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ABSTRACT 

In this paper we review several contributions made in the field of discrete dynamical systems, inspired by harmonic 
analysis. Within discrete dynamical systems, we focus exclusively on quadratic maps, both one-dimensional (1D) and 
two-dimensional (2D), since these maps are the most widely used by experimental scientists. We first review the appli-
cations in 1D quadratic maps, in particular the harmonics and antiharmonics introduced by Metropolis, Stein and Stein 
(MSS). The MSS harmonics of a periodic orbit calculate the symbolic sequences of the period doubling cascade of the 
orbit. Based on MSS harmonics, Pastor, Romera and Montoya (PRM) introduced the PRM harmonics, which allow to 
calculate the structure of a 1D quadratic map. Likewise, we review the applications in 2D quadratic maps. In this case 
both MSS harmonics and PRM harmonics deal with external arguments instead of with symbolic sequences. Finally, we 
review pseudoharmonics and pseudoantiharmonics, which enable new interesting applications. 
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1. Introduction 

In this paper we review a branch of harmonic analysis 
applied to discrete dynamical systems. In general, har- 
monic analysis has been widely used in experimental 
applications, as in the field of signal processing. In the 
same way, harmonic analysis applied to discrete dy- 
namical systems can be a valuable tool for experimental 
scientists studying nonlinear phenomena. This paper is 
focused above all in showing some tools with interesting 
applications in nonlinear phenomena.  

At its inception, the harmonic analysis studies the rep- 
resentation of a function as the superposition of basic 
waves which, in physics, are called harmonics. Fourier 
analysis and Fourier transforms are the two main branches 
investigated in this field. The harmonic analysis is soon 
generalized and in the past two centuries becomes, as 
noted above, a wide subject with a large number of appli- 
cations in diverse areas of experimental science. 

In order to study nonlinear phenomena, experimental 
scientists use dynamical systems, whether continuous or 
discrete. In this review paper we only deal with discrete 
dynamical systems and more specifically with quadratic 
maps, above all one-dimensional (1D) quadratic maps 
and two-dimensional (2D) quadratic maps, which are the 
most commonly used.  

The two most popular 1D quadratic maps are the lo-  

gistic map  1 1n n nx x x  
2

 and the real Mandelbrot  

map 1n nx x c   . The logistic map [1-3] is widely 
known among experimental scientists studying nonlinear 
phenomena. Indeed, since Verhulst used it for the first 
time in 1845 to study population growth [1], it has served 
to model a large number of phenomena. The real Man- 
delbrot map is the intersection of the Mandelbrot set [4-6] 
and the real axis. All the 1D quadratic maps are topo- 
logically conjugate [7-9]. Therefore, we can use one of 
them to study the others. 

The most popular 2D quadratic map is, without any 
doubt, the Mandelbrot set, which is the most representa- 
tive paradigm of chaos. The Mandelbrot set can be de-  

fined as   : 0   as  k
cM c f k   C  , where  

 0k
cf  is the k-iteration of the complex polynomial 

function depending on the parameter c,   2
cf z z c 
0

, z 
and c complex, for the initial value . In the same 
way as we use the Mandelbrot set to study the complex 
case, to study the 1D case we normally use the real 
Mandelbrot map [10-12] (likewise we could have used 
the logistic map), that can be defined again as  

z

  : 0   as  k
r cM c f k   C  , but where now  

 0f k
c  is the k-iteration of the 1D polynomial function 

depending on the parameter c,   2
cf x x c  , x and c 

real, for the initial value . In this real Mandelbrot 
map there are several kinds of points according to the  

0x 
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multiplier value    d
fp

c x x
d f x x


  [13]. A similar  

definition of the multiplier λ can be given for the Man- 
delbrot set complex case, as can be seen for example in 
[6], where c is defined for the parameter values of the 
Mandelbrot set, which are complex values, and not only 
for the real values of the real segment 2 1c   4 . 

In both cases, the real case and the complex one, when 
1 

1

 one has hyperbolic points. The connected com- 
ponents of the c-values set for which  converges 
to a k-cycle are periodic hyperbolic components (periodic 
HCs), or simply HCs [6]. These periodic HCs verify 

 0k
cf

  , which means they are stable (if 0   they are 
superstable). A HC is a cardioid or a disc for the complex 
case (2D hyperbolic components) and a segment for the 
real case (1D hyperbolic components). Therefore, we can 
speak indistinctly of periodic orbits (superstable periodic 
orbit if 0  ) or hyperbolic components, although in 
1D quadratic maps we normally speak of periodic orbits, 
and in 2D quadratic maps of HCs. The variety of names 
is due to the fact that this paper is a review of several 
papers. There are also points where 1   which means 
they are unstable. These last points are, in addition, 
preperiodic and they have been later called Misiurewicz 
points [14-18]. 

When 1   one has non-hyperbolic points. These 
points correspond to tangent bifurcation points (or cusp 
points, where, in the case of a 2D quadratic map, a cardi- 
oid-like component is born) and to pitchfork bifurcation 
points (or root points, where, in the case of a 2D quad- 
ratic map, a disc-like component is born). 

Therefore in both cases, 1D and 2D quadratic maps, 
the two most representative elements are HCs (remember 
that they are more commonly called periodic orbits in 1D 
quadratic maps) and Misiurewicz points. There are many 
ways to identify both HCs and Misiurewicz points. For 
example, we can recognize a HC by means of its period, 
and a Misiurewicz point by its preperiod and period. 
However, normally a lot of HCs have the same period, 
and a lot of Misiurewicz points have the same preperiod 
and period; hence, this way of naming them is not uni- 
vocal. We are interested in names of HCs and Misi- 
urewicz points that can identify them univocally. When 
the names identify them univocally, we denominate them 
identifiers. As we shall see later, in 1D quadratic maps 
the identifiers we use are the symbolic sequences [19], 
which are sequences of the type CX…X (X can be a L 
for left, or a R for right). These sequences show the 
symbolic dynamics of the critical point in the map under 
consideration. Unfortunately, symbolic sequences can 
not be used as identifiers in 2D quadratic maps because 
two different HCs can have the same symbolic sequence. 
Therefore, to identify a HC (or a Misiurewicz point) in a 
2D quadratic map we normally use the external argu- 

ments (EAs) associated to the external rays of Douady 
and Hubbard [15,20,21] that land in the cusp/root points 
of the cardioids/discs (or in the Misiurewicz points). 
These EAs are given as rational numbers with odd de- 
nominator in the case of hyperbolic components, and 
with even denominator in the case of Misiurewicz points. 
These rational numbers can also be given as their binary 
expansions [22], which are the most commonly used, and 
the only ones used here. 

As we shall see later, Metropolis, Stein and Stein 
(MSS) [23] used a variant of the harmonic analysis 
within the field of discrete dynamical systems, specifi- 
cally within a type of 1D quadratic maps, the logistic 
map. While in the classical harmonic analysis a function 
is the superposition of the infinity of its harmonics, the 
harmonics of MSS (MSS harmonics) of the symbolic 
sequence (pattern for MSS) of a superstable orbit calcu- 
late the symbolic sequences of the period doubling cas- 
cade of the original orbit. Therefore, the MSS harmonics 
are a very valuable tool since, given the symbolic se- 
quence of a superstable orbit (which characterizes the 
whole HC), the symbolic sequences of the infinity of 
orbits of its period doubling cascade can easily be calcu- 
lated. Indeed, if we start from a period-p orbit (or HC), 
the periods of the orbits calculated are 2p, 4p, 8p, … 
(doubling period cascade, always in the periodic region). 
In Section 2.1 we shall see in more detail MSS harmonics 
and, in addition, we also shall see MSS antiharmonics. 

Based on MSS harmonics and MSS antiharmonics, 
Pastor, Romera and Montoya (PRM) introduced in [12] 
Fourier harmonics (F harmonics) and Fourier antihar- 
monics (F antiharmonics), which in their subsequent pa- 
pers were simply called harmonics and antiharmonics in 
order to avoid confusion within the Fourier analysis. 
Nevertheless, if we simply call them harmonics, they can 
be confused with the MSS harmonics. Therefore, in this 
review we have called them PRM harmonics. While 
MSS harmonics were introduced by using the logistic 
map, PRM harmonics were introduced by using the real 
Mandelbrot map. These PRM harmonics and antihar- 
monics are a powerful tool that can help us in both the 
ordering of the periodic orbits of the chaotic region (and 
not only those of the periodic region as in the case of the 
MSS harmonics) and the calculation of symbolic se- 
quences of these orbits. As we shall see in more detail in 
Section 2.2, given the symbolic sequence of a periodic 
orbit, the PRM harmonics of this orbit are the symbolic 
sequences of the infinity of last appearance periodic or- 
bits of the chaotic band generated by such an orbit. 

