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Abstract
Weyl–Heisenberg ensembles are translation-invariant determinantal point processes on R

2d

associatedwith the Schrödinger representation of theHeisenberg group, and include as exam-
ples the Ginibre ensemble and the polyanalytic ensembles, which model the higher Landau
levels in physics. We introduce finite versions of the Weyl–Heisenberg ensembles and show
that they behave analogously to the finite Ginibre ensembles.More specifically, guided by the
observation that the Ginibre ensemble with N points is asymptotically close to the restriction
of the infinite Ginibre ensemble to the disk of area N , we define finite WH ensembles as
adequate finite approximations of the restriction of infinite WH ensembles to a given domain
�. We provide a precise rate for the convergence of the corresponding one-point intensities
to the indicator function of �, as � is dilated and the process is rescaled proportionally
(thermodynamic regime). The construction and analysis rely neither on explicit formulas
nor on the asymptotics for orthogonal polynomials, but rather on phase-space methods. Sec-
ond, we apply our construction to study the pure finite Ginibre-type polyanalytic ensembles,
which model finite particle systems in a single Landau level, and are defined in terms of
complex Hermite polynomials. On a technical level, we show that finite WH ensembles pro-
vide an approximate model for finite polyanalytic Ginibre ensembles, and we quantify the
corresponding deviation. By means of this asymptotic description, we derive estimates for
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the rate of convergence of the one-point intensity of polyanalytic Ginibre ensembles in the
thermodynamic limit.

Keywords Landau level · Polyanalytic Ginibre ensemble · Hyperuniformity ·
Weyl-Heisenberg ensemble · Phase-space · Time-frequency analysis

1 Introduction

1.1 Weyl–Heisenberg Ensembles

We study the class of determinantal point processes on R
2d whose correlation kernel is given

as

Kg((x, ξ), (x ′, ξ ′)) =
∫
Rd

e2π i(ξ
′−ξ)t g(t − x ′)g(t − x)dt (1.1)

for some non-zero (normalized) function g ∈ L2(Rd) and (x, ξ), (x ′, ξ ′) ∈ R
2d . These deter-

minantal point processes are called Weyl–Heisenberg ensembles (WH ensembles) and have
been introduced recently in [8]. They form a large class of translation-invariant hyperuniform
point processes [36,55,61].

Theprototypeof aWeyl–Heisenberg ensemble is the complexGinibre ensemble.Choosing
g in (1.1) to be the Gaussian g(t) = 21/4e−π t2 and writing z = x + iξ, z′ = x ′ + iξ ′, the
resulting kernel is then

Kg(z, z′) = eiπ(x ′ξ ′−xξ)e−
π
2 (|z|2+|z′|2)eπ zz′ , z = x + iξ, z′ = x ′ + iξ ′. (1.2)

Modulo conjugation with a phase factor, this is essentially the kernel of the infinite Ginibre

ensemble K∞(z, z′) = e− π
2 (|z|2+|z′|2)eπ zz′ . Another important class of examples arises by

choosing g to be a Hermite function. In this case one obtains a pure polyanalytic Ginibre
ensemble [8,57], which models the electron density in a single (pure) higher Landau level
(see Sect. A.5 for some background).

The Ginibre ensemble with kernel K∞ arises as limit of corresponding processes with N
points, whose kernels

KN (z, z′) = e−
π
2 (|z|2+|z′|2) N−1∑

j=0

(
π zz′

) j

j ! , (1.3)

are obtained simply by truncating the expansion of the exponential eπ zz′ . It is not obvious how
to obtain the analogous finite-dimensional process for a general Weyl–Heisenberg ensemble
(1.1), because for most choices of g ∈ L2(Rd) there is no treatable explicit formula available
for Kg . We present a canonical construction of finite Weyl–Heisenberg ensembles and show
that they enjoy properties similar to the finiteGinibre ensemble. The construction and analysis
is based on spectral theory of Toeplitz-like operators and harmonic analysis of phase space.

The abstract construction is instrumental to study the asymptotic properties of a particu-
larly important class of finite-dimensional determinantal point processes, namely the finite
pure polyanalytic Ginibre ensembles, which model the electron density in higher Landau
levels. This is an example where the Plancherel–Rotach asymptotics of the basis functions
are not available. Moreover, the relevant polynomials do not satisfy the classical three-term
recurrence relations which are used in Riemann–Hilbert type methods [25,27]. We develop
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1106 L. D. Abreu et al.

a new approach based on spectral methods and harmonic analysis in phase space and show
that the finite WH ensembles associated with a Hermite function are asymptotically close to
finite polyanalytic ensembles. Thus, our analysis of the finite polyanalytic ensembles has two
steps: (i) the abstract construction of finite WH ensembles and their thermodynamic limits;
(ii) the comparison of the finite WH ensembles associated with Hermite functions and the
finite pure polyanalytic ensembles.

1.2 Planar Hermite Ensembles

The complex Hermite polynomials are given by

Hj,r (z, z) =
⎧⎨
⎩

√
r !
j !π

j−r
2 z j−r L j−r

r
(
π |z|2) , j > r ≥ 0,

(−1)r− j
√

j !
r !π

r− j
2 zr− j Lr− j

j

(
π |z|2) , 0 ≤ j ≤ r ,

(1.4)

where Lα
r denotes the Laguerre polynomial

Lα
j (x) =

j∑
i=0

(−1)i
(
j + α

j − i

)
xi

i ! , x ∈ R, j ≥ 0, j + α ≥ 0. (1.5)

Complex Hermite polynomials satisfy the doubly-indexed orthogonality relation∫
C

Hj,r (z, z)Hj ′,r ′(z, z)e−π |z|2dz = δ j j ′δrr ′,

and form an orthonormal basis of L2
(
C, e−π |z|2

)
[4].1

The complex Hermite polynomials form a complete set of eigenfunctions of the Landau
operator

Lz := −∂z∂z + π z∂z (1.6)

acting on the Hilbert space L2(C, e−π |z|2). The Landau operator is the Schrödinger operator
that models the behavior of an electron in R

2 in a constant magnetic field perpendicular to
the C-plane. The spectrum of Lz , i.e., the set of possible energy levels, is given by σ(Lz) =
{rπ : r = 0, 1, 2, . . .} and the eigenspace associated with the eigenvalue rπ is called the
Landau level of order r . For the minimal energy r = 0, i.e., the ground state, the eigenspace
is the classical Fock space, for r > 0, the eigenspaces are spanned by the orthonormal basis
{Hj,r : j ∈ N}. The Landau levels are key for the mathematical formulation of the integer
quantum Hall effect discovered by von Klitzing [64].

Wewill consider a variety of ensembles associatedwith the complexHermite polynomials.

Definition 1.1 Let J ⊆ N0 × N0. The planar Hermite ensemble based on J is the determi-
nantal point process with the correlation kernel

K (z, z′) = e−
π
2 (|z|2+|z′|2) ∑

j,r∈J
Hj,r (z, z) Hj,r

(
z′, z′

)
. (1.7)

Complex Hermite polynomials are an example of polyanalytic functions—that is, poly-
nomials in z with analytic coefficients (see Sect. A.4). While most classes of orthogonal
polynomials satisfy a three-term recurrence relation—which puts them in the scope of

1 Perelomov [53] mentions that (1.4) has been used by Feynman and Schwinger as the explicit expression
for the matrix elements of the displacement operator in Bargmann-Fock space.
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Riemann-Hilbert type techniques [25,27]—the complex Hermite polynomials satisfy instead
a system of doubly-indexed recurrence relations [34,45].

Several important determinantal point processes arise as special cases of (1.7). First, since

Hj,0(z, z) = (π j/ j !) 1
2 z j , the set J = {0, . . . , N − 1} × {0} in (1.7) leads to the kernel

of the Ginibre ensemble (1.3). A second important example arises for J := {( j, r) : 0 ≤
j ≤ n − 1, r = m − n + j} with n,m ∈ N. The corresponding one-point intensity is a
radial version of the marginal probability density function of the unordered eigenvalues of
a complex Gaussian Wishart matrix after the change of variables t → π |z|2, see, e.g. [62,
Theorem 2.17]. Thirdly, choosing J = {0, . . . , N − 1} × {0, . . . , q − 1} one obtains the
polyanalytic Ginibre ensemble introduced by Haimi and Hedenmalm [40]. The polyanalytic
Ginibre ensemble gives the probability distribution of a system composed by several Landau
levels. The case of more general interaction potentials has been investigated in [40,41],
by considering polyanalytic Ginibre ensembles with general weights. These investigations
parallel the ones of weighted Ginibre ensembles [9–11].

We are particularly interested in finite versions of the infinite pure polyanalytic ensembles
defined by Shirai [57]. The infinite ensembles are defined by the reproducing kernels of an
eigenspace of the Landau operator (1.6) which is given by

Kr (z, z
′) = L0

r (π
∣∣z − z′

∣∣2)eπ zw−π
2 (|z|2+|z′|2) = e−

π
2 (|z|2+|z′|2) ∞∑

j=0
Hj,r (z, z) Hj,r

(
z′, z′

)
.

Here the second identity follows from the fact that
{
Hj,r (z, z)

}
j∈N spans the r th eigenspace

of the Landau operator. The corresponding finite pure polyanalytic ensembles can now be
defined as planar Hermite ensembles with J = {0, . . . , N −1}× {r}. In analogy to (1.3), the
finite (r , N )-pure polyanalytic ensemble is the determinantal point process with correlation
kernel

Kr ,N (z, z′) = e−
π
2 (|z|2+|z′|2) N−1∑

j=0
Hj,r (z, z) Hj,r

(
z′, z′

)
. (1.8)

While pure polyanalytic ensembles describe individual Landau levels, their finite counterparts
model a finite number of particles confined to a certain disk (for example, as the result
of a radial potential). In this article, we prove the following theorem, which supports this
interpretation, and provides a rate of convergence for the one-point intensity related to each
Landau level.

Theorem 1.2 Let ρr ,N (z) = Kr ,N (z, z) be the one-point intensity of the finite (r , N )-pure
polyanalytic Ginibre ensemble. Then, for each r > 0,

ρr ,N

(√
N
π
·
)
−→ 1D, (1.9)

in L1(R2), as N −→ +∞. Moreover,∥∥ρr ,N − 1D√N/π

∥∥
1 ≤ Cr

√
N . (1.10)

The convergence rate in Theorem 1.2 is independent of the energy level r of the Landau
operator. It is known to be sharp for the first Landau level r = 0, and we believe that (1.10)
is also sharp for all Landau levels r ∈ N.2,3

2 The first Landau level is also called ground level because it corresponds to the lowest energy.
3 See also [51, Proposition 14] and [20], where it is pointed out that the sharp rate for the ground level also
follows from pointwise estimates for Bergman kernels [60].
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1108 L. D. Abreu et al.

