs designed to induce expression of mRNA transcripts in

trans with respect to the SSA system. We show that unscheduled and recombinogenic DNA:RNA

hybrids that trigger the SSA event are formed in cis during transcription and in a Rad51-

independent manner. We found no evidence that such hybrids form in trans and in a Rad51-

dependent manner.

Introduction
R loops are structures formed by a DNA:RNA hybrid and the complementary displaced single

stranded DNA (ssDNA). They were observed naturally as programmed events in specific genomic

sites such as the S regions of Immunoglobulin genes in mammals or mitochondrial DNA

(Chang et al., 1985; Garcı́a-Muse and Aguilera, 2019; Yu et al., 2003), where they play specific

functions by promoting class switch recombination or DNA replication, respectively; but also as

unscheduled non-programmed structures upon dysfunction of RNA binding proteins involved in the

assembly or processing and export of the protein-mRNA particle (mRNP) such as the THO complex

or the SRSF1 splicing factor (Huertas and Aguilera, 2003; Li and Manley, 2005). Also, they have

been inferred in the rDNA regions of the bacterial chromosome upon Topo I inactivation

(Drolet et al., 1995). Accumulated evidence indicates that R loops are detected from yeast to

humans in many transcribed regions of the eukaryotic genome in wild-type cells, in cells defective in

several metabolic processes covering from RNA processing to DNA replication and repair and in

cells deficient in specific chromatin factors (Bhatia et al., 2014; Garcı́a-Muse and Aguilera, 2019;

Garcı́a-Rubio et al., 2015; Herrera-Moyano et al., 2014; Mischo et al., 2011; Paulsen et al., 2009;

Schwab et al., 2015). The biological consequences of such R loop structures are diverse and include

replication stress, DNA breaks and genome instability that can be detected as hyperrecombination,

plasmid loss or gross chromosomal rearrangements (Garcı́a-Muse and Aguilera, 2019). Indeed,

DNA:RNA hybrids have been inferred by their potential to induce DNA damage and recombination,

but they can also be directly detected via different methodologies. These include electrophoresis

detection after nuclease treatment, bisulfite mutagenesis or either in situ immunofluorescence or

DNA:RNA Immuno-Precipitation (DRIP) using the S9.6 anti-DNA:RNA monoclonal antibody (Garcı́a-

Muse and Aguilera, 2019).
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The increasing number of reports showing R loop accumulation in different organisms from bacte-

ria to human cells, and the relevance of their functional consequences, whether on genome integrity,

chromatin structure and gene expression suggest that most DNA:RNA hybrids are compatible with

a co-transcriptional formation (Garcı́a-Muse and Aguilera, 2019). This is consistent with the idea

that it is the RNA produced in cis the one that invades the duplex DNA, a reaction that can be facili-

tated by DNA sequence and supercoiling (Stolz et al., 2019) as well as by nicking of the DNA tem-

plate (Roy et al., 2010). The evidence of DNA:RNA hybrid formation at breaks has matured in the

last years (Cohen et al., 2018; D’Alessandro et al., 2018; Li et al., 2016; Ohle et al., 2016;

Teng et al., 2018; Yasuhara et al., 2018) although the source and role of such hybrids remains still

controversial (Aguilera and Gómez-González, 2017; Puget et al., 2019). Of note, genome-wide

mapping results have been interpreted in diverse manners by different labs. Whereas some claim

that DNA:RNA hybrids detected around DNA breaks mostly accumulate at transcribing sites

(Cohen et al., 2018), in agreement with their co-transcriptional formation, others suggest that there

is no preference for DNA:RNA hybrids to form at transcribed loci in human cells

(D’Alessandro et al., 2018), implying a scenario in which DNA:RNA hybrids at break sites would

form either de novo or with RNAs produced at different loci (in trans). Moreover, it has been shown

in yeast that short RNAs can be used as templates for the recombinational repair of DSBs in a reac-

tion catalyzed by Rad52 (Keskin et al., 2014).

DNA:RNA hybrids can also form in vitro with the aid of the bacterial DNA strand exchange pro-

tein RecA (Kasahara et al., 2000; Zaitsev and Kowalczykowski, 2000). In vivo, DNA:RNA hybrids

are formed with RNAs produced in trans as intermediates in the course of ribonucleoprotein-medi-

ated reactions such as telomerase and CRISPR-Cas9 ribonucleoprotein involved in specific reactions

(Collins, 2000; Jinek et al., 2012). They have also been reported to have regulatory roles in gene

expression when formed by long non-coding RNAs (lncRNAs) at in trans loci such as the cases of the

GAL lncRNA in yeast (Cloutier et al., 2016) or the APOLO lncRNA in plants (Ariel et al., 2020). In

summary, despite the accumulating evidence that in vivo DNA:RNA hybrids formed in cis constitute

a threat for genome stability, an open question is whether DNA:RNA hybrids also form in trans as a

potential source of recombinogenic DNA damage. To our knowledge, this has only been addressed

in the yeast Saccharomyces cerevisiae (Wahba et al., 2013). By S9.6 immunofluorescence (IF) and a

yeast artificial chromosome-based genetic assay that measures gross chromosomal rearrangements,

it was inferred that DNA:RNA hybrids could be formed with RNAs produced in trans by a reaction

catalyzed by the eukaryotic DNA strand exchange protein Rad51 (Wahba et al., 2013). Neverthe-

less, the fact that the detected gross chromosomal rearrangements could depend on Rad51 and

that the S9.6 antibody can also recognize dsRNAs (Hartono et al., 2018; König et al., 2017;

Silva et al., 2018), prompted us to address this question using a different approach. Using Rad51-

independent recombination assays in which the initiation region could be unambiguously delimited,

we do not find evidence for recombinogenic DNA:RNA hybrids forming in trans. Instead, we provide

genetic evidence that DNA:RNA hybrids compromising genome integrity are formed in cis and in a

Rad51-independent manner.

