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Abstract

We present a rigorous analytical method for harmonic analysis of the angular error of rotary and linear encoders with sine/cosine
output signals in quadrature that are distorted by superimposed Fourier series. To calculate the angle from measured sine and cosine
encoder channels in quadrature, the arctangent function is commonly used. The hence non-linear relation between raw signals and
calculated angle—often thought of as a black box—complicates the estimation of the angular error and its harmonic decomposition.

By means of a Taylor series expansion of the harmonic amplitudes, our method allows for quantification of the impact of
harmonic signal distortions on the angular error in terms of harmonic order, magnitude and phase, including an upper bound on
the remaining error term—without numerical evaluation of the arctangent function. The same approximation is achieved with an
intuitive geometric approximation in the complex plane, validating the results. Additionally, interaction effects between harmonics
in the signals are considered by higher-order Taylor expansion. The approximations show an excellent agreement with the exact
calculation in numerical examples even in case of large distortion amplitudes, leading to practicable estimates for the angular error
decomposition.

Keywords: Angle encoders, Rotary encoders, Spatial harmonics, Angular error harmonics, Arctangent Fourier series argument,
Arctangent Taylor series

1. Introduction

Angle encoders are ubiquitous and indispensable in scien-
tific or industrial apparatuses. Common applications include
servo motor controls, robotics or virtually any kind of posi-
tioning application. Many different measurement methods ex-
ist and new principles are still contrived, though most of the
sensors share one common denominator: The angle is not mea-
sured directly, but rather encoded in two orthogonal signals—
commonly known as sine and cosine channels in quadrature—
that form a vector in the complex plane. The actual angle is then
calculated with the arctangent function, essentially converting
Cartesian coordinates to a polar angle.

Since the angle is calculated and not directly measured, a dis-
tinction must be made between the signal and the angle domain.
It has been observed that harmonic disturbances in the signal-
domain—with a specific order—also lead to harmonics in the
angle domain, but of different orders. This raises the ques-
tion of how it is possible to estimate the angular error based
on known disturbances in the signal domain. This knowledge
is important to predict and potentially compensate the impact
of systematic periodic errors in an encoder design. The cause
of these kinds of errors depend on the measurement principle
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and are most commonly caused by manufacturing tolerances
and imperfections in the sensor design, e.g. non-ideal magne-
tization and flux distribution in case of magnetic sensors.The
following methods are equally applicable to linear position en-
coder with sine/cosine output signals which are then converted
to an equivalent linear distance.

In the existing literature, Hanselman gives an overview of
non-ideal encoder signals and their effect on the angular error
for inductive resolvers [1, 2, 3]. The effect of amplitude imbal-
ance, phase mismatch and various cases with different harmonic
distortions are shown. However, the observations contain only
first-order approximations of the angular error and focus mainly
on special cases encountered in inductive resolvers, which may
not be applicable for other types of encoder.

Hou et al. conduct an empirical analysis of angular errors in
capacitive encoders [4]. Primarily, different error sources of
the measurement principle and their impact on the harmonic
composition of the angular error are discussed.

Secrest et al. describe an online correction method of the
angular error based on model reference-adaptive systems tech-
niques [5]. The discussion is focused on magneto-resistive sen-
sors and it is described that disturbance harmonics with the
electrical order h are introducing mechanical harmonics in the
angular domain with the order of 2(h− 1), for a sensor with pe-
riodicity p = 2. As our results will show, this is not generally
true—it is only applicable for orthogonal disturbance harmon-
ics with equal amplitudes An = Bn (see Eq. (1)).
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Figure 1: Overview of the signal flow from encoder signals to calculated angle.
In practice, signals contain imperfections in the form of harmonic disturbances.
The non-linear arctangent function complicates the prediction and assessment
of the harmonic composition of the angular error. The methods presented in
this paper enable the harmonic analysis of the arctangent function and approx-
imation of the resulting harmonic angle error spectrum in dependence of the
input disturbances in the signal domain.

However, a generally applicable, in-depth analysis of angu-
lar error harmonics introduced by periodic disturbances in the
signal domain of angle encoders (Fig. 1) is apparently missing
from existing literature. In the following we will present two
methods to approximate the angular error without numerically
evaluating the arctangent function, which allows for symbolic
calculations without resorting to numerical methods.

The motivation of this paper is to establish a deeper under-
standing of the nonlinearity of angle encoders and to enable a
thorough analysis of the cause of observed harmonics in various
encoder designs. The proposed method should be a valuable
tool in the future development of advanced error compensation
algorithms and encoder models.

1.1. Definition of encoder signals

Let a and b be the output signals from an angle encoder with
periodicity p. By considering only periodic disturbances, the
encoder signals can be written as a Fourier series. In the general

Figure 2: Example scenario for a sensor with p = 1 and one imposed disturbing
harmonic zn with order n = 6. Due to the periodicity follows for the mechanical
angle φ = φp. The vector of the main harmonic zp lies on the unit circle (dashed
line). a) Lissajous figure with corresponding vectors for φ = 60∘, b) imaginary
part of the composed signal, c) real part of the composed signal, d) angular
error which is introduced by zn.

case the signals are then defined as

a(φ) = A0 + Ap sin
(︁
pφ + θp

)︁⏟              ⏞              
main harmonic of a

+

∞∑︁
n=1
n,p

An sin(nφ + θn),

b(φ) = B0 + Bp cos
(︁
pφ + ψp

)︁⏟               ⏞               
main harmonic of b

+

∞∑︁
n=1
n,p

Bn cos(nφ + ψn)

(1)

where the main harmonic1 of order p is the usable sensor sig-
nal which is utilized to encode and later calculate the angle φ.
All amplitudes are defined to be positive or zero to avoid an
ambiguity with the corresponding phase shift.