In statistical terms, (1.10) means that the number of points of the (r , N )-pure polyanalytic
Ginibre ensemble that belong to a certain domain A ⊆ C, nr ,N (A), satisfies

E{nr ,N (A)} =
∣∣∣D√

N/π ∩ A
∣∣∣+O(√

N
)
. (1.11)

Theorem 1.2 supports and validates the interpretation of finite pure polyanalytic ensembles
as models for N particles confined to a disk by giving asymptotics for the first order statistics
(1.11) that indeed show concentration on the disk area N , up to an error comparable to the
perimeter of that disk. In addition, (1.11) implies that, after proper rescaling, the particles
are, in expectation, asymptotically equidistributed on the disk. This statistical description is
consistent with the notion of a filling factor of each Landau level—that is, a certain limit
to the number of particles that each level can accommodate. The incremental saturation
of each individual Landau level, corresponding to incremental energy levels, is part of the
mathematical description of the integer quantum Hall effect discovered by von Klitzing [64].
(The integer quantum Hall effect is not to be confused with the fractional quantum Hall
effect, whose mathematical formulation is related to the Laughlin’s wave function [48] and
the so-called beta-ensembles [18,19].)

As a first step towards a description of finite pure polyanalytic ensembles, we introduce
a general construction of finite versions of Weyl–Heisenberg ensembles that may be of
independent interest.

1.3 FiniteWeyl–Heisenberg Ensembles

The construction of finite WH ensembles relies on methods from harmonic analysis on
phase space [32,33], and on the spectral analysis of phase-space Toeplitz operators. Write
z = (x, ξ) ∈ R

2d , z′ = (x ′, ξ ′) ∈ R
2d for a point in phase space and

π(z) f (t) := e2π iξ t f (t − x) (1.12)

for the phase-space shift by z. Then the kernel in (1.1) is given by

Kg(z, z′) = 〈π(z′)g, π(z)g〉. (1.13)

Let us now describe the construction of the finite point processes associated with the kernel
Kg . For normalized g ∈ L2(Rd), ‖g‖2 = 1, the integral operator with kernel Kg , i.e.,
F �→ ∫

R2d K g(z, z′)F(z′)dz′, is an orthogonal projection (see for example [32, Chapter 1],
[38, Chapter 9]). Consequently, the range of this projection is a reproducing kernel Hilbert
space Vg ⊆ L2(R2d) with the explicit description

Vg =
{
F ∈ L2(R2d) : F(z) = 〈 f , π(z)g〉, for f ∈ L2(Rd)

} ⊆ L2(R2d).

Thus every F ∈ Vg is a phase-space representation of a function f defined on the configu-
ration space R

d .
Step 1: Concentration as a smooth restriction LetX g be aWH ensemble (with correlation

kernel Kg) and let� ⊆ R
2d be ameasurable set. The restriction ofX g to� is a determinantal

point process (DPP) X g
|� with correlation kernel

Kg |�(z, z′) = 1�(z)Kg(z, z′)1�(z′). (1.14)
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An expansion of the kernel Kg |� can be obtained as follows. We consider the Toeplitz
operator on Vg defined by

Mg
�F(z) =

∫
�

F(z′′)Kg(z, z′′) dz′′ . (1.15)

Since F(z′′) = ∫
R2d F(z′)Kg(z′′, z′) dz′ for F ∈ Vg , M

g
� can be expressed as an integral

operator

Mg
�F(z) =

∫
R2d

F(z′′) 1�(z′′)Kg(z, z′′) dz′′ (1.16)

=
∫
R2d

F(z′)
[∫

R2d
K g(z, z′′)1�(z′′)Kg(z′′, z′) dz′′

]
dz′. (1.17)

By definition (1.15), Mg
� acts on a function F ∈ Vg by multiplication by 1�, followed by

projection onto Vg . On the other hand, if F ∈ V⊥g , then the expression in (1.17) vanishes.

Thus, the formula in (1.17) defines the extension ofMg
� to L2(R2d) that is 0 on L2(R2d)�Vg .

For� ⊆ R
2d of finite measure, Mg

� is a compact positive (self-adjoint) operator on L2(R2d);
see for example [21,54]. By the spectral theorem, Mg

� is diagonalized by an orthonormal set
{p�

g, j : j ∈ N} ⊆ Vg of eigenfunctions, with corresponding eigenvalues λ j = λ�
j (ordered

non-increasingly):
Mg

� =
∑
j≥1

λ�
j p�

g, j ⊗ p�
g, j . (1.18)

The key property is that the eigenfunctions p�
g, j are doubly-orthogonal: since

〈
Mg

�F, F
〉 =

∫
�

|F(z)|2 dz, F ∈ L2(R2d),

it follows that 〈
p�
g, j , p

�
g, j ′

〉
L2(�)

=
〈
Mg

� p�
g, j , p

�
g, j ′

〉
L2(R2d )

= λ�
j δ j, j ′ ,

and consequently the restricted kernel has the orthogonal expansion

Kg |�(z, z′) =
∑
j≥1

(
p�
g, j (z)1�(z)

)
·
(
p�
g, j (z

′)1�(z′)
)
; (1.19)

see Sect. 6.1 for details. Note that in (1.19), the functions p�
g, j (z)1�(z) are not normalized.

In fact, ∫
�

∣∣∣p�
g, j (z)

∣∣∣2 dz = λ�
j . (1.20)

Thus, while in (1.19) the basis functions are restricted to the domain �, the expansion
of the Toeplitz operator (1.18) involves the non-truncated functions p�

g, j (z) weighted by
the measure of their concentration on � (1.20). We call the DPP with correlation kernel
corresponding to (1.17) the concentration of the full WH ensemble to � and denote it by
X g,con

� . This process is thus a smoother variant of the restricted process X g
|�, because it

involves the (smooth) functions p�
g, j (z) instead of their truncations p�

g, j (z)1�(z), which
may have discontinuities along ∂�. The construction of DPPs from the spectrum of self-
adjoint operators has been suggested in [16,17] as an analogue of the construction of DPPs
from the spectral measure of a group. In a related work [52], a combination of methods from
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1110 L. D. Abreu et al.

operator theory and representation theory has been used to show that a DPP is the spectral
measure for an explicit commutative group of Gaussian operators in the fermionic Fock
space.

Step 2: Spectral truncation Since
〈
Mg

�F, F
〉 = ∫

�
|F |2, by the min-max principle,

λ�
j = max

{∫
�

|F(z)|2 dz : ‖F‖2 = 1, F ∈ Vg, F ⊥ p�
g,1, . . . , p

�
g, j−1

}
. (1.21)

Thus, the eigenvalues λ�
j describe the best possible simultaneous phase-space concentration

of waveforms within �. In particular, (1.21) implies that

0 ≤ λ�
j ≤ 1, j ≥ 1.

It is well-known that there are ≈ |�| eigenvalues λ�
j that are close to 1. As a precise

statement we cite the following Weyl-type law: for any δ ∈ (0, 1),
∣∣∣#{ j : λ�

j > 1− δ} − |�|
∣∣∣ ≤ max

{
1

δ
,

1

1− δ

}
Cg |∂�|2d−1 , (1.22)

where |∂�|2d−1 is the perimeter of � (the surface measure of its boundary), and Cg is
a constant depending explicitly on g. See for instance [6, Proposition 3.4] or [24]. The
dependence of the constant Cg on g is made explicit below in (1.27).

We now look into the concentrated process X g,con
� introduced in Step 1. The Toeplitz

operator Mg
� is not a projection. However, the corresponding DPP can be realized as a

random mixture of DPP’s associated with projection kernels [44, Theorem 4.5.3]. Indeed,
if I j ∼ Bernoulli(λ�

j ) are independent (taking the value 1 or 0 with probabilities λ�
j and

1 − λ�
j respectively), then X g,con

� is generated by the kernel corresponding to the random
operator

Mg,ran
� =

∑
j≥1

I j · p�
g, j ⊗ p�

g, j . (1.23)

Precisely, this means that one first chooses a realization of the I j ’s and then a realization of
the DPP with the kernel above. Because of (1.22), the first eigenvalues λ j are close to 1 and
thus the corresponding I j will most likely be 1. Similarly, for j � |�|, the corresponding I j
will most likely be 0. As a finite-dimensional model forWH ensembles, we propose replacing
the random Bernoulli mixing coefficients with{

1, for j ≤ |�| ,
0, for j > |�| . (1.24)

Definition 1.3 Let g ∈ L2(Rd) be of norm 1—called the window function, let � ⊆ R
2d with

non-empty interior and finite measure and perimeter, and let N� = �|�|� the least integer
greater than or equal to the Lebesgue measure of �. The finite Weyl–Heisenberg ensemble is
the determinantal point process X g

� with correlation kernel4

Kg,�(z, z′) =
N�∑
j=1

p�
g, j (z)p

�
g, j (z

′).

4 We do not denote this kernel by Kg
� in order to avoid a possible confusion with the restricted kernel Kg |�.

Note also the notational difference between the finite ensembleX g
� and the restriction of the infinite ensemble

X g |�.
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To illustrate the construction, consider g(t) = 21/4e−π t2 and � = DR = {z ∈ C : |z| ≤
R}. The eigenfunctions of Mg

DR
are explicitly given as pDR

g, j (z) = eπ i xξ (π j/ j !) 1
2 z j e−π |z|2/2,

z = x + iξ . They are independent of the radius R of the disk, and choosing R such that
|DR | = N , the corresponding finite WH ensemble is precisely the finite Ginibre ensemble
given by (1.3). This well known fact also follows as a special case from Corollary 4.6.

1.4 Scaled Limits and Rates of Convergence

Wenow discuss howfiniteWHensembles behavewhen the number of points tends to infinity.
Let

ρg,�(z) = Kg,�(z, z) =
N�∑
j=1

|p�
g, j (z)|2

be the one-point intensity of a finite Weyl–Heisenberg ensemble, so that
∫
D

ρg,�(z)dz = E
[X g

�(D)
]

is the expected number of points to be found in D ⊆ R
2d (see Sect. 1). The following

describes the scaled limit of the one-point intensities.