Results

A new genetic assay to detect recombinogenic DNA:RNA hybrids with
RNA produced in trans
We developed a new genetic assay to infer the formation of recombinogenic DNA:RNA hybrids with

RNAs produced in trans. It is based on two plasmids, one containing the recombination system and

the LacZ gene in cis (GL-LacZ recombination system), and another one providing the in trans LacZ

transcripts (tetp:LacZ) (Figure 1). The bacterial LacZ gene consists of a 3 Kb sequence with high G+C

content previously reported to be hyper-recombinant and difficult to transcribe in DNA:RNA hybrid-

accumulating strains, such as tho mutants (Chávez et al., 2001).

The GL-LacZ recombination system is a leu2 direct-repeat construct carrying the LacZ gene in

between and under the GAL1 inducible promoter so that this construct is transcribed as a single

RNA unit driven from the GAL1 promoter (Piruat and Aguilera, 1998). Single-Strand Annealing

(SSA) events cause the deletion of the LacZ sequence and one of the leu2 repeats leading to Leu+

recombinants in a Rad51-independent manner (Figure 1A). To provide LacZ transcripts in trans, we
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used a fusion construct containing the complete bacterial LacZ gene sequence under the doxycy-

cline-inducible tet promoter (tetp:LacZ). As a control of no expression in trans, we used transform-

ants with an empty plasmid to avoid any possible effect from leaky transcription from the tet

promoter in the presence of doxycycline.

Yeast strains carrying both GL-LacZ recombination system and the tetp:LacZ construct were used

to assay SSA events in the four different possible conditions: i) no transcription, with GL-LacZ con-

struct turned transcriptionally off (2% glucose) and an empty plasmid; ii) transcription in trans, with

GL-LacZ construct turned transcriptionally off (2% glucose) and the tetp:LacZ construct; iii) transcrip-

tion in cis, with GL-LacZ construct turned transcriptionally on (2% galactose) and an empty plasmid;

Figure 1. A new genetic assay to detect recombinogenic DNA:RNA hybrids in trans. (A) DSBs induced in between direct repeats by DNA:RNA hybrids

putatively formed with RNA produced in trans would be repaired by Rad51-independent Single-Strand Annealing (SSA) causing the deletion of one of

the repeats. A DSB is depicted for simplicity, but other recombinogenic lesions such as nicks or ssDNA gaps cannot be ruled out. (B) Schematic

representation of the recombination assay to study the recombinogenic potential RNA produced by transcription (Trx) in cis or in trans. Four

combinations were studied: i) no transcription, with GL-LacZ construct turned transcriptionally off (2% glucose) and an empty plasmid; ii) transcription in

trans, with GL-LacZ construct turned transcriptionally off (2% glucose) and the tetp:LacZ construct; iii) transcription in cis, with GL-LacZ construct turned

transcriptionally on (2% galactose) and an empty plasmid; and iv) transcription in cis and in trans, with GL-LacZ construct turned transcriptionally on (2%

galactose) and the tetp:LacZ construct.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. LacZ expression levels in the GL-LacZ and tetp:LacZ constructs.

Figure supplement 1—source data 1. Relative RNA levels at theLacZgene from GL-LacZandtetp:LacZconstructs.
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and iv) transcription in cis and in trans, with GL-LacZ construct turned transcriptionally on (2% galac-

tose) and the tetp:LacZ construct (Figure 1B).

RNAs produced in trans are not a spontaneous source of
recombinogenic DNA damage
The analysis of recombination in wild-type cells revealed that whereas the stimulation of transcription

in cis elevated the frequency of recombination threefold, the stimulation of transcription in trans

driven from the tetp:LacZ construct had no effect on recombination (Figure 2A). These results

already suggest that homologous transcripts coming from a different locus do not represent a

detectable source of genetic instability in wild-type conditions and thus argue against the hypothesis

that spontaneous DNA:RNA hybrids could be formed with mRNAs generated in trans. However, it is

known that mRNA coating protects DNA from co-transcriptional RNA hybridization. Thus, we won-

dered if transcripts produced in trans could induce recombination in mRNP-defective mutants such

as those of the THO complex. Hence, we performed our experiments in mft1D and hpr1D mutant

strains. mft1D and hpr1D enhanced recombination slightly when transcription in cis was switched

off (Figure 2A), likely as a consequence of leaky transcription form the GAL1 promoter in glucose

(Figure 1—figure supplement 1). More significantly and in agreement with previous reports

(Chávez et al., 2000), recombination frequencies rocketed when transcription was stimulated in cis.

However, transcription activation in trans did not enhance recombination, as it would be expected if

additional DNA:RNA hybrids could form with RNA produced in trans.