The remaining terms are the DC offsets (A0, B0) and a sum
of nth order harmonics. They represent undesired disturbances
that will cause an angular error. In addition, the main harmonic
may also contain errors in form of an amplitude mismatch of
Ap and Bp as well as an orthogonality error θp and ψp which
can be understood as the deviation from ideal quadrature. For
simplicity we initially assume

A0 = B0 = 0,
Ap = Bp = 1,
θp = ψp = 0

(2)

1We avoid the term fundamental harmonic because it could be ambiguous
when p > 1.
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for the following analysis, so that only the ideal terms

cos(pφ) (3)
and

sin(pφ) (4)

remain as the main harmonic together with higher-order har-
monics and possibly lower-order harmonics if p > 1. While
this is initially restrictive, these conditions can be relaxed later
on by transformation to an equivalent harmonic as discussed in
section 4.

Instead of treating the encoder signals a(φ) and b(φ) sep-
arately, they can also be considered together as an angle-
dependent vector in the complex plane (Fig. 2) as

z = b + ia = z0 + zp +

∞∑︁
n=1
n,p

zn, (5)

where i is the imaginary unit.2 Note that the definition of en-
coder signals that is used here is also applicable to multi-phase
systems with more than two signals, after appropriate transform
(e.g. Clarke) to the complex plane.

Note that for a periodicity of p > 1, a distinction must be
made between the mechanical angle φ and the electrical angle
φp which differs from the mechanical angle by a factor of p

φp = pφ . (6)

If p > 1, the mechanical angle φ can generally not be recovered
unambiguously based on only the electrical angle. Additional
techniques, such as e.g. counting turns or utilizing the Vernier
principle together with another encoder may be used if the ab-
solute mechanical angle is required.

To calculate the encoded angle from a and b, the arctangent
function is commonly used. In case of ideal, undistorted signals

atan
(︃

a(φ)
b(φ)

)︃
= atan

(︃
sin(pφ)
cos(pφ)

)︃
= atan (tan(pφ)) = φp . (7)

Eq. (7) is only valid for a restricted range of pφ because of
quadrant ambiguities and eventual division by zero. In practice,
this problem is solved by a modified two-argument arctangent
function well known as atan2(a, b) (Fig. 3) [6].

1.2. Definition of the angular error
The encoder signals a and b form a vector z in the complex

plane. This vector results from the superposition of the main
harmonic zp, the offset z0 and the sum of disturbing harmonics
zn. When varying the angle φp (Fig. 2), the vector z conse-
quently traces a curve—also referred to as a Lissajous figure.
In case of ideal signals, the curve coincides with the unit cir-
cle traced by eiφp . When additional disturbance harmonics are
present, the angle φz of the signal vector z deviates from the

2Although mathematically imprecise, we make no distinction between C
and the set of two-dimensional vectors R2.
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Figure 3: Calculated encoder angle in dependence of the mechanical reference
angle φ for a sensor with periodicity p = 4. For comparison, the angle is calcu-
lated by atan (Eq. (7)), atan2, and unwrapped atan2 functions. An exaggerated
angular error deviating from the ideal output is shown as an example.

electrical angle φp. This deviation is quantified with the elec-
trical angular error ∆φp which has a visible impact on the Lis-
sajous figure. As an example, Fig. 5 shows various patterns for
a single disturbance harmonic.

The electrical angular error be geometrically defined in the
complex plane as the angle difference between φz and φp

(Fig. 4a). Therefore

∆φp = φz − φp (8)

which leads to

∆φp = atan
(︃

a(φ)
b(φ)

)︃
− pφ . (9)

Note that this formulation slightly differs from the geometri-
cal definition, since the discontinuities of the arctangent func-
tion lead to discontinuities in the angular error curve, if φ ≥ π

2
or φ ≤ − π2 . The widely used two-argument arctangent (atan2)
function does not fix this problem, it only reduces the number
of discontinuities by half (Fig. 3). A practicable solution in
numerical analyses is the use of a so-called phase unwrap func-
tion, which is implemented in many scientific software tools.

With respect to Eq. (6), the mechanical angular error is de-
fined as

∆φ =
1
p

∆φp. (10)

Under the same conditions, the mechanical angular error there-
fore generally decreases with increasing periodicity p > 1.
However, the absolute angle can no longer be determined un-
ambiguously without further measures.

When assessing the performance of an encoder in practice,
the Fourier transform ℱ of the angular error ∆φ is often of in-
terest, e.g. because higher order harmonics contribute more sig-
nificantly to the error in rotor speed calculations. In the follow-
ing, we use the notation Hn for the amplitude of the harmonic
of order n in the frequency domain, disregarding the phase.
Therefore, the natural unit of Hn is radians. It can be obtained

3



Figure 4: Geometric approximation εn of the angular error ∆φp in the complex
plane by projection of the disturbing harmonic zn onto the tangent zt of the
unit circle which is traced by the ideal encoder signal zp (a). It is geometrically
apparent that this first-order approximation does not include higher-order terms,
because two disturbances z1 and z′1 with different angular errors can both lead
to the same approximated error ε1 depending on the phase of the disturbance
(b). An interaction effect between several disturbances exists, as z2 alone does
not lead to an angular error for the specific φ shown in the diagram. When
combined with z3, the angular error decreases compared to the effect of z3 alone
(c).

numerically by discrete Fourier transform of the angular error
|ℱ {∆φ} [n]| with appropriate normalization depending on the
number of samples.