Theorem 1.4 Let � ⊂ R
2d be compact. Then the 1 -point intensity of the finite Weyl–

Heisenberg ensemble satisfies
ρg,m�(m·) −→ 1�, (1.25)

in L1(R2d), as m −→ +∞.

In statistical terms, the convergence in Theorem 1.4 means that, as m −→∞,

1
m2d E

[X g
m�(mD)

] = 1
m2d

∫
mD

ρg,m�(z)dz =
∫
D

ρg,m�(mz)dz

−→
∫
D
1�(z)dz = |D ∩�| .

(1.26)

Theorem 1.4 follows immediately from [6, Theorem 1.3], once the one-point intensity
ρg,� is recognized as the accumulated spectrogram studied in [6, Definition 1.2]. We make
a few remarks as a companion to the illustrations in Figs. 2 and 3.

(i) When g(t) = 21/4e−π t2 and � is a disk of area N , Theorem 1.4 follows from the
circular law of the Ginibre ensemble.

(ii) The asymptotics are not restricted to disks, but hold for arbitrary sets � with finite
measure and also hold in arbitrary dimension, not just for planar determinantal point
processes.

(iii) The limit distribution in (1.25) is independent of the parameterizing function g. This
can be seen as an another instance of a universality phenomenon [26,50,59].

In view of Theorem 1.4 we will quantify the deviation of the finite WH ensemble from
its limit distribution in the L1-norm, using the results in [7], where the sharp version of the
main result in [6] has been obtained.
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1112 L. D. Abreu et al.

Fig. 1 A plot of the eigenvalues of the Toeplitz operator Mg
�, with g a Gaussian window and � of area ≈ 18

Fig. 2 The eigenfunctions # 1, 7, 18 corresponding to the operator in Fig. 1

Fig. 3 The one-point intensity of a WH ensemble plotted over the domain in Fig. 1

Theorem 1.5 Let ρg,� be the one-point intensity of the finite Weyl–Heisenberg ensemble.
Assume that g satisfies the condition

‖g‖2M∗ :=
∫
R2d

|z| |〈g, π(z)g〉|2 dz < +∞. (1.27)

If � has finite perimeter and |∂�|2d−1 ≥ 1, then

‖ρg,� − 1�‖1 ≤ Cg |∂�|2d−1 (1.28)

with a constant depending only on ‖g‖M∗ .

The condition on the window g in (1.27) amounts to mild decay in the time and frequency
variables, and is satisfied by every Schwartz function. See Sects. 5.1 and A.3 for a discussion
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on closely-related function classes. The error rate in Theorem 1.5 is sharp—see [7, Theorem
1.6]. Intuitively, in (1.28) we compare the continuous function ρg,� with the characteristic
function 1�. Thus, along every point of the boundary of� (of surface measure |∂�|2d−1) we
accumulate a pointwise error of O(1), leading to a total L1-error at least of order |∂�|2d−1 .

1.5 Approximation of Finite Polyanalytic Ensembles byWH Ensembles

The second ingredient towards the proof of Theorem1.2 is a comparison result that bounds the
deviation between finite pure polyanalytic ensembles and finiteWH ensembles with Hermite
window functions. Before stating the result, some preparation is required. We consider the
following transformation, which is usually called a gauge transformation, and the change of
variables f ∗(z) := f (z), z ∈ C

d . Given an operator T : L2(R2d) → L2(R2d) we denote:
[
T̃ f

]∗ := m T ( f ∗ m), m(x, ξ) := e−π i xξ . (1.29)

Hence, if T has the integral kernel K , then T̃ has the integral kernel

K̃ (z, z′) = eπ i(x ′ξ ′−xξ)K
(
z, z′

)
, z = x + iξ, z′ = x ′ + iξ ′. (1.30)

(See Sect. 1 for details). We call the operation K �→ K̃ a renormalization of the kernel K .
With this notation, if Kg is the kernel in (1.2) and g is the Gaussian window, then K̃g is
the kernel of the infinite Ginibre ensemble. In addition, the DPP’s on C

d associated with
the kernels K and K̃ are related by the transformation z �→ z. Now, let the window g be a
Hermite function

hr (t) = 21/4√
r !

( −1
2
√

π

)r

eπ t2 dr

dtr

(
e−2π t2

)
, r ≥ 0. (1.31)

The corresponding kernel Khr describes (after the renormalization above) the orthogonal
projection onto the Bargmann-Fock space of pure polyanalytic functions of type r (see Sect.
A.4).

Let us consider a Toeplitz operator on L2(R2)with a circular domain� = DR . By means
of an argument based on phase-space symmetries (more precisely, the symplectic covariance
of Weyl’s quantization) we show in Sect. 4 that the eigenfunctions { p̃DR

hr , j
: j ≥ 1} of M̃hr

DR

are the normalized complex Hermite polynomials Hj,r (z, z̄)e−
π
2 |z|2 . In particular, as with

the Ginibre ensemble, the eigenfunctions are independent of the radius R. Choosing R such
that NDR = N , and recalling that we order the eigenvalues of Mhr

DR
by magnitude, we obtain

a map σ : N0 → N0, such that

p̃DR
hr , j

= Hσ( j),r (z, z̄)e
− π

2 |z|2 .

Thus, the finite WH ensemble associated with hr and DR is a planar Hermite ensemble, with
correlation kernel

K̃hr ,DR (z, z′) = e−
π
2 (|z|2+|z′|2)

NDR∑
j=1

Hσ( j),r (z, z)Hσ( j),r (z′, z′). (1.32)

Comparing the correlation kernels of the finite pure polyanalytic ensemble (1.8) with the
finite (renormalized) WH ensemble with a Hermite window (1.32), we see that in each
case different subsets of the complex Hermite basis intervene: in one case functions are
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Fig. 4 A plot of the eigenvalues λ = M̃
h1
DR

(
Hj ,1(z, z)e

−π
2 |z|2

)
, as a function of R, corresponding to j = 0

(blue, solid) and j = 1 (red, dashed) (Color figure online)

ordered according to their Hermite index, while in the other they are ordered according to
the magnitude of their eigenvalues.

Figure 4 shows the eigenvalues of M̃h1
DR

, as a function of R, corresponding to the eigen-

functions H0,1(z, z)e
−π

2 |z|2 and H1,1(z, z)e
−π

2 |z|2 . For small values of R > 0, the eigenvalue
corresponding to H1,1 is bigger than the one corresponding to H1,0, and thus for small N , the
kernels in (1.8) and (1.32) do not coincide. The following result shows that this difference is
asymptotically negligible.

Theorem 1.6 Let N ∈ N and R > 0 be such that NDR = �|DR |� = N. Let Khr ,DR be
the correlation kernel of the finite Weyl–Heisenberg ensemble associated with the Hermite
window hr and the disk DR, and Kr ,N the correlation kernel of the (r , N )-pure polyanalytic
ensemble given by (1.8). Then∥∥K̃hr ,DR − Kr ,N

∥∥
S1 � |∂DR |1 �

√
N ,

where ‖·‖S1 denotes the trace-norm of the corresponding integral operators.

Since
∥∥Khr ,DR

∥∥
S1 =

∥∥Kr ,N
∥∥
S1 = N , the finite pure polyanalytic ensemble—defined by

a lexicographic criterion—is asymptotically equivalent to a finite WH ensemble - defined by
optimizing phase-space concentration. To derive Theorem 1.6, we resort to methods from
harmonic analysis on phase space. More precisely, we will use Weyl’s correspondence and
account for the difference between (1.32) and (1.8) as the error introduced by using two
different variants of Berezin’s quantization rule (anti-Wick calculus).

Finally, Theorem 1.2 follows by combining the comparison result in Theorem 1.6 with
the asymptotics in Theorem 1.5 applied to Hermite windows—see Sect. 5.4. This argument
is reminiscent of Lubinsky’s localization principle [50] that concerns deviations between
kernels of orthogonal polynomials. In the present context, the difference between the two
kernels does not stem from an order relation between two measures, but from a permutation
of the basis functions.
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1.6 Simultaneous Observability

The independence of the eigenfunctions of Mhr
DR

of the radius R yields another property of
the (finite and infinite) r -pure polyanalytic ensembles.

Theorem 1.7 The restrictions {phr , j
∣∣
DR

: j ∈ N} are orthogonal on L2(DR) for all R > 0.
In the terminology of determinantal point processes this means that the family of disks
{DR : R > 0} is simultaneously observable for all r-pure polyanalytic ensembles.

This recovers and slightly extends a result of Shirai [57]. As an application, we obtain
an extension of Kostlan’s theorem [47] on the absolute values of the points of the Ginibre
ensemble of dimension N .

Theorem 1.8 The set of absolute values of the points distributed according to the r-pure
polyanalytic Ginibre ensemble has the same distribution as {Y1,r , . . . , Yn,r }, where the Y j ’s
are independent and have density

fY j (x) := 2
π j−r+1r !

j ! x2( j−r)+1
[
L j−r
r (πx2)

]2
e−πx2 ,

where Lα
j are the Laguerre polynomials of (1.5). (Hence, Y 2

j is distributed according to a

generalized Gamma function with density fY 2
j
(x) = π j−r+1r !

j ! x j−r
[
L j−r
r (πx)

]2
e−πx ).

1.7 Organization

Section 2 presents tools from phase-space analysis, including the short-time Fourier trans-
form and Weyl’s correspondence. Section 3 studies finite WH ensembles and more technical
variants required for the identification of finite polyanalytic ensembles as WH ensembles
with Hermite windows. This identification is carried out in Sect. 4 by means of symme-
try arguments. The approximate identification of finite polyanalytic ensembles with finite
WH ensembles is finished in Sect. 5 and gives a comparison of the processes defined by
truncating the complex Hermite expansion on the one hand, and by the abstract concentra-
tion and spectral truncation method on the other. We explain the deviation between the two
ensembles as stemming from two different quantization rules. The proof resorts to a Sobolev
embedding for certain symbol classes known as modulation spaces. Some of the technical
details are postponed to the appendix. Theorem 1.2 is proved in Sect. 5. In Sect. 6 we apply
the symmetry argument from Sect. 4 to rederive the so-called simultaneous observability of
polyanalytic ensembles. We also clarify the relation between the spectral expansions of the
restriction and Toeplitz kernels. Finally, the appendix provides some background material
on determinantal point processes, a certain symbol class for pseudo-differential operators,
functions of bounded variation, and polyanalytic spaces.