As we have just said, in Sections 2.1 and 2.2 we in- 
troduce the harmonics/antiharmonics of MSS, and the 
harmonics/antiharmonics of PRM respectively, in both 
cases when the identifiers of the periodic orbits are the 
symbolic sequences corresponding to 1D quadratic maps. 
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In Sections 3.1 and 3.2 we shall see again MSS and PRM 
harmonics/antiharmonics but now in 2D quadratic maps; 
that is, when the identifiers are EAs.  

When we are working in the chaotic region of 2D 
quadratic maps out of the period doubling cascade and 
out of the chaotic bands, harmonics and antiharmonics 
have to be generalized. That is what we do in Section 4, 
where pseudoharmonics and pseudoantiharmonics are 
introduced. These two new tools will allow new order- 
ings and new calculations in this chaotic region. 

2. Harmonics in 1D Quadratic Maps 

In this section on 1D quadratic maps we first review the 
MSS harmonics/antiharmonics, which were introduced 
by MSS [23]. Given the symbolic sequence of a periodic 
orbit, MSS harmonics calculate the symbolic sequences 
of the period doubling cascade of that periodic orbit, 
placed in the periodic region. Finally, we review the 
PRM harmonics/antiharmonics [12]. Given the symbolic 
sequence of a periodic orbit (HC), PRM harmonics cal- 
culate the symbolic sequences of the last appearance pe- 
riodic orbits (or last appearance HCs) of that periodic 
orbit, placed in the chaotic region. Let us see both cases 
in Sections 2.1 and 2.2. 

2.1. MSS Harmonics 

The symbolic dynamics is introduced by Morse and Hed- 
lung in 1938 [24]. According to Hao and Zhen [25], 
based on this theory, Metropolis, Stein and Stein [23] 
develop the applied symbolic dynamics to the case of 
one-dimensional unimodal maps, which is simpler and 
very useful. Applied symbolic dynamics used in the pre- 
sent paper is based on the paper of MSS and on the reci- 
pes of Schroeder [26]. 

The symbolic dynamics is based on the fact that some- 
times it is not necessary to know the values of the itera- 
tion but it is enough to know if these values are on the 
left (L) or are on the right (R) of the critical point (C). 
The sequence of symbols CXX…X (X is an L for left, or 
a R for right) is called symbolic sequence, or pattern. 

There are two types of 1D quadratic maps, rightward 
maps, R-maps, and leftward maps, L-maps [11,12]. The 
most representative R-map is the logistic map,  

n1 1n n x x x   , and the most representative L-map is 
the real Mandelbrot map, 2

1n nx x c   . In the logistic 
map the critical point is a maximum, whereas in the real 
Mandelbrot map the critical point is a minimum. As said 
before, all the 1D quadratic maps are topologically con- 
jugate [7-9], therefore the logistic map and the real Man- 
delbrot map have equivalent symbolic dynamics, and the 
symbolic sequences of one of them can be obtained by 
interchanging Rs and Ls from the other one.  

MSS use the logistic map, an R-map, therefore the 

R-parity, which is the canonical parity of a R-map, has to 
be applied. The symbolic sequence of a periodic orbit of a 
R-map has even R-parity if the number of Rs is even, and 
it has odd R-parity if the number of Rs is odd [11,12]. Let 
us see now the definition of harmonic introduced by MSS. 

Let P be the pattern of a superstable orbit of the logistic 
map. The first MSS harmonic of P,    1

MSSH P , is formed 
by appending P to itself and changing the second C to R 
(or L) if the R-parity of P is even (or odd). The second 
MSS harmonic of P,    2

MSSH P , is formed by appending 
   1
MSSH P  to itself and changing the second C to R (or L) 

if the R-parity of    1
MSSH P  is even (or odd). And so on. 

The change from C to R or L obeys the relo rule (R if 
Even and L if Odd), which is the canonical rule of a 
R-map, and a useful mnemonic rule. As mentioned in the 
introduction, the periods of the successive MSS harmon- 
ics of a pattern P of period p are: 2p, 4p, 8p, …, which 
correspond to the periods of the patterns of the period 
doubling cascade of P. 

Example: 
We start from the period-1 superstable orbit whose 

pattern is C. To find the patterns of the period doubling 
cascade of C we have to obtain the successive MSS har- 
monics of C by applying the relo rule. To obtain the first 
MSS harmonic of C we append C to C (CC) and we 
change the second C to R because the R-parity of C is 
even. To obtain the second MSS harmonic of CR we 
append CR to CR (CRCR) and we change the second C 
to L because the R-parity of CR is odd. And so on. The 
results up to the fifth MSS harmonic, which correspond 
to the 20, 21, 22, 23, 24 and 25 periodic orbits of the period 
doubling cascade, are:  

   0 C CMSSH  , , ,     1 C CRMSSH     2 C CRLRMSSH 
   3 3C CRLR LRMSSH  ,  

   4 3 3C CRLR LRLRLR LRMSSH  ,  

   5 3 3 3 3 3C CRLR LRLRLR LR LR LRLRLR LRMSSH 
 i

.  

Note that, when i = 0, MSS  corresponds to the trivial 
case of the starting point, and only when 

H
1, 2,i   , 

( )i
MSSH  are the first, second, … MSS harmonics, respec-

tively. 
Let us see now the definition of antiharmonics, also 

introduced by MSS.  
Let P be the pattern of a superstable orbit of the logis- 

tic map. The first MSS antiharmonic of P,    1
MSSA P , is 

formed by appending P to itself and changing the second 
C to L (or R) if the R-parity of P is even (or odd). The 
second MSS antiharmonic of P,    2

MSSA P , is formed by 
appending    1

MSSA P  to itself and changing the second C 
to L (or R) if the R-parity of    1

MSSA P  is even (or odd). 
And so on. 

As can be seen, in this case the mnemonic rule is the 
lero rule (L if Even and R if Odd), which is the antican- 
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onical rule of a R-map. As in the case of the MSS har- 
monics, the periods of the successive MSS antiharmonics 
of a pattern P of period p are: 2p, 4p, 8p, … Antihar- 
monics seem to have no interest because they do not 
correspond to any possible periodic orbit. However, this 
is not so, as we shall see later. 

of the symbolic sequences or patterns of superstable or- 
bits. However, in the same way as the Sharkovsky or- 
dering only treats a part of the total set of the superstable 
orbits, the first appearance superstable orbits, PRM only 
treat another part of this set, the last appearance super- 
stable orbits. On the other hand, while MSS or Shark- 
ovsky use the logistic map, a R-map, PRM use the real 
Mandelbrot map, a L-map, which is the intersection of 
the Mandelbrot set with the real axis. 

Example: 
If we start again from the period-1 superstable orbit 

whose pattern is C, and we calculate up to the third MSS 
antiharmonic by applying the lero rule, we obtain:  From the introduction of PRM harmonics, PRM obtain 

what they call the harmonic structure of a 1D quadratic 
map [12], which results from the generation of all the 
genes, i.e., the superstable orbits of the period doubling 
cascade. This harmonic structure obtained from the genes 
is a way of seeing the ordering that clearly shows the 
connection between each period doubling cascade com- 
ponent (gene) and the corresponding chaotic band.  

   0 C CMSSA  , ,    1 C CLMSSA 
   2 3C CLMSSA  , ,    3 7C CLMSSA 

that indeed do not correspond to any periodic orbit. 