Instead, under conditions of high transcription of the recombination system (transcription in cis),

RNA driven from an ectopic locus (transcription in trans) led to a partial suppression of the hyper-

recombination. The reason for such suppression might involve the potential ability of the remotely

produced RNAs to interfere with transcription occurring at the GL-LacZ construct. Given that a

DNA:RNA hybrid produced in the template DNA strand can impair transcription elongation

(Tous and Aguilera, 2007), one possibility would be that this interference is mediated by DNA:RNA

hybrids formed between the RNA produced in trans and the transcribed DNA strand of the GL-LacZ

construct. To rule out this possibility, we used an alternative recombination system (GL-LacZi), in

which the LacZ sequence was inverted so that the LacZ transcript produced in trans would not be

able to anneal with the transcribed DNA strand of the GL-LacZi system (Figure 2B). We detected a

strong hyper-recombination in hpr1D cells when the LacZ sequence was transcribed in agreement

with previous reports and with the fact that it has been shown that it is the length (and the GC con-

tent) but not the orientation of the lacZ sequence what impairs transcription and triggers hyper-

recombination (Chávez and Aguilera, 1997; Chávez et al., 2001). Surprisingly, the production of

RNAs in trans from the tet::LacZ construct also led to a reduction of the hyper-recombination in this

system. Furthermore, in this case, the suppression was stronger and was also observed in glucose,

when transcription in cis was off. This could be explained because, in this scenario, the RNA pro-

duced in trans is complementary to the mRNA produced in cis. Consequently, they can hybridize

together forming a dsRNA that would preclude the possibility to form DNA:RNA hybrids at the GL-

LacZi construct.

Since transcription from the long LacZ gene is inefficient and leads to unstable RNA products,

particularly in tho mutants (Chávez et al., 2001), we made a new construct with only the last 400 bp

of LacZ (tetp:LacZ400) (Figure 2C). Strikingly, in this case, we observed no suppression of the tho-

induced hyper-recombination by the production of RNA in trans. More importantly and again,

recombination frequencies were not significantly enhanced by transcription in trans in any of the

strains or conditions tested, further arguing against mRNA produced in trans as a possible source of

recombinogenic DNA:RNA hybrids.

The THO complex is thought to prevent R-loops mainly by promoting a proper mRNA-protein

assembly (Luna et al., 2019), whereas the two RNase H enzymes efficiently degrade the RNA moiety

of DNA:RNA hybrids once formed (Cerritelli and Crouch, 2009). Thus, to favor DNA:RNA hybrid

accumulation, we used cells lacking both RNases H1 and H2 and we determined the impact on SSA.

Figure 2A and C show that rnh1D rnh201D cells elevated the recombination frequency when tran-

scription was stimulated in cis, as expected. Importantly, the recombination frequencies were not

altered by producing transcripts in trans, arguing again against the recombinogenic potential of

putative DNA:RNA hybrids formed with RNAs produced in trans.
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Figure 2. Analysis of the effect on genetic recombination of RNA produced in cis or in trans. (A) Recombination analysis in WT (W303), rnh1D rnh201D

(HRN2.10C), mft1D (WMK.1A) and hpr1D (U678.4C) strains carrying GL-LacZ plasmid system (pRS314-GL-LacZ) plus either the pCM190 empty vector or

the same vector carrying the LacZ gene (pCM179). (B) Recombination analysis in WT (W303), mft1D (WMK.1A) and hpr1D (U678.4C) strains carrying GL-

LacZi plasmid plus either the pCM190 empty vector or the same vector carrying the sequence of the LacZ gene (pCM179). (C) Recombination analysis

in WT (W303), rnh1D rnh201D (HRN2.10C) and mft1D (WMK.1A) strains carrying GL-LacZ plasmid system (pRS314-GL-LacZ) plus either the pCM190

empty vector or the same vector carrying the last 400 bp from the 3’ end of the LacZ gene (pCM190:LacZ400). In all panels, average and SEM of at least

three independent experiments consisting in the median value of six independent colonies each are shown. *, p�0.05; **, p�0.01; ***, p�0.001; ****,

p�0.0001 (unpaired Student’s t-test).

The online version of this article includes the following source data for figure 2:

Source data 1. Analysis of the effect on genetic recombination of RNA producedin cisorin trans.
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In order to confirm DNA:RNA hybrid formation in these different sequence contexts, we per-

formed DRIP experiments at the LacZ sequence (Figure 3) and we observed that DNA:RNA hybrids

accumulate in both, hpr1D and rnh1D rnh201D mutants, and in all GL-LacZ, tet:LacZ and GL:lacZi

sequences as expected, despite the technical difficulty of detecting increases in hybrid accumulation

in plasmids, since they cause plasmid loss.

Given that the levels of transcription from the GAL1 and tet promoters used for the constructs

are very different (Figure 1—figure supplement 1), we decided to perform recombination tests

with similar constructs in which the promoters were interchanged. Thus, we studied recombination

in the TL-LacZ recombination system (Santos-Pereira et al., 2013) and used a GAL:LacZ construct to

produce the LacZ transcripts from a remote locus. Figure 4 shows that, whereas transcription at the

TL-LacZ recombination system enhanced recombination as previously published (Santos-

Pereira et al., 2013), again no significant stimulation of recombination was detected when RNAs

were produced in trans in either wild-type, hpr1D or rnh1D rnh201D cells even when the RNA was

generated from the strong GAL1 promoter.