2 Harmonic Analysis on Phase Space

In this section we briefly discuss our tools. These methods from harmonic analysis are new
in the study of determinantal point processes.
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2.1 The Short-Time Fourier Transform

Given a window function g ∈ L2(Rd), the short-time Fourier transform of f ∈ L2(Rd) is

Vg f (x, ξ) =
∫
Rd

f (t)g(t − x)e−2π iξ t dt, (x, ξ) ∈ R
2d . (2.1)

The short-time Fourier transform is closely related to the Schrödinger representation of the
Heisenberg group, which is implemented by the operators

T (x, ξ, τ )g(t) = e2π iτ e−π i xξ e2π iξ t g(t − x), (x, ξ) ∈ R
d , τ ∈ R.

The corresponding representation coefficients are

〈 f , T (x, ξ, τ )g〉 = e−2π iτ eπ i xξ
〈
f , e2π iξ ·g(· − x)

〉
= e−2π iτ eπ i xξVg f (x, ξ).

As the variable τ occuring in the Schrödinger representation is unnecessary for DPPs, we
will only use the short-time Fourier transform. We identify a pair (x, ξ) ∈ R

2d with the
complex vector z = x + iξ ∈ C

d . In terms of the phase-space shifts in (1.12), the short-time
Fourier transform is Vg f (z) := 〈 f , π(z)g〉. The phase-space shifts satisfy the commutation
relations

π(x, ξ)π(x ′, ξ ′) = e−2π iξ ′xπ(x + x ′, ξ + ξ ′), (x, ξ), (x ′, ξ ′) ∈ R
d × R

d , (2.2)

and the short-time Fourier transform satisfies the following orthogonality relations [32,
Proposition 1.42] and [38, Theorem 3.2.1],〈

Vg1 f1, Vg2 f2
〉
L2(R2d )

= 〈 f1, f2〉L2(Rd ) 〈g1, g2〉L2(Rd ). (2.3)

In particular, when ‖g‖2 = 1, the map Vg is an isometry between L2(Rd) and a closed
subspace of L2(R2d):

‖Vg f ‖L2(R2d ) = ‖ f ‖L2(Rd ), f ∈ L2(Rd). (2.4)

The commutation rule (2.2) implies the following formula for the short-time Fourier trans-
form:

Vg(π(x, ξ) f )(x ′, ξ ′) = e−2π i x(ξ ′−ξ)Vg f (x
′ − x, ξ ′ − ξ), (x, ξ), (x ′, ξ ′) ∈ R

d × R
d .

Since the phase-space shift of f on R
d corresponds to a phase-space shift of Vg f on R

2d ,
this formula is usually called the covariance property of the short-time Fourier transform.

2.2 SpecialWindows

If we choose the Gaussian function h0(t) = 2
1
4 e−π t2 , t ∈ R, as a window in (2.1), then a

simple calculation shows that

e−iπxξ+ π
2 |z|2Vh0 f (x,−ξ) = 21/4

∫
R

f (t)e2π t z−π t2− π
2 z

2
dt = B f (z), (2.5)

where B f (z) is the Bargmann transform of f [14], [32, Chapter 1.6]. The Bargmann trans-
formB is a unitary isomorphism from L2(R) onto the Bargmann-Fock spaceF(C) consisting
of all entire functions satisfying

‖F‖2F(C) =
∫
C

|F(z)|2 e−π |z|2dz < ∞. (2.6)
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We now explain the relation between polyanalytic Fock spaces and phase-space analysis with
Hermite windows {hr : r ≥ 0}. The r—pure polyanalytic Bargmann transform [2] is the
map Br : L2(R) → L2(C, e−π |z|2)

Br f (z) := e−iπxξ+π
2 |z|2Vhr f (x,−ξ), z = x + iξ. (2.7)

This map defines an isometric isomorphism between L2(R) and the pure polyanalytic-Fock
space Fr (C) (see Sect. A.5). The orthogonality relations (2.3) show that for r �= r ′, Vhr f1
is orthogonal to Vhr ′ f2 for all f1, f2 ∈ L2(R). The relation between phase-space analysis
and polyanalytic functions discovered in [2] can be understood in terms of the Laguerre
connection [32, Chapter 1.9]:

Vhr h j (x,−ξ) = eiπxξ−π
2 |z|2Hj,r (z, z̄), (2.8)

which, in terms of the polyanalytic Bargmann transform reads as

Br h j (z) = Hj,r (z, z̄), (2.9)

see also [2].

2.3 The Range of the Short-Time Fourier Transform

For ‖g‖2 = 1, the short-time Fourier transform Vg defines an isometric map Vg : L2(Rd) →
L2(R2d) with range

Vg :=
{
Vg f : f ∈ L2(Rd)

} ⊆ L2(R2d).

The adjoint of Vg can be written formally as V ∗
g : L2(R2d) → L2(Rd),

V ∗
g F =

∫
R2d

F(z)π(z)g dz, t ∈ R
d ,

where the integral is to be taken as a vector-valued integral. The orthogonal projection PVg :
L2(R2d) → Vg is then PVg = VgV ∗

g . Explicitly, PVg is the integral operator

PVg F(z) =
∫
R2d

K g(z, z′)F(z′)dz′, z = (x, ξ) ∈ R
2d ,

where the reproducing kernel K g is given by (1.1). Every function F ∈ Vg is continuous and
satisfies the reproducing formula F(z) = ∫

R2d F(z′)Kg(z, z′)dz′.

2.4 Metaplectic Rotation

We will make use of a rotational symmetry argument in phase space. Let Rθ :=[ cos(θ) − sin(θ)
sin(θ) cos(θ)

]
denote the rotation by the angle θ ∈ R. The metaplectic rotation is the

operator given in the Hermite basis {hr : r ≥ 0} by
μ(Rθ ) f =

∑
r≥0

eirθ 〈 f , hr 〉 hr , f ∈ L2(R) , (2.10)

in particular, μ(Rθ )hr = eirθhr . The standard and metaplectic rotations are related by

Vg f (Rθ (x, ξ)) = eπ i(xξ−x ′ξ ′)Vμ(R−θ )gμ(R−θ ) f (x, ξ), where (x ′, ξ ′) = Rθ (x, ξ).

(2.11)

123



1118 L. D. Abreu et al.

This formula is a special case of the symplectic covariance of the Schrödinger representation;
see [32, Chapters 1 and 2], [38, Chapter 9], or [23, Chapter 15]) for background and proofs.

2.5 Time-Frequency Localization and Toeplitz Operators

Let us consider g with ‖g‖2 = 1. For m ∈ L∞(R2d), the Toeplitz operator Mg
m : Vg → Vg

is
Mg

mF := PVg (m · F), F ∈ Vg,

and its integral kernel at a point (z, z′) is given by

Km(z, z′) =
∫
R2d

K g(z, z′′)m(z′′)Kg(z′′, z′) dz′′. (2.12)

When m = 1�, the last expression coincides with (1.17). (The operator Mg
m is defined on

Vg; the kernel in (2.12) represents the extension of M
g
m to L2(R2d) that is 0 on V⊥g .) Clearly,

‖Mg
m‖Vg→Vg ≤ ‖m‖∞. In addition, it is easy to see that if m ≥ 0, then Mg

m is a positive
operator. If m ∈ L1(R2d), then Mg

m is trace-class. By (2.12) the trace of Mg
m is

trace(Mg
m) =

∫
R2d

Km(z, z) dz =
∫
R2d

∫
R2d

|Kg(z, z′′)|2m(z′′) dzdz′′ =
∫
R2d

m(z′′) dz′′ ,
(2.13)

because the isometry property (2.4) implies that
∫
R2d

|Kg(z, z′′)|2 dz =
∫
R2d

|〈π(z′′)g, π(z)g〉|2 dz = 1 .

The time-frequency localization operator with window g and symbolm is Hg
m := V ∗

g M
g
mVg :

L2(Rd) → L2(Rd). Hence Mg
m and Hg

m are unitarily equivalent.5 The situation is depicted
in the following diagram.

L2(Rd)

Vg

Hg
m

L2(Rd)

Vg

Vg

m·

Mg
m Vg

L2(R2d)

PVg

(2.14)

Explicitly, the time-frequency localization operator applies a mask to the short-time
Fourier transform:

Hg
m f :=

∫
R2d

m(z)Vg f (z)π(z)g dz, f ∈ L2(R2d).

As we will use the connection between time-frequency localization on R
d and Toeplitz

operators on R
2d in a crucial argument, we write (2.14) as a formula

5 The operator Hg
m should not be confused with the complex Hermite polynomial Hj,r .
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〈Hg
m f , u〉 = 〈Vg(V

∗
g M

g
mVg f ), Vgu〉

= 〈PVg (m Vg f ), Vgu〉
= 〈m Vg f , Vgu〉 . (2.15)

This formula makes sense for f , u ∈ L2(Rd) and m ∈ L∞(R2d), but also for many other
assumptions [21].

Time-frequency localization operators are useful in signal processing because they model
time-varying filters. For Gaussian windows, they have been studied in signal processing by
Daubechies [22] and as Toeplitz operators on spaces of analytic functions by Seip [56]; see
also [6, Section 1.4]. When m ∈ L1(R2d), Hg

m is trace-class by (2.13) and

trace(Hg
m) =

∫
R2d

m(z)dz . (2.16)

For more details see [21,42,43]. When m = 1�, the indicator function of a set �, we write
Mg

� and Hg
�. In this case, the positivity property implies that 0 ≤ Mg

� ≤ I .

2.6 TheWeyl Correspondence

The Weyl transform of a distribution σ ∈ S ′(Rd × R
d) is an operator σw that is formally

defined on functions f : R
d → C as

σw f (x) :=
∫
Rd×Rd

σ

(
x + y

2
, ξ

)
e2π i(x−y)ξ f (y)dydξ, x ∈ R

d .

Every continuous linear operator T : S(Rd) → S ′(Rd) can be represented in a unique way
as T = σw, and σ is called its Weyl symbol (see [32, Chapter 2]). The Wigner distribution
of a test function g ∈ S(Rd) and a distribution f ∈ S ′(Rd) is

W ( f , g)(x, ξ) =
∫
R2d

f (x + t
2 )g(x − t

2 )e
−2π i tξdt .