2.2. PRM Harmonics 

In 1997 the PRM harmonics and PRM antiharmonics 
were introduced to contribute to the ordering of 1D quad- 
ratic maps [12]. The search of order in chaos, and more 
specifically in 1D quadratic maps, was early carried out in 
the well known works of Sharkovsky [27,28]. Shark- 
ovsky’s theorem gives a clear ordering of the superstable 
periodic orbits but only of orbits that appear by the first 
time. This theorem states that the first appearance of the 
periodic orbits of the parameter-dependent unimodal 
maps are in the following universal ordering when the 
parameter absolute value increases: 

One can obtain all the structural patterns by starting 
out only from the pattern C of the period-1 superstable 
orbit. Beginning from this pattern C, all the patterns of 
the period doubling cascade and the patterns of the last 
appearance superstable orbits of the chaotic bands are 
generated. One can clearly see that the origin of each 
period-  chaotic band n  is the nth periodic orbit of 
the period doubling cascade, with period , which is 
the gene . 

2n

G

B
2n

n

 

 

1  2  4  8 ... 2k.9  2k.7  2k.5  2k.3 ... 2.9  2.7 
 2.5  2.3 ... 9  7  5  3 where the symbol  must be 
read as “precede to”. 

The Sharkovsky theorem gives a clear ordering of the 
first appearance superstable orbits (see Figure 1), but 
without taking into account either the symbolic sequence 
or the origin of each periodic orbit. On the contrary, the 
outstanding work of MSS [23], which also deals with the 
issue of ordering, uses both the symbolic sequence and 
the pattern generation; however, it is difficult to see any 
ordering there (see Figure 2, where we graphically show 
the MSS superstable periodic orbit generation according 
to the MSS theorem [23]). Figure 1. A sketch of the Sharkovsky theorem for the logis-

tic map,  1 1n nx x x  

20p

n . First appearance superstable 

rbits for periods 
As said before, PRM harmonics were introduced in 

[12] to better understand the ordering and the generation    are shown. o 
 

 

Figure 2. A sketch of the successive application of the Metropolis, Stein, and Stein theorem in the logistic map 

 1 1n nx x x   n  for  Symbolic sequences for periods 10p  . 6p   are shown. 
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Let us conside al Ma

have repeated is an L-map. As we know from [12,17], a 
pattern P has even L-parity if it has an even number of Ls, 
and has odd L-parity otherwise. L-parity is a concept 
similar to R-parity, introduced by MSS [23] for the logis- 
tic map, a R-map. Now, the definition of PRM harmonics 
[12,17] can be seen. 

Let P be a pattern. The first PRM harmonic of P, 

r the re ndelbrot map, which as we 

   1
PRMH P

changing the
even (or 

   2
PRM

, is formed by appending P to itself and 
 second C to L (or R) if the L-parity of P is 

odd). The second PRM harmonic of P, 
H P , is formed by appending P to    1

PRMH P
 the L-parity

 and 
he second C to L (or R) if  of changing t

   1
PRMH P  
As can be

is even (or odd), and so on. 
 seen, in this case the mnem

lero rule (L if Even and R if Odd), which is the canonical 
rule for an L-map. 

Application: The harmonic structure of 1D quadratic 
maps 

Let us see how to generate the chaotic bands in the real 
Mandelbrot map by beginning just at the origin, i.e., at 
the period-1 superstable orbit of symbolic sequence C. 
For this purpose, we shall be assisted by Figure 3, where 
in the upper parts we depict sketches of the PRM har- 
monics where periods and symbolic sequences are shown 
and, in the lower parts, we depict the corresponding 
Mandelbrot set antenna zones by means of the escape 
lines method [29]. Obviously, since we are in the 1D 
case, in these lower parts only the intersection of these 
figures with the real axis make sense, although we use 
the whole figure in order to better “see” the periodic or- 
bits. Let us note that, in the upper parts, symbolic se- 
quences corresponding to cardioids are only depicted 
with black half filled circles, while symbolic sequences 
corresponding to discs are depicted with black circles. In 
Figure 3(a) we show the PRM harmonics of C obtained 
in accordance with the lero rule. To form the first PRM 
harmonic of C we add a C to the C, i.e., we write CC and 
we change the second C into an L, since the L-parity of 
C is even. Therefore, the first PRM harmonic of C is 

. To form the second PRM harmonic of 
to the first one, i.e., we write CLC and we 
nd C into a R, since the L-parity of CL is 
ain 

 the we obtain that the 
third and fourth PRM harmonics of C are  

 and . As is well 
], CLR, CLR  (CRL, CRL2, 

bolic se- 
 last appeara  orbits. As it 

n [12, M har- 
ca case the 

the preperiod 

onic rule is the 

   1 C CLPRMH 
C we add a C 
change the seco
odd, and we obt

By applying

   2 C CLRPRMH  . 
same procedure, 

   3 2C CLRPRMH 
known [12,26
CRL3, …, in the l
quences of the
was already show
monics of a pattern 
limit    CPRMH   is 
1 and period 1, 1,

   4 3C CLRPRMH 
2, CLR3, …

ogistic map) are the sym
nce superstable

30], the limit of the PR
n be calculated. In this 
Misiurewicz point with 

1M , w nce is (CL)R 

(if C  account, the preperiod is 2, and we 
have 

hose symbolic seque

 is taken into

2,1M , as can be seen in [12]). This point is the tip 
(C) [1  whose parameter value is 

As seen in the figure, we start from the period-1 su- 
persta  C placed in the pe he first 
PRM onic of C is the period-2 s ble orbit of 
the p  doubling cascade. All the o armon- 

uperstable riod-20 
chaotic ba and are the last appea perstable 
orb is . If we consider th 0 supersta- 

gene , then the PR rmonics of 
the ge nerate period-20 band 
Howe 21 able orbit n th
riod rated. Let hap  
when d new gene 

Let’  at  3(b)  show 
harm  

2,30],

ble orbit
 harm
eriod

ics of C are s
nd 

its of th
ble orbit C as

ne G
ver, a

ic regio
 this or

onics of

2c   . 

riodic region. T
upersta
ther PRM h

orbits placed in the pe
rance su

e period-2
M ha

 chaotic 
placed i

us see what 

1G . 
 where we

0B  
band
 a 

 ge
period-
 is also g

bit is use

0G
the 

 superst
ene
 as a 
Figure

0

 
n

s now look

0B . 
e pe- 
pens

the 

1 CLG  . To form its PR onics we 
add C h one and we cha the second C 
into ordance with th rule. So, we 
obtain t at the ond, third, an th PRM har- 
m

,  

, and .  

The limit of these harmonics  

M harm
nge 

e lero 
d four

CLRL

 1 CLH G 

is the Misiurewicz point

L to t
a L or a R, 

h
onics of 

 1
PRM

 3
PRM

e previous 
in acc

 first, sec
 are  1G

 1 CLRLH G  ,    2 3
1PRMH G

  5
1 CLRLH G   4 7RLPRM

 1 CLR L
[16,17], that separates the 
and od-21 cha
gene rom CL
whic ponds to t
peri ling casca
the M harm

 period-21

are t  appearan
Agai we consider C
PRM onics of th
chaotic ba 1B  (and

 now Figure

1 2,m M 

 the peri
rated f
h corres

od doub
other PR

placed in the
he last
n, if 
 harm

nd 
Let us see

 and fo

 2H G

, placed in
period-2

otic band
 is the pattern

he secon
de of th
onics of C
 chaotic b  

ce supe
L as a gene

e gene 
 a new 

 3(c)
harmonics of the gene e first, second, 
third, urth harm

 89 012c   
0 c band 0B  

1B . T t harmonic 
 C  period-22, 

 supe orbit of the 
d n of C. All 

 ar rstable orbits 
nd  in addition,

of this band. 
 G ve that the 

 ge e period-21 
 2G ). 
ere  the PRM 

1.543 6 
 chaoti

he firs
LRL of
rstable 
ic regio

e supe

1B  and,
orbits 

1 , we ha
nerate th

CLRL
 we show
. Th

  

 

d
e perio

L
a

rstable 

1

ne
 wh

G
ge

 2 CLRLG 
onics of 2G  are

  1 3CLRL RLPRM  ,   32 3CLRL2 RLPRMH G ,  

    53 3
2H G     74 3CLRL RLPRM  , and 2H G 

the periodic region and the
the period-2

is the 

CLRL RLPRM ,  

the first being a new gene in  
others superstable orbits placed in 2 chaotic 
band . The limit of these harmonics Misiurewicz  

point 
2B

   1 2
2 4,2 CLRL LRm M   

1

[16,17] which separates  

 chaotic band 2 chaotic 
band . Therefore the PRM harm gene 

period-22 new gene, 

Figure 3(d),  show
PRM onics of the previous p (23) gene  

the period-2

2B
generate the 

CLRL

 harm

1B  

 chaotic band 
, of the next chaotic band. 

and the period-2
onics of the 

2 , and a 

ere we
eriod-8 

2G  

 the 

B

 wh

3
3 RLG 
Finally, let us see 
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stable orbits of the period doublin cascade iFigure 3. A sketch of the PRM harmonics of the first four sup
e PRM harmonic generation of last appearan

chaotic band B0; (b) period-2 chaotic band B1; (c) period-4 ch
 

3
3 CLRL RLG  . A en

er g n the real Man-
delbrot map. Th ce superstable patterns of c tic bands is shown. (a) Pe -1 

aotic band B2; (d) period-8 chaotic band B3. 

new period-16 g e in the periodic 

ted. The limit 
a  the M iu

ng cascad

hao riod

reg

of these superst

ion, 4G , and the last appearance superstable orbits of 
the period-23 chaotic band 3B  are genera

ble orbits is rewicz point 
 1

3 8,4m M  [16,17] that separates the period-22 chaotic 
band 2B  and the period-23 chaotic band 3B . 