Finally, since all experiments were performed in plasmid-born systems in the original W303 back-

ground bearing the rad5-G535R mutation (Fan et al., 1996), we integrated the GL-LacZ system in

the chromosome of a RAD5 wild-type strain to ascertain that the rad5-G535R mutation did not affect

the results as well as to confirm that the results were the same in a chromosome locus. As it can be

seen in Figure 5, transcription of the chromosomal recombination system promoted a 30-fold

increase in recombination levels in the tho mutant hpr1D with respect to the WT, in agreement with

all previous data showing that co-transcriptional DNA:RNA hybrids are a potent source of recombi-

nation. By contrast, mRNA produced at a different locus had no effect on recombination, neither in

wild-type cells nor in the tho mutant hpr1D. Hence, altogether, these results argue that, in contrast

to mRNA produced in cis, RNA produced at a particular locus does not lead to recombinogenic

DNA damage at regions located in trans.

Rad51 is not required for DNA:RNA hybridization
We next wondered about the possible role of the recombination protein Rad51 in DNA:RNA hybrid-

ization. To examine this, we analyzed in hpr1D cells the effect of transcribing the ectopic tet:LacZ

construct on recombination in our direct-repeat systems when these were not transcribed (Figure 6).

It is important to remark that the recombination events detected in our assays are deletions occur-

ring by SSA between direct repeats, which do not require Rad51 (Pardo et al., 2009). Indeed, in

agreement with SSA annealing being Rad51-independent, RAD51 deletion caused no significant

changes in the recombination frequencies in our assay. Thus, any conclusion about Rad51-depen-

dency or independency of the hybridization inferred from our assay is not contaminated by a possi-

ble direct role of Rad51 in the event we are studying. Importantly, we observed no differences when

RAD51 was deleted in hpr1D cells even when the LacZ sequence was expressed from the plasmid

containing the tet::LacZ construct. This result argues against Rad51 facilitating or impeding the for-

mation of DNA:RNA hybrids with RNAs produced in trans.

We then wondered whether the formation of known recombinogenic DNA:RNA hybrids formed

in cis, such as those reported in the hpr1D mutant, requires Rad51. For this purpose, we studied the

effect in the strong hyper-recombination phenotype of hpr1D when transcription was induced in cis.

As shown in Figure 6, the absence of Rad51 had no effect on the hyper-recombination observed, as

hpr1D rad51D cells elevated the recombination frequency more than 70-fold with respect to rad51D,

similarly to Rad51+ cells. This result clearly indicates that the in cis DNA:RNA hybrid-mediated

hyper-recombination phenotype is actually independent on Rad51.

In parallel, we studied the formation of Rad52 foci, a marker of recombinogenic DNA breaks

(Lisby et al., 2001), in which case we used AID overexpression to enhance the recombinogenic

potential of R loops (Gómez-González and Aguilera, 2007) and RNase H overexpression to remove

DNA:RNA hybrids (Figure 7A). In agreement with the role of the THO complex in R loop prevention,

hpr1D caused an increase in Rad52 foci that was enhanced by AID overexpression and suppressed

by RNase H overexpression, as previously reported (Alvaro et al., 2007; Garcı́a-Pichardo et al.,

2017; Wellinger et al., 2006). By contrast, the accumulation of Rad52 foci observed in rad51D cells

was not affected by either AID or RNase H overexpression. This result argues that R loops are not

the cause for the genetic instability observed in the absence of Rad51. The accumulation of Rad52

foci in rad51D cells is rather likely due to the accumulation of unrepaired recombination
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Figure 3. Detection of co-transcriptional DNA:RNA hybrids in hpr1D and rnh1D rnh201D mutants at the LacZ-

containing constructs under the GAL1 or tet promoters. DNA:RNA Immuno-Precipitation (DRIP) with the S9.6

antibody in WT (W303), hpr1D (U678.4C) and rnh1D rnh201D (HRN2.10C) strains in asynchronous cultures treated or

not in vitro with RNase H in the GL-LacZ, tetp:LacZ and GL-LacZi constructs turned transcriptionally off (2%

Figure 3 continued on next page
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intermediates, as previously suggested (Alvaro et al., 2007). Importantly, hpr1D rad51D cells

showed a similar result, further supporting that the accumulation of recombinogenic damage in

hpr1D cells is independent on Rad51. Consequently, we next directly measured DNA:RNA hybrid

accumulation by immunodetection with the S9.6 antibody on metaphase spreads. Figure 7B illus-

trates that the number of cells with S9.6 positive signal was similar in hpr1D and in hpr1D rad51D

cells. Altogether, these results demonstrate that the Rad51 protein is not required for the DNA:RNA

hybrid formation previously reported in THO mutants.

Figure 3 continued

glucose or 5 mg/mL doxycycline) or on (2% galactose and in the absence of doxycycline). Average and SEM of

three independent experiments are shown *, p�0.05; **, p�0.01; ***, p�0.001 (unpaired Student’s t-test).

The online version of this article includes the following source data for figure 3:

Source data 1. Detection of co-transcriptional DNA:RNA hybrids.
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Figure 4. Analysis of the effect on genetic recombination of RNA produced in cis or in trans with different

promoters. Recombination analysis in WT (W303), hpr1D (U678.4C) and rnh1D rnh201D (HRN2.10C) carrying TL-

LacZ plasmid system (pCM184-TL-LacZ) plus either the pRS416 empty vector or the same vector carrying the LacZ

gene (pRS416-GALLacZ). In this case, the four combinations studied were: i) no transcription, with TL-LacZ

construct turned transcriptionally off (5 mg/mL doxycycline) and an empty plasmid; ii) transcription in trans, with TL-

LacZ construct turned transcriptionally off (5 mg/mL doxycycline) and the GAL-LacZ construct switched on (2%

galactose); iii) transcription in cis, with TL-LacZ construct turned transcriptionally on and an empty plasmid; and iv)

transcription in cis and in trans, with TL-LacZ construct turned transcriptionally on and the GAL-LacZ construct

switched on (2% galactose). Average and SEM of at least three independent experiments consisting in the median

value of six independent colonies each are shown. *, p�0.05; **, p�0.01; ***, p�0.001; ****, p�0.0001 (unpaired

Student’s t-test).