The integral has to be understood distributionally. The map ( f , g) �→ W ( f , g) extends to
other function classes, for example, for f , g ∈ L2(Rd), W ( f , g) is well-defined and

‖W ( f , g)‖2 = ‖ f ‖2 ‖g‖2 . (2.17)

The Wigner distribution is closely related to the short-time Fourier transform:

W ( f , g)(x, ξ) = 2de4π i x ·ξVg̃ f (2x, 2ξ),

where g̃(x) = g(−x). The action of σw on a distribution can be easily described in terms of
the Wigner distribution: 〈

σw f , g
〉 = 〈σ,W (g, f )〉 .

Time-frequency localization operators have the following simple description in terms of the
Weyl calculus:

Hg
m = (m ∗W (g, g))w . (2.18)
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3 FiniteWeyl–Heisenberg Ensembles

3.1 Definitions

To define finite Weyl–Heisenberg processes, we consider a domain � ⊆ R
2d with non-

empty interior, finite measure and finite perimeter, i.e., the characteristic function of � has
bounded variation (see Sect. A.1). Since Mg

� is trace-class, the Toeplitz operator Mg
� can be

diagonalized as
Mg

� =
∑
j≥1

λ�
j p�

g, j ⊗ p�
g, j , f ∈ L2(R2d), (3.1)

where
{
λ�
j : j ≥ 1

}
are the non-zero eigenvalues of Mg

� in decreasing order and the corre-

sponding eigenfunctions
{
p�
g, j : j ≥ 1

}
are normalized in L2. The operator Mg

� may have a

non-trivial kernel, but it is known that it always has infinite rank [28, Lemma 5.8], therefore,
the sequences {λ�

j : j ≥ 1} and {p�
g, j : j ≥ 1} are indeed infinite. In addition, as follows

from (2.16), we have
0 ≤ λ�

j ≤ 1, and
∑
j≥1

λ�
j = |�| . (3.2)

We remark that the eigenvalues λ�
j do depend on the window function g. When we need to

stress this dependence we write λ j (�, g).
The finiteWeyl–Heisenberg ensembleX g

� is given by Definition 1.3. For technical reasons,
wewill also consider amore general class ofWHensembles depending on an extra ingredient.
Given a subset I ⊆ N, we letX g

�,I be the determinantal point process with correlation kernel

Kg,�,I (z, z
′) =

∑
j∈I

p�
g, j (z)p

�
g, j (z

′).

When I = {1, . . . , N�} we obtain the finite WH ensemble X g
�, while for I = N we obtain

the infinite ensemble. (In the latter case, the resulting point-process is independent of domain
�.) Later we need to analyze the properties of the ensembleX g

�,I with respect to variations of

the index set I . When no subset I is specified, we always refer to the ensembleX g
� associated

with I = {1, . . . , N�}.
Remark 3.1 The process X g

�,I is well-defined due to the Macchi–Soshnikov theorem (see
Sect. 1). Indeed, since the kernel Kg,�,I represents an orthogonal projection, we only need
to verify that it is locally trace-class. This follows easily from the facts that 0 ≤ Kg,�,I (z, z) ≤
Kg(z, z) = 1 and that the restriction operators are positive (see Sect. 6.1).

3.2 Universality and Rates of Convergence

The one-point intensity associated with a Weyl–Heisenberg ensemble X g
�,I is

ρg,�,I (z) :=
∑
j∈I

∣∣∣p�
g, j (z)

∣∣∣2 .

For X g
�, the intensity ρg,� has been studied in the realm of signal analysis, where it is known

as the accumulated spectrogram [6,7]. (Another interesting connection between DPP’s and
signal analysis is the completeness results ofGhosh [35].) The results in [6,7] implyTheorems
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1.4 and 1.5, which apply to the finite Weyl–Heisenberg ensembles X g
�. For the general

ensemble X g
�,I we have the following lemma.

Lemma 3.2 Let ρg,�,I be the one-point intensity of a WH ensemble X g
�,I with #I < ∞.

Then

‖ρg,�,I − 1�‖L1(R2d ) = #I − |�| + 2
∑
j /∈I

λ�
j .

Proof Using that 0 ≤ ρg,�,I ≤ 1 and (1.20) and (3.2), we first calculate

‖ρg,�,I − 1�‖L1(�) =
∫

�

(
1− ρg,�,I (z)

)
dz = |�| −

∑
j∈I

λ�
j =

∑
j /∈I

λ�
j .

Second, since the eigenfunctions are normalized and
∫
�
|p�

g, j (z)|2 dz = λ j , we have

‖ρg,�,I − 1�‖L1(R2d\�) =
∫
R2d\�

ρg,�,I (z) dz =
∑
j∈I

∫
R2d

|p�
g, j (z)|2 dz −

∫
�

|p�
g, j (z)|2 dz

=
∑
j∈I

(
1− λ�

j

)
= #I −

∑
j∈I

λ�
j = #I − |�| +

∑
j /∈I

λ�
j .

The conclusion follows by adding both estimates. ��

4 HermiteWindows and Polyanalytic Ensembles

4.1 Eigenfunctions of Toeplitz Operators

We first investigate the eigenfunctions of Toeplitz operators with Hermite windows {hr : r ≥
0} and circular domains.

Proposition 4.1 Let DR ⊆ R
2 be a disk centered at the origin. Then the family of Her-

mite functions is a complete set of eigenfunctions for Hhr
DR

. As a consequence, the set

{Hj,r (z, z)e−π |z|2/2 : j ≥ 0} forms a complete set of eigenfunctions for M̃hr
DR

(where M̃hr
DR

is related to Mhr
DR

by (1.29).

Proof Consider the metaplectic rotation Rθ with angle θ ∈ R defined in (2.10). For f , u ∈
L2(R), we use first (2.15) and then the covariance property in (2.11) and the rotational
invariance of DR to compute:
〈
μ(Rθ )

∗Hhr
DR

μ(Rθ ) f , u
〉
=

〈
Hhr
DR

μ(Rθ ) f , μ(Rθ )u
〉
= 〈

1DR Vhr μ(Rθ ) f , Vhr μ(Rθ )u
〉

= 〈
1DR Vμ(Rθ )hr μ(Rθ ) f , Vμ(Rθ )hr μ(Rθ )u

〉
= 〈

1DR Vhr f (R−θ ·), Vhr u(R−θ ·)
〉

=
∫
DR

Vhr f (z)Vhr u(z)dz =
〈
Hhr
DR

f , u
〉
.

We conclude that μ(Rθ )
∗Hhr

DR
μ(Rθ ) = Hhr

DR
, for all θ ∈ R. Applying this identity to a

Hermite function gives
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μ(Rθ )
∗Hhr

DR
h j = μ(Rθ )

∗Hhr
DR

μ(Rθ )
(
e−i jθh j

)

= e−i jθμ(Rθ )
∗Hhr

DR
μ(Rθ )h j = e−i jθ Hhr

DR
h j .

Thus, Hhr
DR

h j is an eigenfunction of μ(Rθ )
∗ with eigenvalue e−i jθ . For irrational θ , the

numbers {e−i jθ : j ≥ 0} are all different, and, therefore, the eigenspaces of μ(Rθ )
∗ are

one-dimensional. Hence, Hhr
DR

h j must be a multiple of h j . Thus, we have shown that each

Hermite function is an eigenfunction of Hhr
DR

. Since the family of Hermite functions is
complete, the conclusion follows. The statement about the complex Hermite polynomials
follows from (2.8) and (2.14); the extra phase-factors and conjugation bars disappear due to
the renormalization Mhr

DR
�→ M̃hr

DR
. ��

4.2 Eigenvalues of Toeplitz Operators

As a second step to identify polyanalytic ensembles as WH ensembles, we inspect the eigen-
values of Toeplitz operators.

Lemma 4.2 Let R > 0. Then the eigenvalue of Hhr
DR

corresponding to h j and the eigenvalue

of M̃hr
DR

corresponding to Hj,r (z, z)e−π |z|2/2 are

μr
j,R :=

〈
Hhr
DR

h j , h j

〉
=

∫
DR

∣∣Hr , j (z, z̄)
∣∣2 e−π |z|2dz. (4.1)

In particular, μr
j,R �= 0 for all j, r ≥ 0 and R > 0, and

Hhr
DR

=
∑
j≥0

μr
j,R h j ⊗ h j . (4.2)

Proof (4.1) follows immediately from the definitions. According to (1.4), Hr , j vanishes only
on a set of measure zero, thus we conclude that μr

j,R �= 0. The diagonalization follows from
Proposition 4.1. ��
Remark 4.3 Figure 4 shows a plot of μ1

0,R (solid, blue) and μ1
1,R (dashed, red) as a function

of R. Note that for a certain value of R, the eigenvalue μ1
0,R = μ1

1,R is multiple.

4.3 Identification as aWH Ensemble

We can now identify finite pure polyanalytic ensembles as WH ensembles.

Proposition 4.4 Let J ⊆ N0 and R > 0, then there exist a set I ⊆ N with #I = #J such that

{
Vhr h j : j ∈ J

} = {
pDR
hr , j

: j ∈ I
}

. (4.3)

Proof By Proposition 4.1 every Hermite function h j is an eigenfunction of H
hr
DR

. In addition,
by Lemma 4.2, the corresponding eigenvalue μr

j,R is non-zero. Hence Vhr h j is one of the

functions pDR
hr , j ′ in the diagonalization (3.1). The set I := { j ′ : j ∈ J } satisfies (4.3). ��

As a consequence, we obtain the following.
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Proposition 4.5 The pure polyanalytic Ginibre ensemble with kernel Kr ,N in (1.8) can be
identified with a finite WH ensemble in the following way. Let DRN ⊂ C be the disk with
area N. Let Ir ,N ⊆ N be a set such that

{
Vhr h0, . . . , Vhr hN−1

} = {
p
DRN
hr , j

: j ∈ Ir ,N
}

, (4.4)

and #Ir ,N = N, whose existence is granted by Proposition 4.4. Then K̃hr ,DRN ,Ir,N = Kr ,N ,
and the corresponding point processes coincide. In particular

ρr ,N (z) = ρhr ,DRN ,Ir,N (z), z ∈ C. (4.5)

Proof Since #Ir ,N = N , we can write

Khr ,DRN
(z, z′) =

∑
j∈Ir,N

p
DRN
hr , j

(z)p
DRN
hr , j

(z′) =
N−1∑
j=0

Vhr h j (z)Vhr h j (z′).