Generalizing, the PRM harmonics of the gene nG  
generate the last appearance superstable orbits of the 
period-2n chaotic band nB , and a new gene of the period 
doubli e, the gene 1nG

 is

 . Likewise,    PRM nH G  
is a Misiurewicz point 12 ,2n nnm M   [10], a primary 

separator (or band-merging point) of the chaotic bands 

1nB   and nB . 
This double procedure (periodic orbits of the period 

 cascade generatiodoubling  chaotic band generation) 
contin , periodic orbits of the 

n and
ues i finitely and both

 t
]. 

of th r he set of the 

nde

e co

period doubling cascade on he right and chaotic bands 
on the left, meet in the Myrberg-Feigenbaum point [31

Every pattern of the period doubling cascade is the 
responding chaotic band. Tgene 

PRM harmonics of all the genes is what we call the har- 
monic structure and is schematically shown in Figure 4.  
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Figure 4. A sketch of the harmonic structure of the real Mandelbrot map. Each period doubling cascade superstable orbit is a 
gene Gn. The PRM harmonics of these genes generate the corresponding chaotic band Bn and the Misiurewicz point 

that separates the chaotic bands Bn–1 and Bn. 

The patterns of the harmonic structure are called struc- 
tural patterns and all of them are PRM harmonics.  

In Figure 4 we can see the periodic region and the 
chaotic region separated by the Myrberg-Feigenbaum 
point. Likewise, the chaotic region is divided in an infin- 
ity of chaotic bands B , separated by Misiurewicz points 
called separators, mn, . Each structural pattern 
of each chaotic band and each separator is determined by 
starting with the only datum of the pattern C, and by ap- 

As can be seen in 
gistic map, a R-

-m
 t

rightward 
ref , we have 

to

rst P onic of P

, 12 2n nnm M   

 

n

0 n  

plying the successive harmonics to the successive genes, 
what shows the power as calculation tool of the PRM 
harmonics. 

detail in [12], if we deal with the lo- 
map, instead of with the real Mandelbrot 

map, a L ap, the result is equivalent to what is shown in 
Figure 4. However, we have o take into account that in 
this case, the canonical direction of the logistic map is the 

direction, the canonical parity is the R-parity 
and the canonical rule is the relo rule (the ore

 interchange Ls and Rs).  
To finish this section, we shall see the PRM antihar- 

monics. 
Let P be a pattern. The fi RM antiharm , 
   1
PRMA P , is formed by ap  itself and chang- pending P to

ing the second C to R (or L) if the L-parity of P is even 
(or odd). The second PRM antiharmonic of P,    2

PRMA P , 
is formed by appending P to    1

PRMA P
-parity of 

 and 
second C to R (or L) if the L

changing the 
  1

PRMA P  is even 

M antihar- 
never 

t, although they
nt role in

p, to obtain

(or odd). And so on. 
As in the case of MSS an

monics are also a purely 
correspond to a periodic orbi  
have no real existence, the

ics. e ith the lo  
an

 
th

tiharm
form

t either. B
y play an

gistic map, a R

onics, PR
al construction and 

u
 importa

-ma

 
some cases, as we shall see later. However, in the case of 
the structural patterns that we have treated here only 
PRM harmonics are present. 

We are dealing with the real Mandelbrot map, a L-map, 
and we have to apply the relo rule to obtain antiharmon- 

If we w re w
tiharmonics we would have to apply the lero rule; that 

is, just the opposite than in the case of harmonics. 
As said before, there are two types of 1D quadratic 

maps, whose canonical direction are rightward for R-maps 
and leftward for L-maps. The canonical rule of a R-map is

e relo rule, and the canonical rule of a L-map is the lero 
rule. Harmonics (of MSS or PRM) are obtained by apply- 
ing the canonical rules, and they grow in the canonical 
direction. Likewise, antiharmonics (of MSS or PRM) are 
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obtained by applying the anticanonical rules, and they 
grow in the anticanonical direction. 

3. Harmonics in 2D Quadratic Maps 

In the same way as in Section 2 we reviewed harmonics 
(both MSS harmonics and PRM harmonics) in 1D quad- 
ratic maps, in this section we review both types of har- 
monics in 2D quadratic maps. The main difference be- 
tween both cases is that the identifiers are the symbolic 
sequences for the 1D case, and the EAs (which we only 
use here in the binary expansion form) for the 2D case.  

However, in both cases, the MSS harmonics calculate 
the identifiers of the period doubling cascade, placed in 
the periodic region, and the PRM harmonics calculate the 
identifiers of the last appearance HCs (LAHCs), placed 
in the chaotic region. As said before, the 2D quadratic 
map used here is the Mandelbrot set, which can be seen 
in Figure 5(a). Let us see next MSS harmonics in Sec- 
tion 3.1 and PRM harmonics in Section 3.2. 

3.1. MSS Harmonics 

For the 2D case, when we start from a period-p HC and 
we progress through its period doubling cascade, we find 
discs whose periods are 21·p, 22·p, 23·p, ... In the same 
way as MSS introduced the concept of harmonics in 1D 

y itself an
bviously we 

unimodal maps [23], by extension we call MSS harmon- 
ics of a HC of the Mandelbrot set to the set constituted 
b d all the discs of its period-doubling cascade 

refer to their identifier). (o
Let  1 2. , .a a  be the two EAs of a HC. By taking into 

account that the EAs of the period-2 disc are  .01, .10  
(see Figure 5(a)), it is easy to obtain the EAs of a MSS 
harmonic of  1 2. , .a a  from the tuning algorithm of 
Douady and Hubbard [21,32]. Therefore, we can define 
the MSS harmonics as follows: 

Let  1 2. , .a a  be the two EAs of a HC. The succes- 
sive MSS harmonics of the HC are given by:  

     0
1 2 1 2. , . . , .MSSH a a a a ,      1

1 2 1 2 2 1. , . . , .MSSH a a a a a a , 

     2
1 2 1 2 2 1 2 1 1 2. , . . , .MSSH a a a a a a a a a a

 

,  

   3
1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1. , . . , .MSSH a a a a a a a a a a a a a a a a a a , … 

   1 2. , .MSSH a a  are the EAs of the Myrberg-Feigenbaum 

point. This notable point has neither binary nor rational 
EAs. 