The online version of this article includes the following source data for figure 4:

Source data 1. Analysis of the effect on genetic recombination of RNA producedin cisorin transwith different

promoters.
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Discussion
We have devised a new genetic assay to infer whether the source of DNA:RNA hybrids compromis-

ing genome integrity could potentially come from RNAs produced in trans. To reach this conclusion,

we used an SSA assay. It is well established that SSA events are Rad51-independent; they do not

require DNA strand exchange, but just annealing between resected single-stranded DNA (ssDNA)

for which the action of Rad52 is sufficient (Figure 1A; Pardo et al., 2009). Our constructs show that,

in contrast to the RNA produced at the site where SSA occurs, an RNA produced in a remote locus

does not induce an increase in homology-directed repair. Importantly, recombination is not induced

by in trans RNA production even when the major DNA:RNA removal machinery is absent (rnh1D

rnh201D mutant) or when the RNA coating functions preventing DNA:RNA hybrid formation are

impaired (tho mutants), arguing against the idea that harmful DNA:RNA hybrids could spontane-

ously form in trans and constitute a menace for genome integrity. Co-transcriptional R-loops are

responsible for the hyper-recombination of hpr1D as reported previously (Huertas and Aguilera,

2003). Putative DNA:RNA hybrids formed in trans would be expected to further increase recombina-

tion levels. Instead, the simultaneous induction of transcription in cis and in trans (Figure 2A)

reduced the strong hyper-recombinogenic effect of tho mutants. The fact that this suppressor effect

was augmented when one of the LacZ sequences was inverted (Figure 2B) and prevented by a

shorter LacZ construct (Figure 2C), which was reported to be more stable in tho mutant back-

grounds (Chávez et al., 2001), suggests that the free RNA itself, and not in the form of DNA:RNA

hybrids formed at the template DNA strand, plays some role in preventing the hyper-recombination,

likely because stable RNAs can interfere with transcription at a homologous locus. However, no sup-

pressor effect was observed when the recombination system was placed in a chromosome (Figure 5)

or when the ectopic RNA was transcribed from the GAL1 promoter (Figures 2 and 4).
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Figure 5. Analysis of the effect on genetic recombination of RNA produced in trans of chromosome III.

Recombination analysis in WT (WGLZN), hpr1D (HGLZN) strains carrying the GL-LacZ recombination system

integrated in chromosome III. Strains were transformed with empty vector pCM190 or the same vector carrying the

LacZ gene (pCM179). Average and SEM of at least three independent experiments are shown consisting in the

median value of six independent colonies each. **, p�0.01; ****, p�0.0001 (unpaired Student’s t-test).

The online version of this article includes the following source data for figure 5:

Source data 1. Analysis of the effect on genetic recombination of RNA producedin transof chromosome III.
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DNA:RNA hybrids formed with an RNA produced in trans were previously suggested to threaten

genome integrity (Wahba et al., 2013). This conclusion was based on experiments performed with a

yeast artificial chromosome after the induction of transcription of a homologous region placed at

chromosome III. Recombination involving multiple substrates was first reported in S. cerevisiae, in

which an induced-DSB triggered recombination between two other homologous fragments at differ-

ent chromosomes (Ray et al., 1989). Tri-parental recombination assays have been successfully used

since then to define specific features of the HR reaction as well as for studies of Break-Induced

Recombination (BIR) or translocations and chromosomal rearrangements occurring between ectopic

regions (Pardo and Aguilera, 2012; Piazza et al., 2017; Ruiz et al., 2009). However, such events

are not the most adequate to infer recombination initiation unless this has been artificially induced

(as is the case of an HO-induced DSB). Hence, the assay used to infer the potential of DNA:RNA

hybrids formed with RNAs produced in trans to induce genetic instability (Wahba et al., 2013) relied

on an RNA fragment produced at a (first) DNA region that could form a DNA:RNA hybrid with a

(second) ectopic homologous DNA region that would promote its deletion or loss, leading to a

genetically detectable phenotype. Thus, this assay does not exclude the possibility that the RNA

forms the hybrid in cis inducing subsequently a DSB that would stimulate the recombination events

studied (Figure 6). Indeed, this event would demand the action of Rad51 for DNA strand invasion,

consistent with the results obtained (Wahba et al., 2013). Therefore, the increased genetic instabil-

ity observed could be explained by the invasion of the 3’ end of a DNA break induced by the DNA:

RNA hybrid formed at the first site (Figure 8) rather than implying that Rad51 is required for the

RNA to invade the second DNA sequence.
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Figure 6. Analysis of the effect on genetic recombination of RNA produced in trans with or without Rad51.

Recombination analysis in WT (W303), hpr1D (U678.1C), rad51D (WSR51.4A) and hpr1D rad51D (HPR51.15A) strains

carrying GL-LacZ plasmid system (pRS314-GL-LacZ) plus either the pCM190 empty vector or the same vector

carrying the LacZ gene (pCM179). Average and SEM of at least three independent experiments consisting in the

median value of six independent colonies each are shown. *, p�0.05; **, p�0.01, ***, p�0.001 (unpaired Student’s

t-test).