Using (1.30) and (2.8) we conclude that

K̃hr ,DRN
(z, z′) =

N−1∑
j=0

Hj,r (z, z)e
−π |z|2/2Hj,r (z′, z′)e−π |z′2/2 = Kr ,N (z, z′),

as desired. This implies that the point processes corresponding to Khr ,DRN
and Kr ,N are

related by transformation z �→ z. Since Hj,r (z, z) = Hj,r (z, z), the intensities of the pure
(r , N )-polyanalytic ensemble are invariant under the map z �→ z and the conclusion follows.

��

While Proposition 4.5 identifies finite pure polyanalytic ensembles with WH ensembles
in the generalized sense of Sect. 3 , this is just a technical step. Our final goal is to compare
finite polyanalytic ensembles with finite WH ensembles in the sense of Definition 1.3, where
the index set is Ir ,N = {1, . . . , N }. Before proceeding we note that for the Gaussian h0 such
comparison is in fact an exact identification.

Corollary 4.6 For r = 0, the set I0,N from Proposition 4.5 is I0,N = {0, . . . , N − 1}. Thus,
the N-dimensional Ginibre ensemble has the same distribution as the finite WH ensemble
X h0
DRN

, and

ρ0,N (z) = ρh0,DRN
(z), z ∈ C. (4.6)

Proof The claim amounts to saying that the eigenvalues μ0
j,R in (4.1) are decreasing for all

R > 0, so that the ordering of the eigenfunctions in (3.1) coincides with the indexation of
the complex Hermite polynomials. The explicit formula in (4.1) in the case r = 0 gives the
sequence of incomplete Gamma functions:

μ0
j,R =

1

j !
∫ πR2

0
t j e−t dt = 1− e−πR2

j∑
k=0

πk

k! R
2k,

which is decreasing in j (see for example [1, Eq. 6.5.13]). ��
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5 Comparison Between FiniteWH and Polyanalytic Ensembles

Having identified finite pure polyanalytic ensembles as WH ensembles associated with a
certain subset of eigenfunctions I , we now investigate how much this choice deviates from
the standard one I = {1, . . . , N }. Thus, we compare finite pure polyanalytic ensembles to
the finite WH ensembles of Definition 1.3.

5.1 Change of Quantization

As a main technical step, we show that the change of the window of a time-frequency
localization operator affects the distribution of the corresponding eigenvalues in a way that
is controlled by the perimeter of the localization domain. When g is a Gaussian, the map
m �→ Hg

m is called Berezin’s quantization or anti-Wick calculus [32, Chapter 2] or [49].
The results in this section show that if Berezin’s quantization is considered with respect to
more general windows and in R

2d , the resulting calculus enjoys similar asymptotic spectral
properties. We consider the function class

M1(Rd) := {
f ∈ L2(Rd) : ‖ f ‖M1 := ‖Vφ f ‖L1(R2d ) < +∞ }

, (5.1)

where φ(x) = 2d/4e−π |x |2 . The class M1 is one of the modulation spaces used in signal
processing. It is also important as a symbol-class for pseudo-differential operators. Indeed,
the following lemma, whose proof can be found in [37], gives a trace-class estimate in terms
of the M1-norm of the Weyl symbol (see also [21,42,43]).

Proposition 5.1 Let σ ∈ M1(R2d). Then σw is a trace-class operator and

‖σw‖S1 � ‖σ‖M1 ,

where ‖·‖S1 denotes the trace-norm.
The next lemma will allow us to exploit cancellation properties in the M1-norm. Its proof

is postponed to Sect. A.3.

Lemma 5.2 (A Sobolev embedding for M1) Let f ∈ L1(Rd) be such that ∂xk f ∈ M1(Rd),
for k = 1, . . . , d. Then f ∈ M1(Rd) and ‖ f ‖M1 � ‖ f ‖L1 +∑d

k=1‖∂xi f ‖M1 .

We can now derive the main technical result. Its statement uses the space of BV(R2d) of
(integrable) functions of bounded variation; see Sect. A.1 for some background.

Theorem 5.3 Let g1, g2 ∈ S(Rd) with ‖gi‖2 = 1 and m ∈ BV(R2d). Then

‖Hg1
m − Hg2

m ‖S1 ≤ Cg1,g2var(m),

where Cg1,g2 is a constant that only depends on g1 and g2. In particular, when m = 1� we
obtain that

‖Hg1
� − Hg2

� ‖S1 ≤ Cg1,g2 |∂�|2d−1 .

Proof of Theorem 5.3 Let us assume first that m is smooth and compactly supported. We
use the description of time-frequency localization operators as Weyl operators. By (2.18),
Hgi
m = (m ∗ W (gi , gi ))w . Now, let h := W (g1, g1) − W (g2, g2). Then h ∈ S—see, e.g.,

[32, Proposition1.92]—and
∫
h = ‖g1‖22−‖g2‖22 = 0 by (2.17). Hence, by Proposition 5.1,

‖Hg1
m − Hg2

m ‖S1 = ‖(m ∗ h)w‖S1 � ‖m ∗ h‖M1 ,
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Therefore, it suffices to prove that ‖m ∗ h‖M1 � var(m). We apply Lemma 5.2 to this end.
First note that ∂xi (m ∗ h) = ∂xi m ∗ h and, consequently,

‖∂xi (m ∗ h)‖M1 � ‖∂xi m‖L1‖h‖M1 � var(m).

Second, we exploit the fact that
∫
h = 0 to get

(m ∗ h)(z) =
∫
Rd

m(z′)h(z − z′)dz′ =
∫
Rd

(m(z′)− m(z))h(z − z′)dz′

=
∫
Rd

∫ 1

0

〈∇(m)(t z′ + (1− t)z), z′ − z
〉
dt h(z − z′)dz′,

and consequently
∫
Rd
|m ∗ h(z)| dz ≤

∫ 1

0

∫
Rd

∫
Rd

∣∣∇(m)(t z′ + (1− t)z)
∣∣ ∣∣z′ − z

∣∣ ∣∣h(z − z′)
∣∣ dz′dzdt

=
∫ 1

0

∫
Rd

∫
Rd
|∇(m)(tw + z)| |w| |h(−w)| dwdzdt

= ‖∇m‖L1

∫ 1

0

∫
Rd
|w| |h(w)| dwdt = ‖∇m‖L1

∫
Rd
|w| |h(w)| dw.

Since h ∈ S the last integral is finite. We conclude that ‖m ∗ h‖L1 � ‖∇m‖L1 = var(m),
providing the argument for smooth, compactly supportedm. For generalm ∈ BV(Rd), there
exists a sequence of smooth, compactly supported functions {mk : k ≥ 0} such thatmk → m
in L1, and var(mk) → var(m), as k →+∞ (see for example [30, Sec. 5.2.2, Theorem 2].)
By Proposition 5.1, Hgi

mk → Hgi
m in trace norm, and the conclusion follows by a continuity

argument. ��

5.2 Comparison of Correlation Kernels

We now state and prove the main result on the comparison between finite WH ensembles
associated with different subsets of eigenfunctions.

Theorem 5.4 Consider the identification of the (r , N )-pure polyanalytic ensemble as a finite
WH ensemble with parameters (hr , DRN , Ir ,N ) given by Proposition 4.5. Let Khr ,DRN ,Ir,N
be the corresponding correlation kernel, and let Khr ,DRN

be the correlation kernel of the
finite Weyl–Heisenberg ensemble associated with the Hermite window hr and the disk DRN .
Then

∥∥Khr ,DRN
− Khr ,DRN ,Ir,N

∥∥
S1 �

∣∣∂DRN

∣∣
1 �

√
N , (5.2)

where ‖·‖S1 denotes the trace-norm of the corresponding integral operators.

Proof Step 1: Comparison of different polyanalytic levels.We consider two eigen-expansions
of the Toeplitz operator Mhr

DRN
:

Mhr
DRN

=
∑
j≥1

λ j (DRN , hr ) p
DRN
hr , j

⊗ p
DRN
hr , j

, (5.3)

Mhr
DRN

=
∑
j≥0

μr
j,RN

Vhr h j ⊗ Vhr h j . (5.4)
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Recall that, while the eigenvalues in (5.4) are ordered non-increasingly, the eigenvalues in
(5.3) follow the indexation of Hermite functions. When r = 0, according to Corollary 4.6,
the two expansions coincide: the sequence μ0

j,RN
is decreasing, and

λ j+1(DRN , h0) = μ0
j,RN

, j ≥ 0. (5.5)

We now quantify the deviation between the two eigen-expansions for general r . To this end,
we use the unitary equivalence between Mhr

DRN
and the time-frequency localization operator

Hhr
DRN

—cf. (2.14). By (4.2),

Hhr
DRN

=
∑
j≥0

μr
j,RN

h j ⊗ h j .