Example 1 
The EAs of the Mandelbrot set main cardioid are 

 .0, .1
of the s

. By applying the previous expressions, the EAs 
uccessive discs of the period doubling cascade of 

such a main cardioid can be calculated. The first MSS 
harmonics, up to the fourth, are:  

     0 .0, .1 .0, .1MSSH  ,      1 .0, .1 .01, .10MSSH  ,  

     2 .0, .1 .0110, .1001MSSH  ,  

     3 .0, .1 .01101001, .10010110MSSH   and  

     4 .0, .1 .0110100110010110, .1001011001101001MSSH  , 

as can be seen in Figure 5(a). 
Example 2 
If we start from the cardioid of any other midget, we 

can also calculate the EAs of the discs of its period dou- 
bling cascade. Look at Figure 5 where Figure 5(a) s ws ho
the Mandelbrot set; Figure 5(b) shows a sketch of the 
shrub (1 3 ) marked with the rectangle c in Figure 5(a); 
and Figure 5(c) shows the shrub (1 3 ) that is a magnify-  

cation of the mentioned rectangle c. Let  .00111, .01000   

be the EAs of the period-5 cardioid placed in the branch 
11 of the shrub (1 3 ) [33] (see firstly Figures 5(b) and 
5(c)). Figure 6(a) shows a magnification of the branch 11 
where this period-5 representative can be better observed, 
and Figure 6(b) shows an additional ma n of such 
a period-5 representative. The

gnificatio
 EAs of the successive discs 

of the period doubling cascade of such a period-5 cardioid 
can be calculated. Calculating the MSS harmonics, up to 
the third, we obtain:   

     0 .00111, .01000 .00111, .01000MSSH  ,      1 .00111, .01000 .0011101000, .0100000111MSS  ,  H

     2 .00111, .01000 .00111010000100MSSH 

 

00 ,  0111, .01000001110011101000

 3 .0011101000010
.00111, .01000

.010000011100111
MSSH


 


 
as can be seen in Figure 6(b). 

Antiharmonics of MSS seem again to have no interest, 
as we can deduce next from th

000

eir definition: 

011101000001110011101000,

0100000111010000100000111





,…,  

Let  1 2. , .a a  be the two EAs of a HC. The success- 
sive MSS antiharmonics of the HC are given by:  

     0 . , . . , .1 2 1 2MSSA a a a a ,      1 . , . . , .

     2
1 2 1 1 1 1 2 2 2 2. , . . , .MSSA a a a a a a a a a a ,… 

Therefore, all of them are the same, which is the start-
ing HC. 

3.2. PRM Harmonics 

1 2 1 1 2 2MSSA a a a a a a ,  Let us see now the PRM harmonics of a HC in this 2D case.  
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Figure 5. (a) Mand ot set with the first fourelbr  external argu
rnal a s. Shrub (1/3) is framed in rectangle c. (b) Sk

in (a). (c) Shrub (1/3) that is a magnification of the rec

ments of the period doubling cascade, and other significant ex-
te rgument etch o

tangle c mark
f the shrub (1/3) corresponding to the rectangle c marked 
ed in (a). 
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Figure 6. (a) Magnification of the branch 11 of the shrub (1/3) shown in Figures 5 (b) and (c), where the period-5 representa-
tive can be better observed. (b) Magnification of such a period-5 representative shown in the rectangle b marked in (a), with 
some of its important external arguments. 
 

Let  1 2. , .a a  
 expansion 

 

be the EAs of a HC given in form of 
binary [22]. The EAs of the order i PRM har- 
monics of  1 2. , .a a  are given by: 

   1 2 1 2 2 2 2 1 1 1. , . . , . .i
PRM

i i

H a a a a a a a a a a
 
 
 
 

 
 

   (1) 

When , Equation (1) calculates a se-
quence o Equation (1) becomes: 

0, 1, 2, 3,i  
f HCs. When i  , 

     1 2 1 2 2 2 2 1 1 1 1 2 2 1. , . . , . . ,.PRMH a a a a a a a a a a a a a a

 

 
  
 
 

 
 

 

(2) 
two preperiodic arguments, and therefore Misiurewicz 
points. 

In the 1D case, we obtained the harmonic structure 
through repeated application of the PRM harmonics. 

Similarly, in the 2D case Equation (1), applied to a 
given HC when 0, 1, 2, 3,i  

f 
inal HC. Indeed

). By applying Eq
M harmonics of G

se that normally n

, calculates a sequence of 
HCs which are the LAHCs o the corresponding chaotic 
band of the orig , let us analyze, as an ex-
ample, the main cardioid that we consider as a gene 
(see Figure 7 uation (1) we obtain
successive PR . For  we ob

, a trivial ca t will en into
count, for 

0G  
 the 
tain 
 ac-

0

o
0i 

 be tak0G
1i   we obtain

2i   we o

0 . If we apply n
isiurewicz point

 a new gene 
b
o
 

1G  in
e 

w Equation (

 the 
 regi tain th LAHCs of

chaotic band 2) to 
ain t

peri-
 the 

0G , 
odic

we obt

on, and for 
B

he M 1,1M , which
 is, 

 is th
xtrem   

e up- 
beper e e of the chaotic band 0B . That 0G  can 
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Figure 7. The neighbourhood of the main antenna of the Mandelbrot set with three chaotic bands, B0, B1 and B2, showing the 
EAs of their first LAHCs. Likewise, the main cardioid G0 and the discs of the period doubling cascade, G1, G2, ···, showing 
their EAs. 
 
considered the gene or generator of the chaotic band 
Likewise, by applying now Equation (1) to the new  

, we obtain, after the trivial case of , first a new 
in the periodic region, and t LAHCs o  

nd . If we apply now tion (2  
ain th siurewicz point 

0B . 
 gene

f
) to

1G
gene 

1G

0i 
hen the 

 Equa

2,1

2G  
the chaotic ba

, we obt
1B

e Mi M , wh
. That is, 

th
1) to
ew gen

ich
e  chaotic band 

ered th gene or generato e chaot  
. In neral, b ying Equat  a

, after th ial case, first a n e 

 is the 
 can 
band

nG

1

upper extrem
consid

 ge
tain

 of the
e 
y appl
e triv

1

r of 
on (

B

i

1G
ic 

 gene 

nG

be 

1B
we ob

 

  in

ob-
ppe

be

nB . 
oni

 

r 
 

c 

th
band
tain
extre
consi

e peri c regi d then
. If we a  now Equa

isiur oint

 the  ge
Wh we ha st seen

structure of the 1D case. However, since now we are in 
the 2D case, we only calculate the structure of the chaotic 
bands of the cardioid considered. Let us see two exam- 
ples, the first one applied to the main cardioid (see Fig- 
ure 7), and the second one to the period-5 midget of the 
branch 11 of the shrub 

odi
 nB

 the M
m
dered
at 

on, an
pply

ewicz p
e of the chaotic band 

gene or
ve ju

 the LAHCs of the chaotic 
 to 
ich

. That is, 
e chaotic
lar to the h

tion (2)
1

h
i

nG
 is th

nG

, we 
e u
 can 

 
arm

 
2 ,2n nM 

nB
nerator of t

 is sim

, wh

 band

(1 3 ) in the chaotic region (see 
Figure 6(b)). 

Example 1 
In Figure 7 we can see the neighbourhood of the main 

antenna of the Mandelbrot set with three chaotic bands, 
 and , and also the main cardioid  and 

scs of period doubling cascade, …. 
of t od-1 main cardioid, the g , are  

0B , 
the d
The E

1B
i
As 

2B
 the 
he peri

0G
, 2G

0G
1G

ene 
,

 0 .0, . 1G  . If Equation (1) is applied to this main car-

dioid,    .0, . 1i
PRMH , for 0, 1, 2, 3,i   , the sequence  

 .0, . 1 ,  .01, .10 ,  .011, .100 ,  

 .0111, .1000 ,  .01111, .10000 ,… 

is obtained. The values of this sequence (without taken 
into account the first one) are: first the gene , and 
then the LAHCs of the chaotic band . If no  ap-  

ply Equation (2), we obtain 

 1G
w we0B

     .0, . 1 .01,.10PRMH   , a  

Misiurewicz point, ,10 1m M , which is the upper ex- 
treme of  consider now  0B . Likewise, let us

     1 .01, .10 .01, .10PRMH   as a new gene  1 .01, .10G  . 

By applying Equation (1) to ,  1G    .01, .10i
PRMH  for 

0, 1, 2, 3,i   , we obtain the   sequence

 .01, .10 ,  .0110, .1001 ,  .011010, .100101 ,  

 0, .10010101 ,  .0110101

 1010, .1001010101 ,…

which corresponds to (after the obvious ) first the 
gene , and then the LAHCs of the ch band 
If no  apply Equation (2) we obtain  

.011010 ,  

1G
aotic 2G

w we
1B . 

     .01, .10 .0110,.1001PRMH   , a Misiurewicz point,  

,11 2m M , which is the upper extreme of B . Finally, we  

can consider 
1

     1 .01, .10 .0110, .1001PRMH   as a new 

gene  2 .0110, .1001G  . By applying Equation (1) to 

2G ,    .0110, .1001i
PRMH  for 0, 1, 2, 3,i   , we ob- 

tain the sequence  
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 .0110, .1001 ,  .01101001, .10010110 ,  

 .011010011001, .100101100110 ,  

 .0110100110011001, .1001011001100110 ,  

 .01101001100110011001, .10010110011001100110 …. 