The online version of this article includes the following source data for figure 6:

Source data 1. Analysis of the effect on genetic recombination of RNA producedin transwith or without Rad51.
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In our case, however, we show that the hyper-recombinogenic potential of DNA:RNA hybrids is

Rad51-independent (Figure 4). Our assays involve two leu2 homologous repeats that recombine by

Rad51-independent SSA. Indeed, as expected, RAD51 deletion caused no decrease in the observed

recombination frequencies in our assay (Figure 5). Recombination between the leu2 repeats could

be originated by either a DNA:RNA hybrid in cis or by a DSB occurring in between the repeats, or

as suggested previously for tho mutants, by a bypass mechanism involving template switching
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Figure 7. The increased genetic instability and DNA:RNA hybrids of hpr1D are independent on Rad51. (A)

Spontaneous Rad52-YFP foci formation in WT (W303), hpr1D (U678.1C), rad51D (WSR51.4A) and hpr1D rad51D

(HPR51.15A) strains carrying the empty vectors pCM184 and pCM189, or a combination of both carrying the RNH1

or AID genes as indicated in the legend. (B) Representative images and value of the percent of the total nuclei

scored that stained positively for DNA:RNA hybrids in chromatin spreads stained with the S9.6 antibody in WT

(W303), hpr1D (U678.1C), rad51D (WSR51.4A), hpr1D rad51D (HPR51.15A) and RNH-R (rnh1D rnh201D) strains. In

both panels, average and SEM of at least three independent experiments performed with more than 100 cells are

shown. *, p�0.05; **, p�0.01, ***, p�0.001 (unpaired Student’s t-test).

The online version of this article includes the following source data for figure 7:

Source data 1. Genetic instability and DNA:RNA hybrids in the absence of Rad51.
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(Gómez-González et al., 2009). It is worth noting

that although we are depicting the SSA reactions

as being initiated by a DSB (Figures 1 and 8), we

cannot discard that the initial lesion triggered by

a hybrid is a nick or ssDNA gap, as previously

proposed for tho mutants (Gómez-

González et al., 2009).

Similarly, a DSB occurring at the locus where

the RNA in trans was generated could give rise

to Leu+ recombinants in our assay. However,

such recombination events would be Rad51-

dependent, as they will require a Rad51-depen-

dent invasion into the GL-LacZ construct (Fig-

ure 8). Hence, the Leu+ recombinants obtained

in rad51D mutant cells (Figure 5) can only be

explained by Rad51-independent events occur-

ring in cis, at the GL-LacZ construct. Strikingly,

the fact that we detected no significant increase

in Leu+ recombinants by inducing transcription in

trans, either in RAD51 or rad51D backgrounds

rules out the possibility that recombinogenic

DNA:RNA hybrids form in trans in our assay. It

was previously shown that S9.6 signal detected

by IF was reduced by rad51D in metaphase

spreads (Wahba et al., 2013). By contrast, we

detected S9.6 signal in metaphase spreads of the

hpr1D mutant of the THO complex in both

RAD51 and rad51D backgrounds (Figure 7B).

The uncertainty about the identity of the struc-

tures detected by IF using the S9.6 antibody,

which also recognizes dsRNA (Hartono et al.,

2018; König et al., 2017; Silva et al., 2018), and

the possibility that chromosomal spreads could

preferentially visualize the rDNA regions, in which

high levels of dsRNA structures formed by the

rRNAs, makes difficult to make conclusions on S9.6 IFs in this case.

Thus, we have found no evidence for a Rad51-facilitated strand invasion from RNAs produced in

trans. Further arguing against any major role of this recombinase in R loop metabolism or function,

none of the so far reported DNA:RNA hybrid interactomes has identified RAD51 (Cristini et al.,

2018; Nadel et al., 2015; Wang et al., 2018). The fact that, in vitro, RecA can catalyze an inverse

DNA strand exchange reaction with DNA or RNA thus promoting the assimilation of a transcript into

duplex DNA (Kasahara et al., 2000; Zaitsev and Kowalczykowski, 2000) does not argue that this

is the case for unscheduled recombinogenic R loops in vivo. More likely, the biological significance

of this process relies on its use for replication initiation of prokaryotic cells as originally proposed

(Zaitsev and Kowalczykowski, 2000), for replication-dependent recombination to restart stalled

forks (Pomerantz and O’Donnell, 2008) or even for transcription-induced origin-independent repli-

cation (Stuckey et al., 2015). Hence, DNA:RNA hybridization could occur in trans under regulated

conditions but not spontaneously as unscheduled and harmful structures that would put genome

integrity into risk. Thus, the assimilation of a transcript into a duplex DNA in trans would be tightly

regulated and limited to specific reactions such as the case of telomerase or CRISPR and possibly

other proteins yet to be discovered. For other cases, such as that of the GADP45 factor that binds

to promoters harboring hybrids formed by lncRNAs (Arab et al., 2019), it is unclear whether such

hybrids are formed in trans and in a GADP45-dependent manner.

Altogether, our results suggest that RNAs do not form hybrids in trans, so that the previously

reported induction of Rad51-dependent ectopic genetic instability would be explained by R loop-

mediated DNA breaks in cis.