1.3. Correction of the main signal harmonic

In order to reduce the angular error, basic transformations
are commonly applied to the sensor output signals—often in the
form of offset, amplitude and possibly orthogonality corrections
which can be achieved by simple linear transformation of the
signals (Eq. 14).

Throughout the literature, numerous other methods are de-
scribed, e.g. online correction methods based on an observer
[7]. Such methods are also able to compensate fluctuating error
influences over lifetime, but will not be part of our analysis.

For the derivation of a simple compensation method, we con-
sider two encoder signals a and b according to Eq. (1), but with-
out additional disturbance harmonics for simplicity. The phase
reference is arbitrarily chosen as the cosine channel b and we
define δp = ψp − θp as the phase mismatch which yields

a(φ) = Ap sin
(︁
pφ + δp

)︁
+ A0,

b(φ) = Bp cos(pφ) + B0

(11)

as signals. In practice, other disturbances might also be present
(Eq. (1)) which are also affected by the following compensa-
tion.

Amplitudes and offsets are trivially corrected by

a′ =
a − A0

Ap
= sin

(︁
pφ + δp

)︁
,

b′ =
b − B0

Bp
= cos(pφ).

(12)

To ensure orthogonality of the signals a and b the phase mis-
match can also be corrected. From Eq. (A.1) follows

a′ = sin
(︁
pφ + δp

)︁
= sin(pφ) cos

(︁
δp

)︁
+ cos(pφ) sin

(︁
δp

)︁
(13)

and therefore

a′′ = sin(pφ) =
a′ − cos(pφ) sin

(︁
δp

)︁
cos

(︁
δp

)︁
=

a−A0
Ap
−

b−B0
Bp

sin
(︁
δp

)︁
cos

(︁
δp

)︁
=

(a − A0) − (b − B0) Ap

Bp
sin

(︁
δp

)︁
Ap cos

(︁
δp

)︁ .

(14)

a′′ and b′ then contain ideal main harmonics of unit ampli-
tude that trace a unit circle in the complex plane (Fig. 2). As
a prerequisite for the further sections we assume ideal main
harmonics—however, our method can also be applied to de-
termine the angular error caused by offset, amplitude mismatch
and orthogonality of the main harmonic (section 4, Table 1).

2. Approximation of the angular error

Unfortunately, no Fourier transform of the arctangent func-
tion exists. In order to analyze the harmonic decomposition of
the angular error, other methods have to be used instead. First
of all, we present an intuitive geometric approximation, which
is based on projections of the encoder signals in the complex
plane. The result can be generalized to higher-order approxi-
mations by the use of a Taylor series expansion in terms of the
harmonic distortion amplitudes.

Initially, we assume ideal main harmonic signals without any
offset, amplitude mismatch or orthogonality error as defined in
Eq. (2). Additionally, we assume that the amplitude of distur-
bances in the signal is much smaller than the usable main har-
monic encoder signals, so that An ≪ Ap and Bn ≪ Bp for all
harmonics n. This is appropriate for virtually all real-world ap-
plications since failing to meet this requirement results in sig-
nificant angular error. Note that even if the encoder signals ex-
hibit no amplitude mismatch, but are not normalized to unit
amplitude, normalization is required (subsection 4.1) because
disturbances act proportionally to the amplitude of the main
harmonic (implicit normalization occurs during evaluation of
the arctangent function argument).

2.1. Geometric projection method
In reference to Fig. 4a, consider an ideal main harmonic zp

with one imposed disturbance zn. As defined in Eq. (5), both

4
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Figure 5: Lissajous figure examples (square) and corresponding angular error curves (below) for various signal distortions. The signals contain ideal main harmonics
(unit amplitude) with one superimposed disturbance harmonic. in a and b, characterized by the harmonic order n, amplitudes An, Bn and the phase difference δn.
Note that a superimposed 1st harmonic is technically equivalent to an amplitude mismatch or phase error of the main harmonic.

vectors rotate with different speeds corresponding to their har-
monic order. Fig. 4 therefore shows a snapshot in time (or
rather: angle φ) of the signals, wherein zp is assumed to be
normalized and its trace coincides with the unit circle.

If the magnitude of zn is much smaller than |zp| = 1, the
angular error ∆φp is approximately equal to the projection of
zn onto the tangent of the unit circle at zp—recall the definition
of an angle as the length of a segment on the unit circle. We
denote this approximation εn in units of radians, which can be
calculated for arbitrary amplitudes An, Bn and phases θn, ψn.

By the use of Euler’s formula, the definition of zn can be
rewritten as

zn =
1
2

(︁
Anei(nφ+θn) − Ane−i(nφ+θn) + Bnei(nφ+ψn) − Bne−i(nφ+ψn)

)︁
.

(15)
Correspondingly, the unit tangent ẑt is given by

ẑt = ieipφ. (16)

The projection onto the unit tangent ẑt can be described as the
multiplication of zn with the complex conjugate of ẑt and then
taking the real part

εn = Re
{︁
ẑtzn

}︁
, (17)

which yields

εn =
1
2

(︂
An sin((n − p)φ + θn) + Bn sin((n − p)φ + ψn)

+ An sin((n + p)φ + θn) − Bn sin((n + p)φ + ψn)
)︂
.