After , these terms are first the gene  and then 
th of the chaotic band . By ap ing Equa-
tion (2 ain  

2G
e LAHCs 

) we obt

3G ,
ply2B

     .0110, .1001 .01101001,.10010110PRMH   , 

a Misiurewicz point, ,2 , which is the upper ex- 
treme of B2. And so ch that, in a general case, Gn 
generates the chaotic band Bn (not shown in the figure). 

Example 2 
Let us see the period-5 midget of the branch 11 of the 

shrub(

2 4m M
on, su

1 3 )
th

 shown in Figure 6(b) which is a magnifica- 
tion of e rectangle b shown in Figure 6(a). Let us con- 
sider this period-5 cardioid as a gene whose EAs are  

 0 .00111, .01000G  . 

If we apply Equation (1),  

       0 .00111, .01000i i
PRM PRMH G H , for 

we obtain the sequence  

0, 1, 2, 3,i   , 

 .00111, .01000 ,  .0011101000, .0100000111 ,  

 .001110100001000, .010000011100111 ,  

 .00111010000100001000, .01000001110011100111 ,…, 

whose terms (for ) are the LAHCs of the chaotic 
band . If now y Equation (2),  

2i 
we appl0B

     .00111, .01000 .0011101000,.0100000111PRMH   ,  

a Misiurewicz point, 0 5,5m M , which is both the tip of 
e dget and the upper e

void prob gure. 
Antiharmonics of PRM neither seem to have any in- 

terest, as in previous cases. Indeed, according t
definition: 

th  mi xtreme of 0B . As always, we 
can do the same procedure in order to calculate the 
LAHCs of the rest of the chaotic bands. We have not 
done it to a lems with the fi

o their 

Let  1 2. , .a a  be th
he E

e EAs of a HC given in form of 
binary expansions [22]. T As of the order i PRM an- 
tiharmonics of  . , .a a given by: 1 2  are 

    1 2 1 1 1 1 2 2 2 2 1 2. , . . , . . , .i
PRM

i i

A a a a a a a a a a a a a

 



 
 






  Equation (3) becomes: 

 

(3) 

When i  ,

     1 2 1 1 1 1 2 2 2 2 1 2. , . . , . . , .A a a a a a a a a a a a a

 

 
  
 
 

 
 

(4) 

The result in both equations is the starting HC. However, 
these concepts will be very useful in the next section. 

4. Pseudoharmonics and  
Pseudoantiharmonics in the 2D Case 

We have just seen that the PRM harmonics are a power- 
ful tool for calculating some EAs in 2D quadratic maps. 
However, we can go much further if we introduce an 
extension of these calculation tools, which we simply call 
pseudoharmonics and pseudoantiharmonics [35]. These 
new tools are applied to the EAs of two HCs, as we can 
see next. 

4.1. Introduction of Pseudoharmonics and  
Pseudoantiharmonics 

The introduction of pseudoharmonics and pseudoanti- 
harmonics can be seen in detail in [35]. Let us first in-  

troduce pseudoharmonics. Let  1 2. , .a a  be the external 

arguments of a HC, and let  1 2. , .b b  be the external  

arguments of other HC that is related with the first one, 
as will be seen later. The external arguments of the order  

i pseudoharmonics of  1 2. , .a a  and  1 2. , .b b  are: 

     1 2 1 2 1 2 2 2 2 1 1 1. , . ; . , . . , .i

i i

PH a a b b a b b b a b b b
 

      
 

 
 

 

(5) 

When 0, 1, 2, 3,i  
of HCs that we

, Equation (5) calculates a se- 
quence  shall determin afterwards. When e 
i  , Equation (5) becomes: 

     

                                           . , .a b a b

 
 
 



   
1 2 1 2 1 2 2 2 2 1 1 1. , . ; . , . . , .PH a a b b a b b b a b b b       

1 2 2 1

(6) 
Equation (6) calculates a pair of external arguments of 

a Misiurewicz point. Later we shall analyze this result in 
every possible case. 

Let us now introduce pseudoantiharmonics. Let  

 

 1 2. , .a a  be the external argu ents of a C, and let m H

 1 2. , .b b  b e external arguments of ther HC, that is  

related with the first one. The external arguments of the 

order i pseudoantiharm cs of 

e th  o

 

oni  1 2. , .a a  and  1 2. , .b b  

are: 
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     1 2 1 2 1 1 1 1 2 2 2 2. , . ; . , . . , .i

i i

PA a a b b a b b b a b b b
 

      
 

 
 

 

(7) 
When , Equation (7) calculates a se- 

quence  and not the starting HC as in the case of 
Equatio e, although PRM antiharmonics 
seemed t ey have been useful in order to 
introdu onics. When , Equation 
(7) becomes: 

0, 1, 2, 3,i  
of HCs,
n (3). Therefor
o be of no use, th

ce pseudoantiharm i 

     

 

1 2 1 2 1 1 1 1 2 2 2 2

1 1 2 2

. , . ; . , . . , .

                                         . , .

PA a a b b a b b b a b b b

a b a b



 

 
      

 



 
   

(8) 
Equation (8) calculates a pair of EAs of a Misiurewicz 

point, and not the starting HC as in the case of Equation 

late more EAs. 

n e, h
av  

(4). Again PRM antiharmonics are suitable to introduce 
pseudoantiharmonics that, as we shall see, are very use- 

l to calcufu
Pseudoharmonics and pseudoantiharmonics are, as has 

been said, a generalization of PRM harmonics and PRM 
a tiharmonics in the 2D case; therefor t ese two last 
ones h e to be a particular case of the two first ones. In- 

deed, when    1 2 1 2. , . . , .b b a a , Equations (5), (6), (7) and  

(8) become Equations (1), (2), (3) an  (4). Thus, in this 
case, pseudoharmonics and pseudoantiharmonics have 
become PRM harmonics and PRM antiharmonics. Let us 
see it from other approach. Pseudoharmonics and pseu-
doantiharmonics are applied to two HCs whereas PRM 
harmonics and PRM antiharmonics are applied to only 
one HC. However, PRM harmonics and PRM antihar-
monics can be thought as pseud harmonics and pseudo-
antiharmonics where their two HCs are the same. 

d

o

4.2. Some Considerations to Calculate  
Pseudoharmonics and Pseudoantiharmonics 

To apply what we have seen so far, we shall briefly re- 
member some concepts that can be seen in detail in [35]. 

We call a descendant [35] of  1 2. , .a a  and  1 2. , .b b  

to any of the H

 

Cs obtained from Equations (5) and (7). 
Li zone occupied by all the descendants cal- 
cu

firs air

kewise, the 
lated by using these equations is the zone of descen- 

dants [35]. In other to calculate a descendant, given the  

t p ,  1 2. , .a a , the second pair cannot be any  2, .b . 

Indeed, 

1.b

 1 2. , .b b  has to be an ancestor [35] of  1 2. ,a a . .

Let us briefly see the ancestors of  . , .a a , which will 

be used ation o onics and pseu- 

1 2  

 in the calcul f pseudoharm

doantiharmonics (descendants). The second pair  

 1 2. , .b b  is an ancestor of the first pair  1 2. , .a a  if 

 1 2. , .a a  is a descendant of  1 2. , .b b  and  1 2. , .c c , 

where  1 2. , .c c  itself is an ancestor of  1 2. , .b b . Note  

that any HC is an ancestor of itself. Note also that the 
ancestor of a HC has lesser or equal period than the pe- 
riod of such a HC. In order to determine the ancestors of  

 1 2. , .a a , next we shall remember some points. 