DSB

Rad51-dependent

genetic instability

Figure 8. A model to explain how DNA:RNA hybrids

could induce Rad51-dependent genetic instability in

trans. DNA:RNA hybrid produced in cis can induce a

DSB in the same sequence. The 3’ end of such a DSB

could invade an ectopic homologous sequence and

destabilize it. This DNA strand invasion event would

require Rad51. In this model, genetic instability caused

by hybrids in trans would be Rad51-dependent without

the need of invoking a Rad51-mediated DNA:RNA

hybrid formation in trans. A DSB is depicted for

simplicity, but other recombinogenic lesions such as

nicks or ssDNA gaps cannot be ruled out.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
Saccharomyces
cerevisiae

W303 background
strains with different
gene deletions

various (See Materials and
methods section)

Recombinant
DNA reagent

Yeast expression
plasmids and
recombination
systems

various (See Materials and
methods section)

Sequence-
based reagent

Primers for
DRIP and RT-PCR

Condalab (See Materials and
methods section)

Antibody Cy3 conjugated
anti-mouse (goat
monoclonal)

Jackson
laboratories

Cat# 115-165-003,
RRID:AB_2338680

IF (1:1000)

Antibody S9.6 anti DNA:RNA
hybrids (mouse
monoclonal)

ATCC Hybridoma
cell line

Cat#
HB-8730,
RRID:CVCL_G144

DRIP (1 mg/ml)
and IF (1:1000)

Commercial
assay, kit

Macherey-Nagel
DNA purification

Macherey- Nagel Cat#
740588.250

Commercial
assay, kit

Qiagen’s RNeasy Quiagen Cat# 75162

Commercial
assay, kit

Reverse
Transcription kit

Qiagen Cat # 205311

Peptide,
recombinant
protein

Zymolyase 20T US Biological Z1001 (50 mg/ml)

Chemical
compound,
drug

Doxycyclin
hyclate

Sigma-Aldrich D9891 (5 mg/ml)

Peptide,
recombinant
protein

Proteinase K
(PCR grade)

Roche Cat # 03508811103

Peptide,
recombinant
protein

Rnase A Roche Cat # 10154105103

Software,
algorithm

GraphPad
Prism V8.4.2

GraphPad Software,
La Jolla, CA, USA

RRID:SCR_002798

Other iTaq Universal
SYBR Green

Bio-RAD Cat # 1725120

Other DAPI stain Invitrogen D1306 1 mg/mL

Yeast strains and Plasmids
Strains used were the wild-type W303-1A (MATa ade2-1 can1- 100 his3-11,15 leu2-3,112 trp1-1

ura3-1 rad5-G535R) and its isogenic hpr1D::HIS3 mutant U678-1C (MATa) and U678-4C (MATa),

mft1D::KANMX mutant (WMK.1A) (Chávez and Aguilera, 1997), rnh1D::KANMX rnh201D::KANMX

(RNH-R), rad51D::KANMX (WSR51.4A) (González-Barrera et al., 2002), and hpr1D::HIS3MX

rad51D::KANMX (HPR51.15A) from this study. rnh1D::KAN rnh201D::KAN (HRN2.8A) and the wild-

type HRN2.8A were from Huertas and Aguilera, 2003. Wild-type (WGLZN) and hpr1DHIS3 mutant

were made in this study by insertion of the GL-LacZ::NATMX at the LEU2 locus in Chromosome III of

a W303-1A strain corrected for RAD5 (Moriel-Carretero and Aguilera, 2010).

Yeast plasmids pCM179, pCM184, pCM189 and pCM190 were previously published (Garı́ et al.,

1997). pRS314-GL-LacZ (Piruat and Aguilera, 1998) and pRS314-GL-LacZi plasmids with recombina-

tion systems were built as follows. The BamHI fragment containing the LacZ sequence from pPZ

(Straka and Hörz, 1991), was inserted in both sense and antisense orientations with respect to the
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promoter, respectively, into the BglII site of pRS314GLB (Piruat and Aguilera, 1998). pCM184TL-

lacZ (Santos-Pereira et al., 2013) pRS416 and pRS416-GALlacZ were described previously

(Prado et al., 1997). pCM184:AID was built by inserting the AID ORF from pCM189:AID (Santos-

Pereira et al., 2013) into the NotI site of pCM190. pCM190-tet::LacZ400 was built by cloning the

KpnI-BamHI 400 bp fragment of the 3’ from the LacZ gene into KpnI-BamHI digested pCM190. Plas-

mids pCM189:AID, pCM184:RNH1 (Santos-Pereira et al., 2013), and pWJ1344 (Lisby et al., 2001)

were also previously published.

Yeast transformation
Yeast transformation was performed using the lithium acetate method as previously described

(Gietz et al., 1995).

Recombination assays
Cells transformed were grown in selective media containing 2% glucose and 5 mg/mL of doxycycline

(kept in the dark) to repress transcription from the GAL1 and tet promoter, respectively. Recombina-

tion frequencies were calculated as previously described as means of at least three median frequen-

cies obtained each from six independent colonies isolated in the appropriate medium for the

selection of the required plasmids (Gómez-González et al., 2011). Briefly, transformants were cul-

tured for at 3–4 days (until acquiring similar colony size) in the appropriate selective media contain-

ing either 2% glucose or 2% galactose and recombinants were obtained by plating appropriate

dilutions in selective medium. To calculate total number of cells, plates with the same requirements

as for the original transformation were used. All plates were grown for 3–4 days at 30˚C. The average

and SEM of at least three independent transformants was plotted for each figure but the numerical

data can be seen in Figure 2—source data 1, Figure 4—source data 1, Figure 5—source data 1

and Figure 6—source data 1.