(18)

It is important to note that the angular error introduced by zn

thus consists of harmonics of order n− p and n+ p, respectively,
depending on the amplitudes An and Bn as well as the phases θn

and ψn of the disturbance. This becomes even more apparent
by orthogonal decomposition:

εn =
1
2

(︂
(An sin θn + Bn sinψn) cos((n − p)φ)

+ (An cos θn + Bn cosψn) sin((n − p)φ)

+ (An sin θn − Bn sinψn) cos((n + p)φ)

+ (An cos θn − Bn cosψn) sin((n + p)φ)
)︂
.

(19)

The amplitude of the angular error harmonics is therefore

Hn−p =
1
2

√︁
A2

n + 2AnBn cos δn + B2
n (20)

for the order n − p of the angular error, and

Hn+p =
1
2

√︁
A2

n − 2AnBn cos δn + B2
n (21)

for the order n + p, where

δn = ψn − θn . (22)

Some interesting special cases arise which allow further sim-
plification of the amplitudes. In case of orthogonal harmonics
so that δn = 0

Hn−p =
δn=0

An + Bn

2

Hn+p =
δn=0

|An − Bn|

2
.

(23)
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In case the amplitudes of the harmonics of order n are equal so
that An = Bn, but exhibit an orthogonality error δn

Hn−p =
An=Bn

An
√

2

√︀
1 + cos δn

Hn+p =
An=Bn

An
√

2

√︀
1 − cos δn.

(24)

If several harmonics n,m, ... are present in the encoder signals a
and b, the approximated angular errors εn, εm, ... can be superim-
posed by assuming independence of the effects of the disturbing
harmonics. This is valid as a first-order approximation, though
an interaction effect between harmonics exists in second order.

Fig. 4c shows an example for the interaction between two
disturbing harmonics z2 and z3. When considering z2 in rela-
tion to zp, z2 does not introduce any angular error at the current
rotation position. On the other hand z3 introduces an angular er-
ror when considered independently, though the error is reduced
when regarding the superposition z2 + z3.

Further, Fig. 4b illustrates why this first-order approximation
is only valid for small disturbances. z′1 has the same magnitude
as z1 but is mirrored on the tangent of zp. The projection on the
tangent yields the same approximation ε1 to the angular error
in both cases, however, the exact angular error caused by z′1 is
larger.

As we show in the next section through the derivation of a
second-order approximation, these effects are often negligible
in real-world applications where the amplitude of the distur-
bances is sufficiently small compared to the main harmonic.

2.2. Taylor series approximation

A more powerful approach to approximate the angular error
can be obtained by multivariate Taylor-Maclaurin series expan-
sion. As defined in Eq. (9), the electrical angular error ∆φp

results from combining the signals a and b with the sum of dis-
turbing harmonics

∆φp = atan

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
sin(pφ) +

∑︀
n

An sin(nφ + θn)

cos(pφ) +
∑︀
n

Bn cos(nφ + ψn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − pφ

= f (A,B) .

(25)

We denote this function f for convenience, where A and B are
the amplitudes of the disturbances in a and b respectively, ex-
pressed as vectors.

Under the same assumption as made for the geometric
approximation—that the amplitudes of disturbances are small
compared to the main harmonic— f can be approximated by
the multivariate Maclaurin series of order k with remainder Rk

(Eq. (B.1)). By simplification of the first and second order we

obtain

f =

def
= 0⏞                    ⏟                    

���������
atan

(︃
sin(pφ)
cos(pφ)

)︃
− pφ

+
1
2

∑︁
n

(︂
An sin((n − p)φ + θn) + Bn sin((n − p)φ + ψn)

+ An sin((n + p)φ + θn) − Bn sin((n + p)φ + ψn)
)︂

+
1
2

∑︁
n

∑︁
m

(︂
−AnAm sin(2pφ) sin(nφ + θn) sin(mφ + θm)

− 2AnBm cos(2pφ) sin(nφ + θn) cos(mφ + ψm)

+ BnBm sin(2pφ) cos(nφ + ψn) cos(mφ + ψm)
)︂

+ R2(A,B).
(26)

The above Taylor expansion is composed of the terms3:

f = T 0
}︁ def

= 0

+ T 1
}︁ 1st order approximation

Harmonics p ± n

+ T 2
}︁ 2nd order approximation

Harmonics 2p ± n ± m

+ R2(A,B)
}︁

Remainder

(27)

Note that the first-order term T 1 matches the geometrically
obtained result from section 2.1 (Eq. (17)), yielding the possi-
ble harmonic orders p + n and p − n of the angular error. Both,
interaction effects and an additional error (Fig. 4) can be ex-
plained by the second-order term T 2 of the Taylor approxima-
tion. When n , m in the summation, the term describes an
interaction effect of orders n and m, when n = m it describes
a second-order effect of the same harmonic. Consequently all
possible combinations of 2p ± n ± m may occur.

The zeroth-order of the Taylor series, represented by the term
T 0, is a tricky case. As discussed in section 1.2, in numeri-
cal analyses the extended two-argument arctangent function is
used to correct for quadrant ambiguities and the result is com-
monly unwrapped, i.e. discontinuities are removed numeri-
cally. Therefore, the result of the modified arctangent oper-
ation follows a similar linear shape as the reference pφ, but
with an added angular error. Since T 0 contains only the ideal
sine and cosine terms in the arctangent argument, any non-zero
term when subtracting pφ is only due to the discontinuities of
the arctangent function and ambiguities between electrical and
mechanical angles when p > 1. Therefore, we define it to be
zero in order to match the numerical process of unwrapping the
atan2 function.