As known from [33,36], the shrub of the n-ary hyper-  

bolic component 1

1

1
1

N

N

qq
p p

  , shrub( 1

1

1
1

N

N

qq
p p

  ), has n  

subshrubs or chaotic bands, 1 NS S
gene or 

, each one of them 
generated by one HC called generator [33,35,36] 
of the chaotic band or subshrub. The generator of the last  

subshrub, , is the main cardioid 1
NS , that is e first 

1

component of the generation route of 

th

11
11

N

N

qq
  . The 

p p
 

generator of the last but one su ub, , is the pri-  

mary disc 

bshr 1NS 

1

1

1
1

q
, that is the se  component of the cond

p

generation route of 1

1

1
1

N

N

qq
p p

  . Likewise, the generator 

of S 2N  , is the secondary disc 1 2

1 2

1 q q
1 p p
  , that is the 

third component of the generation route of 11
1 1

N

N

qq
  ,  

p p

and so on. Finally, the gen  subshrub, S  erator of the first 1, 

is the (N-1)-ary disc 11

1 1

1
1

N

p p
  , om- 

eneration ro e of 

N

qq 



that is the Nth c

ponent of the g ut 11 N

11 N

q
p p

. Hence, in  

general, the generator of the subshrub is the (N-i)-  

ary disc

q
 

 iS  

 1

1

1
1

N i

N i

qq
p p





  , that is the (N-i+1)th component 

of the generation route of 1

1

1
1

N

N

qq
p p

  . 

Let  1 2. , .a a  be the representative of a branch (whose 
branch associated number is . 
The first ancestor of 

 1 2 md d d  [33]) of iS
 1 2. , .a a  is the generator  

1

11
1 N i

N ip p
qq 



   iS  where  

the br  found. The second, third, …  

of the chaotic band or subshrub 

anch is

ancestors of 

 1 2 md d d  

 1 2. , .a a  are: 11

1

1
1

N i

1 N i

 

 

 ,  
qq

p p


211
1

N iqq
p p

 

1 2N i 

in the generation route of    , … , 
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1

1

1
1

N

N

qq
p p

  , up to 11

1 1

1
1

N

N

qq
p p





   and 1

1

1
1

N

N

qq
p p
 , all  

of them in the periodic region. T lowing ancestors  

of 



he fol

 1 2. , .a a , now in the chaotic region, he repre-  

sentatives of the branches …, 
can be seen, all the ancestors o e in

 th bs
 

are t

. As 
 

 1d , 1 2d d ,
of the cha

1 2 md d d
tic region ar

Si, and ere is no one in the other subshru . What we 
call ancestor route includes all the ordered ancestors of 

 1 2. , .a a  from the generator 1

1

1
1

N i

N i

qq
p p





   to  

1

1

1
1

N

N

qq
p p

   in the pe ion, followed by the rep-  

resentatives of the branches 1d , 1 2d d ,…, 1 2 md d d  in 
th ion. 

riodic reg

on

e chaotic reg

4.3. Z es of Descendants 

As can be seen in detail in [35], depending on the ances- 
tor  1 2. , .b b  we shall have a different zone of descen- 
dants. Let us see the most important cas . es

1st case:  1 2. , .b b  is the first ancestor 

If  1 2. , .a a  is the representative ch  

 of , the first ancestor of 

of the bran

1 2 m id d d S  1 2. , .a a ,  

 1 2. , .b b , is the neratorge  1

1

1
1

N i

N i

qq
p p





   of 5]. In 

this case, 

 iS  [3

    1 2 1 2. , . ; . , .iPH a a b b 
    ca the rep-  

resentatives of the branches hat i   

an nd so on. Ob- 
viously, wh

lculates 

. T 1 2 1 1m
i

d d d  s to

say, it successively calculates first the representative of 
the branch 1 2 md d d , and then the representatives of 
the br ches 1 2 1md d d , 1 2 11md d d , a

en i   one has:  
       1 1 2 2 1. , . . , .PH a a a b a b   

that is the pair of external arguments  the Misiurewicz 
point placed in the upper extreme of the branches 

1 2 11md d d  . Therefore,  
 

2 1 2; . , .b b  

of

    . , . ; . , . .PH a a b b a b    1 2 1 2 1 2 2 1, .a b   

calculates the upper extreme of the zone of descendants  

of  . , .a a1 2  and  1 2

 

. , .b b , and  

   1 2 1 2. , . ; . , .iPH a a b b 
   calculates de LAHCs in that 

zone. The zone ndants finishes in a

 

 of desce  tip or upper 
extreme of ; therefore, this zone of descendants cov-
ers the wh ubshrub 

2nd case: 

iS
ole s

 

iS . 
 1 2. , .b b  is the second ancestor,  

11

1 11

 1 2. , .a a  be the representative of a branch  

 of . Since the first ancestor is  

1 N i

N ip p  


qq    

Let 

1 2 md d d iS

1

1

1
1

N i

N i

qq
p p





  , that is the generator of iS , the second 

ancestor is 11

1 11
N i1
N ip p

qq  

 

  . Let  1 2. , .b b  be the external  

arguments of this second ancestor. Then  
     1 2 1 2. , . ; . , .PH a a b b  

   and  

     1 2 1 2. , . ; . , .PA a a b b  
    

respectively calculate the upper and lower extremes of  

the zone of descendants of  1 2. , .a a  and  1 2. , .b b . And, 

in this case, the zone of descendants is the branch 

1 2 md d d . On the other hand,  
     1 2. , . ; . , .iPH a a b b1 2
 
   and  

     1 2 1 2. , . ; . , .iPA a a b b 
  , 0, 1, 2, 3,i   ,  

respectively calculate the LAHCs i  increasing and 
decreasing directions of the bran d . 

3rd case: 

n the
ch 1 2 md d

 1 2. , .b b  is the third, fourth, …, ancestor  

(except for the last one). 

Let  1 2. , .a a  be the representative of a branch  

1 2 md d d  of iS . Its ancestors in the periodic region are:  

1

1

1
1

N i

N i

qq 11

1 1

1
1

N i

N i

qq
p p

 

 

 
p p

  , 


,  

21

1 2

1
1

N i

N i

qq
p p

 

 

  , …, 1

1

1
1

N

N

qq
p p

  ,  

an cestors in the c
 

fore, t

d its an haotic region are the representa- 
tives of the branches 1d , 1 2d d , …, 1 2 md d d . There- 

he third ancestor is 211 q


1 21
N i

N i

q
p p

 

 

  if we are still  

in the periodic region, and the representative of the 
branch if we are not. Now,  1d  

     1 2 1 2. , . ; . , .PH a a b b  
 

 

 and  

   1 2 1 2. , . ; . , .PA a a b b  
    

respectively calculate the upper and lower extremes of 

the zone of descenda

 

nts of  1 2. , .a a  and  1 2. , .b b , that  

in her 
hand,  

 this case is a sub-branche of d d d . On the ot1 2 m

     1 2 1 2. , . ; . , .PH a a b bi  
   and  

     1 2 1 2. , . ; . , .iPA a a b b 
  , 0, 1, 2, 3,i   ,  

respectively calculate the LAHC  
decre

s in the increasing and
asing directions of this sub-branch of . 1 2 md d d
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   1 2 1 2. , . . , .b b a a . 4th case: 

As was already seen, when    1 2 1 2. , . . , .b b a a  Equa-  

tions (5), (6), (7) and (8) become Equations (1), (2),
an ence pseudoha

 to an
ely the upper extreme and the LAHCs of 

the chaotic band associated to any disc. 

4.4. Applications 

Let us see an example for each of the four previous cases. 
Let us consider again the period-5 HC  

 (3) 
d (4), h rmonics and pseudoantiharmon-

ics become PRM harmonics and PRM antiharmonics. 
Therefore, in this case, by using pseudoharmonics and 
pseudoantiharmonics one can calculate the two extremes 
and the LAHCs of the midget associated y cardioid, 
and alternativ

   1 2, . .00111, .01000 , that is the representative

the branch 11 of the shrub (

.a a   of 

1 3 ). We help us with Figure 
5, which shows such a shrub (1 3 ), and with Figure 6 
whose part (a) is a magnification of the branch 11, and 
whose part (b) is an additional magnification of the pe- 
riod-5 representative. If one starts from  

   1 2. , . .00111, .01000a a  , the possible values of  

 1 2. , .b b  are, as seen before:  .0, . 1  and  .001, .010  

in the periodic region, and  11, .0100  and  .00

 .00111, .01000  in 1S , that is the only subshrub of the 

chaotic region. 