While the operators Mhr
DRN

act on mutually orthogonal subspaces of L2(R2d) for different

values of r , their counterpartsHhr
DRN

act on configuration space and so can readily be compared

by means of Theorem 5.3. We obtain
∥∥μ0·,RN

− μr·,RN

∥∥
�1
=

∥∥∥Hh0
DRN

− Hhr
DRN

∥∥∥
S1
≤ Cr

∣∣∂DRN

∣∣
1 � RN �

√
N . (5.6)

Step 2. Estimates for the spectral truncations. According to Proposition 4.5,

Khr ,DRN ,Ir,N =
N−1∑
j=0

Vhr h j ⊗ Vhr h j . (5.7)

For clarity, in what follows we denote by TK the operator with integral kernel K . Let L j := 1
for 1 ≤ j ≤ N and L j := 0, for j > N . Using the expansion in (5.4) and (3.1), we estimate
the trace-norm:

∥∥∥TKhr ,DRN
− Mhr

DRN

∥∥∥
S1
=

∥∥∥∥
∑
j≥1

(
L j − λ j (DRN , hr )

)
p
DRN
hr , j

⊗ p
DRN
hr , j

∥∥∥∥
S1

≤
∑
j≥1

∣∣L j − λ j (DRN , hr )
∣∣ =

N∑
j=1

[
1− λ j (DRN , hr )

]+ ∑
j>N

λ j (DRN , hr )

= N −
∑
j≥1

λ j (DRN , hr )+ 2
∑
j>N

λ j (DRN , hr ) = 2
∑
j>N

λ j (DRN , hr ) ,

as
∑

j λ j = |DRN | = N by (3.2). Sinceμr
j,RN

is a rearrangement ofλ j (DRN , hr ), we can use

(5.3) and (5.7) to mimic the argument. Thus, a similar calculation gives∥∥∥TKhr ,DRN
,Ir,N

− Mhr
DRN

∥∥∥
S1
≤ 2

∑
j>N−1

μr
j,RN

,

and consequently,∥∥∥TKhr ,DRN
− TKhr ,DRN

,Ir,N

∥∥∥
S1

�
∑
j>N

λ j (DRN , hr )+
∑

j>N−1
μr

j,RN
. (5.8)

Step 3. Final estimates Combining (5.8) with (5.5) and (5.6) we obtain∥∥∥TKhr ,DRN
− TKhr ,DRN

,Ir,N

∥∥∥
S1

�
∑
j>N

λ j (DRN , hr )+
∑
j>N

λ j (DRN , h0)+
√
N . (5.9)
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We now invoke Lemma 3.2 and Theorem 1.5 to estimate∑
j>N

λ j (DRN , hr ) �
∥∥∥ρhr ,DRN

− 1DRN

∥∥∥
L1

�
∣∣∂DRN

∣∣
1 �

√
N . (5.10)

Finally, (5.2) follows by combining (5.9) and (5.10). ��

5.3 Transference to Finite Pure Polyanalytic Ensembles

Proof of Theorem 1.6 We use Proposition 4.5 to identify the (r , N )-polyanalytic ensem-
ble with a Weyl–Heisenberg ensemble with parameters (hr , DRN , Ir ,N ), with correlation
Khr ,DRN ,Ir,N as in Theorem 5.4. By Proposition 4.5, K̃hr ,DRN ,Ir,N = Kr ,N . Therefore, the
conclusion follows from (5.2). ��

5.4 The One-Point Intensity of Finite Polyanalytic Ensembles

Proof of Theorem 1.2 We use the notation of Theorem 5.4; in particular RN =
√

N
π
. By (4.5),

ρr ,N = ρhr ,DRN ,Ir,N , and we can estimate
∥∥∥ρr ,N − 1DRN

∥∥∥
1
≤

∥∥∥ρhr ,DRN ,Ir,N − ρhr ,DRN

∥∥∥
1
+

∥∥∥ρhr ,DRN
− 1DRN

∥∥∥
1
.

By Theorem 1.5,
∥∥∥ρhr ,DRN

− 1DRN

∥∥∥
1

�
√
N . In addition, by Lemma A.1 in the appendix,

∥∥∥ρhr ,DRN ,Ir,N − ρhr ,DRN

∥∥∥
1
=

∫
R2d

∣∣∣Khr ,DRN ,Ir,N (z, z)− Khr ,DRN
(z, z)

∣∣∣ dz
≤ ∥∥Khr ,DRN ,Ir,N − Khr ,DRN

∥∥
S1 .

Hence, the conclusion follows from Theorem 5.4. ��
Note that the proofs of Theorems 5.4 and 1.2 combine our main insights: the identification

of the finite polyanalytic ensembles with certainWH ensembles, the analysis of the spectrum
of time-frequency localization operators and Toeplitz operators, and the non-asymptotic
estimates of the accumulated spectrum.

6 Double Orthogonality

6.1 Restriction Versus Localization

Let X g be an infinite WH ensemble on R
2d and � ⊆ R

2d of finite measure and non-empty
interior. We consider the restriction operator T g

� : L2(R2d) → L2(R2d),

T g
�F := 1�PVg (1� · F),

and the inflated Toeplitz operator Sg� : L2(R2d) → L2(R2d),

Sg�F := PVg (1� · PVg F).

In view of the decomposition L2(R2d) = Vg ⊕ V⊥g , Sg� and Mg
� are related by

Sg� =
[
Mg

� 0
0 0

]
,
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and therefore share the same non-zero eigenvalues, and the corresponding eigenspaces coin-
cide. The integral representation of Sg� is given by (1.17). Since PVg and F �→ F · 1� are
orthogonal projections, both T g

� and Sg� are self-adjoint operators with spectrum contained
in [0, 1]. The integral kernel of T g

� is given by (1.14) and
∫
Kg |�(z, z)dz = |�| < +∞.

Therefore, T g
� is trace-class (see e.g. [58, Theorems 2.12 and 2.14]). It is an elementary fact

that T g
� and Sg� have the same non-zero eigenvalues with the same multiplicities (this is true

for PQP and QPQ whenever P and Q are orthogonal projections). Morever, for λ �= 0,
the map

F �−→ 1√
λ
1�F

is an isometry between the eigenspaces

{
F ∈ L2(R2d) : Sg�F = λF

}
−→

{
F ∈ L2(R2d) : T g

�F = λF
}

.

Therefore, if Mg
� is diagonalized as in (1.18), then T g

� can be expanded as in (1.19). This
justifies the discussion in Sect. 1.3.

6.2 Simultaneous Observability

Let X be a determinantal point process (with a Hermitian locally trace-class correlation
kernel). We say that a family of sets

{
�γ : γ ∈ �

}
is simultaneously observable for X , if

the following happens. Let � =⋃
γ∈� �γ . There is an orthogonal basis {ϕ j : j ∈ J } of the

closure of the range of the restriction operator T� consisting of eigenfunctions of T� such
that for each γ ∈ �, the set {ϕ j |�γ : j ∈ J } of the restricted functions is orthogonal. This
is a slightly relaxed version of the notion in [44, p. 69]: in the situation of the definition, the
functions {ϕ j |�γ : j ∈ J } \ {0} form an orthogonal basis of the closure of the range of T�γ ,
but we avoidmaking claims about the kernel of T�. As explained in [44, p. 69], themotivation
for this terminology comes from quantum mechanics, where two physical quantities can be
measured simultaneously if the corresponding operators commute (or, more concretely, if
they have a basis of common eigenfunctions).

Theorem 6.1 LetD = {
DR : R ∈ R

+} be the family of all disks of R2 centered at the origin
and r ∈ N. Then

(i) D is simultaneously observable for the infiniteWeyl–Heisenberg ensemble with window
hr .

(ii) Let DR0 be a disk and I ⊆ N. Then D is simultaneously observable for the Weyl–
Heisenberg ensemble X hr

DR0 ,I .

Proof Let us prove (i). Since the definition of simultaneous observability involves the orthog-
onal complement of the kernels of the restriction operators T g

DR
, ran(T g

DR
) = (ker T g

DR
)⊥,

the discussion in Sect. 6.1 implies that it suffices to show that the Toeplitz operators Mhr
DR

have a common basis of eigenfunctions. Since V ∗
hr
Mhr

DR
Vhr = Hhr

DR
, and, by Proposition 4.1,

the Hermite basis diagonalizes Hhr
DR

for all R > 0, the conclusion follows.
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Let us now prove (ii). The ensembleX hr
DR0 ,I is constructed by selecting the eigenfunctions

of the Toeplitz operator Mhr
DR0

: Vhr → Vhr corresponding to the indices in I :

Khr
DR0 ,I (z, z

′) =
∑
j∈I

p
DR0
hr , j

(z)p
DR0
hr , j

(z′).

Since, by part (i), the functions p�
g, j are orthogonal when restricted to disks, the conclusion

follows. ��
As a consequence, we obtain Theorem 1.7, which we restate for convenience.

Theorem 1.7 The family D = {
DR : r ∈ R

+} of all disks of C centered at the origin is
simultaneously observable for every finite and infinite pure-type polyanalytic ensemble.

Proof This follows immediately fromProposition 4.5 andTheorem6.1. (This slightly extends
a result originally derived by Shirai [57].) ��

6.3 An Extension of Kostlan’s Theorem

Theorem 1.8 is a consequence of the following slightly more general result.

Theorem 6.2 Let X be the determinantal point process associated with the (r , J )-pure poly-
analytic ensemble, with J ⊆ N0 finite. Then the point process on [0,+∞) of absolute values
|X | has the same distribution as the process generated by {Y j : j ∈ J } where the Y j ’s are
independent random variables with density

fY j (x) := 2
π j−r+1r !

j ! x2( j−r)+1
[
L j−r
r (πx2)

]2
e−πx2 .

(Hence, Y 2
j is distributed according to fY 2

j
(x) = π j−r+1r !

j ! x j−r
[
L j−r
r (πx)

]2
e−πx .)

Proof Wewant to show that the point processes |X | :=∑
x∈X δ|x | on R and Y :=∑

j∈J δY j

on C have the same distribution. Let Ik = [rk, Rk], k = 1, . . . N , be a disjoint family of
subintervals of [0,+∞). Then

(Y(I1), . . . ,Y(IN ))
d=
∑
j∈J

ζ j ,

where the ζ j are independent, P(ζ j = ek) = ∫ Rk
rk

fY j (x)dx , and P(ζ j = 0) =∫
R\∪k [rk ,Rk ] fY j (x)dx . On the other hand, Theorem 1.7 implies that the annuli Ak :=
{z ∈ C : rk ≤ |z| ≤ Rk} are simultaneously observable for X . Hence, by [44, Proposition
4.5.9]—which is still applicable for the slightly more general definition of simultaneous
observability in Sect. 6.2, we have

(|X | (I1), . . . , | X | (IN )) = (X (A1), . . . ,X (AN ))
d=
∑
j∈J

ζ ′j ,

where the ζ ′j are independent, P(ζ ′j = ek) =
∫
Ak

∣∣Hj,r (z, z)
∣∣2 e−π |z|2dz, and P(ζ ′j = 0) =∫

C\∪k Ak

∣∣Hj,r (z, z)
∣∣2 e−π |z|2dz. A direct calculation, together with the identity
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(−x)k

k! Lk−r
r (x) = (−x)r

r ! Lr−k
k (x)

shows that
(
ζ j : j ∈ J

) d=
(
ζ ′j : j ∈ J

)
and the conclusion follows. ��

Remark 6.3 Let n(R) denote the number of points of a point process in the disk of radius R
centered at the origin. An immediate consequence of Theorem 6.2 is the following formula
for the probability of finding such a disk void of points, when the points are distributed
according to the a polyanalytic Ginibre ensemble of the pure type:

P [n(R) = 0] =
∏
j

P
(
Y j ≥ R

)

This is known as the hole probability (see [44, Section 7.2] for applications in the case of the
Ginibre ensemble).
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Appendix A: Additional BackgroundMaterial

Determinantal Point Processes and Intensities

We follow the presentation of [15,44]. Let K : R
d × R

d → C be a locally trace-class
Hermitian kernel with spectrum contained in [0, 1], and consider the functions

ρn(x1, . . . , xn) := det
(
K (x j , xk)

)
j,k=1,...,d , x1, . . . , xn ∈ R

d . (A.1)

The Macchi-Soshnikov theorem implies that there exists a point process X on R
d such that

for every family of disjoint measurable sets �1, . . . �n ⊆ R
d ,

E

⎡
⎣ n∏

j=1
X (� j )

⎤
⎦ =

∫
∏

j � j

ρn(x1, . . . , xn)dx1 . . . dxn,

where X (�) denotes the number of points of X to be found in �. The functions ρn are
known as correlation functions or intensities and X is called a determinantal point process.
The one-point intensity ρ is simply the diagonal of the correlation kernel

ρ(x) = ρ1(x) = K (x, x),

and allows one to compute the expected number of points to be found on a domain �:

E [X (�)] =
∫

�

ρ(x)dx .