Transcription analysis
Mid-log cultures were grown with either glucose or galactose and with or without 5 mg/ml doxycy-

cline (kept in the dark). Total RNA was obtained using Qiagen’s RNeasy kit and used for cDNA syn-

thesis with the QuantiTect Reverse Transcription kit with random primers (Qiagen) according to

instruction. Real-time quantitative PCR was performed using iTaq universal SYBR Green (Biorad) with

a 7500 Real-Time PCR machine (Applied Biosystems). Primers sequences used for this analysis were

LacZT1-Fw (GCGCCGTGGCCTGAT), LacZT1-Rv (GTGCAGCGCGATCGTAATC), Intergenic-Fw (TG

TTCCTTTAAGAGGTGATGGTGAT) and Intergenic-Rv (GTGCGCAGTACTTGTGAAAACC). The exact

values obtained are shown in Figure 1—figure supplement 1—source data 1.

DRIP assays
DNA:RNA hybrids were measured in cultures with either glucose or galactose and either with or

without 5 mg/ml doxycycline (kept in the dark). Cultures were collected, washed with chilled water,

resuspended in 1.4 mL spheroplasting buffer (1 M sorbitol, 10 mM EDTA pH 8, 0.1% b-mercaptoe-

thanol, 2 mg/ml Zymoliase 20T) and incubated at 30˚C for 30 min. The spheroplasts were pelleted (5

min at 7000 rpm) rinsed with water and homogeneously resuspended in 1.65 mL of buffer G2 (800

mM Guanidine HCl, 30 mM Tris-Cl pH 8, 30 mM EDTA pH 8, 5% Tween-20, 0.5% Triton X-100). Sam-

ples were treated with 40 ml 10 mg/ml RNase A for 30 min at 37˚C and 75 ml of 20 mg/ml proteinase

K (Roche) for 1 hr at 50˚C. DRIP was performed mainly as described (Ginno et al., 2012) with few dif-

ferences. DNA was extracted gently with chloroform:isoamyl alcohol 24:1. Precipitated DNA,

washed twice with 70% EtOH, resuspended gently in TE and digested overnight with 50 U of HindIII,

EcoRI, BsrGI, XbaI and SspI, 2 mM spermidine and 2.5 ml BSA 10 mg/ml. Half of the DNA was

treated with 8 mL RNase H (New England BioLabs) overnight 37˚C as RNase H control. RNA-DNA

hybrids were immunoprecipitated using S9.6 monoclonal antibody (hybridoma cell line HB-8730)

coupled to Dynabeads Protein A (Invitrogen) for 2 hr at 4˚C and washed 3 times with 1x binding

buffer. DNA was eluted in 100 mL elution buffer (50 mM Tris pH 8.0, 10 mM EDTA, 0.5% SDS)

treated 45 min with 7 mL proteinase K 20 mg/ml at 55˚C and purified with Macherey-Nagel DNA

purification kit. Primers sequences used for this analysis were LacZT1-Fw (GCGCCGTGGCCTGAT)
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and LacZT1-Rv (GTGCAGCGCGATCGTAATC). The average and SEM of at least three independent

transformants was plotted but the numerical data can be seen in Figure 3—source data 1.

Detection of Rad52-YFP foci
Spontaneous Rad52-YFP foci from mid-log growing cells carrying plasmid pWJ1344 were visualized

and counted by fluorescence microscopy in a Leica DC 350F microscope, as previously described

(Lisby et al., 2001). More than 200 S/G2 cells where inspected for each experimental replica. The

average and SEM of at least three independent transformants was plotted but the numerical data

can be seen in Figure 7—source data 1.

S9.6 immunofluorescence of yeast chromosome spreads
The procedure performed is similar to Chan et al., 2014 with some modifications. Briefly, mid-log

cultures (OD600 = 0.5–0.8) were grown at 30˚C; 10 ml of them were collected, washed in cold spher-

oplasting buffer (1.2 M sorbitol, 0.1 M potassium phosphate and 0.5 MgCl2 at pH 7) and then

digested by adding 10 mM DTT and 150 mg/ml of Zymolyase 20T to the same buffer. The digestion

was performed for 10 min (37˚C) and stopped by mixing the samples with the solution 2 (0.1 M MES,

1M sorbitol, 1 mM EDTA, 0.5 mM MgCl2, pH 6.4). Later, spheroplasts were centrifuged carefully 8

min at 800 rpm, lysed with 1% vol/vol Lipsol and fixed on slides using Fixative solution (4% parafor-

maldehyde/3.4% sucrose). The spreading was carried out using a glass rod and the slides were dried

from 2 hr to overnight in the extraction hood.

For the immuno-staining, the slides were first washed in PBS 1X in coplin jars and then blocked in

blocking buffer (5% BSA, 0.2% milk in PBS 1X) over 10 min in humid chambers. Afterwards, slides

were incubated with the primary monoclonal antibody S9.6 (1 mg/ml) in a humid chamber 1 hr at 23˚

C. After washing the slides with PBS 1X for 10 min, the slides were incubated 1 hr at 23˚C in the

dark with the secondary antibody Cy3 conjugated goat anti-mouse (Jackson laboratories, #115-165-

003) diluted 1:1000 in blocking buffer. Finally, the slides were mounted with 50 ml of Vectashield

(Vector laboratories, CA) with 1X DAPI and sealed with nail polish. For each experiment, more than

100 nuclei were visualized and counted to obtain the fraction of nuclei with DNA:RNA hybrids. The

average and SEM of at least three independent transformants was plotted but the numerical data

can be seen in Figure 7—source data 1.
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