4.4.1. First Example 

Let us begin with    1 2. , . .0, . 1b b  , which corresponds 

to the 1st case because  1 2. , .b b  is the generator of 1S , 

and therefore the first ancestor.  
      .00111, .01000 ; .0, . 1 .001,PH     

e Misiurewicz point 2,1

.010  

is th M  placed in the upper ex- 
treme of the branch 111 , ftip (1 3 ), that is the upper 
extreme of the increasing part of the zone of descendants  

of    .00111, .01000 ; .0, . 1 
  , a  clearly seen in s can be

Figures 5(b), 5(c), and 6(a).  
     .00111, .01000 ; .0, . 1iPH  
   calculates  

 .00111, .01000 ,  .001111, .010000 ,  

 . .0100000 , …,  

which ar HCs in this increasing part of  o

0011111,

e the LA  the zone f 
de he repre
th ast one i

 

scendants, or, what is the same, t sentatives of 
e branches 11, 111 and 1111 (the l s not shown 

in the figure). In general, the increasing part of the zone of 

descendants starts from  . , .a a , that is the repr1 2

the branch d d d , and it reaches per 
of its chaotic band by ng the s 

1 2 d d d
only ca ich pseudoantiharmonics can not be used 

esenta-  

tive of  the up
extreme followi branche

, …. This is the 
n

1 2 m

1m , 1 2d dmd d d
se i

1 2
 wh

11md ,

in order to calculate the decreasing part of the zone of de-  

scendants of    .00111, .01000 ; .0, . 1 
  . 

4.4.2. Se

Le

cond Example 

t us go on with    1 2. , . .001, .010b b  , that corresponds 

to the 2nd case in w  2.b  is th ncestor, 1. ,b e second ahich 

corresponding to 1

1

1
1

N

N

qq
p p

  , that in this case is the last  

ancestor in the periodic region. The upper and lower ex-
tremes of t zone of descendants of  he 

   .00111, .01000 ; .001, .010   are   
     

 
.00111, .01000 ; .001, .010 

      0111010, .01000001    and

PH 



.0




  

     
        .0011 01 ,

.00111, .01000 ; .001, .010

100, .01000

PA   
 


 

that  the Misiurewicz points 5,1M  an are d 4,1M , ex- 
trem branch 11 (see Figures 5(c  6(a)). As 
always,  

 

es of the ) and

   .00111, .01000 ; .001, .010iPH    and   
     .00111, .01000 ; .001, .010iPA  
 

calculate the LAHCs in t part  

(

  

he increasing 

 .00111, .01000 ,  00001 , .00111010, .010

 .00111010010, .01000001001 ,…) and in the decreas- 

ing part (  0 ,  .00111001, .01000010 ), .00111, .0100

 .00111001001, .01000010010 ,

scendants of 

…) of the zone of de- 

   .00111, .01000 ; .001, .010 
 

the branch 11. 

4.4.3. Third Exampl

, in this case 

e 

Let us go on with    1 2. , . .0011, .0100b b   (th 3rd case e 

in which  1 2, .  is .b b the third ancestor).  .0011, .0100   

is the represe f the br  firsntative o anch 1, i.e. the t ancestor 
in the chaotic r es 
of the zone of d

egion 1S . The upper and lower extrem
escendants of  
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  1000 ; .0  are  .00111, .0 011, .0100 
 

     
   .001110100, .010000011        and

  
.00111, .01000 ; .0011, .0100PH   

 

       

     
 
.00111, .01000 ; .0011, .0100

        .0011100, .0100001 ,

PA   
 


  

that are the Misiurewicz points 5,2M  and 3,2M , which 
are the e
Figure 6(a)). This sub-branch is ca

xtremes of a sub-branch of the branch 11 (see 
lled  m1 1 2sub dd d .  

Again,  
     .00111, .01000 ; , .010PH 
  

 

.0011 0i  and 


   1, .01000 ; .0011, .0100 
   

easing part  

.0011iPA 


calculate the LAHCs in the incr

(  .00111, .01000 ,  .001110100, .010000011 , 

 .0011101000100, .0100000110011 ,…) and in the de-

creasing part ( .00111, .01000 , 1, .010000100 , .00111001

 001 011, .0100001000100 ,…) of the zone. 1100110  of  

descendan s ts of uch a sub-branch, m1 1 2su db d d 
, although only pe
If w e in a case 

, in 
both cases with periods 5, 9, 13, … ri-
ods 5 an e figure. 
where 

d 9 are shown in th e wer
 1 2. , .b b  is the fourth ancest last  or (but not the 

one), then      1 2 1 2. , . ; . , .PH a a b b 
 

  and  

     . , . ; . , .PA a a b b    w r and  1 2 1 2 ould be the uppe 
lower extremes of the zone of descendants of  

  1 2 1. , . ; .a a b
 ich isiurewicz points  

that are the ex  of a sub-bra

2, .b 
 , wh  are the M

tremes nch 2 1 2 msub d d d  
 mof the previous sub-branch 1 1 2sub d d d . And so on. 

4.4.4. Fourth Example 
Finally, let us see the nth case, that corresponds to  

   1 2. , . .00111, .01000b b  , i.e. when  

   1 2 1 2. , . . , .b b a a . The upper and lower extremes of the  

zon endante of desc s of  

   .00111, .01000 ; .00111, .01000



  are  

     
 
.00111, .01000 ; .00111, .01000

         .0011101000, .0100000111       and

PH   
 


  

     
 
.0011

        .00111, .01000 ,

 
 


  

that are the tip a  to  

1, .01000 ; .00111, .01000PA 

nd the cusp of the midget associated

     1 2 1 2. , . .00111, .01000b  , the first. , .a a b  one a  

Misiurewicz point 5,5M  and the second one the cusp of 

the original HC      1 2. . , . .00111, .01000b b    

 6(b)). As alwa

1 2, .a a

(see Figure ys,  
     .00111, .01000 ; .001, .010PH i  
   calculates the  

LAHCs of the increasing part of the zo dants ne of descen

(  .00111, .01000 ,  .0011101000, .0100000111 , 

 .001110100001000, .010000011100111 , 

 .00111010000100001000, 111001 1 ,…). .0100000 110011

scendants e cusp of 

5. Conclusions 

dratic maps, both 1D 
qu ps and 2

 by experimental scientists, to 
 this paper. 

vie aps, 
in particul  h
by MSS. Give rio e M
the symbolic sequence of this orbit calculate the sym- 
bolic sequences of the period doubling cascade of the 
orbit. Metropolis, Stein and  introduced the first 
time this type of calculation and the concept of harmon- 

n , Pas mera and 
introduced the PRM harmonics. These type of harmonics 

the calculation

 band where 
the original orbit is. Thus, if we start fro iod-1 or- 
bit, we can calculate the structure of a 1D quadratic map. 

Both, MSS harmonics and PRM ha  rede- 

rs instead of
 the external argument

nd the PRM ha
AHCs of its chaotic 

Pseudoharmonics and pseudoantihar w  are 
an expansion of PRM harmonics and PRM antiharmoni
in the case of 2D quadratic maps, are a  reviewed. The

d make possi- 

This increasing part coincides with all the zone of de- 
scendants because the decreasing part of the zone of de- 

becomes a point, th the original HC. 

We review a branch of the harmonic analysis applied to 
dynamical systems. We focus on discrete dynamical sys- 
tems, and more specifically on qua

adratic ma D quadratic maps, since these maps 
are the most widely used
whom we have addressed

We first re w the applications in 1D quadratic m
ar the armonics and antiharmonics introduced 

n a pe dic orbit, th SS harmonics of 

 Stein  for 
, 

ics in dynamical systems. 
Based on MSS harmo ics tor, Ro Montoya 

expand the possibilities of s. So, given the 
symbolic sequence of a periodic orbit, the PRM harmonics 
of this orbit are the symbolic sequences of the infinity of 
last appearance periodic orbits of the chaotic

m the pe

rmonics are
fined in order to can be used in 2D quadratic maps where 
external arguments are used as identifie  
symbolic sequences. Given s of a 
cardioid, the MSS harmonics calculate the EAs of the 
discs of its period doubling cascade, a r- 
monics the EAs of its L band 

monics, 
cs 

lso se 

0B . 
hich

new calculation tools are notably more powerful than 
PRM harmonics and PRM antiharmonics an
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ble the calculation of LAHCs in w zones of descendants. 

6.

on Neumann, “On Combination of Sto-
inistic Processes,” Bulletin of the 

[3] R. M. May, “Simple M
Complicated Dynamics,”

0
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