The amplitudes of angular error harmonics in the second-
order term T 2 are decreased significantly compared to the first-
order term T 1 since we assume An ≪ Ap = 1 and Bn ≪ Bp = 1

3Note that all harmonic orders (p, n,m) refer to one full period of the refer-
ence angle and are therefore mechanical harmonics.
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Figure 6: Geometric bound for the angular error due to the disturbance har-
monics z1, ..., zn superimposed onto the ideal main harmonic zp of an angle
encoder in the complex plane (Eq. (5)). By assuming a worst-case superposi-
tion of harmonics, the maximum angular error ∆φmax is given by the angle of
the tangent to the disturbance Lissajous figure (circular due to worst-case su-
perposition). The actual maximum of the angular error may be lower due to the
phase relations of the disturbance harmonics.

for every disturbance in the Fourier series. Therefore, the prod-
ucts AnAm, AnBm and BnBm always yield smaller values com-
pared to the first-order approximation. It is possible to extend
Eq. 26 to include arbitrary higher orders k > 2 based on Equa-
tions B.1 and B.2, however this yields diminishing returns in
practice. For many applications, even a first-order approxima-
tion is sufficient.

2.3. Error bounds
It is useful to determine the maximum approximation error,

which can be achieved by finding an upper bound for Rk(A,B).
For comparison, we will first derive a bound for the maximum
angular error geometrically, given the sum of disturbance har-
monics.

In reference to Fig. 6, let 𝒜 be the sum of the maximum
magnitudes of the disturbing harmonics

𝒜 =
∑︁

n

√︁
A2

n + B2
n < 1. (28)

The angular error is then bounded by

∆φp ≤ atan
⎛⎜⎜⎜⎜⎝𝒜√1 −𝒜2

1 −𝒜2

⎞⎟⎟⎟⎟⎠ (29)

which is achieved by finding the tangent from the origin to the
circle with radius 𝒜 centered around zc = 1 + 0i. The above
bound is tight in the worst-case when the phases of the distur-
bance harmonics align in such a way that causes the maximum
angular error in relation to zp.

If 𝒜 < 1
2 , which is a reasonable assumption for most en-

coders, then
∆φp =≤

π

3
𝒜 (30)
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Figure 7: Comparison of the electrical angular error ∆φp as calculated numer-
ically with the arctangent function and the Taylor series approximation of first
and second order for the encoder signals a and b (Eq. (33)). The bound of the
residual error of the approximation is given for the Taylor series residual with
k = 1 (shaded blue area) and k = 2 (orange horizontal lines). The bottom plot
shows the decomposition of the angular error into harmonic amplitudes, as es-
timated by the Taylor series and calculated by discrete Fourier transform for the
numerical arctangent function.

is a good approximation that avoids the arctangent function and
is often handy for rule-of-thumb assessments ( π3 = 60°).

A bound for the residual Rk of the Taylor series can also
be found for arbitrary approximation orders k. Similarly to
Eq. (28), let

𝒜̃ =
∑︁

n

(An + Bn) = ‖A‖1 + ‖B‖1 (31)

then the remainder of the kth-order Taylor series is bounded by

|Rk(A,B)| ≤ − log
(︁
1 − 𝒜̃

)︁
−

k∑︁
q=1

1
q
𝒜̃q . (32)

Refer to Appendix B for a derivation of this error bound.

3. Numerical example

In order to validate the presented approximation method
from section 2.2, the following signal is used as an example
for comparison between the arctangent function and the results
from Eq. (26):

a(φ) = sin(2φ) + 0.05 sin
(︂
3φ +

π

8

)︂
+ 0.075 sin(9φ),

b(φ) = cos(2φ) + 0.02 cos
(︂
3φ +

π

7

)︂
+ 0.09 cos

(︂
9φ +

π

4

)︂
.

(33)

7



This example contains a main signal harmonic with the order
p = 2 and two added disturbing harmonics of the order 3 and
9, including an amplitude mismatch and orthogonality error of
the harmonics.

The result of the Taylor approximation of order k = 1 and
k = 2 is presented in Fig. 7. Given a large angular error caused
by the harmonics (max ∼ 8°), the Taylor series approximation
yields excellent results. The maximum value of the residual is
smaller than 0.6° for the first-order approximation and smaller
than 0.05° for the second order. When assessing the harmonic
decomposition of the angular error, all dominant orders (1, 5, 7,
11) are excellently approximated by the first-order approxima-
tion. In second order, minor harmonics with small amplitude
(2, 4, 8, 10, 14, 16) are also approximated correctly.

4. Common distortions of encoder signals

To avoid ambiguities and to have a clear distinction between
ideal main signal harmonic and higher-order disturbing har-
monics, we assumed amplitude-, offset- and phase-corrected
signals. Thus, the influence of such mismatches were excluded
from the derivations in chapters 2.1 and 2.2. However, Eq. (26)
also allows to predict the composition of the angular error in
case these commonly encountered mismatches are present in
the signal domain. This is easily possible by treating deviations
of the main harmonic from the ideal signal as equivalent distur-
bance harmonics of order n = 0 and n = p.

In Table 1 the harmonic amplitudes of the angular error are
listed for all possible mismatch combinations, calculated with
the second-order Taylor series from Eq. (26).

For the approximation of the angular error caused by a DC
offset of the signals a and b, we choose n = 0 as the order of
the disturbance harmonics and define the phase of the imagi-
nary part θn = π/2 to avoid cancellation of the sine term in a
while the phase of the real part b is simply ψn = 0. Negative
amplitudes can be allowed for convenience.

A mismatch of the sine and cosine amplitudes of the main
signal can be achieved by setting n = p. The disturbance har-
monics amplitudes An and Bn therefore represent the deviation
of the main signal from the ideal case of unit amplitudes.