The one-point intensity can also be used to evaluate expectations of linear statistics:

1
nE [ f (x1)+ · · · + f (xn)] = E [ f (x1)] =

∫
Rd

f (x)ρ(x)dx .
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A DPP can be represented by different kernels. If m : R
d → C is unimodular (i.e.,

|m(z)| = 1), then the kernel

Km(x, x ′) = m(x)K (x, x ′)m(x ′),

produces the same intensities in (A.1) as K does. (This is a so-called gauge transformation).
The integral operator with kernel Km is related to the one with kernel K by

m(x)TK (m f )(x) =
∫
Rd

m(x)K (x, x ′)m(x ′) f (x ′)dx ′ = TKm f (x).

Similarly, a linear transformation of a DPP corresponds to a linear change of variables in the
kernel K .

A.1 Functions of BoundedVariation

A real-valued function f ∈ L1(Rd) is said to have bounded variation, f ∈ BV(Rd), if its
distributional partial derivatives are finite Radon measures. The variation of f is defined as

var( f ) := sup

{∫
Rd

f (x) div φ(x)dx : φ ∈ C1
c (R

d , R
d), |φ(x)|2 ≤ 1

}
,

where C1
c (R

d , R
d) denotes the class of compactly supported C1-vector fields and div is the

divergence operator. If f is continuously differentiable, then f ∈ BV(Rd) simply means that
∂x1 f , . . . , ∂xd f ∈ L1(Rd), and var( f ) = ∫

Rd |∇ f (x)|2 dx = ‖∇ f ‖L1 . A set � ⊆ R
d is

said to have finite perimeter if its characteristic function 1� is of bounded variation, and the
perimeter of � is defined as |∂�|d−1 := var(1�). If � has a smooth boundary, then |∂�|d−1
is just the (d − 1)-Hausdorff measure of the topological boundary. See [30, Chapter 5] for
an extensive discussion of BV.

A.2 Trace-Class Operators

Lemma A.1 Let K : R
d × R

d → C be a continuous function and assume that the integral
operator

TK f (x) =
∫
Rd

K (x, y) f (y)dy, f ∈ L2(Rd),

is well-defined, bounded, and trace-class. Then
∫
Rd |K (x, x)| dx ≤ ‖TK ‖S1 , where ‖·‖S1

denotes the trace-norm.

Proof Let TK =∑
j μ jϕ j ⊗ ψ j , with μ j ≥ 0 and {ϕ j : j ≥ 1}, {ψ j : j ≥ 1} orthonormal.

Then K (x, y) =∑
j μ jϕ j (x)ψ j (y) for almost every (x, y), and we can formally compute

∫
Rd
|K (x, x)| dx ≤

∑
j

μ j

∫
Rd

∣∣ϕ j (x)
∣∣ ∣∣ψ j (x)

∣∣ dx

≤
∑
j

μ j

(∫
Rd

∣∣ϕ j (x)
∣∣2 dx

)1/2 (∫
Rd

∣∣ψ j (x)
∣∣2 dx

)1/2

=
∑
j

μ j = ‖TK ‖S1 .
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An approximation argument using the continuity of K is needed to justify the computations
with the restriction of K to the diagonal—see [58, Chapters 1,2,3] for related arguments. ��

A.3 Properties of Modulation Spaces

Recall the definition of the modulation space M1 in (5.1). It is well-known that, instead of
the Gaussian function φ, any non-zero Schwartz function can be used to define M1, giving
an equivalent norm [31], [38, Chapter 9]. Using this fact, the following lemma follows easily.

Lemma A.2 Let f ∈ L2(Rd). Then:

(i) f ∈ M1(Rd) if and only if f̂ ∈ M1(Rd), where f̂ is the Fourier transform of f . In this
case: ‖ f ‖M1 � ‖ f̂ ‖M1 .

(ii) If f is supported on D1(0) = {x : |x | ≤ 1} and f̂ ∈ L1(Rd), then f ∈ M1(Rd) and
‖ f ‖M1 � ‖ f̂ ‖L1 .

(iii) If f ∈ M1(Rd) and m ∈ C∞(Rd) has bounded derivatives of all orders, then m · f ∈
M1(Rd), and ‖m · f ‖M1 ≤ Cm‖ f ‖M1 , where Cm is a constant that depends on m.

We now prove the Sobolev embedding lemma that was used in Sect. 5.1.

Proof of Lemma 5.2 Let g be such that ĝ = f . By Lemma A.2, it suffices to show that
g ∈ M1(R) and satisfies a suitable norm estimate. Let η ∈ C∞(R) be such that η(ξ) ≡ 0 for
|ξ | ≤ 1/2 and η(ξ) ≡ 1 for |ξ | > 1. We write η(ξ) = ∑d

k=1 ξkηk(ξ), where ηk ∈ C∞(R)

has bounded derivatives of all orders. We set g1 := η · g and g2 := (1 − η) · g. Then
g1(ξ) =∑d

k=1 ηk(ξ)ξkg(ξ). Since ξkg(ξ) = 1
2π i ∂̂xk f (ξ) is in M1 by Lemma A.2(i) and ηk

has bounded derivatives of all orders, we conclude from Lemma A.2 (iii) that g1 ∈ M1(R)

and that

‖g1‖M1 � ‖ĝ1‖M1 �
d∑

k=1
‖ξk ĝ‖M1 �

d∑
k=1

‖∂xk f ‖M1 .

On the other hand, since g has an integrable Fourier transform, so does g2 = (1− η) · g and
‖ĝ2‖L1 � ‖ f ‖L1 . In addition, g2 is supported on D1(0). Therefore, by LemmaA.2, g2 ∈ M1

and ‖g2‖M1 � ‖ f ‖L1 . Hence g = g1 + g2 ∈ M1, and it satisfies the stated estimate. ��

A.4 Polyanalytic Bargmann-Fock Spaces

A complex-valued function F(z, z) defined on a subset of C is said to be polyanalytic of
order q − 1, if it satisfies the generalized Cauchy–Riemann equations

(∂z)
q F(z, z) = 1

2q
(
∂x + i∂ξ

)q
F(x + iξ, x − iξ) = 0 . (A.2)

Equivalently, F is a polyanalytic function of order q − 1 if it can be written as

F(z, z) =
q−1∑
k=0

zkϕk(z), (A.3)

where the coefficients {ϕk(z)}q−1k=0 are analytic functions. The polyanalytic Fock space Fq(C)

consists of all the polyanalytic functions of order q − 1 contained in the Hilbert space
L2(C, e−π |z|2). The reproducing kernel of the polyanalytic Fock space Fq(C) is

Kq(z, z′) = L1
q(π

∣∣z − z′
∣∣2)eπ zz′ .
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Polyanalytic Bargmann-Fock spaces appear naturally in vector-valued time-frequency anal-
ysis [2,39] and signal multiplexing [12,13]. Within Fq(C) we distinguish the polynomial
subspace

Polπ,q,N = span{z j zl : 0 ≤ j ≤ N − 1, 0 ≤ l ≤ q − 1},

with the Hilbert space structure of L2(C, e−π |z|2). The polyanalytic Ginibre ensemble, intro-
duced in [40], is the DPP with correlation kernel corresponding to the orthogonal projection
onto Polπ,q,N (weighted with the Gaussian measure). In [40, Proposition 2.1] it is shown
that

Polπ,q,N = span{Hj,r (z, z) : 0 ≤ j ≤ N − 1, 0 ≤ r ≤ q − 1},
where Hj,r are the complex Hermite polynomials (1.4). Thus, the reproducing kernel of
Polπ,q,N can be written as

Kq
π,N (z, z′) =

q−1∑
r=0

N−1∑
j=0

Hj,r (z, z)Hj,r (z′, z′). (A.4)

A.5 Pure Polyanalytic-Fock Spaces

The pure polyanalytic Fock spaces Fr (C) have been introduced by Vasilevski [63], under
the name of true polyanalytic spaces. They are spanned by the complex Hermite polynomials
of fixed order r and can be defined as the set of polyanalytic functions F integrable in
L2(C, e−π |z|2) and such that, for some entire function H [2],

F(z) =
(

πr

r !
) 1

2

eπ |z|2 (∂z)
r
[
e−π |z|2H(z)

]
.

Vasilevski [63] obtained the following decomposition of the polyanalytic Fock space Fq(C)

into pure components
Fq(C) = F0(C)⊕ · · · ⊕ Fq−1(C). (A.5)

Pure polyanalytic spaces are important in signal analysis [2] and in connection to theo-
retical physics [5,40]. Indeed, they parameterize the so-called Landau levels, which are the
eigenspaces of the LandauHamiltonian andmodel the distribution of electrons in high energy
states (see e.g. [57, Section 2], [8, Section 4.1]).

The complex Hermite polynomials (1.4) provide a natural way of defining a polynomial
subspace of the true polyanalytic space:

Polπ,r ,N = span{Hj,r (z, z) : 0 ≤ j ≤ N − 1}.
Thus,

Polπ,q,N = Polπ,0,N ⊕ · · · ⊕ Polπ,q−1,N .

The reproducing kernel of Polπ,r ,N is therefore

Kr ,π,N (z, z′) =
N−1∑
j=0

Hj,r (z, z)Hj,r (z′, z′),

and the corresponding determinantal point processes have been introduced in [40].
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