To calculate the influence of a phase mismatch, we again
make use of the trigonometric identity in Eq. (A.1) and choose
the cosine channel as the reference:

sin
(︁
pφ + δp

)︁
= sin(pφ) + 2 sin

(︃
δp

2

)︃
sin

(︃
pφ +

δp + π

2

)︃
. (34)

As this result shows we have to choose n = p, An = 2 sin
(︁
δp

2

)︁
and θn =

δp+π

2 to represent the phase mismatch in the signal
domain.

4.1. Normalization
Consider the signals

a = Ap sin
(︁
pφ + θp

)︁
+ A′0

b = Bp cos(pφ) + B′0
(35)

Because disturbances affect the angular error inversely propor-
tional to the amplitude of the main harmonic, it is necessary to
normalize the signals a and b by scaling them (and therefore
the Lissajous figure) both with the same factor. Note that this
has no effect on the calculated angle, because the scaling term
cancels out in the fraction of the arctangent argument (Eq. (7)).
Because of the amplitude mismatch present in the signals, it is
impossible to scale both of them exactly to unit amplitude, e.g.
in the case Ap = 2 Volts, Bp = 2.5 Volts. In order to achieve an
even scaling for both sine and cosine channel, we propose that
the mean of the amplitudes may be chosen as the scaling factor
g. Following the example in Eq. (35)

g =
Ap + Bp

2
. (36)

The equivalent “offset harmonic” with n = 0 therefore evaluates
to

z0 = i
A′0
g⏟ ⏞ 

=A0

sin
(︂
0φ +

π

2

)︂
⏟          ⏞          

=1

+
B′0
g⏟ ⏞ 

=B0

cos(0φ)⏟    ⏞    
=1

(37)

where A0 and B0 are the offsets that can be found in Table 1.
The amplitude mismatch is analogously expressed as

zn = i
(︃

Ap

g
− 1

)︃
⏟     ⏞     

An

sin(pφ) +

(︃
Bp

g
− 1

)︃
⏟     ⏞     

Bn

cos(pφ) . (38)

by taking the difference to unit amplitude after normalization as
the amplitude of the disturbance harmonic. Note that the nor-
malization applies to possibly present higher-order harmonics
as well. The expression of the phase mismatch (Eq. (34)) as an
equivalent harmonic requires no normalization of amplitude.

The effect of phase and amplitude mismatch is considered as
two separate disturbance harmonics, although they both lead to
an effective disturbance of the same order (2p). The interaction
effect of phase and amplitude mismatch (as well as all other
interactions) is still considered in the second-order terms of the
Taylor series. This approach avoids the complexities in notation
involved with the aggregation of both mismatches into a single
harmonic.

5. Conclusion

In order to estimate the harmonic composition of the angu-
lar error due to disturbance harmonics in the encoder signals,
we developed a two powerful methods to accurately approx-
imate the angular error harmonics of the arctangent function:
An intuitive geometric approach in the complex plane and a
Taylor series approximation in terms of the distortion ampli-
tudes. Both yield the same results in a first-order approxima-
tion. The geometric interpretation provides a vivid explanation
of the source of angular error harmonics. On the other hand,
the Taylor series can be extended to higher-order approxima-
tions, taking into account second-order effects and interactions
between disturbance harmonics.

Both approximation methods are in excellent agreement with
the numerical examples (section 3). In many cases in practice,
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Signal domain Error domain
Mismatch Equivalent Disturbance Orders Harmonic amplitudes

Offset B0 + iA0
T 1 : p
T 2 : 2p

Hp =

√︁
A2

0 + B2
0

H2p =

√︃
A4

0

4
+

A2
0B2

0

2
+

B4
0

4

Amplitude Bn cos(pφ)
+iAn sin(pφ)

T 1 : 2p
T 2 : 4p

H2p =
1
2

(An − Bn) +
1
4

(B2
n − A2

n)

H4p =
1
8

(An − Bn)2

Phase i2 sin
(︁
δp

2

)︁
sin

(︁
pφ +

δp+π

2

)︁ T 1 : 0, 2p
T 2 : 0, 2p, 4p

H0 =
3
4

sin δp −
1
8

sin
(︁
2δp

)︁
H2p =

√︂
1
4

sin2 δp + (cos δp − 1)2 ≈
1
2
δp

H4p =
1
4

(1 − cos δp)

Offset,
amplitude

B0 + Bn cos(pφ)
+i(A0 + An sin(pφ))

T 1 : p, 2p
T 2 : p, 2p, 3p, 4p

Hp =
1
2

(Bn + An − 2)
√︁

B2
0 + A2

0

H2p =

√︂
B2

0A2
0 +

1
16

(2B2
0 + B2

n − 2Bn − 2A2
0 − A2

n − 2An)2

H3p =
1
2

(An − Bn)
√︁

B2
0 + A2

0

H4p =
1
8

(An − Bn)2

Offset,
phase

B0
+iA0

+i2 sin
(︁
δp

2

)︁
sin

(︁
pφ +

δp+π

2

)︁ T 1 : 0, p, 2p
T 2 : 0, p, 2p, 3p, 4p

H0 =
3
4

sin δp −
1
8

sin
(︁
2δp

)︁
Hp =

√
2

2

√︁
(5 − 3 cos δp)(A2

0 + B2
0)

H2p =
1
2

√︁
(sin δp − 2A0B0)2 + (2 cos δp − A2

0 + B2
0 − 2)2

H3p =

√
2

2

√︁
(1 − cos δp)(A2

0 + B2
0)

H4p =
1
4

(1 − cos δp)

Amplitude,
phase

Bn cos(pφ)
+iAn sin(pφ)
+i2 sin

(︁
δp

2

)︁
sin

(︁
pφ +

δp+π

2

)︁ T 1 : 0, 2p
T 2 : 0, 2p, 4p

H0 =
1
4

(3 − An − Bn) sin δp −
1
8

sin
(︁
2δp

)︁
H2p =

1
4

√︁
(A2

n − B2
n − 4An + 2Bn + 2An cos δp − 4 cos δp + 4)2 + 4 sin2 δp(Bn − 1)2

H4p =
1
8

⎯⎸⎸⎷ (sin
(︁
2δp

)︁
+ 2 sin δp(An − Bn − 1))2 + ((An − Bn)2

−2(An − Bn) + 2 cos δp(An − Bn − 1) + cos
(︁
2δp

)︁
+ 1)2

Offset,
amplitude,
phase

B0 + Bn cos(pφ)
+i(A0 + An sin(pφ))
+i2 sin

(︁
δp

2

)︁
sin

(︁
pφ +

δp+π

2

)︁ T 1 : 0, p, 2p
T 2 : 0, p, 2p, 3p, 4p

H0 =
1
4

(3 − An + Bn) sin δp −
1
8

sin
(︁
2δp

)︁
Hp =

1
2

√︁
(A2

0 + B2
0)

(︁
(An + Bn)2 − 6(An + Bn) + 2 cos δp(An + Bn) − 6 cos δp + 10

)︁
H2p =

1
2

⎯⎸⎸⎸⎷ ( sin δp(Bn − 1) + 2A0B0)2

+
(︁1
2

(A2
n − B2

n) + A2
0 − B2

0 − 2An + Bn + cos δp(An − 2) + 2
)︁2

H3p =
1
2

√︁
(A2

0 + B2
0)

(︁
(An − Bn)2 − 2(An − Bn) + 2 cos δp(An − Bn − 1) + 2

)︁
H4p =

1
8

⎯⎸⎸⎷ ( sin
(︁
2δp

)︁
+ 2 sin δp(An − Bn − 1))2

+((An − Bn)2 − 2(An − Bn) + 2 cos δp(An − Bn − 1) + cos
(︁
2δp

)︁
+ 1)2

Table 1: Common mismatches of the main harmonic of the encoder signals and resulting second-order approximation of the harmonic amplitudes of the electrical
angular error in units of radians. Encoder signal offsets, amplitude mismatch and phase (orthogonality) errors are expressed as an equivalent disturbance harmonic
of order n equal to the periodicity p, so they can be analyzed with the Taylor series approximation developed in section 2.2. T 1 refers to the first-order Taylor terms,
T 2 to the second-order terms. Corresponding harmonic orders of the angular error are expressed in dependence of the periodicity p of the encoder.
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the first-order Taylor series is sufficient, yielding possible har-
monic orders of n− p and n + p for the angular error, where n is
the order of a disturbance harmonic and p the periodicity of the
encoder signals. A more accurate result can be achieved by also
considering the second-order. The result shows no significant
deviation between the numerically evaluated arctangent func-
tion and our approximation (Eq. (26)), even in cases with large
harmonic distortion amplitudes. Furthermore, we provide an
upper bound for the residuals of the Taylor series and compare
it with a geometric bound in the complex plane.

Additionally, offset-, amplitude- and orthogonality errors of
the main harmonic of the encoder can also be analyzed with
the obtained Taylor series. Our method is capable of predicting
these distortions by representing them as equivalent disturbance
harmonics. Table 1 gives a comprehensive overview about the
resulting harmonics in the angular error.

In general, our work contributes to a deeper understanding of
the nonlinearity of angle encoders and enables thorough analy-
sis of the cause of observed harmonics in encoder designs. Fur-
ther, it has applications in the future development of advanced
error compensation algorithms and encoder models. For ex-
ample, automated optimization of sensor geometry to minimize
angular error harmonics can be simplified by replacing the arc-
tangent calculation with our approximation in a virtual sensor
design process.
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This research was funded by Robert Bosch GmbH – Chassis
Systems Control, Germany.

Appendix A. Partial derivatives of the arctan function

Throughout this paper, a number of trigonometric identities
and derivatives are utilized. They can be found in the common
literature, e.g. by Bronshtein and Semendyayev [8].

The identity for orthogonal decomposition

sin (α + β) = sinα cos β + cosα sin β (A.1)

is often needed. The uncommon identity(︃
sin2 φ

cos2 φ
+ 1

)︃
cosk φ = (cos φ)k−2 (A.2)

is particularly useful for the calculation of partial derivatives.
The derivatives required for the derivation of the Tay-

lor series are quite unwieldy, therefore we recommend us-
ing a modern computer algebra system [9] together with
trigonometry-specific simplification algorithms [10] for calcu-
lations. Nonetheless, we provide an outline of the process “by
hand” for verification.

Let

f = atan

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
sin pφ +

∑︀
n

An sin(nφ + θn)

cos pφ +
∑︀
n

Bn cos(nφ + ψn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − pφ . (A.3)

Starting from the well-known trigonometric identities and
derivatives of the arctangent function we obtain

∂ f
∂Am

=
sin(mφ + θm)⎛⎜⎜⎜⎜⎜⎝1 +

(︃
sin pφ+

∑︀
n

An sin(nφ+θn)

cos pφ+
∑︀
n

Bn cos(nφ+ψn)

)︃2⎞⎟⎟⎟⎟⎟⎠ (︃cos pφ +
∑︀
n

Bn cos(nφ + ψn)
)︃ .

(A.4)

Evaluating the derivative at zero

∂ f
∂Am

⃒⃒⃒⃒⃒
A=B=0

=
sin (mφ + θm)(︂

1 +
sin2 (pφ)
cos2 (pφ)

)︂
cos (pφ)

= sin(mφ + θ) cos(pφ) .

(A.5)

Similarly,

∂ f
∂Bm

= −

(︃
sin pφ +

∑︀
n

An sin(nφ + θn)
)︃

cos(mφ + ψm)⎛⎜⎜⎜⎜⎜⎝1 +

(︃
sin pφ+

∑︀
n

An sin(nx+θn)

cos pφ+
∑︀
n

Bn cos(nφ+ψn)

)︃2⎞⎟⎟⎟⎟⎟⎠ (︃cos pφ +
∑︀
n

Bn cos(nφ + ψn)
)︃2

(A.6)
and

∂ f
∂Bm

⃒⃒⃒⃒⃒
A=B=0

= −
sin pφ cos(mφ + ψm)(︂

1 +
sin2 pφ
cos2 pφ

)︂
cos2 pφ

= − sin pφ cos(mφ + ψm) .

(A.7)

The second-order derivatives evaluated at zero can be obtained
in the same manner, yielding

∂2 f
∂An∂Am

⃒⃒⃒⃒⃒
A=B=0

= − sin(2pφ) sin(nφ + θn) sin(mφ + θm), (A.8)

∂2 f
∂Bn∂Bm

⃒⃒⃒⃒⃒
A=B=0

= sin(2pφ) cos(nφ + ψn) cos(mφ + ψm),

(A.9)

∂2 f
∂An∂Bm

⃒⃒⃒⃒⃒
A=B=0

= − cos(2pφ) sin(nφ + θn) cos(mφ + ψm) .

(A.10)

Appendix B. Multivariate Taylor series

We consider the multivariate Taylor series of order k evalu-
ated at zero, forming the multivariate Maclaurin series:

f (A,B) =
∑︁
|α|+|β|≤k

∂α∂β f (0, 0)
α!β!

AαBβ + Rk(A,B). (B.1)

Foregoing a formal proof, given f from Eq. (A.3) we ob-
serve the following general solution for the partial derivative
of f evaluated at zero

∂α∂β f (A = 0,B = 0)

= (|α| + |β| − 1)! sin
(︂
(|β| + |α|)φ + (|α| + 2|β|)

π

2

)︂
aαbβ

(B.2)
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using the dual multi-index notation

A = (A1, A2, . . . , An)
B = (B1, B2, . . . , Bn)

(B.3)

α = (α1, α2, . . . , αn)
β = (β1, β2, . . . , βn)

(B.4)

|α| = α1 + α2 + · · · + αn

|β| = β1 + β2 + · · · + βn
(B.5)

∂α∂β f =
∂|α|+|β| f

∂Aα1
1 ∂Bβ1

1 · · · ∂Aαn
n ∂Bβn

n

(B.6)

Aα = Aα1
1 Aα2

2 · · · A
αn
n

Bβ = Bβ1
1 Bβ2

2 · · · B
βn
n

(B.7)

aα = sinα1 (n1φ + θ1) sinα2 (n2φ + θ2) · · ·

bβ = cosα1 (n1φ + ψ1) cosα2 (n2φ + ψ2) · · ·
(B.8)

This unusual double notation is required because the number
of differentiations |α| and |β| with respect to A and B has to be
counted separately for Eq. (B.2).

Appendix B.1. Derivation of the residual error bound
Because −1 ≤ sin x ≤ 1, it is clear that⃒⃒⃒

∂α∂β f (0, 0)
⃒⃒⃒
≤ (|α| + |β| − 1)! (B.9)

for any angle φ (Eq. (B.2)). Note that this is not a tight bound,
because the phase relations are ignored. This leads us to an
important bound of the remainder of the Taylor series.

Similarly to Eq. (28), let

𝒜̃ =
∑︁

n

(An + Bn) = ‖A‖1 + ‖B‖1 . (B.10)

For a single specific approximation order k = |α| + |β|, the
Taylor series contains the terms

T k =
∑︁
|α|+|β|=k

∂α∂β f (0, 0)
α!β!

AαBβ. (B.11)

By virtue of the multinomial theorem and Eq. (B.2) follows:

T k ≤
(|α| + |β| − 1)!

(|α| + |β|)!
(A1 + B1 + A2 + B2 + · · · + An + Bn)|α|+|β|

=
1
k

(A1 + B1 + A2 + B2 + · · · + An + Bn)k

=
𝒜̃k

k
.

(B.12)

The full Taylor series4 is therefore given by

∞∑︁
k=1

Tk ≤

∞∑︁
k=1

𝒜̃k

k
= − log

(︁
1 − 𝒜̃

)︁
, (B.13)

4Note that we established earlier in section 2.2 that T 0 = 0 by definition.

which is the polylogarithm Li1(𝒜̃).
We can see that this series converges for 0 ≤ 𝒜̃ < 1. A bound

for the remainder Rk of the Taylor series of order k = |α| + |β| is
then given by subtracting the relevant orders up to k:

|Rk(A,B)| ≤ − log
(︁
1 − 𝒜̃

)︁
−

k∑︁
q=1

1
q
𝒜̃q . (B.14)

Note that for k = 0 as well as for large amplitudes close to
𝒜̃ ≈ 1, Eq. (29) provides a tighter bound of the angular error,
presumably due to accumulation of the error introduced by ig-
noring the phase shift (|α| + 2|β|) π2 in Eq. (B.2).
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